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Abstract

We analyze localized textural consistencies in high-resolution X-ray CT scans of coronary arteries
to identify the appearance of diagnostically relevant changes in tissue. For the efficient and accurate
processing of CT volume data, we use fast wavelet algorithms associated with three-dimensional isotropic
multiresolution wavelets that implement a redundant, frame-based image encoding without directional
preference. Our algorithm identifies textural consistencies by correlating coefficients in the wavelet
representation.

I. INTRODUCTION

Recent years have seen significant technological advances in Computed Tomography (CT)
scanners. Increased spatial and temporal resolution have provided a large amount of data for
processing. However, the reliable discrimination between different types of soft tissue remains a
major challenge. Tissue discrimination is typically achieved by setting thresholds for the voxel
intensity values in CT scans, as discussed in the literature, e.g. [1]–[3]. Previously, we investigated
the benefits of texture-based image analysis of high-resolution CT scans for the postacquisitional
identification of soft tissue lesions [4]. The present paper explains the mathematical structure of
the underlying image processing algorithm and shows results from the analysis of µCT and
flat-panel CT scans as well as preliminary results for a 64-slice CT scanner. We included
these different scanner types to test the feasibility and usefulness of texture-based analysis with
different image resolutions. To this end, we scanned coronary arteries excised at autopsy with
a General Electric RS-9 Micro CT scanner (providing images with cubic voxels of side length
27µm) and with a General Electric pre-clinical experimental flat-panel scanner (providing images
with cubic voxels of side length 80µm [5]). Additional, preliminary, results were obtained for
chest X-ray CT scans from a Siemens SOMATOM Sensation 64 scanner (providing images with
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voxels of 0.367× 0.367× 0.6mm3). For all imaged coronary arteries, our aim was to distinguish
various types of diagnostically relevant tissue in atherosclerotic plaque.

The detection of lipid-rich, non-calcific to lightly calcified lesions in close proximity to the
arterial lumen is important because such lesions are known to be associated with an increased risk
of plaque rupture and subsequent acute myocardial infarction [6], [7]. The presence of noise and
the similarity of the absorption properties of muscle, fibrous tissue and lipid-rich tissues makes
the identification of these lesions within the surrounding fibromuscular tissue difficult to achieve
with usual threshold-based methods. On the other hand, suppressing noise by smoothing obscures
the differences between the various intensity fluctuations characteristic of lipid and fibromuscular
tissue. In order to distinguish reliably between intensity fluctuations due to density variations in
tissue and those due to noise in our images, we analyzed textures at multiple scales and applied
stringent statistical methods in our tissue classification scheme.

Random models for multiscale texture representation have been instrumental for segmenting
images of brain, liver, prostate, and for the detection of breast cancer [8]–[10]. Such models for
magnitudes of wavelet coefficients often assume independence of coefficients. Their sub-Gaussian
densities are estimated by mixtures of Gaussian or Rayleigh densities [11]–[13]. Dependencies
between voxels as well as scales have been measured by co-occurrence matrices for textures [14].
Texture segmentation has relied on active contours [15], texture-type extraction by expectation
maximization of Gaussian mixtures [9], Mumford/Shah approaches, and Markov field energies
explored by Geman, Graffigne, Azencott, Younes, and others [8], [16]–[21].

The novelty of the current work is the use of First Generation Isotropic Multiresolution
Analysis for fast image encoding without directional bias. Another difference from previous
results is that we use non-parametric methods in our statistical image analysis. Such methods
are feasible within our rigid framework of homogeneous random fields with moment averaging
properties; whereas, for applications in general-purpose image processing, one typically has
to make the assumption of having parametric distributions of voxel intensities [22], [23]. The
approach detailed here is quite general, and should be applicable to other imaging sites and
modalities where tissues can be modeled as random textures (as discussed in §II-B).

The tissue classification algorithm presented here uses a four-step approach, which we sketch
as follows:

1) ANALYSIS: Transform data into multiresolution representation via Fast Isotropic Wavelet
Transform (see §II-A).

2) PARAMETER ESTIMATION: Tissue parameters are chosen using a reference (or parameter
estimation) set of voxels selected by an expert user.

3) CLASSIFICATION: The classification process is run on the entire volume, classifying tissues
by statistical agreement with the trained tissue model.

4) RECONSTRUCTION/SYNTHESIS: The results are reported to the user via reconstruction
of the volume while suppressing reference tissue and by reporting the raw classification
results.

We also refer to this concept as a Digital Tissue Staining Algorithm (DTSA). This is analogous
to the use of stains in histology, where substances (stains) are introduced in the physical imaging
process in order to highlight tissues of certain types.

This paper explains the mathematical structure of our image processing algorithm and demon-
strates its application to Micro-CT and flat-panel scans of excised human coronary arteries.
Section II-A contains the details of our Fast Isotropic Wavelet Transform. Section II-B describes
the statistical analysis of images in the wavelet representation. Finally, Section III demonstrates
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the wavelet-based texture segmentation algorithm applied to CT data and compares an example
of our image segmentation to tissue characterization by histology.

II. METHODS

A. Image Encoding by a Fast Isotropic Wavelet Transform
Using wavelet analysis, the information contained in a digital image was separated into features

and textures of different scales, i.e. fine-grained vs. coarse-grained levels of detail.
In order to process the large volumes of data generated by CT scans, we used fast algorithms

associated with novel isotropic, three-dimensional wavelets. These isotropic wavelets developed
by Papadakis and co-workers [24], [25] show strong sensitivity for features and textures, regard-
less of their orientation with respect to any fixed Cartesian coordinate system. The combination
of a redundant encoding based on frames or Bessel families [26] with a particular isotropic
choice of a refinable function is the key allowing us to avoid directional bias.

To separate an image into components belonging to different levels of detail, we iteratively
apply a set of high and low pass analysis filters {Ha, Ma} to it. After the statistical analysis and
segmentation, we reconstruct the processed image with the high and low pass synthesis filters
{Hs, Ms}.

For notational simplicity, we identify these filters with functions in the frequency domain. To
provide the desired separation of detail levels and the ability to reconstruct selected parts, we
require that the filters have the following properties:

1) When restricted to the ball B = {ξ : |ξ| ≤ 1/2}, these filters are radial.
2) The filters satisfy the equations

MaMs = 2n/2Ma , Ha = 1− 2−n/2Ma

and
(1− 2−n/2Ma)Hs = Ha .

As described in [27], these identities can be obtained by letting the support of these filters
inside the torus Tn = [−1/2, 1/2]n be either a ball or the complement of a ball. For the balls,
we choose radii 1/8 < b2 < b1 < b0/2 < 1/4, and denote blB = {ξ : |ξ| < bl}, l ∈ {0, 1, 2}.

The filters in [27] have the following properties:
1) The support of Ma inside the set Tn = [−1/2, 1/2]n is the ball (b0/2)B. The restriction

of Ma to b0B is radial. The filter Ma restricted to b1B is the constant 2n/2.
2) The support of Ms is (1/2)B. When restricted to (b0/2)B, Ms = 2n/2. When restricted to

b0B, Ms is radial.
3) 1 − Ha = 2−n/2Ma and inside Tn = [−1/2, 1/2]n, the function 1 − Hs is supported in

b1B, and Hs vanishes on b2B.
We then have the resolution of the identity

2−nMaMs + HaHs = 2−n/2Ma + (1− 2−n/2Ma)Hs = 2−n/2Ma + Ha = 1

which can be used to reconstruct any signal with frequency support in Tn.
Since the filtering with Ma reduces the support of a signal in Tn to (1/2)Tn, we can

downsample the low-pass component without losing any information. The high-pass component,
however, remains undecimated in our analysis algorithm. An iterated application of these filters,
with downsampling in the low-pass component, is the fast isotropic wavelet transform used for
processing (see Figure 1).
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Fig. 1: Block diagram showing one level of subband decomposition and reconstruc-
tion. On the left, input image is decomposed into subbands. These subbands are
segmented with the Digital Tissue Staining Algorithm (DTSA) resulting in some
modified coefficients. On the right, these modified subband coefficients are decoded
to reconstruct the processed image.

B. Statistical Analysis of Wavelet Coefficients
CT images of coronary arteries suggest that tissue types can be modeled by characteristic

random textures (see Fig. 3-a), which inspired our approach to tissue segmentation with the help
of statistical texture models.

Our model is based on the following hypotheses: There are finitely many types of tissue in
arteries (e.g.: lumen, calcific deposits, lipid, fibrous tissue, smooth muscle cells) and an image
is composed of segments containing these tissues. Each tissue type is represented by a random
configuration of intensity values in an image. This randomness may consist of typical density
fluctuations in the tissue and additive noise.

The first step in this segmentation algorithm is to extract statistics for relevant tissue types,
the second is to assess the likelihood that any particular voxel is representative of that model:

1) Parameter estimation step: The algorithm fits parameters to model a reference (or parameter
estimation) set of voxels selected by an expert user.

2) Classification step: The classification process compares the entire volume, voxel by voxel,
to the reference statistics.

In the following we comment in more detail on our implementation of these two steps.
1) Parameter estimation step: The parameter estimation sets we used for extracting tissue

statistics were segments with a variety of shapes, which contained an adequate number of voxels
at the highest resolution level located in positions that by anatomical considerations belong only
to one tissue type. A typical configuration used in early versions of the DTSA-algorithm was
30× 30× 30 voxels. For our testing, we used volumes of comparable size but did not require a
cubic shape.

Unlike more conventional approaches that characterize tissue by an average voxel value, our
characterization scheme uses the correlations between all voxels belonging to a given tissue
sample. To this end, we introduce a tissue type model for the wavelet transformed tissue at a
given resolution level. It is modeled by a wide-sense stationary, isotropic, random field {Tk}k∈Zd ,
indexed by voxel coordinates k ∈ Zd, with the property that its mean and covariance can be
obtained by averaging a tissue sample over all shifts. Isotropy of a tissue type implies that the
covariance between Tk and Tk′ only depends on |k − k′|. A formal definition of the model is
given in the Appendix, Definition 1.

Given a subband output corresponding to resolution level, say j, an optimal filter P (j) is
chosen to minimize the mean square error E[|(P (j) ∗ T )k − Tk|2], defined by averaging over all
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j-resolution subband outputs belonging to the reference tissue. While we can show the existence
of optimal filters (see Proposition 4 in the appendix), under certain assumptions, in practice
we can only determine them approximately because we cannot infer the underlying probability
measure from one realization. Instead, we resort to an approximately best (fixed length) filter
and to an empirical validation of this choice.

The filter lengths for the fixed-length optimal filters were chosen to be one (nearest neighbors
only). Including the next coarser and next finer scale in the least-squares optimization of the filter
improved performance because of correlations between subbands of the fast isotropic wavelet
decomposition of different tissue types.

Figure 2 demonstrates empirical support for using a small filter length, as the empirical
correlations between wavelet coefficients drop off very quickly with growing distance.
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Fig. 2: Autocorrelation of (H1 high pass) wavelet coefficients in x, y and z directions.
This plot is typical for ‘normal’ tissue in the data sets we have seen; it is empirical
support for the short prediction filter length chosen in our algorithm.)

After determining the prediction filter, we set tolerance intervals so that in each subband Wj ,
of the given coefficient appearing with reference tissue, only a small fraction $j > 0 is falsely
labeled as outliers.

Choosing a small fraction $j of outliers in the parameter estimation set guarantees, because of
the assumed averaging property of tissue, that each coefficient in a subband Wj has a probability
close to $j of being rejected.

2) Classification step: In order to identify segments that do not have the statistics of the
reference tissue, we used the filters P (j)(V) which are approximations of the true prediction
filters P (j) and applied them to each subband of the tissue under consideration. Then we kept
only those filtered wavelet coefficients that deviated from the original coefficients by more than
the tolerance levels in the respective subbands, and reconstructed this ‘anomalous’ part of the
image. The remaining coefficients were set to be equal to a certain fixed value, e.g. the sample
average of the wavelet coefficients of the reference tissue. This process eliminated the variations
in the part of the signal that had the statistics of the reference tissue.
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III. RESULTS AND DISCUSSION

A. Application to µCT Data
Our initial studies found that image processing via fast isotropic wavelet algorithms permits

three-dimensional, high resolution digital discrimination between calcific deposits, lipid-rich
tissue that is lightly calcified or even non-calcified, and the surrounding lipid-poor (fibrous)
tissue [4], [27].

Figure 3 shows a comparison of the unprocessed data obtained from scanning a coronary artery
specimen with results that are based on textural analysis. We show that the First Generation
Isotropic Multiresolution Analysis wavelet decomposition segments the image into contiguous
parts that have statistically distinct textural consistencies. Changes in textural consistencies
identified in the wavelet representation reflect deviations in the structural components of tissue.

Fig. 3: Comparison of a) original, unprocessed data and b) processed reconstruction
after the application of DTSA. Smooth regions in b) show reference tissue. While
the abnormal tissue on the outer edge of the specimen is uninteresting, the tissue
surrounding the (bright white) calcific deposit, as well as a few other isolated regions
of lipid-rich tissue have been identified inside the arterial wall.

For validation of these classification results, we performed an ex-vivo study; specimens of
arteries containing atherosclerotic plaque were imaged before being sectioned for histological
study. An expert then compared the algorithmic output to the ‘ground truth’ obtained by exam-
ining the histological slides. For example, in Figure 4, we show a comparison of classification
results with histological analysis. The region that had a textural consistency different from that of
fibromuscular tissue was verified as lipid-rich, lightly calcified lesion. We processed a number
of such sections in the ex-vivo study. Our final result with 18 image volumes had an average
sensitivity of 81% and average specificity of 86% to lipid. By sensitivity we mean the ratio of
lesions occurring in the reconstructed volumes to those found by histology, both computed per
specimen. Specificity is the empirical conditional probability, per specimen, that a lipid lesion
occurring in the reconstructed volume is a lipid lesion verified by histology. Details of this study
and statistical analysis of the results may be found in [4].
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Fig. 4: Image series showing several views of the same spatial ‘slice’ through an
arterial specimen: a) Histology slide; the term ‘foamy’ refers to cholesterol in non-
crystallized form b) µCT scanner output c) processed d) tissue-colored according to
classification results. Histology is regarded as ‘ground truth’ and has been annotated
by an expert. Calcium deposit (lower right) is visible in all CT slices; however other
tissue types not apparent in the unprocessed CT data given in a) are visible in the
processed data.
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Fig. 5: Image series showing several views of the same spatial ‘slice’ through
an artery: a) Histology slide b) µCT scanner output c) processed d) tissue-
colored according to classification results. These images are taken from the same
physical specimen as those shown in Figure 4. However, in this series a chemical
decalcification process was performed prior to imaging — most of the calcium has
been washed out. The lipid pool visible in the histology is well circumscribed by the
DTSA algorithm. This type of detection of lipid in the absence of obvious calcium
deposits is considered to be crucial by some cardiologist and cardiac pathologists.
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For further testing, the arterial specimens were chemically decalcified and imaged again before
sectioning for histology. This tested our ability to identify lipid rich tissues such as lipid pools
that do not accompany any type of calcific deposit. Figure 5 shows the same physical specimen
as Figure 4.

In both Figures 4 and 5 the fourth panel shows the output of a preliminary classifica-
tion/coloring algorithm. As this algorithm was not ready at the time the study protocol was
drawn up, they are not part of the quantitative analysis.

B. Preliminary testing with lower-resolution CT scanners
Along with the complete ex-vivo study, we performed preliminary work with other scanners

which have a lower resolution, but are closer to clinical use. The data were collected outside the
main protocol of the study, and were not correlated with histology. As can be seen in Figure 6,
when good registration was achieved, we obtained a good qualitative agreement between the
flat-panel and µCT DTSA results.

Fig. 6: Preliminary results from study of flat panel data. Shown are a) unprocessed
flat panel data and b) colored flat-panel DTSA output. Panel c) shows the same
sample, imaged by a µCT scanner and colored by the DTSA algorithm. The two
data sets have been manually registered. For detail about these µCT results, see [4].

Since the flat panel scanner exceeds the resolution of most clinical devices, we also tested
the applicability of the DTSA algorithm to 64-slice CT data. Preliminary results are shown in
Figure 7.

IV. CONCLUSION

The high resolution of the µCT scanner permitted us to use textural properties for plaque
tissue characterization. The imaged lesions, whether calcified or occurring with little to no
calcium, were associated with detectable changes in textural consistency of tissue. The isotropic
wavelet transform permits the efficient characterization of textures by correlating intensities
across different scales. The underlying multiresolution analysis structure for the Fast Isotropic
Wavelet Transform was the (First Generation) Isotropic Multiresolution Analysis [25], [27].

A benefit of analyzing textural consistencies with statistical methods is the ability to control
inference from our algorithm in terms of confidence levels. This allows the software to remain
intuitively accessible to a non-expert.
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Fig. 7: Preliminary results from 64-slice CT angiography. Scanner output data are
given in (a). Results of the DTSA algorithm trained on a region of lumen filled with
contrast agent are shown in (b). Similarly, (c) gives the DTSA results when trained
on a region of epicardial fat. The processed output demonstrated good separation
of lumen, arterial wall, and epicardial fat. The black rectangles contain the left
anterior descending coronary artery. A higher magnification of these regions is
given in Figure 8. (Original image is courtesy of Dr. Subha Raman)
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Fig. 8: Details of each figure region marked by the black rectangles in Fig 7.
(Original image is courtesy of Dr. Subha Raman)

In summary, the application of multiscale statistical analysis is a powerful tool for ex-vivo
characterization of different types of diagnostically relevant tissue. With further improvements in
scanner technology, this DTSA algorithm may greatly improve our ability to discriminate plaque
components in the clinical setting.

Finally, pursuing texture-based tissue discrimination may be beneficial for other modalities, as
demonstrated for intra-vascular ultrasound [28]. The method for tissue characterization presented
here is generally applicable as it does not rely on explicit anatomical information. Thus, it could
be used for many other suitable diagnostic purposes in medical imaging.
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APPENDIX

This appendix provides mathematical details of the tissue model and the justification of using
finite-length prediction filters to characterize tissue types. We first make the definition of our
tissue model precise.

A. A statistical model for (CT) image of various tissue types
We open this section with a remark on notation: The convolution of a random field σ :

Zn×Ω → R with an absolutely summable digital filter G is denoted by (G∗σ)k :=
∑

l∈Zn Gk−lσl.
Definition 1: The Isotropic Wavelet transform of a tissue type τ at resolution level j is a

family of real-valued random variables {τ (j)
k }k∈Zn over some probability space (Ω, P,F) with

the following properties:
1) For each k ∈ Zn, τ

(j)
k ∈ L2(P). The expected value E[τ

(j)
k ] = τ (j) is independent of k, and

the covariance matrix C(j) with entries C
(j)

k,k′ := E[(τ
(j)
k − τ (j))(τ

(j)

k′ − τ (j))] is a bounded
operator on `2(Zn) with the following property: The entries C

(j)

k,k′ depend only on the
difference k−k′ of k, k′ ∈ Zn (Wide Sense Stationarity). If, in addition, the restriction of
the Fourier series with coefficients C

(j)
k,0 on 2jTn converges in the L2-sense to a function

with values
c(j)(ξ) :=

∑
k∈Zn

2−jn/2C
(j)
k,0ek(2−jξ) ,

where ek(ξ) = e2πi(k·ξ), which is a radial function for ξ in the ball 2jB and vanishes on
the domain 2jTn \ 2jB, we call the tissue type isotropic.

2) For each k ∈ Zn and each filter G with (absolutely) summable taps, the spatial average
of (G ∗ τ (j))k converges almost surely,

lim
V↗Zn

1

|V|
∑
l∈V

(G ∗ τ (j))k+l = τ (j)
∑

k

Gk

as the finite set V grows and eventually contains any given finite set of indices.
3) For each k ∈ Zn and each finite subset V ⊂ Zn, we abbreviate the local average τ

(j)
k (V) =

1
|V|

∑
l∈V τ

(j)
k+l and define a random Toeplitz matrix C(j)(V) with entries given by

C
(j)
k,0(V) =

1

|V|
∑
l∈V

(τ
(j)
k+l − τ

(j)
k (V))(τ

(j)
l − τ

(j)
0 (V)) .

We require that almost surely C(j)(V) is a bounded operator and converges in norm

lim
V↗Zn

||C(j)(V)− C(j)|| = 0 .

We refer to C(j)(V) as an approximate covariance matrix of the tissue τ (j).
The first property of the previous definition implies that c(j) is essentially bounded. Tissue

isotropy implies that c(j) can be extended to a radial function by setting it equal to zero
everywhere outside of 2jTn.
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We observe that isotropy is stronger than requiring that C
(j)

k,k′ only depend on |k − k′|. This
is true because the Fourier transform of the extension of c(j) to Rn, sampled at the grid points,
2−jZn yields precisely the entries C

(j)
k,0. Since c(j) is radial, so is its Fourier transform, and thus

C
(j)
k,0 only depends on the magnitude |k|. On the other hand, it is easy to find examples of Fourier

coefficients which only depend on the magnitude of the index but do not have a Fourier series
which extends to a radial function.

The remaining two properties of tissue types specify how expectation value and covariance
matrix arise from spatial averaging. Birkhoff’s ergodic theorem concludes that these two prop-
erties are satisfied by all locally square-integrable ergodic random fields [29].

One possible concern that the reader may have is that with this modeling of isotropic tissue
we allow correlations of voxels to be non-zero for an infinite number of terms. In practice, this
is not a limitation if we can assume that c(j) is smooth enough to guarantee the rapid decay of
the magnitudes of the entries C

(j)
k,0.

The motivation for choosing the definition of this form is that if we filter an isotropic tissue
with a radial filter, then the resulting tissue is isotropic as well. Moreover, if the averaging
properties in the definition of tissue types are satisfied, then applying an isotropic filter with
sufficiently small support followed by downsampling turns an isotropic tissue type at resolution
level j into an isotropic tissue type at resolution level j − 1.

B. Tissue Segmentation
In this part of the appendix, we discuss the mathematical justification of our tissue classification

algorithm.
Definition 2: Let Λ ≥ 1. A prediction filter P (j) for the resolution level j ∈ Z is given

by the 2jZn-periodic real-valued trigonometric polynomial p(j)(ξ) =
∑

|k|2≤Λ P
(j)
k ek(ξ/2j) in

the frequency domain with P
(j)
0 = 0. In other words, a prediction filter is, in the frequency

domain, a 2jZn-periodic trigonometric polynomial of maximal length Λ without DC-component.
A prediction filter is isotropic if the filter taps {P (j)

k } depend only on the magnitude |k| of the
index k ∈ Zn. We denote the space of isotropic prediction filters of maximal length Λ, maximal
`2-norm ρ and resolution level j as P

(j)
Λ,ρ := {P (j) : P

(j)
0 = P

(j)
k = 0, if |k|2 > Λ, P

(j)
k =

P
(j)

k′ whenever |k| = |k′|,
∑

|k|2≤Λ |P
(j)
k |2 ≤ ρ2}.

The idea for this prediction filter is that each voxel gets replaced by a linear prediction based
on its neighbors. The prediction filter is chosen so that it best estimates each voxel in the least
squares sense when averaged over the segment of reference tissue. The results contained in the
remainder of this section are valid for isotropic tissue types. We first prove the existence of
optimal prediction filters once a filter length has been chosen and then show that each prediction
filter can be approximated, in the limit of arbitrarily large parameter estimation sets, by a least
squares estimator with respect to the probability measure governing the reference tissue.

Definition 3: Given a tissue of type τ at a resolution level j, and a prediction filter P (j), we
define its mean-square error to be

Q(P (j)) := E[((P (j) − I) ∗ (τ (j) − τ (j)))2
k] = ((P (j) − I)∗C(j)(P (j) − I))k,k , (1)

where k ∈ Zn is arbitrary, and I denotes the digital all-pass filter corresponding to the constant
function ι(ξ) = 1 in the frequency domain. We say that the locally averaged square error is

QV(P (j)) := ((P (j) − I)∗|C(j)(V)|(P (j) − I))k,k , (2)
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where by |A| we denote the absolute value of a bounded operator given by (A∗A)1/2 [30].
The reason for using the absolute value of C(j)(V) to define QV is that the ‘sample’ co-

variance matrix C(j)(V) may not be positive definite. The reader may also be surprised to
see that the quantities in the left hand-sides of (1) and (2) are free of the index k. This is
true because for the tissue at resolution level j, the covariance matrix and the approximate
covariance matrices are (infinite) Toeplitz matrices which implies that (P (j) − I)∗C(j)(P (j) − I)
and (P (j) − I)∗C(j)(V)(P (j) − I) are linear filters as well, thus ((P (j) − I)∗C(j)(P (j) − I))k,k

and ((P (j) − I)∗C(j)(V)(P (j) − I))k,k are constant sequences with respect to k.
In order to avoid introducing an artificial directional bias in the prediction, we require that

the prediction filters for our tissue segmentation are isotropic.
In the next proposition we prove that for each given filter length an optimal isotropic prediction

filter exist.
Proposition 4: Let Λ ≥ 1 and C(j) be the covariance matrix for some tissue type which is

isotropic. Then there exists a finite length prediction filter P
(j)
0 with real filter taps, of length at

most Λ such that

Q(P
(j)
0 ) = min

{
Q

(
P (j)

)
: P (j) ∈

⋃
ρ>0

P
(j)
Λ,ρ

}
.

Moreover, for every ρ > 0 we can find a unique minimizer P
(j)
0,ρ of Q in the closed convex set

P
(j)
Λ,ρ.

Proof: Since c(j) is essentially bounded we have c(j) ∈ L1(Tn, dλ) where λ is the Lebesgue
measure on Tn. Furthermore, c(j)(ξ) ≥ 0 a.e. because c(j) arises from a positive definite bounded
Toeplitz operator. Define dµ = c(j)dλ. Then, µ is a positive Borel measure in Tn and

Q(P (j)) =

∫
2jTn

∣∣1− p(j)(ξ)
∣∣2 c(j)(ξ)dξ = ‖ι− p(j)‖2

L2(2jTn,dµ), (3)

for every prediction filter P (j) of maximal length Λ. Let us make an observation regarding
P (j). First, Eq. (3) implies that for an optimal prediction filter the corresponding trigonometric
polynomial p(j) must be real-valued otherwise we could improve the prediction, because∫

2jTn

∣∣1−<[p(j)](ξ)
∣∣2 c(j)(ξ)dξ ≤

∫
2jTn

∣∣1− p(j)(ξ)
∣∣2 c(j)(ξ)dξ,

where <[p(j)] is the real part of p(j).
We will now establish the existence of an optimal isotropic prediction of maximal length Λ.

Take M to be the linear subspace of L2(Tn, dµ) contained in span{ek(ξ/2j) : 0 < |k|2 ≤ Λ}
such that if f ∈ M and f(ξ) =

∑
0<|k|2≤Λ akek(ξ/2j), then ak = ak′ when |k| = |k′|. Since M

is finite-dimensional, M is closed. Take P
(j)
0 to be the orthogonal projection of ι onto M .

The final assertion follows by same arguments where instead of M and the linear span of
{ek(ξ/2j) : 0 < |k|2 ≤ Λ} we use the closed convex set P

(j)
Λ,ρ. This time the minimizer of Q in

this set is not given by an orthogonal projection but it is unique by the strict convexity of P
(j)
Λ,ρ.

Despite its merit, the previous proposition has small practical value, since in real life the
covariance matrix C(j) is never known. However, the third property of Definition 1 asserts that
for a sufficiently big subvolume V we can instead use C(j)(V), a computable good approximation
of C(j). This motivates us to obtain optimal isotropic prediction filters minimizing the prediction
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error QV. Then, one may wonder how ‘good’ the latter prediction filters are. The answer is given
by the following theorem.

Theorem 5: Let Λ ≥ 1, τ be a tissue at resolution level j and C(j) be its covariance matrix
which is assumed to be isotropic. Let τ be a tissue at resolution level j, and fix a maximal length
Λ ∈ N and norm ρ > 0 for all prediction filters under consideration. Let P

(j)
0,ρ be the prediction

filter in P
(j)
Λ,ρ obtained by virtue of Proposition 4. For each V ⊂ Zn choose a prediction filter

P (j)(V) ∈ P
(j)
Λ,ρ such that QV is minimized, then we obtain almost surely

lim
V↗Zn

Q(P (j)(V)) = Q(P
(j)
0,ρ ) if all P (j)(V) belong to P

(j)
Λ,ρ . (4)

Proof: The third property of the definition of a tissue type implies that for any ε > 0 there
exists a finite volume V0 such that for all V ⊇ V0 we have ||C(j)(V)− C(j)|| < ε. Now, take the
prediction filter P (j)(V0) ∈ P

(j)
Λ,ρ which minimizes QV0 . Since, C(j)(V0) is a bounded Toeplitz

operator there exists a 2jZn-periodic essentially bounded function c
(j)
V0

whose Fourier coefficients
are the terms of the sequence

(
C(j)(V0)k,0

)
k∈Zn . The fact that ||C(j)(V)− C(j)|| < ε implies

||c(j)
V0
− c(j)||∞ < ε. Let p

(j)
V0

and p
(j)
0 be the Fourier transforms of the prediction filters P (j)(V0)

and P
(j)
0,ρ respectively. We have

QV0(P ) =

∫
2jTn

|1− p(ξ)|2|c(j)
V0

(ξ)|dξ

for every 2jZn-periodic trigonometric polynomial p and associated filter P . Taking in account
that P

(j)
0,ρ minimizes Q in P

(j)
Λ,ρ we obtain,

Q(P
(j)
0,ρ ) =

∫
2jTn

|1− p
(j)
0 (ξ)|2c(j)(ξ)dξ ≤

∫
2jTn

|1− p
(j)
V0

(ξ)|2c(j)(ξ)dξ

≤
∫

2jTn

|1− p
(j)
V0

(ξ)|2|c(j)
V0

(ξ)|dξ +

∫
2jTn

|1− p
(j)
V0

(ξ)|2
∣∣∣c(j)(ξ)− |c(j)

V0
(ξ)|

∣∣∣ dξ

≤ QV0(P
(j)(V0)) + (ρ + 1)2ε .

Similarly,

QV0(P
(j)(V0)) =

∫
2jTn

|1− p
(j)
V0

(ξ)|2|c(j)
V0

(ξ)|dξ ≤
∫

2jTn

|1− p
(j)
0 (ξ)|2|c(j)

V0
(ξ)|dξ

≤
∫

2jTn

|1− p
(j)
0 (ξ)|2c(j)(ξ)dξ +

∫
2jTn

|1− p(j)(ξ)|2
∣∣∣|c(j)

V0
(ξ)| − c(j)(ξ)

∣∣∣ dξ

≤ Q(P
(j)
0 ) + (ρ + 1)2ε .

Combining the last two inequalities we conclude |Q(P
(j)
0,ρ ) − QV0(P

(j)(V0))| ≤ (ρ + 1)2ε thus
establishing (4).

For a given Λ ≥ 1 the previous two results combined show that in order to approximate P
(j)
0

one can easily assert the existence of a sequence of isotropic prediction filters P
(j)
0,s in P

(j)
Λ,s, with

norm s = 1, 2, . . . , minimizing the error Q on the set P
(j)
Λ,s. If the norm bound s is sufficiently big

then the error Q(P
(j)
0,s ) is close to the minimum error Q(P

(j)
0 ). Applying the previous theorem,

we then obtain an approximation of P
(j)
s by filters P (j)(V) ∈ P

(j)
Λ,s.


