
IS THE OUTER HAIR CELL WALL VISCOELASTIC�

J�T� RATNANATHER�� A�A� SPECTOR� A�S� POPEL

Dept� of Biomedical Engineering� The Johns Hopkins University School of Medicine

��� Rutland Avenue� Baltimore� MD ������ USA

�email� tratnana�bme�jhu�edu

W�E� BROWNELL

Bobby R� Alford Department of Otorhinolaryngology and Communicative Sciences

Baylor College of Medicine� One Baylor Plaza� Houston� TX ���	�� USA

� Introduction

A growing body of evidence suggests that the cochlear outer hair cell �OHC�
contributes to the active feedback process in the mammalian cochlea� The
OHC is a hydrostat �� its lateral wall is both elastic and mechanically re�
inforced and its shape is maintained by a pressurized �uid core� Mechanical
properties of the OHC wall have been both modeled and measured ���� In par�
ticular� Brundin and Russell � subjected isolated OHCs to mechanical stimuli
and found that OHC deformations could be described in terms of a damped
mechanical oscillator� Our goal is to determine whether the damping results
from either �i� the viscosity of the cytoplasm and the surrounding �uid as sug�
gested by Tolomeo � or �ii� the cell wall which may possess the characteristics
of a viscoelastic material or �iii� both�

� Theory

The Brundin and Russell � experiment is di�cult to model because the me�
chanical stimuli is an oscillating water jet aimed at the lateral wall� We� thus�
consider an isolated OHC as cylindrical viscoelastic membrane of length� l��
and radius� r�� with one �xed closed end and an applied sinusoidal force at
the other closed end� This model can be adapted to analyse the experiments
described in this book by Hemmert et al� � The viscoelastic OHC wall incorpo�
rates the e	ects of membrane viscosity � together with a model of a cylindrical
elastic membrane �� The longitudinal membrane tension is balanced by the
�uid stresses from inside and outside the OHC� Our analysis di	ers from the
approach taken by Jen and Steele��� A slender body perturbation approxima�
tion�� based on the OHC aspect ratio� � 
 r��l�� is used to determine equations
for the longitudinal tension and pressure di	erence across the membrane�

�



��� Fluid analysis

The �uid inside and outside the OHC is modeled by the normalized unsteady
axisymmetric Stokes equations�
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where St 
 �r�
��� is the Stokes number� � is the frequency of the disturbance�

� 
 ���� is the kinematic viscosity of the �uid� The �uid boundary conditions
are related to the displacement of the membrane�
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where �z and �r are the normalized longitudinal and radial displacement of the
elastic cylinder respectively� The symmetry boundary condition is applied at
r 
  inside the cell and at r 
 a outside the cell� At r 
 �� the normalized
�uid stress is�
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where the sign indicates whether the �uid is inside or outside the cell�

Since we are modelling the response of the OHC to a sinusoidal force
applied at z 
 �� we consider harmonic oscillations�
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The OHC aspect ratio� �� is chosen as the perturbation parameter so that
variables� Ur 	 Uz and P can be expanded in a power series in �� Y 
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� The superscripts I and E pertain to variables inside and outside the
OHC respectively� Then in the limit as a��� the leading order expressions
up to and including O��� for the �uid pressure and stress at r 
 � inside and
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outside the cell are�
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where In andKn are the nth order modi�ed Bessel functions of �rst and second
kind respectively�

��� Membrane analysis

The normalized tensions� T� and Tz � are related to the �uid pressure and wall
shear stress from inside and outside the OHC�
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The membrane undergoes strains given by e� 
 �r and ez 
 d�z�dz which are
related to the membrane tensions by a viscoelastic model���
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where A 
 K��� ������� B 
 K��� ������� D 
 ��K� ������ �����
T 
 ���l�� K and � are the elastic area and shear moduli respectively�  and
� are the wall area and shear viscosities respectively�

��� Solution

If P� 
 P�
I � P�

E then eqs� ��� through ��� are combined to describe the
�uid�membrane interaction problem�
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The boundary conditions at z 
  and z 
 � are�
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normalized sinusoidal force applied at z 
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then� with a pressure of n Nm�� at z 
 �� we obtain the dimensional OHC
displacement� �z
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� Results

In our simulations� r� 
 ��m which is a typical OHC radius� � 
 
� Nm��

and K 
 
� Nm�� are the OHC elastic moduli �� ��E 
 ��
 kgm��s��

and �E 
 �
 kgm�
 by assuming that the external �uid is similar to water�
�� 
 ���E and �I 
 �
��E by assuming that the cytoplasm is more viscous and
denser than the surrounding �uid� Figure � shows the displacement of the OHC
for lengths in the range �� ��m for a purely elastic wall� the OHC response
is similar to the simulations of Tolomeo � in which the mechanical stimulus
was applied uniformly on the lateral wall� The �at low frequency asymptote is
numerically equal to the static displacement value of �nr�l������K�� Figure
�a shows the e	ect of wall shear viscosity on the displacement of a ��m long
OHC for values of � 
 	 ���	 ��� and ��� Nsm��� Evidently as � increases�
the OHC peak displacement becomes diminished leading to a band pass �lter
behavior� Figure �b shows the e	ect of � on the mechanical impedance� Z 

n�r�

������z
�jz�	l� �� for a ��m long OHC� The high frequency asymptote for
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  behaves like ������
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Figure �� Displacement against frequency of applied pressure of magnitude � Nm�� for
purely elastic OHCs of length between ���m �bottom� and ����m �top��
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Figure �� E�ect of wall viscosity with � � ������
� ����

����� Nsm�� on a� displacement
and b� mechanical impedance for OHC of length 	��m�
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� Discussion

A model of the OHC viscoelastic wall has been developed to determine the
nature of viscous damping in OHC motility� Results for a purely elastic wall
suggest that when a mechanical stimulus is applied at one end of the OHC� a
peak displacement is attained at a length�dependent frequency location� This
location can be in�uenced by the choice of the membrane model� For example�
a reduction in K and � leads to a corresponding reduction in the break fre�
quency location� which may explain why the break frequency data is an order
of magnitude larger than that reported by Hemmert at al� � The highly orga�
nized structure of the OHC wall� suggests that the analysis may be improved if
the isotropic model in eq� ��� is replaced by an orthotropic model� Results for
a viscoelastic wall indicate that the peak displacement at the break frequency
decreases with increasing wall shear viscosity resulting in a band pass �lter for
� 
 ��� Nsm�� which incidentally is an order of magnitude smaller than the
value of red blood cell wall shear viscosity �� But if the OHC is to be mechan�
ically tuned as suggested by Brundin and Russell �� then the OHC wall shear
viscosity has to be signi�cantly smaller than that for the red blood cell �RBC��
This suggests that the characteristic time� tc 
 ���� for the OHC is less than
���s in contrast with 
�s for the RBC �� Such a low value of tc would allow
the OHC wall to deform rapidly at acoustic frequencies� Also� � a	ects the be�
havior of the OHC mechanical impedance at high frequencies� However� when
� 
  the high frequency asymptote behaves like ����� in contrast with the
���� behavior for the impedance on the wall of an in�nite solid cylinder oscil�
lating along its axis in an in�nite �uid� This discrepancy may be attributed
to the existence of the boundary layers of thickness O��� at z 
  and z 
 ��
in these boundary layers� which become smaller for longer OHCs� the second
order streamwise derivatives in the Stokes� equations become signi�cant� It is�
however� interesting to note that Hemmert at al� � encountered di�culties in
measuring the impedance at frequencies above � Hz probably due to both
the vibration modes and the impedance of the atomic force cantilever which
was applied at z 
 �� In the present framework of our model� we conclude
that viscoelastic e	ects may be signi�cant at high frequencies�
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