IS THE OUTER HAIR CELL WALL VISCOELASTIC?
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1 Introduction

A growing body of evidence suggests that the cochlear outer hair cell (OHC)
contributes to the active feedback process in the mammalian cochlea. The
OHC is a hydrostat ': its lateral wall is both elastic and mechanically re-
inforced and its shape is maintained by a pressurized fluid core. Mechanical
properties of the OHC wall have been both modeled and measured 2=°. In par-
ticular, Brundin and Russell ® subjected isolated OHCs to mechanical stimuli
and found that OHC deformations could be described in terms of a damped
mechanical oscillator. Our goal is to determine whether the damping results
from either (i) the viscosity of the cytoplasm and the surrounding fluid as sug-
gested by Tolomeo ” or (ii) the cell wall which may possess the characteristics
of a viscoelastic material or (iii) both.

2 Theory

The Brundin and Russell ® experiment is difficult to model because the me-
chanical stimuli is an oscillating water jet aimed at the lateral wall. We, thus,
consider an isolated OHC as cylindrical viscoelastic membrane of length, Iy,
and radius, rg, with one fixed closed end and an applied sinusoidal force at
the other closed end. This model can be adapted to analyse the experiments
described in this book by Hemmert et al. ® The viscoelastic OHC wall incorpo-
rates the effects of membrane viscosity ? together with a model of a cylindrical
elastic membrane 2. The longitudinal membrane tension is balanced by the
fluid stresses from inside and outside the OHC. Our analysis differs from the
approach taken by Jen and Steele!?. A slender body perturbation approxima-
tion!! based on the OHC aspect ratio, € = rq/lp, is used to determine equations
for the longitudinal tension and pressure difference across the membrane.
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2.1 Fluid analysis

The fluid inside and outside the OHC is modeled by the normalized unsteady
axisymmetric Stokes equations:
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where St = wry?/v is the Stokes number; w is the frequency of the disturbance;
v = i/ p is the kinematic viscosity of the fluid. The fluid boundary conditions
are related to the displacement of the membrane:
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where 6, and &, are the normalized longitudinal and radial displacement of the
elastic cylinder respectively. The symmetry boundary condition is applied at
r = 0 inside the cell and at » = a outside the cell. At » = 1, the normalized

fluid stress is:
Ou, 0 Oy
T=* ( or te 0z )

where the sign indicates whether the fluid is inside or outside the cell.

Since we are modelling the response of the OHC to a sinusoidal force
applied at z = 1, we consider harmonic oscillations:

t t t t t
u, = Upe'su, = ULe';p= Pe''; 6, = ALe'; 6, = Aye’

The OHC aspect ratio, ¢, is chosen as the perturbation parameter so that
variables, U, , U, and P can be expanded in a power series in €: ¥ = Yy +¢e¥] +
¢®Yo+. ... The superscripts I and F pertain to variables inside and outside the
OHC respectively. Then in the limit as ¢ — oo, the leading order expressions
up to and including O(e) for the fluid pressure and stress at » = 1 inside and
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outside the cell are:
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where [, and K, are the nth order modified Bessel functions of first and second
kind respectively.
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2.2 Membrane analysis

The normalized tensions, Ty and T, are related to the fluid pressure and wall
shear stress from inside and outside the OHC:
dr, 1
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The membrane undergoes strains given by ey = é, and e, = dé,/dz which are
related to the membrane tensions by a viscoelastic model °:
dA,
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where A = K+p+w(k+n); B=K—put+w(k—n); D = 4(K+wk)(p+wn);
T = fwly; K and p are the elastic area and shear moduli respectively; x and
71 are the wall area and shear viscosities respectively.

A,

2.3 Solution

If Py = Pyf — Py¥ then egs. (1) through (3) are combined to describe the
fluid-membrane interaction problem:

Slnl=mnl 5] 0



The boundary conditions at z = 0 and z = 1 are:
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where v = 1+ g (2 +1) A,|,_, is obtained from eq. (3); F' is the

g (a* = 1-2QF)
normalized sinusoidal force applied at z = 1. If A;? and A»? are the eigenvalues
of M and
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then, with a pressure of n Nm~2 at z = 1, we obtain the dimensional OHC
displacement, 8,* = [y6,:
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3 Results

In our simulations, ro = 5um which is a typical OHC radius; g = 0.007 Nm ™!
and K = 0.07 Nm~! are the OHC elastic moduli ?; g¥ = 1072 kgm~'s~!
and p¥ = 10% kgm~3 by assuming that the external fluid is similar to water;
ji = 3pF and p! = 1.06p” by assuming that the cytoplasm is more viscous and
denser than the surrounding fluid. Figure 1 shows the displacement of the OHC
for lengths in the range 20 — 80um for a purely elastic wall; the OHC response
is similar to the simulations of Tolomeo ” in which the mechanical stimulus
was applied uniformly on the lateral wall. The flat low frequency asymptote is
numerically equal to the static displacement value of 2nroly /(9 + K). Figure
2a shows the effect of wall shear viscosity on the displacement of a 60um long
OHC for values of p = 0,107% 10~ 7 and 10~ Nsm~'. Evidently as n increases,
the OHC peak displacement becomes diminished leading to a band pass filter
behavior. Figure 2b shows the effect of # on the mechanical impedance, 7 =
nwre? /(wd,* |1, ), for a 60um long OHC. The high frequency asymptote for
17 = 0 behaves like w=1/*
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Figure 1: Displacement against frequency of applied pressure of magnitude 1 Nm~2 for
purely elastic OHCs of length between 20um (bottom) and 100um (top).
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Figure 2: Effect of wall viscosity with n = 0,107%,1077,107°% Nsm~! on a) displacement
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4 Discussion

A model of the OHC viscoelastic wall has been developed to determine the
nature of viscous damping in OHC motility. Results for a purely elastic wall
suggest that when a mechanical stimulus is applied at one end of the OHC| a
peak displacement is attained at a length-dependent frequency location. This
location can be influenced by the choice of the membrane model. For example,
a reduction in K and p leads to a corresponding reduction in the break fre-
quency location, which may explain why the break frequency data is an order
of magnitude larger than that reported by Hemmert at al. ® The highly orga-
nized structure of the OHC wall® suggests that the analysis may be improved if
the isotropic model in eq. (3) is replaced by an orthotropic model. Results for
a viscoelastic wall indicate that the peak displacement at the break frequency
decreases with increasing wall shear viscosity resulting in a band pass filter for
n = 1077 Nsm~! which incidentally is an order of magnitude smaller than the
value of red blood cell wall shear viscosity °. But if the OHC is to be mechan-
ically tuned as suggested by Brundin and Russell ¢, then the OHC wall shear
viscosity has to be significantly smaller than that for the red blood cell (RBC).
This suggests that the characteristic time, ¢, = n/u, for the OHC is less than
10~%s in contrast with 0.1s for the RBC®. Such a low value of ¢, would allow
the OHC wall to deform rapidly at acoustic frequencies. Also, 5 affects the be-
havior of the OHC mechanical impedance at high frequencies. However, when
n = 0 the high frequency asymptote behaves like w™/% in contrast with the
wl/? behavior for the impedance on the wall of an infinite solid cylinder oscil-
lating along its axis in an infinite fluid. This discrepancy may be attributed
to the existence of the boundary layers of thickness O(¢) at z = 0 and z = 1;
in these boundary layers, which become smaller for longer OHCs, the second
order streamwise derivatives in the Stokes’ equations become significant. It is,
however, interesting to note that Hemmert at al. ® encountered difficulties in
measuring the impedance at frequencies above 5000 Hz probably due to both
the vibration modes and the impedance of the atomic force cantilever which
was applied at z = 1. In the present framework of our model, we conclude
that viscoelastic effects may be significant at high frequencies.
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