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ABSTRACT. In this paper we investigate Isotropic Multiresolution Analysis (IMRA), isotropic refinable func-
tions, and wavelets. The main results are the characterization of IMRAs in terms of the Lax-Wiener Theorem,
and the characterization of isotropic refinable functions in terms of the support of their Fourier transform. As
an immediate consequence of these results, there are no compactly supported (in the space domain) isotropic
refinable functions in many dimensions. Next we study the approximation properties of IMRAs. Finally, we
discuss the application of IMRA wavelets to 2D and 3D-texture segmentation in natural and biomedical images.

1. INTRODUCTION

The main goals of this paper are to introduce a new type of multiresolution analysis (MRA) which has a
particular type of isotropy (namely its ‘core’ subspace V0 is invariant under rotations) and to prove that there
are no radial or even further isotropic refinable functions with compact support in L2(Rd). Furthermore, we
study the properties of these Isotropic MRAs and refinable functions, and develop certain classes of them.
The driving application of this work is 3D-texture segmentation with emphasis in biomedical imaging. We
note that we use the term MRA in this paragraph with some freedom hoping that we are not ambiguous.

1.1. Background. Our motivation to introduce and study IMRAs and isotropic refinable functions came
from the need to use filters with a high degree of symmetry ideally isotropic in order to eliminate directional
bias in digital filtering. Here and hereafter we use the term ‘filtering directional bias’ without attempting to
define it. Neither there exists a formal definition of this term in the literature nor we are the first who realized
the need to reduce this sort of filtering bias. In fact, this need has motivated the constructions of filters and
multiresolution analyses that are not tensor products of one-dimensional ones. The main drawback of the
tensor products of the 1D-MRAs is that the resulting image processing is carried out in a row and column
fashion [67, p. 410]. The acknowledgment of this drawback led to the development of non-separable MRAs
e.g. [4–8, 10, 18, 23, 28, 39, 42, 49, 51]. In addition, almost all of these constructs are in two-dimensions.
However, the scaling functions of the non-separable MRA designs suffer from lack of either symmetry or
smoothness or both (see the introduction of [10]). The main impediment in generating scaling functions in
higher dimensions that are not tensor products of one-dimensional scaling functions is that the Fejér-Riesz
spectral factorization theorem [44] cannot be generalized in more than one dimensions.

An alternative method to reduce the effects of directional bias is to introduce more preferred directions
for the filtering by augmenting one dimensional constructions with multiscale or monoscale angular decom-
position. In other words one might spread this sort of bias into more than the obvious directions. This
idea leads to the so-called directional representations. There are two schools that follow this approach:
One pioneered by Candes, Donoho and collaborators who introduced curvelets, ridgelets, wedgelets, beam-
lets, planelets, sheerlets, etc. (e.g. see [19, 29, 30, 40, 50, 60]). Alternative constructs with monoscale an-
gular resolution have also been proposed [26, 48, 62, 63]. Other directional representations in the spirit
of digital filter design, not directly related to multiresolution analyses nor to wavelets can be found in
[1, 22, 36, 43, 45, 47, 59, 64, 66, 68].
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Precisely for the reasons stated above, isotropic filters have been used in the past — not in an MRA-
context but for multiscale transforms. The most well known of them and probably the oldest is the Canny
Edge Detector [20] motivated by the studies of Marr and Hilldreth [54] on vision. More recently, the use of
isotropic filters or scaling functions has been proposed by several authors. Starck uses them to analyze e.g.
astronomical images of objects with a high degree of spherical symmetry e.g., [65], while others use them
to construct covariant representations with respect to rigid motions: Among them Fickus and co-workers
develop higher-order moments covariant with respect to rigid motions in multidimensions [33, 34]. Our
approach to isotropic filters and IMRAs originated in [58] and continued in [15, 57] and the present paper.

The need to derive MRA wavelet decompositions covariant with respect to rigid motions also motivated
[24, 35]. However, these constructs are in 2D and are not generalizable to higher dimensions and the Fourier
transforms of their radial Riesz scaling functions are discontinuous at the origin.

Other notable constructions of multidimensional, possibly non-MRA smooth, isotropic, frame wavelets
have been proposed in [2, 31, 32, 41, 55]. However, these have not been shown to arise from MRAs or yield
decompositions implementable with MRA-type fast wavelet algorithms.

The driving application for our study of IMRAs is tissue identification in biomedical imaging [15, 37, 38,
57]. Specifically in our initial work the input 3D-data sets are µCT (micro Computed Tomography) images
of arterial specimens. To each voxel we assign one out of a total of three labels corresponding to three types
of tissue one of which is normal and two are abnormal, but the problem is more general and highly complex.

Generally speaking, a typical biomedical image of the type we are interested in will be a set of scalar
valued measurements on a square lattice in two or three dimensions (referred to as pixels and voxels, re-
spectively). The physical relevance of the values depends on the modality, or type of acquisition device.
Typically, values will be constrained to integers representable in some number of bits, i.e. integer values in
the interval [0, 2n− 1] or perhaps [−2m− 1, 2m− 1], for integers n, m which will typically be values ≤ 16.
Examples of such images are given in Figure 1.

(a) 2D slice from 3D µCT x-ray data (b) slice from Intravascular Ultra Sound
data

FIGURE 1. Examples of medical 3D data sets.

Our approach to tissue segmentation/identification in 3D-medical data sets is based on the belief that
different tissue types correspond to different 3D-textures, due to plain tissue differentiation. Thus we view
the problem of tissue segmentation/identification as a problem of 3D-texture segmentation/identification.
Texture segmentation/identification requires two major components, developed together; the representation
of the original data and the segmentation/identification algorithm. We model textures as random variables
to address variability due to intra-tissue type natural variation and due to noise. However, in this work we
neither touch the probabilistic part nor the algorithmics of 3D-texture segmentation/identification. We limit
our discussion on texture representations based on IMRAs and we introduce a generic model for 3D-data
representations that can lead to a 3D-rigid motion invariant texture segmentation/identification (Section 7).



THE GEOMETRY AND THE ANALYTIC PROPERTIES OF IMRAS 3

The IMRA-based representation may not be the most appropriate for all textures in the following intuitive
sense: It appears to be most suitable for textures which do not exhibit only a small number of preferred
directions (e.g. the arterial ‘normal’ tissue in Fig. 1-a, ignoring the bright calcium spots); for those that do
exhibit preferred directions texture encoding by means of directional representations may well be sparser.
We note that the former case (no preferred direction) is quite typical in many medical tissue segmentation
problems, so restricting our focus here is not particularly narrow. As is typical for segmentation, ‘tuning’
the algorithmic approach to the specifics of the particular application gives improved results.

The rest of the paper is organized as follows: In Sections 2 and 3 we characterize IMRAs and isotropic
refinable functions respectively. In the latter section we construct isotropic wavelet Parseval frames arising
from them. To facilitate fast algorithmic implementations of IMRA decompositions and reconstructions [15]
we revisit the so-called Extension Principles (Section 4). We construct classes of IMRAs, their isotropic
refinable functions, filters and wavelets in Section 5. The approximation properties of IMRAs are studied in
Section 6. In Section 7 we propose a generic mathematical model for 3D-data representations that can lead
to a 3D-rigid motion invariant texture segmentation/identification and we discuss how IMRA-based data
representations fit into this model and why can be useful for tissue segmentation/identification in certain
classes of medical imaging data.

1.2. Notation and Preliminaries. The Fourier transform f̂ : Rd −→ C of f ∈ L1(Rd) is defined by

∀ξ ∈ Rd, f̂(ξ) =
∫

Rd

f(x)e−2πix·ξdx.

Here, x ·ξ denotes the standard inner product on Rd×Rd. The map f → f̂ restricted to L1(Rd)∩L2(Rd)
extends to a unitary map on L2(Rd).

A frame for a separable Hilbert space H is a sequence {fi}i∈I ⊆ H, where I is a countable index set, for
which there are constants A,B > 0 such that

∀f ∈ H, A||f ||2 ≤
∑
i∈I

| 〈f, fi〉 |2 ≤ B||f ||2.

A and B are called frame constants. The weaker version of the above inequality where B > 0 such that the
right-hand side of the above inequality is valid for all f ∈ Rd is termed by referring to {fi}i∈I as a Bessel
sequence. If A = B, we say the frame is tight, and a tight frame with A = B = 1 is called Parseval. A
frame is a Riesz basis for H if it is also a minimal family generating H . We use the terms frame (Riesz)
sequence when we refer to a countable frame or a Riesz basis of a subspace of a Hilbert space.

For y ∈ Rd, the (unitary) shift operator Ty is defined as Tyf(x) = f(x− y), f ∈ L2(Rd). Given a lattice
Γ ⊂ Rd which is similar to Zd, a linear closed subspace V of L2(Rd) is said to be Γ-shift-invariant if for
each γ ∈ Γ, TγV = V . It is well-known that every Γ-shift-invariant subspace V contains a denumerable set
Parseval frame of itself. When we use the term shift-invariant for a subspace we mean Γ = Zd. Given S, a
subset of a linear space V , the notation 〈S〉 will be used for the shift invariant subspace generated by S (i.e.,
the smallest shift invariant subspace of V containing S). If S = {φ}, we will write 〈φ〉 to denote 〈{φ}〉.

Moreover, Sd−1 denotes the d-dimensional unit sphere centered at the origin. For x ∈ Rd and ρ > 0,
B(x, ρ) will denote the ball centered at x with radius ρ. We will not distinguish open from closed balls
because the difference B(x, ρ) \ B(x, ρ) (a d sphere) has measure zero in Rd. By suppf we mean the set
of points x such that f(x) 6= 0.

Given Ω ⊂ Rd with positive measure, PWΩ is the closed subspace of L2(Rd) defined as

PWΩ = {f ∈ L2(Rd) : suppf̂ ⊆ Ω}.
If r is a positive real number, PWr will denote PWB(0,r). The subspace PWΩ is called a Paley-Wiener
subspace of L2(Rd) associated to Ω, if Ω has compact closure, or simply a Wiener subspace of L2(Rd)
associated to Ω if Ω is an arbitrary measurable subset of Rd. The Lax-Wiener Theorem states that these are
the only subspaces of Rd that are invariant under the action the group of translations induced by Rd [52].
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This theorem plays a central role in the characterization of IMRAs (Section 2). Finally, we remark that all
set equalities and inclusions are modulo null sets and en(ξ) := e−2πi(n·ξ), with ξ ∈ Rd.

Definition 1.1. Let Ω be a measurable subset of Rd.
1. We say that Ω ⊂ Rd is radial if for all O ∈ SO(d), OΩ = Ω.
2. A d× d matrix is expansive if it has integer entries and if all of its eigenvalues have absolute value

greater than 1.
3. An expansive matrix is radially expansive if A = aO, for some fixed a > 0 and a matrix O ∈
SO(d).

A radially expansive matrix A is a matrix with integer entries that leaves the lattice Zd invariant, and
|detA| is a positive integer. The term isotropic is sometimes used to refer to matrices that are similar to a
diagonal matrix and for which every eigenvalue has the same absolute value [53]. However, these ‘isotropic’
matrices are not suitable for our study because they do not necessarily map radial sets into radial sets. We
also note that we use the term ‘isotropic’ in an entirely different context.

If A is a radially expansive matrix, we define its associated unitary dilation operator by

∀f ∈ L2(Rd), DAf(x) = |detA|1/2f(Ax)

A function g defined on Rd is said to be radial if, g(x1) = g(x2), whenever ||x1|| = ||x2||. A subset F of
Rd is radial if its characteristic function χF is equal a.e. to a Lebesgue measurable radial function. Now, let
F be a Lebesgue measurable subset of Rd. Then, χF is measurable and now a change of coordinates from
Cartesian to spherical together with Tonelli’s theorem readily imply∫

Rd

χF =
∫ ∞

0

∫
Sd−1

χF(r, θ)rd−1dθdr .

For a.e. r > 0, the function χF(r, ·) is a.e. constant on the sphere rSd−1, so either it takes the value 1 or the
value 0 on rSd−1. But, the result of the first of the two successive integrations is a measurable function with
respect to r, and the value of this function is either m(Sd−1) or 0, where m(Sd−1) is the area of the sphere
Sd−1. So, there exists a measurable subset F of R+ such that∫

Rd

χF = m(Sd−1)
∫ ∞

0
χF (r)rd−1dr .

We will call this set F a radial profile of F. This set is Lebesgue measurable but it is not uniquely defined for
any given radial subset of Rd. Nonetheless, all radial profiles are ‘equal’ in the sense of measure-theoretic
set-equality. Generalizing this analysis we call a measurable function f defined on Rd radial, if for almost
every r > 0, the restriction of f on rSd−1 is a.e. equal to a constant function, with respect to the surface
measure of Sd−1. Thus, from now on, all these functions are considered constant on the spheres rSd−1, for
a.e. r > 0. This also applies to characteristic functions of radial sets. Thus, if F is a radial set, then for a.e. r
in its radial profile, the sphere rSd−1 is contained in F. This readily implies that radial sets remain invariant
under all rotations and radially expansive matrices map radial sets onto radial sets.

To simplify the language we henceforth drop the term measurable when we refer to functions and sets,
since we assume that all of them are measurable. We will often need to consider the restriction of a function
on a radial set F. Doing so, we use the term ‘radial’ to refer to the property that the restrictions of the
function to the spheres rSd−1 are constant for a.e. r in a radial profile of F.

If L is a measurable subset of Rd, x0 is a point of density of L if,

lim
η→0

|L ∩ (B(x0, η)|
|B(0, η)|

= 1 .

A well-known theorem due to Lebesgue asserts that a.e. every point of L is a point of density of L, e.g.
[69], and for a.e. x0 in Lc

lim
η→0

|L ∩ (B(x0, η)|
|B(0, η)|

= 0 .
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Since radial sets remain invariant under rotations we readily assert that if x0 is a point of density for some
radial set, then all the points on the sphere ||x0||Sd−1 share the same property. A function f ∈ L2(Rd) is
said to be isotropic if there exist y ∈ Rd and a radial function g ∈ Rd such that f = Tyg.

We are now ready to introduce the concept of Isotropic Multiresolution Analysis (IMRA). First, this
structure must be a multiresolution analysis in the classical sense, without requiring the existence of an
orthonormal or Riesz basis for its ‘core’ subspace V0. Therefore, an IMRA is expected to satisfy Properties
1 through 3 of Definition 1.2. Moreover, we require that V0 is shift-invariant, in the sense that it remains
constant under the action of the group {Tn : n ∈ Zd} (Property 4 of Definition 1.2), a property that ‘core’
subspaces of classical MRAs have as well. Therefore, each Vj is invariant under the action of the translation
group representation ofA−jZd. The problem that concerns wavelet practitioners is the covariance of wavelet
representations of images and signals in general under shifts or other transformations of the coordinate
system. Specializing this problem to images it is crucial for a significant number of tasks in image analysis
to have covariant representations with respect to rigid motions, that is rotations and translations of an image
especially in two or three dimensions. Such representations are also known as steerable and there are
previous attempts with directional representations to address this problem in the context of digital images
for finite subgroups of the rotation group and in two dimensions [1, 22, 36, 43, 45, 47, 59, 64, 66, 68]. Those
constructs are not MRA-based and they typically refer to steerability without attempting to define it. To
the best of our knowledge, 3D-rigid motion covariant multiscale representations are practically unexplored.
Specializing on MRAs, it is natural to impose weaker conditions on the MRA subspaces and in particular on
the core subspace V0 for MRAs defined with respect to dilations given by radially expansive matrices before
even attempting to construct MRA-wavelet decompositions that are covariant with respect to rigid motions.
In our first design we used radial ideal filters in order to achieve a high degree of symmetry in wavelet filter
design [58], generalizing thus the Shannon MRA (for a definition see [44]) in multidimensions. In order
to achieve radiality we relaxed the classical Riesz basis of the integral translates of the scaling function
assumption to allow for this set to be a non-minimal frame. All these ideas led us to the addition of the last
property in Definition 1.2. This property was originally proposed by Bodmann, Papadakis and Romero for
another type of multiresolution analysis customized for spherical coordinates [14]. With these remarks in
mind we proceed to the definition an Isotropic Multiresolution Analysis:

Definition 1.2. An Isotropic Multiresolution Analysis (IMRA) of L2(Rd) with respect to a radially expansive
matrix A is a sequence {Vj}j∈Z of closed subspaces of L2(Rd) satisfying the following conditions:

(1) ∀j ∈ Z, Vj ⊂ Vj+1,
(2) (DA)jV0 = Vj ,
(3) ∪j∈ZVj is dense in L2(Rd) and ∩j∈ZVj = {0},
(4) V0 is invariant under the action the group {Tn : n ∈ Zd},
(5) If P0 is the orthogonal projection onto V0, then

(1) OP0 = P0O for all O ∈ SO(d),

where O is the unitary operator given by Of(x) := f(OTx) a.e. with f ∈ L2(Rd) and O ∈ SO(d) and
OT is the transpose of the matrix O.

Although the last two properties of Definition 1.2 appear not to be sufficiently strong to yield rigid motion
covariant wavelet decompositions, they force all the resolution subspaces Vj of an IMRA to be invariant
under all rigid motions in any number of dimensions (Theorem 2.1). This strong result follows from the
characterization of all IMRAs by means of the Lax-Wiener Theorem [52] which is the topic of the next
section. The discussion on the steerability of the IMRA-based wavelet decompositions is postponed for
Section 7 where we formally define rigid motion covariant representations.
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2. CHARACTERIZATION OF IMRAS

As we will see Equation (1) imposes an algebraic-geometric constraint on the space V0: Assume V is a
shift-invariant subspace of L2(Rd) satisfying (1) as well. Then, for every O ∈ SO(d) and n ∈ Zd we have

TnO = OTOTn .

Thus, we obtain OTOTnV = TnOV = V yielding

(2) TOTnV = V , for every O ∈ SO(d) and n ∈ Zd.

Since SO(d) acts transitively on spheres centered at the origin, the orbit {Ox : O ∈ SO(d)} of any x
in Rd is the entire sphere of radius ‖x‖. In particular, if x = (1, 1, ..., 1), then, Eq. (2) implies that
V remains invariant under all translations by Ty with y ∈

√
d · Sd−1 and thus also by translations Ty with

y ∈
√
d Sd−1−

√
d Sd−1, which contains the fundamental domain Td := [−1

2 ,
1
2)d. Hence, we conclude that

Ty(V ) = V for all y ∈ Td. Since the same identity is true for all y ∈ Zd we assert that V remains invariant
under all translations induced by Rd. This implies that V is a Wiener subspace of L2(Rd), so there exists
a measurable subset Ω of Rd such that V = PWΩ. The fact that V remains invariant by all rotations now
implies that Ω is radial. On the other hand, if Ω is radial we obviously have that V = PWΩ remains invariant
under all rotations and translations induced by Zd. Therefore, we have proved the following characterization
of shift-invariant and rotation invariant subspaces of L2(Rd).

Theorem 2.1. Let V be an invariant subspace of L2(Rd) under the action of the translation group induced
by Zd. Then V remains invariant under all rotations if and only if V = PWΩ for some radial measurable
subset Ω of Rd.

As an immediate consequence we obtain a characterization of IMRAs generated by a single function, in
the sense that there exists function ϕ such that V0 =< ϕ >.

Proposition 2.2. Let A be a radially expansive matrix and C := A∗. A sequence {Vj}j∈Z is an IMRA with
respect to A if and only if Vj = PWCjΩ, where Ω is radial and satisfies

(i) Ω ⊂ CΩ.
(ii) The set-theoretic complement of ∪∞j=1C

jΩ is null.
(iii) limj→∞ |C−jΩ| = 0 .

Moreover the only singly generated IMRAs are precisely Vj = PWCjΩ, where Ω is a radial subset of Td
satisfying (i), (ii) and (iii).

Proof. If {Vj} is an IMRA, then V0 satisfies equation (1). By the previous theorem, V0 = PWΩ for some
set Ω ⊂ Rd. Thus, Vj = PWCjΩ. Properties (i), (ii) and (iii) are now obvious.

On the other hand if Vj = PWCjΩ, for some radial subset Ω, and conditions (i), (ii) and (iii) are satisfied,
then clearly {Vj} is an Isotropic Multiresolution Analysis.

Now, suppose that V0 =< φ >. Then suppφ = Ω where the equality must be perceived in the measure-
theoretic sense. We will prove Ω ⊆ Td. Since, Φφ(ξ) :=

∑
k∈Zd |φ̂(ξ + k)|2 is a.e. finite the function ω

given by ω̂ := φ̂Φ−1/2 is a Parseval frame generator of V0, i.e. {Tnω : n ∈ Zd} is a Parseval frame of
V0, because Φω(ξ) :=

∑
k∈Zd |ω̂(ξ + k)|2 = χE , where E is a subset of Td e.g. [12, 16, 56]. Consequently,

there exists a family {Lk}k∈Zd of mutually disjoint measurable subsets of Td such that ∪k∈Zd(k+Lk) = Ω,
where this equality is again meaningful only in a measure-theoretic sense, for if it is not true there exists a
subset U of Td with positive measure and l1, l2 in Zd, l1 6= l2, such that U + l1 and U + l2 are contained in
Ω. Then, the inverse Fourier transform (χU+l1)

∨ belongs to V0, so

(3) χU+l1 = mω̂

with m ∈ L2(Td). Since suppω̂ = Ω and m is Zd-periodic, we conclude m(ξ)ω̂(ξ) 6= 0 a.e. on U + l2
which is disjoint from U + l1. This conclusion directly contradicts (3), so our claim is proved.
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Next, we claim that the previously established property of Ω combined with its radiality imply Ω ⊆ Td.
To prove this claim, assume that the contrary is true. Then, there exists a point of density ξ0 of Ω and p ∈ Z+

such that ξ0 ∈ (pi + Td), where i = (1, 0, . . . , 0). Consequently, every point on ||ξ0||Sd−1 is a density point
of Ω. Let, C1 := ||ξ0||Sd−1 ∩ (pi + Td) 6= ∅ and C2 := ||ξ0||Sd−1 ∩ (pj + Td) 6= ∅, where j = (0, 1, . . . , 0).
Since every point in both C1 and C2 is a density point of Ω, these two sets must be contained in pi + Lpi
and pj+Lpj respectively, where Lpi and Lpj are disjoint. But, −pi+C1 and −pj+C2 intersect at a density
point of both Lpi and Lpj contradicting the fact that these two sets are disjoint. Thus, Ω ⊆ Td. The converse
implication is obvious. �

Remark 2.3. If V = PWΩ, for some radial subset Ω we can find a subset F ⊂ L2(Rd) with V =
span{Tnf : f ∈ F, n ∈ Zd} and this set is at most countably infinite. To show the existence of such a set
it suffices to apply Zorn’s lemma. The construction of the set of generator F is non-trivial but it does not
interest us here. If Ω is essentially bounded, then every f in F can be chosen to satisfy {ξ ∈ Rd : f̂(ξ) 6=
0} = Ω with F finite.

Example 2.4. The sequence of closed subspaces Vj = PW2jB(0,ρ), for any ρ > 0 and j ∈ Z is an IMRA.

The purpose of the next two examples is to show that: First, Ω can be unbounded, and second, Ω may
not contain a neighborhood of the origin. Notice that such a neighborhood is sufficient for Condition (ii). In
both examples we use dyadic dilations.

Example 2.5. Denote by B(0, r, s) the (d-dimensional) spherical shell centered at the origin having inner
radius r and outer radius s. Now for simplicity set d = 2 although this example can be generalized for every

d > 2. Let A =
∞⋃
n=1

B(0, rn, 2n−1), with rn = 2n−1 − (1/16)n, and let B = B(0, 1/2). Set Ω := A
⋃

B.

Since A and B are disjoint, |A
⋃

B| = |A| + |B|. Moreover, both A and B have finite measure. Since
|B(0, rn, 2n−1)| = π[(1/8)n − (1/16)2n] which implies |A| < ∞. Thus, Ω is radial and satisfies all the
conditions (i)-(iii) of Proposition 2.2: (i) is satisfied becauseB(0, rn+1, 2n) ⊂ 2B(0, rn, 2n−1) for all n ≥ 1
and B(0, r1, 1) ⊂ 2B; (ii) is trivially satisfied since B is contained in Ω. The fact that Ω has finite measure
implies (iii). Thus, Ω gives rise to an Isotropic Multiresolution Analysis, but Ω is not bounded.

Example 2.6. This example is valid for every d ≥ 2. Let Ω =
∞⋃
n=1

B(0, (1/2)n+1, rn), with rn = (1/2)n −

(1/100)n. Obviously, Ω contains no neighborhood of the origin. According to Proposition 2.2 and since,
Ω ⊆ B(0, 1/2) it is enough to prove that the complement of

⋃∞
n=1 2jΩ is null and Ω ⊂ 2Ω in order to

establish that Ω defines an IMRA. Let us first show that (i) of Proposition 2.2 is satisfied. This property
holds because 2B(0, (1/2)n+1, rn) = B(0, (1/2)n, 2rn) and rn−1 < 2rn for all n ≥ 2.

We now prove that (ii) is satisfied. Let x ∈ Rd and jx ∈ Z such that 2jx−1 < ||x|| < 2jx . Then,
1
4
< || x

2jx+1
|| < 1

2
.

However,

lim
n→∞

rn − 2−(n+1)

2−(n+1)
= 1 ,

so there exists positive integer nx satisfying

|| x
2jx+1 || − 1

4

1/4
<
rnx − 2−(nx+1)

2−(nx+1)
.

This implies that 2−(jx+1)x belongs to the spherical shell 2nx−1B(0, 2−(nx+1), rnx) = B(0, 1
4 , 2

nx−1rnx).
Thus, x belongs to 2nx+jxΩ. Our claim now follows from the fact that ∪j∈Z2jSd−1 is null.

Remark 2.7. Theorem 2.1 can be restated in terms of the theory of Von Neumann Algebras: The joint
commutant of {O : O ∈ SO(d)} and TZd , on one hand, and the joint commutant of {O : O ∈ SO(d)}
and TRd on the other hand coincide. This follows from the fact that the orthogonal projections in these two
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joint commutants are exactly the same, as Theorem 2.1 suggests. Here, TG denotes the group of translations
induced by a subgroup G of Rd.

So far, we have characterized the ‘core’ or zero-resolution subspaces V0 of IMRAs. We also note that if
these are singly generated then the choices for ‘core’ IMRA-subspaces are all of one kind: PWΩ with Ω
radial and inside the fundamental domain Td. In the light of this discussion an interesting open problem is to
characterize all sets Ω for which V0 = PWΩ is generated by a fixed number,N , of functions. However, none
of these generators can be compactly supported in the spatial domain: If one of them, say φ1, is compactly
supported then φ̂1 has analytic extension on the complex domain Cd. Then φ̂1 can vanish only on a set of
points with no accumulation point, forcing Ω = Rd which, in turn, implies V0 = L2(Rd) which contradicts
the IMRA-definition.

3. ISOTROPIC REFINABLE FUNCTIONS AND IMRAS

According to Proposition 2.2 a single refinable function φ defines an IMRA by letting V0 = span{Tnφ :
n ∈ Zd}, if φ is radial and the support of φ̂ is contained in the fundamental domain Td. This observation
motivates us to characterize radial and, more generally, isotropic refinable functions (Theorem 3.1) with
respect to dilations defined by radially expansive matrices. The purpose of this section is to characterize
these functions. As we will see not all of these functions generate ‘core’ IMRA-subspaces, because their
support in the frequency domain does not have to be contained in the fundamental domain. We begin with
dyadic dilations in order to make our arguments more clear.

Let A be a radially expansive matrix. With respect to dilations induced by A, a function φ in L2(Rd)
is called refinable if there exists a measurable, essentially bounded, Zd-periodic function H such that
φ̂(A∗ξ) = H(ξ)φ̂(ξ), a.e. ξ ∈ Rd. The function H is called the low-pass filter or mask corresponding
to φ.

Theorem 3.1. Let A be a radially expansive matrix and φ ∈ L2(Rd) be a refinable function and H ∈
L∞(Td) be its mask. We also assume that

(1) φ is isotropic , and
(2) limξ→0 φ̂(ξ) = L 6= 0.

Then φ ∈ PWρ/(ρ+1), where ρ = |detA|1/d is the dilation factor of A.

For the proof of this theorem we need the next lemma:

Lemma 3.2. The following holds:

dist(r · Sd−1,Zd) = inf
{
‖c− n‖ : c ∈ r · Sd−1, n ∈ Zd

}
.

Then, limr→∞ dist(r · Sd−1,Zd) = 0.

Proof. It suffices to consider only the case d = 2, since the projection of a d-sphere centered at the origin
onto the x1x2-plane is a circle centered at the origin (with the same radius), and the projection of the lattice
Zd onto the x1x2-plane is Z2.

Pick ε > 0. Let 0 < y0 < 1 be a value of the function f1(t) :=
√

1− t2 with 0 ≤ t ≤ 1 at t = τ0
satisfying |f ′1(τ0)| < ε. Observe that as ε the value y0 tends to 1. Now letRε > 0 satisfyingRε(1−y0) > 2.
Then for every R > Rε there is an integer n0 between Ry0 and R. The graph of the function fR(t) =√
R2 − t2, 0 ≤ t ≤ R, intersects the horizontal line y = n0 at some point (t0, n0), t0 > 0. But fR is

decreasing and Ry0 ≤ n0 ≤ R. Thus, for all 0 ≤ t ≤ t0, we have |f ′R(t)| < ε. Since, the tangent line of the
graph of fR(t) at the point t = t0 intersects the vertical line t = [t0], where [t0] denotes the greatest integer
not exceeding t0, at a point whose y-coordinate belongs to the interval [n0, n0 + |f ′R(t0)|(t0 − [t0])]. This
implies that the distance between ([t0], n0) and RSd−1 is less than ε (see Figure 2). �
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FIGURE 2. The dotted line is the line containing ([t0] + 1, n0) parallel to the tangent line
to R · S1 at (t0, n0). The distance between the intersection point of the dotted line with the
vertical line x = [t0] and the point ([t0], n0) is precisely |f ′R(t0)|, thus the distance between
R · S1 and ([t0], n0) is less than ε.

The proof of the Theorem 3.1 contains technicalities which obscure some interesting geometric properties
of φ and H (which facilitate the proof). The strategy of the proof is to show that

∣∣∣φ̂∣∣∣ is constant a.e. and thus
φ cannot be square-integrable. To help the reader appreciate the underlying geometry, we begin by showing
that the theorem is true when φ̂ is continuous.

Proof of Theorem 3.1. Without any loss of generality we may assume φ is radial, because the modulus of
an isotropic refinable function is a radial refinable function. Set N = {ξ ∈ Rd : φ̂(ξ) = 0}.

Part 1: The first objective is to show that φ̂ has compact support. To this end, assume N c is unbounded.
Now, pick an arbitrary ε > 0.

Case I. Assume φ̂ is continuous. Since φ̂ is continuous, so is φ̂(A∗·). But, φ̂(0) = L 6= 0. Then, its
mask H ∈ L∞ defined by the two-scale relation

(4) φ̂(A∗ξ) = H(ξ)φ̂(ξ) a.e.

can be extended to a continuous function on the open set N c and, in particular, in a neighborhood of the
origin, so that the previous equation hold for every ξ ∈ N c and H(0) = 1. We conclude, that there exists
δ > 0 such that |H(ξ)− 1| < ε for all |ξ| < δ.

Notice that both N and N c are radial. The previous lemma implies that there exists R0 > 0 such that for
all R > R0 we have dist(RSd−1,Zd) < δ/2. Since, N c is not bounded, we can find a sphere with radius
R > R0 contained in N c. If n ∈ Zd is a point of the integer grid satisfying dist(RSd−1, n) < δ/2, then the
ball B(n, δ) intersects the sphere RSd−1. The Zd-periodicity and the continuity of H on the ball B(0, δ)
now imply that for all ξ ∈ B(n, δ) ∩ RSd−1 we have 1 − ε < |H(ξ)| < 1 + ε. Since, all these ξ belong to
N c the two-scale relation (4) gives

1− ε <

∣∣∣∣∣ φ̂(A∗ξ)

φ̂(ξ)

∣∣∣∣∣ < 1 + ε for all ξ ∈ RSd−1,

which in turn, implies 1− ε < |H(ξ)| < 1 + ε for every point on RSd−1.
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Next we show |H| = 1 a.e. on B(0, 1/2). The key to this result is to be able to form the quotient
φ̂(A∗·)/φ̂. We observe that all the points in the ball B(0, 1/2) satisfy the following: First, the denominator
φ̂(ξ) is non-zero; second, both φ̂(A∗ξ) and φ̂(ξ) are zero; and third φ̂(A∗ξ) 6= 0 and φ̂(ξ) = 0. The two-scale
relation (4) rules out the third case. For all points falling in the first case the quotient φ̂(A∗ξ)/φ̂(ξ) = H(ξ),
while in the second we can set H equal to 1, because the two-scale relation (4) is satisfied.

We want to prove

(5) 1− ε <
∣∣∣φ̂(A∗ξ)/φ̂(ξ)

∣∣∣ < 1 + ε for all ξ ∈ B(0, 1/2) ∩N c.

Let, ξ0 ∈ B(0, 1/2) ∩ N c with ||ξ0|| > δ. We choose to such ξ0 because all points inside the ball B(0, δ)
satisfy (5). The radiality of N c implies that the sphere ||ξ0||Sd−1 is contained in N c. Thus,

H(ξ) = φ̂(A∗ξ)/φ̂(ξ) for every ξ ∈ ||ξ0||Sd−1 .

Since H is Zd-periodic and the sphere n+ ||ξ0||Sd−1 intersects RSd−1, we derive that (5) is valid for every
point of ||ξ0||Sd−1. Since for all other points inB(0, 1/2) we have |H| = 1, we conclude 1−ε < |H| < 1+ε
everywhere on B(0, 1/2). Since ε is arbitrary, we conclude |H| = 1 on B(0, 1/2). This in turn gives that
|φ̂| is constant on B(0, 1/2).

Next take the radial profile of φ̂ on one of the Cartesian coordinate axes, say the one parallel to the vector
i = (1, 0, . . . , 0). The periodicity of H implies that |H| is constant throughout this axis. This fact combined
with the (4) imply that|φ̂| is constant on the intervals [2j−1, 2j) for all j = 1, 2, . . . . Thus |φ̂| is constant on
the coordinate axis parallel to i. This fact combined with the radiality of |φ̂| imply that |φ̂| is constant on its
radial profile, so |φ̂| is constant, which contradicts that φ ∈ L2(Rd).

Case II. Remove the continuity assumption for φ̂. As in Case I, let δ > 0 such that |H(ξ)− 1| < ε for
all |ξ| < δ. Obviously, the same property implies that H can be redefined, if necessary, so that H(0) = 1
and H is continuous at the origin. The difficulty in this more general case comes from the fact that spheres
are sets of zero measure so they do not determine φ̂. This forces us to use spherical shells instead of spheres.
However, these spherical shells may contain points from bothN and its complement, a situation not possible
in the previous case: Spheres due to the radiality of φ̂ contain points only of one of these two sets.

Lemma 3.2 gives R0 > 0 such that for all R > R0 we have dist(rSd−1,Zd) < δ/4. Since, N c is
not bounded, we can find a spherical shell centered at the origin with inner radius R1 and outer radius R2

denoted by B(0, R1, R2), so that R2 − R1 < δ/2 and |N c ∩B(0, R1, R2)| > 0. In fact, we can select
R1 > R0. Then, dist(R1+R2

2 Sd−1,Zd) < δ/4, so let n1 ∈ Zd to satisfy,

dist
(
R1 +R2

2
Sd−1, n1

)
< δ/4 .

Now notice that the selection of the radii of the spherical shell implies R1 < ||n1|| < R2. Thus the
interval (||n1|| − δ, ||n1||+ δ) contains a radial profile of N c ∩B(0, R1, R2). Moreover, the intersection of
B(n1, δ) and N c ∩B(0, R1, R2) has positive measure, and for a.e. ξ in this intersection the 2-scale relation
φ̂(A∗ξ) = H(ξ)φ̂(ξ) holds. Combining this fact with the radiality of φ̂, and thus, of φ̂(A∗·), we infer

1− ε <

∣∣∣∣∣ φ̂(A∗ξ)

φ̂(ξ)

∣∣∣∣∣ < 1 + ε for a.e. ξ ∈ B(0, R1, R2) ∩N c.

This shows

(6) 1− ε < |H(ξ)| < 1 + ε for a.e. ξ ∈ B(0, R1, R2) ∩N c.

Continuing towards our objective we must show |H| = 1 a.e. onB(0, 1/2). Arguing as in Case I we have
that for almost all points in B(0, 1/2) ∩ N c we have H(ξ) = φ̂(A∗ξ)/φ̂(ξ), while if φ̂(A∗ξ) = φ̂(ξ) = 0
we set H(ξ) = 1.
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Similarly to Case I, but now without the benefit of the continuity assumption of φ̂ we want to establish

(7) 1− ε <
∣∣∣φ̂(A∗ξ)/φ̂(ξ)

∣∣∣ < 1 + ε for a.e. ξ ∈ B(0, 1/2) ∩N c.

Take a density point ofB(0, 1/2)∩N c, say ξ0 with ||ξ0|| > δ, since points inside the ballB(0, δ) satisfy (7).
The radiality ofN c implies that all points on the sphere ||ξ0||Sd−1 are density points ofN c. Since ||ξ0|| > δ,
the sphere n1 + ||ξ0||Sd−1 intersects B(0, R1, R2) from the inner boundary throughout its outer boundary
and the radiality of N c implies that a density point of N c∩B(0, R1, R2), say ξ1, belongs to n1 + ||ξ0||Sd−1.
Consequently,

lim
η→0

|B(ξ1, η) ∩N c ∩B(0, R1, R2)|
|B(ξ1, η)|

= 1 ,

which combined with the periodicity of H and (6) imply that −n1 + ξ1 which belongs to ||ξ0||Sd−1 is a
density point of the set {ξ ∈ B(0, 1/2) : 1 − ε < |H(ξ)| < 1 + ε} is satisfied. We have now established
that a.e. in B(0, 1/2) we have 1− ε < |H| < 1 + ε. Since ε is arbitrary we conclude |H| = 1 on B(0, 1/2).
This implies that ˆ|φ| is a.e. constant on B(0, 1/2) and due to the two-scale relation this result extends to the
ball B(0, ρ/2).

The final step of the first part of the the proof is to show that the latter result is true for all spherical
shells B(0, ρl/2, ρl+1/2) with l = 1, 2, 3, . . . . Which gives ˆ|φ| is constant a.e. on Rd and thus it cannot be
square-summable, and hence φ̂ has compact support. We examine the case l = 1 only since the arguments
in this case generalize immediately for every l > 1.

To establish that ˆ|φ| is a.e. constant equal to |L| onB(0, ρl/2, ρl+1/2), where l = 1, 2, 3, . . . , it is enough
to consider the case l = 1, since all other cases are identical. Recall that, for continuous φ̂ we used the fact
that |H| = 1 on every coordinate axis. However, those axes are null sets so this argument needs to be
appropriately modified when this hypothesis is no longer valid.

Suppose that Θ be a set of positive measure on the unit sphere and B(0, R1, R2,Θ) := {(r, θ) : R1 <
r < R2, θ ∈ Θ}. Let Θn be a sequence of open neighborhoods of (ρ2/2)i such that m(Θn) ↓ 0, where
n = 1, 2, . . . . Define

Ln :=
⋃
k∈Z+

(
k +B

(
0,

1
2

))
∩ B

(
0,

1
2
,
ρ

2
,Θn

)
.

Pick ρ/2 < r < ρ2/2. Then there exists a sufficiently large n so Ln. contains a ball B( rρ i, η). Using the
periodicity of H we have that |H| = 1 on every Ln. Combining the two-scale relation (4) with the facts that
|φ̂| is constant on the ball B(0, ρ2) and |H| = 1 on every Ln, we conclude

|L| =
∣∣∣φ̂|B(ri,ρη)

∣∣∣ .
Therefore, the point ri is a density point of the set {ξ ∈ Rd : |φ̂(ξ)| = |L|}, which is radial since φ̂ is radial.
In conclusion, |φ̂(ξ)| = |L| a.e. on the spherical shell B(0, ρ/2, ρ2/2).

Part 2: This part establishes that the support of φ̂ is contained in the ballB(0, ρ
ρ+1). Since φ̂ has compact

support, we can find
R = inf{r > 0 : N c ⊆ B(0, r)} .

Therefore, we can find spheres centered at the origin with radii arbitrarily close to R consisting of density
points of N c. First, assume R > 1. Pick a sufficiently small δ > 0 and one such sphere, say B(0, R0) with
R0 > R− δ > 1. Eq. (4) rewritten as

φ̂(ξ) = H((A∗)−1ξ)φ̂((A∗)−1ξ) a.e.

and the radiality of N c imply that every point on the sphere B(0, R0/ρ) is a density point for N c and a
density point of the set S := {ξ ∈ Rd : H(ξ) 6= 0}. If κ is the greatest integer not exceeding R0, then
the spheres R0Sd−1 and (κ− 1)i + (R0/ρ)Sd−1 intersect. The periodicity of H implies that every point on
κ + (R0/ρ)Sd−1 is a density point of S. By observing that the distance of the centers of these two spheres



12 J.R. ROMERO, S.K. ALEXANDER, S. BAID, S. JAIN, AND M. PAPADAKIS

is equal to κ − 1 we infer that these spheres intersect. The common points of the two spheres are points
of density for both N c and S and, by the two-scale relation (4) all them are density points of the support
of φ̂(A∗·), which is absurd, because this function is supported on the ball B(0, R/ρ). Therefore, R ≤ 1.
Take again R0 as above but this time we have R − δ < R0 < 1. The spheres R0Sd−1 and i + (R0/ρ)Sd−1

intersect unless R0 ≤ ρ
ρ+1 . Since δ can be arbitrarily small we conclude R ≤ ρ

ρ+1 . �

Theorem 3.1 has two important ramifications.

Corollary 3.3. There is no isotropic, refinable function compactly supported in the spatial domain.

According to Proposition 2.2 the refinable functions generating an integer shift and rotation-invariant
subspace of L2(Rd) belong to the Paley-Wiener space PWTd . So if a refinable function φ is isotropic and
does not belong to PWTd , does it define an IMRA? The answer is provided by the next corollary.

Corollary 3.4. If an MRA is defined by a single isotropic refinable function φ whose Fourier transform is
supported outside the ball of radius 1/2 centered at the origin is not an IMRA; equivalently, the orthogonal
projection onto V0 does not commute with all rotations.

We remark that Theorem 3.1 cannot be extended for non-singleton refinable sets {φl : l ∈ N}, in the
sense that there exists an essentially bounded ∞×∞-matrix valued Zd-periodic function H satisfying

(φ̂1(A∗·), φ̂2(A∗·), . . . )T = H(φ̂1, φ̂2, . . . )T a.e. on Rd,

where all φl are isotropic. An example of such a set can be manufactured from Example 2.5.

3.1. Isotropic wavelets for refinable functions. The goal of this subsection is to provide an easy method
for constructing isotropic wavelets from refinable radial functions. This method can be applied to singly
generated IMRAs as well as to refinable functions φ for which φ̂ not supported in the fundamental domain
Td and which are not associated with singly generated IMRAs. Since the primary focus of this paper is this
type of IMRAs we will not study the latter type of refinable functions in detail. We consider radial refinable
with respect to a radially expansive matrix A functions, whose Fourier transforms do not vanish in the ball
of radius ρ/(ρ+ 1), where ρ = |detA|. However, the gains from using these functions are limited thanks to
technicalities which will become apparent in the following discussion. To allow some notational simplicity
we limit this discussion to the case A = 2Id and to d = 2. Then, by virtue of Theorem (3.1), the support of
φ̂ is the ball B(0, 2/3). The simplest case, is for φ̂ = χB(0,2/3).

Take I to be the d-dimensional spherical shell with outer radius 4/3 and inner radius 2/3 and εl(ξ) :=
e2πi[

l
3
·ξ], where ξ ∈ R2. Define ψ̂ = χI . The spherical shell I is contained in the square [−3/2, 3/2]2.

Since, the set {1
3εl : l ∈ Z2} is an orthonormal basis for L2([−3/2, 3/2]2) we deduce that {1

3εlψ̂ : l ∈ Z2}
is a Parseval frame for PWI . Taking the residue classes of the integers modulo 3 we can rewrite this set in
the following way {

en

(
1
3
ε(µ,ν)ψ̂

)
: µ, ν = 0, 1, 2, n ∈ Z2

}
.

After, setting ψ(µ,ν) to be the inverse Fourier transform of 1
3ε(µ,ν)ψ̂ we conclude that

{Tnψ(µ,ν) : n ∈ Z2, µ, ν = 0, 1, 2}

is a Parseval frame for PWI . By applying Dj
2I2

to the previous Parseval frame we derive a Parseval frame
for each PW2jI for every j ∈ Z. Therefore,

{Dj
2I2
Tnψ(µ,ν) : n ∈ Z2, µ, ν = 0, 1, 2, j ∈ Z}

is a Parseval frame forL2(R2). It’s worth noting that PWI is not the relative orthocomplement of the Fourier
transform of V0 inside the Fourier transform of V1; for otherwise V0 would have been a Paley-Wiener space.

The next step is to extend this construction of isotropic wavelets for the case of a refinable function φ
whose Fourier transform is continuous and does not vanish in the ball B(0, 2/3). This construction is easily
generalizable for radii other not exceeding 2/3. Take a function ϑ ∈ L2(R) such that
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• ϑ ∈ PW[−4/3,4/3],
• ϑ̂ ≥ 0, and even
• ϑ̂ is strictly positive on some annulus B(0, 4/3) \B(0, b2), for some b2 < 2

3 ,
• ϑ̂ is zero on a neighborhood of the origin contained in (−2

3 ,
2
3),

•
∑

j∈Z |ϑ̂(2jξ)|2 = 1 a.e. ξ ∈ R.

Let ψ ∈ PWB(0,4/3) be defined by ψ̂(ξ) = ϑ̂(||ξ||), where ξ ∈ R2 and (µ, ν) ∈ {0, 1, 2} × {0, 1, 2}

ψ̂(µ,ν)(ξ) =
1
3
ε(µ,ν)(ξ)ψ̂(ξ) .

The arguments we previously used no longer apply, since multiplication by ψ̂ no longer defines a projection.
So to conclude that

{Dj
2I2
Tnψ(µ,ν) : n ∈ Z2, µ, ν = 0, 1, 2, j ∈ Z}

is a Parseval frame of L2(R2) we must use a different method. By means of a characterization of affine
Parseval frames due to Han [41] (for d = 1 the same result is due to Wang [44]) we have to show

2∑
µ,ν=0

∑
j∈Z

|ψ̂(µ,ν)(2
jξ)|2 = 1 a.e. ξ ∈ R2,

(8)
2∑

µ,ν=0

∞∑
j=0

ψ̂(µ,ν)(2
jξ)ψ̂(µ,ν)(2j(ξ + s)) = 0, a.e. ξ ∈ R2 and all s ∈ Z2 \ 2Z2

in order to establish that {Dj
2I2
Tnψ(µ,ν) : n ∈ Z2, µ, ν = 0, 1, 2, j ∈ Z} is a Parseval frame of L2(R2).

The last property in the definition of ψ̂ immediately implies
2∑

µ,ν=0

∑
j∈Z

|ψ̂(µ,ν)(2
jξ)|2 = 1 a.e. ξ ∈ R2.

To establish that (8) holds for the set of isotropic wavelets {ψ(µ,ν) : µ, ν = 0, 1, 2} it suffices to consider
the cases j = 0 and j = 1, because the supports of ψ̂(2j ·) and ψ̂(2j(·+ s)) are disjoint, if j > 1. When
j = 0 and j = 1 the summands in the right-hand side of (8) are of the form

ψ̂(2jξ)ψ̂(2j(ξ + s))
2∑

µ=0

2∑
ν=0

e−2πiµ
3
2js1e−2πi ν

3
2js2 ,

where s = (s1, s2). When, j = 0 the supports of ψ̂(2j ·) and ψ̂(2j(·+ s)) are balls with radius 4/3 centered
at the origin and at −s = −(s1, s2) respectively. Therefore, if |s1| > 2 or |s2| > 2 hold then, the supports
of ψ̂(2j ·) and ψ̂(2j(·+ s)) are again disjoint. Thus the only allowable values for s1 and s2 are 0,±1,±2.
Moreover, the requirement s ∈ Z2 \ 2Z2 rules out the cases |s1| = |s2| = 2 and s1 = s2 = 0. For all other
choices of s1 and s2, first note

2∑
µ=0

2∑
ν=0

e−2πiµ
3
s1e−2πi ν

3
s2 =

 2∑
µ=0

e−2πiµ
3
s1

( 2∑
ν=0

e−2πi ν
3
s2

)
.

Since, for these choices of s1 and s2 at least one of e−2πi
s1
3 and e−2πi

s2
3 is a generator of the cyclic multi-

plicative group of the third-order roots of unity, we infer that at least one of the factors in the right-hand side
of the previous equation is equal to zero.
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When j = 1, similar arguments show that s1 and s2 belong to {0,±1} with the exception that both s1
and s2 may not be equal to zero. This time we have

2∑
µ=0

2∑
ν=0

e−4πiµ
3
s1e−4πi ν

3
s2 =

 2∑
µ=0

e−4πiµ
3
s1

( 2∑
ν=0

e−4πi ν
3
s2

)
.

Observing once again that at least one of e−2πi
2s1
3 and e−2πi

2s2
3 is a generator of the cyclic multiplicative

group of the third-order roots of unity, we obtain the desired result. This completes the proof that the ψµ,ν’s
satisfy (8) for every s ∈ Z2 \ 2Z2.

Remark 3.5. 1) When the support of the Fourier transform of the radial refinable function φ is contained
in Td, then we can use fewer modulation factors to define the associated isotropic wavelets. For example, if
d = 2 and A = D2I2 , instead of the modulation factors 1

3ε(µ,ν) we can use ε(µ,ν), where µ, ν ∈ {0, 1} and
ε(µ,ν)(ξ) := eπi[(µ,ν)·ξ]. The use of refinable functions that do not define singly generated IMRAs forces us
to use more modulations to define the isotropic wavelets that form a Parseval frame of L2(Rd). The cost
of using such refinable functions whose support in the frequency domain is not significantly ‘bigger’ than
the ball B(0, 1/2) does not offset the gains. Therefore, we are justified to restrict our attention to refinable
isotropic functions which generate IMRAs.

2) The method presented in this subsection for construction of isotropic wavelets associated with radial
refinable functions does not show how to implement fast algorithms based on IMRAs for the multiscale de-
composition and reconstruction of multidimensional data sets. This observation motivates the next section.

4. EXTENSION PRINCIPLES REVISITED

Extension Principles address a fundamental problem in wavelet construction and in digital data process-
ing. When the integer translates of a refinable function do not form a frame for their closed linear span but
form only a Bessel family the construction of affine wavelet frames with desirable spatial localization cannot
be carried out as in the classical multiresolution theory of Mallat and Meyer. In this case Extension Princi-
ples provide the complete answer to this problem. In addition they show that if we use the refinable function
and the resulting wavelets for multiscale signal decompositions these decompositions are implementable
with fast algorithms just as in the classical MRA theory. We don’t want to further discuss the significance of
the Extension Principles in wavelets and multiscale transforms in general. The interested reader may refer
to the celebrated first paper on the topic due to Ron and Shen [61] and for nice overviews on the topic to the
relevant chapter of [21] and to [26].

Let us begin with some notation. For a given refinable function φ, we denote by V0 the subspace
span {Tkφ}k∈Zd . The spectrum of φ, denoted by σ(V0), is defined by

σ(V0) :=

{
ξ ∈ Td :

∑
k

∣∣∣φ̂(ξ + k)
∣∣∣2 > 0

}
.

The next theorem is one of the main results in [61] and is the cornerstone of the Unitary Extension Principle
[61], but it also appears in [26] with different assumptions on φ where it is used to formulate the so-called
Oblique Extension Principle.

Theorem 4.1. [26] Let φ be a refinable function in L2(Rd) such that φ̂ is continuous at the origin,

(9) lim
|ξ|→0

φ̂(ξ) = 1 .

Assume that there exists a constant B > 0 such that
∑

l∈Zd |φ̂(ξ + l)|2 ≤ B a.e. on Rd and that φ is
refinable with respect to the expansive matrix A, i.e. there exists a Zd -periodic measurable function H0,
such that

(10) φ̂(A∗.) = H0φ̂.
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Furthermore, let Hi, i = 1, . . . ,m, be Zd-periodic measurable functions and define m wavelets ψi, i =
1, . . . ,m, by

(11) ψ̂i(A∗.) = Hiφ̂.

Assume Hi ∈ L∞(Td) for all i = 0, . . . ,m, then the following two conditions are equivalent:

(1) The set
{
Dj
ATkψi : j ∈ Z, k ∈ Zd, i = 1, . . . ,m

}
is a Parseval Frame for L2(Rd).

(2) For all ξ ∈ σ(V0),
(a) limj→−∞ Θ(A∗jξ) = 1.
(b) If q ∈ (A∗−1Zd)/Zd \ {0} and ξ + q ∈ σ(V0), then

Θ(A∗ξ)H0(ξ)H0(ξ + q) +
m∑
i=1

Hi(ξ)Hi(ξ + q) = 0.

where Θ is the so-called fundamental function, defined by

Θ(ξ) =
∞∑
j=0

m∑
i=1

∣∣Hi(A∗jξ)
∣∣2 j−1∏
l=0

∣∣∣H0(A∗lξ)
∣∣∣2.

The previous theorem characterizes all Parseval wavelet frames of L2(Rd) defined by means of (11)
from a refinable function satisfying (9) and (10). If we use several consecutive levels of the multiscale
decomposition given by the Parseval frame

{
Dj
ATkψi : j ∈ Z, k ∈ Zd, i = 1, . . . ,m

}
of a signal, say f ,

then it is like using a partial sum of the series∑
j

∑
k

< f,Dj
ATkψi > Dj

ATkψi = f

to approximate f . If we are forced to take only a few levels of decomposition, then we wish to use a family
augmenting the refinable function and the wavelets such as

Xφψ :=
{
Dj
ATkψi : j ∈ N ∪ {0}, k ∈ Zd, i = 1, . . . ,m

}
∪
{
Tkφ : k ∈ Zd

}
.

If this is the case, e.g. in seismic imaging [46], then it is legitimate to question whether Xφψ forms a
Parseval frame of L2(Rd). This problem is the focus of the present section. The answer to this problem
does not follow from Theorem 4.1. However, if Xφψ is a Parseval frame of L2(Rd), then it is also true that{
Dj
ATkψi : j ∈ Z, k ∈ Zd, i = 1, . . . ,m

}
shares the same property (see Remark 4.3 and Corollary 4.9).

One of the merits of Theorem 4.7 is that it imposes minimal conditions on the filters and the refinable
function φ. In the spirit of Theorem 4.7, we have Theorem 4.10 which characterizes the Bessel sequence
pairs Xφaψa and Xφsψs that are dual frames of L2(Rd).

To facilitate the implementation of the decomposition of a multidimensional data set by means of a
Parseval frame resulting from Theorems 4.1, 4.7, 4.4 and 4.10 we employ the modulation matrix, a concept
introduced for filter design in engineering.

Definition 4.2. The modulation matrix H is defined by

(12) H =


H0 H1 . . . Hm

Tq1H0 Tq1H1 . . . Tq1Hm
...

...
. . .

...
Tqn−1H0 Tqn−1H1 . . . Tqn−1Hm


where n = |det(A∗)| and ql : l = 0, 1, 2, . . . , n− 1 are the representatives of the quotient group (A∗−1Zd)/Zd.
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Remark 4.3. (1) A special case of Theorem 4.1 occurs when

(13) HH∗ =


χσ(V0) 0 . . . 0

0 Tq1χσ(V0) . . . 0
...

...
. . .

...
0 0 . . . Tqn−1χσ(V0)


almost everywhere on Td, then the set

{
Dj
ATkψi : j ∈ Z, k ∈ Zd, i = 1, . . . ,m

}
is a Parseval frame for

L2(Rd). In this case the fundamental function Θ = 1 a.e. on σ(V0). This special case is referred to as the
Unitary Extension Principle in [26]. In Theorem 4.7 we show that this condition is equivalent to the setXφψ

being a Parseval frame of L2(Rd). Corollary 4.9 gives that the latter property implies the conclusion of the
UEP. However, our assumptions for the refinable function φ in Theorem 4.7 are more general; we neither
impose a decay condition for φ̂ at infinity as [61] does, nor we require that the integral translates of φ form
a Bessel sequence, as [26] does.

(2) If the spectrum, σ(V0) = Td then the condition in Eq. (13) reduces to HH∗ = I.
(3) For a very interesting direct proof of UEP under the same more general hypotheses we use in Theo-

rem 4.7 see [13]; see also [9, 11]. The more general case where the fundamental function is not necessarily
equal to one is referred to in [26] as the Oblique Extension Principle.

The next theorem characterizes pairs of affine families that form dual frames of L2(Rd) in terms of
conditions on their filters, similar to those in Theorem 4.1. The so-called Mixed Extension Principles follow
directly from this theorem [26].

Theorem 4.4. [26] Let φa and φs be refinable functions in L2(Rd) such that φ̂a and φ̂s are continuous at
the origin and

(14) lim
|ξ|→0

φ̂a(ξ) = φ̂s(ξ) = 1.

Let Ha
0 and Hs

0 ∈ L∞(Td), be the associated low pass filters. Furthermore, let Ha
i , Hs

i for i = 1, . . . ,m,
be Zd-periodic measurable functions and define m pairs of wavelets ψai , ψsi i = 1, . . . ,m, by

(15) ψ̂ai (A
∗.) = Ha

i φ̂,

(16) ψ̂si (A
∗.) = Hs

i φ̂.

Assume Ha
i ,H

s
i ∈ L∞(Td) for all i = 0, . . . ,m. Then the following two conditions are equivalent,

(1) The sets Ψa :=
{
Dj
ATkψ

a
i : j ∈ Z, k ∈ Zd, i = 1, . . . ,m

}
and

Ψs :=
{
Dj
ATkψ

s
i : j ∈ Z, k ∈ Zd, i = 1, . . . ,m

}
is a pair of dual frames for L2(Rd).

(2) For all ξ ∈ σ(V a
0 )
⋂
σ(V s

0 ),
(a) Ψa and Ψs are Bessel families.
(b) limj→−∞ ΘM (A∗jξ) = 1.
(c) If q ∈ (A∗−1Zd)/Zd \ {0} and ξ + q ∈ σ(V a

0 )
⋂
σ(V s

0 ), then

ΘM (A∗ξ)Hs
0(ξ)Ha

0 (ξ + q) +
m∑
i=1

Hs
i (ξ)Ha

i (ξ + q) = 0.

where ΘM is the so-called Mixed Fundamental function, defined by

ΘM (ξ) =
∞∑
j=0

m∑
i=1

Hs
i (A

∗jξ)Ha
i (A∗jξ)

j−1∏
l=0

Hs
0(A∗lξ)Ha

0 (A∗lξ).
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Remark 4.5. Let Ha and Hs denote the modulation matrices corresponding to the filters Ha
i and Hs

i
respectively. By Theorem 4.4 we conclude that if

(17) HsH∗
a =


χσ(V a

0 )
T

σ(V s
0 ) 0 . . . 0

0 Tq1χσ(V a
0 )

T
σ(V s

0 ) . . . 0
...

...
. . .

...
0 0 . . . Tqn−1χσ(V a

0 )
T

σ(V s
0 )


holds almost everywhere on Td then Ψa and Ψs is a pair of dual frames for L2(Rd). This special case of
Theorem 4.4 is referred to as the Mixed Extension Principle in [26]. Notice that in this case, the Mixed
Fundamental function ΘM = 1 a.e. on σ(V a

0 )
⋂
σ(V s

0 ). The more general case where ΘM may take values
other than one is referred to as the Mixed Oblique Extension Principle in [26].

The purpose of the next theorem is to characterize when the setXφψ is a Parseval frame for L2(Rd) under
the most general hypotheses on the refinable function φ and on the filters Hi. Before we state and prove the
theorem, let us prove the following lemma required in the proof of the theorem and also for the examples
described in Section 5.

Lemma 4.6. Let G be a finite group with the group operation denoted by ◦ and let χ be a character on G.
If χ is not the identity character on G, i.e. there exists an h in G such that χ(h) 6= 1, then

∑
g∈G χ(g) = 0.

Proof. Let h in G satisfying χ(h) 6= 1. Set Y :=
∑

g∈G χ(g) and observe

χ(h)
∑
g∈G

χ(g) =
∑
g∈G

χ(h ◦ g) = Y.

Hence, we have Y (χ(h)− 1) = 0, which gives us the required result since χ(h) 6= 1. �

Theorem 4.7. Let φ ∈ L2(Rd) be a refinable function such that φ̂ is continuous at the origin satisfying
Eqs. (9) and (10). Moreover assume Hi ∈ L∞(Td) for all i = 1, . . . ,m are Zd-periodic functions and
ψi ∈ L2(Rd) are given by Eq. (11). Then Xφψ is a Parseval frame for L2(Rd) if and only if for all
q ∈ (A∗−1Zd)/Zd and for a.e. ξ, ξ + q ∈ σ(V0),

(18)
m∑
i=0

Hi(ξ)Hi(ξ + q) = δq,0.

Proof. The proof splits in two parts. In the first part, we establish that Xφψ is a Parseval frame if and only
if the following condition holds,

j0(l)∑
j=0

m∑
i=1

ψ̂i
(
A∗−jξ

)
ψ̂i (A∗−j(ξ + l)) + φ̂ (ξ) φ̂ (ξ + l) = δl,0.

for a.e. ξ ∈ Rd and l ∈ Zd (The function j0 is defined in (21) below). In the second part, we show that this
condition is equivalent to (18). First, assume that Xφψ is a Parseval frame for L2(Rd) and obtain the above
condition.

We begin by defining a unitary operator U : L2(Rd) → L2(Td, l2(Zd)) via

U(f) =
{
f̂(.+ k) : k ∈ Zd

}
.

Next we define the set J by

J :=
{

(j, r, i) : j ∈ N ∪ {0}, r ∈ Zd/(A∗jZd), i = 1, . . . ,m
}
∪ {(0, 0, 0)},

and a map S : L2(Td, l2(J)) → L2(Td, l2(Zd)), via

S(el, δ(j,r,i)) = U(TlDjTrψi) for all l ∈ Zd, (j, r, i) ∈ J,
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where we adopt the convention ψ0 = φ. Note that,

(Selδ(j,r,i))(ξ) =
{
el(ξ)|det(A)|−j/2e−2πi〈r,A∗−j(ξ+k)〉ψ̂i

(
A∗−j(ξ + k)

)}
k∈Zd

for a.e. ξ ∈ Td.

Since Xφψ is a Parseval frame, S can be extended to a bounded linear transformation on L2(Td, l2(J)).
Now S can be represented by a Zd × J matrix so that the (k, (j, r, i))-th entry of the matrix is an operator
on L2(Td), denoted by Sk,(j,r,i). This operator acts on the modulations as follows:

(Sk,(j,r,i)el)(ξ) = el(ξ)|det(A)|−j/2e−2πi〈r,(A∗−j(ξ+k))〉ψ̂i
(
A∗−j(ξ + k)

)
.

Thus we see that each Sk,(j,r,i) commutes with all the modulation operators Ml defined on L2(Td) by
Mlω(ξ) := el(ξ)ω(ξ). Hence, each Sk,(j,r,i) is a multiplicative operator (e.g. [25, Corollary 2.12.7]) in the
following sense:

(Sk,(j,r,i)ω)(ξ) = ω(ξ)|det(A)|−j/2e−2πi〈r,(A∗−j(ξ+k))〉ψ̂i
(
A∗−j(ξ + k)

)
,

for all ω ∈ L2(Td). We denote the symbol for this operator again by Sk,(j,r,i)(·), so that

Sk,(j,r,i)(ξ) = |det(A)|−j/2e−2πi〈r,(A∗−j(ξ+k))〉ψ̂i
(
A∗−j(ξ + k)

)
.

Note that Sk,(j,r,i)(·) is an essentially bounded Zd-periodic function. Let S(.) denote the Zd × J matrix of
the symbols Sk,(j,r,i)(.), then

(Sω)(ξ) = S(ξ)ω(ξ) for all ω ∈ L2(Td, l2(J)).

Also ||S(.)|| is essentially bounded [25, Theorem 7.52.8] Now, the adjoint of S can be represented by the
J × Zd matrix of operators on L2(Td) such that the ((j, r, i), k)-th entry is S∗k,(j,r,i). Since S∗k,(j,r,i) is the

adjoint of a multiplicative operator, it is itself a multiplicative operator with symbol Sk,(j,r,i)(.). Therefore,

(S∗ω)(ξ) = S(ξ)∗ω(ξ) for all ω ∈ L2(Td, l2(Zd)).
Since Xφψ is a Parseval frame, we have, SS∗ = IL2(Td,l2(Zd)), i.e.

(19) S(ξ)S(ξ)∗ = Il2(Zd) for a.e. ξ ∈ Td.

The (k, l)-th entry of S(ξ)S(ξ)∗ is given by

(S(ξ)S(ξ)∗)(k,l) =
∞∑
j=0

m∑
i=1

|det(A)|−j
∑

r∈Zd/(A∗jZd)

e2πi〈r,A∗−j(k−l)〉ψ̂i
(
A∗−j(ξ + k)

)
ψ̂i (A∗−j(ξ + l))

+ φ̂ (ξ + k) φ̂ (ξ + l).(20)

Now, define j0 : Zd \ {0} → Z via

(21) j0(l) = sup{j : A∗−j(l) ∈ Zd}.
Obviously, if l 6= 0, then j0(l) is finite while j0(0) can be set equal to +∞. If j > j0(k − l) then
A∗−j(k− l) /∈ Zd and therefore eA∗−j(k−l) is not the identity character on Zd/(A∗jZd). On the other hand,
if j ≤ j0(k− l) then A∗−j(k− l) ∈ Zd and eA∗−j(k−l) is the identity character on Zd/(A∗jZd). Thus using
Lemma 4.6, we conclude

|det(A)|−j
∑

r∈Zd/(A∗jZd)

e2πi〈r,A∗−j(k−l)〉 =
{

0 for j > j0(k − l)
1 for j ≤ j0(k − l) .

Hence, for k 6= l, Eq. (20) reduces to,

(S(ξ)S(ξ)∗)(k,l) =
j0(k−l)∑
j=0

m∑
i=1

ψ̂i
(
A∗−j(ξ + k)

)
ψ̂i (A∗−j(ξ + l)) + φ̂ (ξ + k) φ̂ (ξ + l).
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Thus using Eq. (19), we conclude that the following condition holds for a.e. ξ ∈ Td and k, l ∈ Zd:

(22)
j0(k−l)∑
j=0

m∑
i=1

ψ̂i
(
A∗−j(ξ + k)

)
ψ̂i (A∗−j(ξ + l)) + φ̂ (ξ + k) φ̂ (ξ + l) = δk,l.

By changing variables the previous equation becomes equivalent to:

(23)
j0(l)∑
j=0

m∑
i=1

ψ̂i
(
A∗−jξ

)
ψ̂i (A∗−j(ξ + l)) + φ̂ (ξ) φ̂ (ξ + l) = δ0,l.

for a.e. ξ ∈ Rd and l ∈ Zd.
Conversely, we must show that if (23) holds for a.e. ξ ∈ Rd and l ∈ Zd, then Xφψ is a Parseval frame.

To this end, we densely define the operators A(ξ) : l2(Zd) → l2(J) via

A(ξ)δk =
{
|det(A)|−j/2e2πi〈r,A∗−j(ξ+k)〉ψ̂i (A∗−j(ξ + k))

}
(j,r,i)∈J

.

Using (22) which is equivalent to (23), we conclude that A(ξ) extends to an isometry on l2(Zd), for a.e.
ξ ∈ Td. We now define the operator A : L2(Td, l2(Zd)) → L2(Td, l2(J)), via

(Aω)(ξ) = A(ξ)ω(ξ).

Since A(ξ) is an isometry for a.e. ξ ∈ Td, it is easy to verify that A is an isometry. But A coincides with
S∗, which is the analysis operator for the family Xφψ. Therefore Xφψ is a Parseval frame, finishing the first
part of the proof.

Now, we proceed to the second part of the proof. In this part we show that (23) holds if and only if (18)
holds. We will first assume (18) holds and prove that (23) holds for all l 6= 0. Note, that A∗−jl ∈ Zd for
all j = 0, 1, . . . , j0(l). Thus, for all these j we have

∑m
i=0Hi

(
A∗−(j0(l)+1)ξ

)
Hi

(
A∗−(j0(l)+1)(ξ + l)

)
= 1

due to Eq. (18). Using the last equation and the two-scale relations ((10) and (11)) we obtain,
j0(l)∑
j=0

m∑
i=1

ψ̂i
(
A∗−jξ

)
ψ̂i (A∗−j(ξ + l)) + φ̂ (ξ) φ̂ (ξ + l) =

j0(l)∑
j=1

m∑
i=1

ψ̂i
(
A∗−jξ

)
ψ̂i (A∗−j(ξ + l)) +

+ φ̂
(
A∗−1ξ

)
φ̂ (A∗−1(ξ + l))

(
m∑
i=0

Hi

(
A∗−1ξ

)
Hi (A∗−1(ξ + l))

)

=
j0(l)∑
j=1

m∑
i=1

ψ̂i
(
A∗−jξ

)
ψ̂i (A∗−j(ξ + l)) + φ̂

(
A∗−1ξ

)
φ̂ (A∗−1(ξ + l))

...

=
m∑
i=1

ψ̂i

(
A∗−j0(l)ξ

)
ψ̂i
(
A∗−j0(l)(ξ + l)

)
+ φ̂

(
A∗−j0(l)ξ

)
φ̂
(
A∗−j0(l)(ξ + l)

)( m∑
i=0

Hi

(
A∗−j0(l)ξ

)
Hi

(
A∗−j0(l)(ξ + l)

))

=
m∑
i=1

ψ̂i

(
A∗−j0(l)ξ

)
ψ̂i
(
A∗−j0(l)(ξ + l)

)
+ φ̂

(
A∗−j0(l)ξ

)
φ̂
(
A∗−j0(l)(ξ + l)

)
= φ̂

(
A∗−(j0(l)+1)ξ

)
φ̂
(
A∗−(j0(l)+1)(ξ + l)

)( m∑
i=0

Hi

(
A∗−(j0(l)+1)ξ

)
Hi

(
A∗−(j0(l)+1)(ξ + l)

))
= 0.
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Next we show that (23) holds for l = 0, using the hypothesis (18). For a fixed N we have
N∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−jξ
)∣∣∣2 +

∣∣∣φ̂ (ξ)
∣∣∣2 =

N∑
j=1

m∑
i=1

∣∣∣ψ̂i (A∗−jξ
)∣∣∣2 +

∣∣∣φ̂ (A∗−1ξ
)∣∣∣2( m∑

i=0

∣∣Hi

(
A∗−1ξ

)∣∣2)

=
N∑
j=1

m∑
i=1

∣∣∣ψ̂i (A∗−jξ
)∣∣∣2 +

∣∣∣φ̂ (A∗−1ξ
)∣∣∣2

=
N∑
j=2

m∑
i=1

∣∣∣ψ̂i (A∗−jξ
)∣∣∣2 +

∣∣∣φ̂ (A∗−2ξ
)∣∣∣2( m∑

i=0

∣∣Hi

(
A∗−2ξ

)∣∣2)

=
N∑
j=2

m∑
i=1

∣∣∣ψ̂i (A∗−jξ
)∣∣∣2 +

∣∣∣φ̂ (A∗−2ξ
)∣∣∣2

...

=
m∑
i=1

∣∣∣ψ̂i (A∗−Nξ
)∣∣∣2 +

∣∣∣φ̂ (A∗−Nξ
)∣∣∣2( m∑

i=0

∣∣Hi

(
A∗−Nξ

)∣∣2)

=
m∑
i=1

∣∣∣ψ̂i (A∗−Nξ
)∣∣∣2 +

∣∣∣φ̂ (A∗−Nξ
)∣∣∣2

=
∣∣∣φ̂ (A∗−N−1ξ

)∣∣∣2( m∑
i=0

∣∣Hi

(
A∗−N−1ξ

)∣∣2) =
∣∣∣φ̂ (A∗−N−1ξ

)∣∣∣2.
Now the assumption (9), together with the continuity of φ̂ at 0 imply that for every ε > 0, there exists a N0

such that
∣∣∣∣∣∣∣φ̂ (A∗−Nξ

)∣∣∣2 − 1
∣∣∣∣ < ε for all N > N0. This in turn implies that∣∣∣∣∣∣

N∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−jξ
)∣∣∣2 +

∣∣∣φ̂ (ξ)
∣∣∣2 − 1

∣∣∣∣∣∣ < ε

for all N > N0 + 1. This proves that (23) holds for l = 0. Thus, we have shown that (18) implies (23).
To establish the converse implication, first notice that the calculations we carried out to prove that Eq. (18)

implies Eq. (23) for l 6= 0 are still valid for almost every ξ and all l ∈ Zd. Now pick q ∈ (A∗−1)Zd/Zd. We
have A∗q ∈ Zd. If p is an arbitrary integer grid point, i.e. p ∈ Zd set l := A∗(q + p). Obviously l ∈ Zd,
since A is expansive and thus A∗ leaves the lattice Zd invariant. Observe j0(l) = 0, because p + q does
not belong to the integer grid. Next, assume that (18) holds for q = 0. Since, (23) is valid for all l 6= 0 we
deduce

0 =
m∑
i=1

ψ̂i (ξ) ψ̂i (ξ + l) + φ̂ (ξ) φ̂ (ξ + l)

= φ̂
(
A∗−1ξ

)
φ̂ (A∗−1(ξ + l))

(
m∑
i=0

Hi

(
A∗−1ξ

)
Hi (A∗−1(ξ + l))

)

= φ̂
(
A∗−1ξ

)
φ̂ (A∗−1ξ + q + p)

(
m∑
i=0

Hi

(
A∗−1ξ

)
Hi (A∗−1ξ + q + p)

)
a.e. in Rd.

Take ξ and ξ+ q in σ(V0) such that A∗ξ belongs to the set of points in Rd for which Eq. (23) holds. The fact
that Eq. (23) is equivalent to Eq. (22) implies that, if Eq. (23) holds for a ξ ∈ Rd then, Eq. (23) holds for



THE GEOMETRY AND THE ANALYTIC PROPERTIES OF IMRAS 21

all integer translates of this point. Apply the previous equations for A∗(ξ + s) instead of ξ, where s ∈ Zd.
Then

0 = φ̂ (ξ + s) φ̂ (ξ + q + p)

(
m∑
i=0

Hi (ξ)Hi (ξ + q)

)
due to the Zd-periodicity of Hi. Since p, s are arbitrary integers and ξ, ξ + q ∈ σ(V0) there exist some s0
and p0 for which

φ̂ (ξ + s0) φ̂ (ξ + q + p0) 6= 0 .
Thus,

m∑
i=0

Hi (ξ)Hi (ξ + q) = 0 .

In order to complete the proof of the theorem we need to establish that (18) holds for q = 0. To verify
this, set l = 0 in (23):

∞∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−jξ
)∣∣∣2 +

∣∣∣φ̂ (ξ)
∣∣∣2 = 1, ξ ∈ Rd a.e. .

Observe that this implies
∞∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−j+1ξ
)∣∣∣2 +

∣∣∣φ̂ (A∗ξ)
∣∣∣2 = 1, ξ ∈ Rd a.e. .

Using the two scale relations, (10) and (11), we infer
∞∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−j+1ξ
)∣∣∣2 +

∣∣∣φ̂ (A∗ξ)
∣∣∣2 =

∞∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−jξ
)∣∣∣2 +

∣∣∣φ̂ (ξ)
∣∣∣2( m∑

i=0

|Hi (ξ)|2
)
.

Hence,
∞∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−jξ
)∣∣∣2 +

∣∣∣φ̂ (ξ)
∣∣∣2 =

∞∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−jξ
)∣∣∣2 +

∣∣∣φ̂ (ξ)
∣∣∣2( m∑

i=0

|Hi (ξ)|2
)
,

Therefore,
∑m

i=0 |Hi (ξ)|2 = 1 for a.e. ξ ∈ σ(V0). �

Remark 4.8. The characterization of affine frames in [61] utilizes

Ψ[ω, ω′] :=
∑
ψ∈Ψ

∞∑
j=κ(ω−ω′)

ψ̂(2jω)ψ̂(2jω′) , ω, ω′ ∈ R

where κ is defined by κ(ω) = inf{j ∈ Z : 2jω ∈ 2πZ}. A similar convention is used by Bownik [17]. This
is reminiscent of the term of the sum in the left-hand side of Eq. (23) involving the wavelets ψi. However,
since we use positive powers of DA in the definition of Xφψ, we arrive at negative powers of A∗ .

An immediate consequence of the previous theorem is a generalization of the UEP.

Corollary 4.9. [13] Under the hypotheses of Theorem 4.7 the following is true: If Condition18 holds for all
q ∈ (A∗−1Zd)/Zd and for a.e. ξ, ξ + q ∈ σ(V0), then the set

{
Dj
ATkψi : j ∈ Z, k ∈ Zd, i = 1, . . . ,m

}
is

a Parseval frame for L2(Rd).
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Proof. Obviously we have that Xφψ is a Parseval frame of L2(Rd), thus for every jo ∈ Z the set{
Dj
ATkψi : j ≥ j0, k ∈ Zd, i = 1, . . . ,m

}
∪
{
Dj0
A Tkφ : k ∈ Zd

}
is a Parseval frame of L2(Rd) as well.

Now, take f ∈ L2(Rd). Then as j0 → −∞ observe that

lim
j0→−∞

∑
k∈Zd

∣∣∣< f,Dj0
A Tkφ >

∣∣∣2 = 0 .

The proof of this fact is not hard (see [13, Lemma 7.7]), so we omit it. �

Theorem 4.7 shows thatXφψ is a Parseval frame if and only if the conditions in Theorem 4.1 hold with the
fundamental function equal to 1 a.e. on σ(V0). In the same spirit, the next theorem characterizes the Bessel
families, Xa

φψ andXs
φψ, that form a pair of dual frames based on conditions on the corresponding filters. We

infer that Xa
φψ and Xs

φψ are a pair of dual frames for L2(Rd) if and only if the conditions in Theorem 4.4
hold with the mixed fundamental function equal to 1 a.e. on σ(V a

0 ) ∩ σ(V s
0 ). The proof of Theorem 4.10

follows from arguments similar to those in the proof of Theorem 4.7. We only give the statement here. For
a complete proof of this result the reader is referred to [46].

Theorem 4.10. Let φa and φs be refinable functions in L2(Rd) such that φ̂a and φ̂s are continuous at the
origin and

(24) lim
|ξ|→0

φ̂a(ξ) = φ̂s(ξ) = 1.

Let Ha
0 and Hs

0 ∈ L∞(Td), be the associated low pass filters. Furthermore, let Ha
i , Hs

i ∈ L∞(Td) for
i = 1, . . . ,m, be Zd-periodic functions and define m pairs of wavelets ψai , ψsi i = 1, . . . ,m, by

(25) ψ̂ai (A
∗.) = Ha

i φ̂
a.

(26) ψ̂si (A
∗.) = Hs

i φ̂
s.

Then Xa
φψ and Xs

φψ form a pair of dual frames for L2(Rd) if and only if
(1) Xa

φψ and Xs
φψ are Bessel families,

(2) For all q ∈ (A∗−1Zd)/Zd and for a.e. ξ, ξ + q ∈ σ(V a
0 ) ∩ σ(V s

0 ),
m∑
i=0

Hs
i (ξ)Ha

i (ξ + q) = δq,0.

5. EXAMPLES OF ISOTROPIC WAVELET FRAMES

In this section we describe two examples of Isotropic wavelet frames. With the help of Theorems 4.1,
4.7, 4.4 and 4.10, the problem of designing wavelet frames is transformed into a problem of designing the
corresponding filters. We illustrate this in Examples 5.1 and 5.2. Example 5.1 is an example of a Parseval
frame while Example 5.2 is an example of a pair of dual frames. Recall that we define the dilation operator
with respect to a radially expansive matrix A = aO, where O is a rotation. The constant a > 0 will be used
in the examples below.

Example 5.1. As pointed out at the beginning of this section, we obtain the wavelet frame, by designing
the corresponding filters and then invoking the appropriate extension principle. We begin with the low pass
filter H0, a smooth Zd-periodic function such that

• H0 = 1 inside the ball of radius b1
• H0 = 0 on Td \B(0, b0)
• H0|B(0,b0) is radial,
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where 1
2a2 < b1 < b0 <

1
2a .

If φ by φ̂ = H0(A∗−1.)χTd , then φ satisfies conditions (9) and (10) of Theorem 4.1.
Now, let h be a Zd-periodic function defined by,

(27) h(ξ) =

√
1−H2

0 (ξ)
|det(A)|

.

Using h we define the high pass filters as follows,

(28) Hi(ξ) = eqi−1(ξ)h(ξ), i = 1, . . . , |det(A)|,

where {ql : l = 0, 1, 2, . . . , |det(A)| − 1} are the representatives of the quotient group Zd/(A∗Zd).
We claim HH∗ = I, where H is defined by (12). Hence, by Theorem 4.1, the set{

DjTkψi : j ∈ Z, k ∈ Zd, i = 1, . . . , |det(A)|
}

forms a Parseval Frame for L2(Rd). Also, by Theorem 4.7, the set Xφψ is a Parseval frame for L2(Rd).
To prove our claim, we use (27) and (28) to obtain

(HH∗)1,1(ξ) =
|det(A)|∑
i=0

|Hi(ξ)|2 = H2
0 (ξ) + |det(A)|1−H2

0 (ξ)
|det(A)|

= 1 for all ξ ∈ Td.

and
(HH∗)i+1,i+1(ξ) = (HH∗)1,1(ξ +A∗−1qi−1) = 1 for all ξ ∈ Td, i = 1, . . . , |det(A)|.

Next we want to show that the off-diagonal entries of HH∗ are zero. To do this we observe that the
supports of H0(.+A∗−1qi−1) and H0(.+A∗−1qj−1) are disjoint by definition of H0. Thus,

H0(ξ +A∗−1qi−1)H0(ξ +A∗−1qj−1) = 0 for all ξ ∈ Td, i 6= j.

Hence,

(HH∗)j,k(ξ) =
|det(A)|∑
i=0

Hi(ξ+A∗−1qj−1)Hi(ξ +A∗−1qk−1) =
|det(A)|∑
i=1

Hi(ξ+A∗−1qj−1)Hi(ξ +A∗−1qk−1)

= h(ξ +A∗−1qj−1)h(ξ +A∗−1qk−1)

|det(A)|∑
i=1

eqi−1(ξ +A∗−1qj−1)eqi−1(ξ +A∗−1qk−1)


︸ ︷︷ ︸

=:sj−1,k−1

Now we need to establish that sj,k = 0 for all j 6= k.

sj,k =
|det(A)|∑
i=1

eqi−1(ξ +A∗−1qj)eqi−1(ξ +A∗−1qk)

=
|det(A)|∑
i=1

eqi−1(A
∗−1qj −A∗−1qk) =

|det(A)|−1∑
i=0

e2πi〈qi,A∗−1(qj−qk)〉

Since j 6= k, we have qj − qk 6= 0 and A∗−1(qj − qk) /∈ Zd. Therefore, eA∗−1(qj−qk) is not the identity
character on the quotient group Zd/(A∗Zd) and by Lemma 4.6, sj,k = 0. This completes the proof of the
claim HH∗ = I.
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One concrete realization of the construction described in Example 5.1 is obtained by using the so-called
‘Root Raised Cosine’ filter as a low pass filter. Here, we use the dyadic dilation matrix to define the dilation
operator. The low pass filter is defined by

H0(ξ) =


1 for |ξ| < 3/20√

1+cos(10π|ξ|− 3π
2 )

2 for 3/20 < |ξ| < 1/4
0 for |ξ| > 1/4

.

Hence, the Fourier transform of the refinable function φ is given by

φ̂(ξ) =


1 for |ξ| < 3/10√

1+cos(5π|ξ|− 3π
2 )

2 for 3/10 < |ξ| < 1/2
0 for |ξ| > 1/2

.

The high pass filters are given by

Hi(ξ) =
eqi−1

2d/2


0 for |ξ| < 3/20√

1−cos(10π|ξ|− 3π
2 )

2 for 3/20 < |ξ| < 1/4
1 for |ξ| > 1/4

.

and, finally, the wavelets are defined in the frequency domain as follows:

ψ̂i(2ξ) =
eqi−1

2d/2



0 for |ξ| < 3/20√
1−cos(10π|ξ|− 3π

2 )
2 for 3/20 < |ξ| < 1/4

1 for 1/4 < |ξ| < 3/10√
1+cos(5π|ξ|− 3π

2 )
2 for 3/10 < |ξ| < 1/2

0 for |ξ| > 1/2

.

Example 5.2. In this example we produce dual frame pairs using the Mixed Extension Principle (Theo-
rem 4.4) and Theorem 4.10. As in the previous example, all the wavelets are isotropic and the refinable
functions are radial. Let 1

2a2 < b2 < b1 < b0 <
1
2a . Pick the analysis low-pass filter, a smooth, Zd-periodic

function Ha
0 satisfying the following three properties:

• Ha
0 = 1 inside the ball of radius b2

• Ha
0 = 0 on Td \B(0, b1)

• Ha
0 |B(0,b1) is radial.

Similarly to the previous example, we define φa by φ̂a = Ha
0 (A∗−1.)χTd . Now, let ha be a Zd-periodic

function defined by,

(29) ha(ξ) =
1−Ha

0 (ξ)

|det(A)|1/2
.

Using ha we define the analysis high pass filters

(30) Ha
i (ξ) := eqi−1(ξ)h

a(ξ), i = 1, . . . , |det(A)|.

Next, let the synthesis low pass filter, a smooth, Zd-periodic function Hs
0 satisfying the following three

properties:
• Hs

0 = 1 inside the ball of radius b1
• Hs

0 = 0 on Td \B(0, b0)
• Hs

0 |B(0,b0) is radial.

To define |det(A)| synthesis high pass filters Hs
i , i = 1, . . . , |det(A)|, we use a smooth, Zd-periodic func-

tion hs satisfying the following three properties:
• hs = 0 inside the ball of radius b3, for some b3 > 0
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• hs = 1

|det(A)|1/2 on Td \B(0, b2)

• hs|Td is radial
and take Hs

i = eqi−1hs. Notice, for each i = 0, . . . , |det(A)|, the pairing of the analysis and synthesis
filters. Let Ha and Hs denote the modulation matrices corresponding to the filters Ha

i and Hs
i respectively.

(Recall that a modulation matrix is defined by Eq. (12)). We claim that HsH∗
a = I. To prove the claim we

begin by observing

(HsH∗
a)1,1(ξ) =

|det(A)|∑
i=0

Hs
i (ξ)Ha

i (ξ) = Ha
0 (ξ) + |det(A)|1−Ha

0 (ξ)
|det(A)|

= 1 for all ξ ∈ Td.

Now,

(HsH∗
a)i+1,i+1(ξ) = (HsH∗

a)1,1(ξ +A∗−1qi−1) = 1 for all ξ ∈ Td, i = 1, . . . , |det(A)|.
To establish that the off-diagonal entries are zero, observe that the supports of Hs

0(. + A∗−1qi−1) and
Ha

0 (.+A∗−1qj−1) which implies

Hs
0(ξ +A∗−1qi−1)Ha

0 (ξ +A∗−1qj−1) = 0 for all ξ ∈ Td, i 6= j.

Hence,

(HsH∗
a)j,k(ξ) =

|det(A)|∑
i=0

Hs
i (ξ +A∗−1qj−1)Ha

i (ξ +A∗−1qk−1)

=
|det(A)|∑
i=1

Hs
i (ξ +A∗−1qj−1)Ha

i (ξ +A∗−1qk−1)

= ha(ξ +A∗−1qk−1)

|det(A)|∑
i=1

eqi−1(ξ +A∗−1qj−1)eqi−1(ξ +A∗−1qk−1)


︸ ︷︷ ︸

=:sj−1,k−1

Recall, from Example 5.1 that sj,k = 0 for all j 6= k. Now, the proof of the claim HsH∗
a = I is complete.

Our next objective is to show that
{
DjTkψ

a
i : j ∈ Z, k ∈ Zd, i = 1, . . . , |det(A)|

}
is a Bessel sequence.

For a fixed i and a fixed j, we have,∑
k∈Zd

∣∣〈f,DjTkψ
a
i

〉∣∣2 =
∑
k∈Zd

1
|det(A)|j

∣∣∣∣∫
Rd

f̂(ξ)ek(A∗−jξ)ψ̂ai (A∗−jξ)dξ
∣∣∣∣2

=
∑
k∈Zd

1
|det(A)|j

∣∣∣∣∣∣
∑
l∈Zd

∫
A∗jTd

f̂(ξ +A∗jl)ek(A∗−jξ)ψ̂ai (A∗−jξ + l)dξ

∣∣∣∣∣∣
2

The sum over l ∈ Zd in the last equality reduces to a sum over l ∈ F , where F is a finite subset of Zd

which remains fixed for all j, because ψ̂ai has compact support. Now, by applying Plancherel’s theorem to

the AjZd-periodic function
∑

l∈Zd f̂(·+ l)ψ̂ai (A∗−j .+ l), we have
|det(A)|∑
i=1

∞∑
j=−∞

∑
k∈Zd

∣∣〈f,DjTkψ
a
i

〉∣∣2 =
|det(A)|∑
i=1

∞∑
j=−∞

∫
A∗jTd

∣∣∣∣∣∑
l∈F

f̂(ξ +A∗jl)ψ̂ai (A∗−jξ + l)

∣∣∣∣∣
2

dξ

≤
|det(A)|∑
i=1

∞∑
j=−∞

∫
A∗jTd

[∑
l∈F

∣∣∣f̂(ξ +A∗jl)
∣∣∣2][∑

l′∈F

∣∣∣ψ̂ai (A∗−jξ + l′)
∣∣∣2] dξ
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=
∑|det(A)|

i=1

∑∞
j=−∞

∑
l∈F
∫
A∗j(Td+l)

∣∣∣f̂(η)
∣∣∣2 [∑l′∈F

∣∣∣ψ̂ai (A∗−jη − l + l′)
∣∣∣2] dη

≤
∑|det(A)|

i=1

∑∞
j=−∞

∑
l∈F
∫
A∗j(Td+l)

∣∣∣f̂(η)
∣∣∣2 [∑q∈F−F

∣∣∣ψ̂ai (A∗−jη + q)
∣∣∣2] dη

≤
∫

Rd

∣∣∣f̂(η)
∣∣∣2∑|det(A)|

i=1

∑∞
j=−∞

[∑
q∈F−F

∣∣∣ψ̂ai (A∗−jη + q)
∣∣∣2] dη

Using the definition of the ψai ’s one can easily establish
∞∑

j=−∞

∣∣∣ψ̂ai (A∗−jη + q)
∣∣∣2 ≤ 2

|det(A)|

for every q which implies that
{
DjTkψ

a
i : j ∈ Z, k ∈ Zd, i = 1, . . . , |det(A)|

}
is a Bessel sequence. Simi-

larly, we can show that
{
DjTkψ

s
i : j ∈ Z, k ∈ Zd, i = 1, . . . , |det(A)|

}
is a Bessel sequence too. Now, The-

orem 4.4 implies that the families
{
DjTkψ

a
i : j ∈ Z, k ∈ Zd, i = 1, . . . , |det(A)|

}
and{

DjTkψ
s
i : j ∈ Z, k ∈ Zd, i = 1, . . . , |det(A)|

}
are a pair of dual frames for L2(Rd). Also, by Theo-

rem 4.10, the families Xa
φψ and Xs

φψ are a pair of dual frames for L2(Rd).

It is easily verified that if the synthesis high pass filters in Example 5.2 are replaced by Hs
i = eqi−1χTd ,

the identity, HsH∗
a = I, still holds, but

{
DjTkψ

s
i : j ∈ Z, k ∈ Zd, i = 1, . . . , |det(A)|

}
and Xs

φψ are not
Bessel sequences. This shows we need the hypotheses that both affine families generated from the wavelets
ψa and ψs in Theorem 4.4 and similarly the families Xa

φψ and Xs
φψ in Theorem 4.10 are Bessel sequences.

One concrete realization of the construction described in Example 5.2 is again obtained by using the so-
called ‘Raised Cosine’ filter as a low pass filter. Once again, we use the dyadic dilation matrix to define the
dilation operator. The analysis and synthesis low pass filters are defined by

Ha
0 (ξ) =


1 for |ξ| < 1/8

1+cos(12π|ξ|− 3π
2 )

2 for 1/8 < |ξ| < 5/24
0 for |ξ| > 5/ < 24

.

Hs
0(ξ) =


1 for |ξ| < 5/24

1+cos( 240π
11

|ξ|− 50π
11 )

2 for 5/24 < |ξ| < 1/4
0 for |ξ| > 1/4

.

Hence the Fourier transform of the scaling functions are given by the formulae,

φ̂a(ξ) =


1 for |ξ| < 1/4

1+cos(6π|ξ|− 3π
2 )

2 for 1/4 < |ξ| < 5/12
0 for |ξ| > 5/12

φ̂s(ξ) =


1 for |ξ| < 5/12

1+cos( 120π
11

|ξ|− 50π
11 )

2 for 5/12 < |ξ| < 1/2
0 for |ξ| > 1/2

.

Define the analysis and synthesis high pass filters by

Ha
i (ξ) =

eqi−1

2d/2


0 for |ξ| < 1/8

1−cos(12π|ξ|− 3π
2 )

2 for 1/8 < |ξ| < 5/24
1 for |ξ| > 5/24

Hs
i (ξ) =

eqi−1

2d/2
.


0 for |ξ| < 1/16

1−cos(16π|ξ|−π)
2 for 1/16 < |ξ| < 1/8
1 for |ξ| > 1/8
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and finally, the wavelets are defined in the frequency domain as follows,

ψ̂ai (2ξ) =
eqi−1

2d/2



0 for |ξ| < 1/8
1−cos(12π|ξ|− 3π

2 )
2 for 1/8 < |ξ| < 5/24
1 for 5/24 < |ξ| < 1/4

1+cos(6π|ξ|− 3π
2 )

2 for 1/4 < |ξ| < 5/12
0 for |ξ| > 5/12

ψ̂si (2ξ) =
eqi−1

2d/2



0 for |ξ| < 1/16
1−cos(16π|ξ|−π)

2 for 1/16 < |ξ| < 1/8
1 for 1/8 < |ξ| < 5/12

1+cos( 120π
11

|ξ|− 50π
11 )

2 for 5/12 < |ξ| < 1/2
0 for |ξ| > 1/2

.

The two previous examples presented typical IMRA-wavelets and refinable functions, but there are other
possible cases. Particularly, some of the wavelets constructed by means of Theorem 3.1 in [2] or in [55]
can be derived from singly generated IMRAs and thus shown to be implementable with IMRA-fast wavelet
algorithms. The radial wavelets of Epperson and Frazier [31, 32] cannot be derived from singly generated
IMRAs although they are very similar to the radial wavelets constructed in the previous two examples. The
decompositions of L2(Rd) for which these wavelets are used are not at all similar to those induced by Xφψ

and their associated dual families.

6. APPROXIMATION PROPERTIES OF IMRAS

In this section we explore the approximation order of the zero-resolution subspaces of IMRAs and the
closed linear span of {Tnφ :, n ∈ Zd} where φ is a refinable radial function. Following the approxima-
tion theory terminology, e.g. [27], subspaces V0 of the latter sort are called principal. Recall IMRAs core
subspaces may not be singly generated, so their approximation order cannot be estimated from results ap-
plicable to principal shift-invariant subspaces only. This need motivates Proposition 6.1. If S is a closed
subspace of L2(Rd), α > 0 and Sα := {g(·/α) : g ∈ S}, then S has approximation order k if for every f
in the Sobolev space W k

2 (Rd) we have

inf{||f − h|| : h ∈ Sα} ≤ CSα
k||f ||Wk

2 (Rd) .

Recall, that W k
2 (Rd) is the subspace of L2(Rd) which contains all functions f satisfying∫

Rd

|f̂(ξ)|2(1 + ||ξ||2)kdξ <∞

and for f ∈ W k
2 (Rd) we define ||f ||Wk

2 (Rd) :=
(∫

Rd |f̂(ξ)|2(1 + ||ξ||2)kdξ
)1/2

. Since, the parameter α in
the definition of the approximation order is continuous and the scale j is discrete, we use the convention
α = 2j , with j ∈ Z for MRAs.

We’re interested in the approximation order of MRAs because it gives a crude estimate of the approx-
imation error of a function having relatively mild smoothness based on the density of the sampling grid
(completely determined by the scale j). Sharp estimates of this error are critical for image compression,
however is not as critical for texture segmentation as we are only characterizing regions, not reproducing
the image.

The radial refinable functions φ in Section 3 are not compactly supported. Following [27], we employ an
auxiliary function

Λφ,k(ξ) := |ξ|−k
√√√√1− |φ̂(ξ)|2∑

l∈Zd |φ̂(ξ + l)|2
, ξ ∈ Td
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to estimate the approximation order of a subspace V0 which is the closed linear span of {Tnφ :, n ∈ Zd}.

Here we use the convention |bφ(ξ)|2P
l∈Zd |φ̂(ξ+l)|2

= 0 if both the numerator and the denominator of this fraction

vanish. According to Theorem 1.6 of [27] the approximation order of V0 is k if and only if Λφ,k ∈ L∞(Td).
In fact, the essential boundedness of Λφ,k in neighborhoods of the origin determines the approximation order
of V0. Notice in Ex. 5.1 and 5.2 φ̂ is equal to 1 in a neighborhood of the origin, forcing the restriction of
Λφ,k to vanish on this neighborhood. This is true for every k, so the V0 in Examples 5.1 and 5.2 have any
approximation order. The same result holds for refinable radial functions φ whose Fourier transform has
the properties described in these two examples and does not necessarily vanish outside of the fundamental
domain Td.

Now we explore the approximation order of the subspaces V0 of the non-singly generated IMRAs. Recall
from Theorem 2.1, that such V0 are of the form PWΩ, where Ω is a radial set. We prove the following result:

Proposition 6.1. Let {Vj}j∈Z be an IMRA with dilations defined by the powers of a radially expansive
matrix A with dilation factor a and V0 = PWΩ where, Ω contains a neighborhood of the origin and is
radial. If ρ := sup{r > 0 : B(0, r) ⊆ Ω}, then

∀f ∈W k
2 (Rd), inf

g∈Vj

||g − f || ≤ a−jkρ−k||f ||Wk
2 (Rd).

Proof. It follows that B(0, ρ) ⊆ Ω and this is the biggest ball contained in Ω. Let k > 0 be an integer and
pick f ∈W k

2 (Rd). Then,

inf
g∈Vj

‖f − g‖2
L2(Rd) =

∫
Rd

|f̂(ξ)− ĝ(ξ)|2dξ =
∫
AjΩ

|f̂(ξ)− ĝ(ξ)|2dξ +
∫

Rd\AjΩ
|f̂(ξ)|2dξ.

To achieve the infimum in the LHS of the previous equations take ĝ(ξ) = χAjΩf̂(ξ). Hence,

inf
g∈Vj

‖f − g‖2
L2(Rd) =

∫
Rd\AjΩ

|f̂(ξ)|2dξ ≤
∫

Rd\ajB(0,ρ)
|f̂(ξ)|2dξ =

∫
||ξ||>ajρ

|f̂(ξ)|2dξ.

But, ||ξ|| > ajρ is equivalent to || ξ
ajρ
|| > 1 which implies∫

||ξ||>ajρ
|f̂(ξ)|2dξ ≤

∫
Rd

[(
1
ajρ

)2

+ || ξ
ajρ

||
2
]k
|f̂(ξ)|2dξ = a−2jkρ−2k

∫
Rd

(1 + ||ξ||2)k|f̂(ξ)|2dξ.

�

Remark 6.2. We cannot remove the assumption that Ω contains a neighborhood of the origin (a.e.): Con-
sider Ω from Example 2.6. This particular Ω does not contain a neighborhood of the origin. In this case,

ΛχΩ,k(ξ) := |ξ|−kχA, ξ ∈ Td

is not essentially bounded for each k > 0. Then the IMRA defined in this example does not have a positive
approximation order.Also note the proof of the previous proposition does not require that Ω is radial and
that {Vj}j∈Z is an IMRA. It only requires that Ω contains a neighborhood of the origin. Therefore, we have
proved a stronger result than Proposition 6.1, which is more general than Lemma 3.8 in [27].

7. IMRA AND TEXTURE SEGMENTATION

By segmentation of an image, we mean the construction of a partition of the image into labeled regions.
Typically the number of labels is small, and the final goal is to arrive at a partition where regions having the
same label are ‘spatially similar’ in some problem dependent sense. For example, we may wish to segment
a medical image into regions of texture that describe similar tissues, where each label is associated with a
type of tissue. The following discussion is kept at an intuitive level.

In the present paper we are concerned only with the multiresolution (or multiscale) signal representation
as a tool enabling segmentation algorithms, for example the Digital Tissue Staining Algorithm (DTSA)



THE GEOMETRY AND THE ANALYTIC PROPERTIES OF IMRAS 29

[15, 57]. In segmentation, the only purpose in transforming the original signal is to improve clustering, i.e.
accentuate the most relevant information inherent in that signal to allow for more accurate segmentation.
Details on our IMRA-approach to texture segmentation for tissue discrimination and on the application of
our method to x-ray CT 3D-data sets can be found in [15, 57]1.

The IMRA approach has two significant practical advantages. First, the isotropy of IMRA filters does
not introduce any directional bias, which is effective for processing the types of common medical tissues
we are interested in here that do not occur with prevalent orientations (see Fig. 1). Secondly, transforms are
performed in the native dimensionality of the data, furthermore the IMRA allows for efficient cascade-type
implementation utilizing the discrete Fourier transform in two and three dimensions [15, 57].

At this point a little notation will be needed. Constraining the discussion to three dimensions (2D images
are approached similarly), we consider images f in L2(R3). For each pixel z ∈ R3 we want to associate a
feature vector belonging to a fixed finite dimensional space V , with a norm arising from an inner product
‖ · ‖ on V . We define a bounded linear transformation J associating to each f the V -valued function J f
defined on R3. The values J f(z) are the feature vectors corresponding to f . Thus, V is also referred
to as the feature vector space and J as the feature map. The boundedness hypothesis corresponds to a
robustness property of the feature map J : small perturbations of pixel intensities for the image f generate
small perturbations of the features J f .

This very general setting allows us to begin to characterize classes of representations with desirable
properties to enable successful segmentation of images, more particularly to address features of the images
arising from particular applications and distinguishing features that we need to capture.

In order to segment tissues in medical images we wish to construct texture identification and associated
segmentation algorithms which remain invariant under rigid motions of the image. This follows from the
observation of particular tissues of interest occurring with arbitrary orientation. We let GL(V ) be the group
of invertible linear maps of the finite-dimensional space V into itself. The group G of rigid motions of R3 is
generated by translations and rotations and acts naturally on images f via Rf(z) = f(RT z), where R ∈ G.
The following definition captures the property we are interested in:

Definition 7.1. (Steerability) [3] Consider a bounded linear feature mapping J as above, generating for
each image f and each voxel z in R3 a feature vector J f(z) in the Euclidean space V . We shall say that
J is a steerable feature mapping if J is bounded and there is a group-homomorphism U from the group
G of rigid motions into the general linear group GL(V ) of V such that for each rigid motion R of R3, the
invertible transformation U(R) verifies

J [Rf ](z) = U(R)
[
J f

(
RT (z)

)]
z ∈ R3.

Take a radial refinable function φ as in Example 5.1 and let ψ = ψ0 be the radial wavelet defined via Eqs.
(27) and (28). Then, define

(31) J f(z) =
(
< f, 8T4zφ(·/4) >, < f, 23/2T2zψ(·/2) >, < f, Tzψ >

)
z ∈ R3.

Alternatively one can choose analysis refinable function and associated radial wavelet as in Example 5.2.
According to Definition 7.1 In [3] we prove that J is a bounded linear feature mapping which is not steer-
able. In particular, one can easily see that steerability fails for translations while if R is a rotation the
radiality of φ and ψ imply the steerability of J with respect to 3D-rotations. Notice that V is three dimen-
sional in this case. We can certainly add more dimensions to V but we have experimentally observed that
this does not improve discrimination between various textures, primarily due to the down-sampling process.
We remark that each coordinate of J is calculated by averaging ‘locally’ the image with a radial window.
Intuitively, this amounts to ‘low passing’ local angular oscillations in an image.

It is worth noting that it is the properties of the resulting segmentation we are targeting, not the underlying
representation (feature vector space) on which the segmentation algorithm will act. If the representation
itself has directional variance, it is clearly much more difficult to construct effective algorithms that will not

1In [3, 57] the IMRA is referred to as First Generation IMRA
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be sensitive to direction. A particular problem arises in the form of directional selectivity of representations
constructed via tensor products of lower dimensional wavelet bases. In contrast to representations derived
from tensor product constructions, the feature mapping J defined in Eq. (31) has uniform response to every
direction since φ and ψ are both radial.

Segmentation algorithms based on representations that are designed originally for one-dimensional sig-
nals applied to two- or three-dimensional image segmentation (via tensor product approaches) are prone to
local distortions due to variation in orientation. This is due to the fact that such tensor product constructions
will tend to emphasize certain directions (they are directionally selective). Figure 3 demonstrates this claim
using a standard two dimensional image known as ‘Barbara’ in the literature. The distortion in the various

(a) (b) (c)

(d) (e) (f)

FIGURE 3. Standard ‘Barbara’ image a). For the same spatial region, we show the coeffi-
cient magnitude of a tensor product Daubechies-8 wavelet basis high pass bands (i.e., the
energy across all subbands rescaled to make it easier to view) in b). Similarly, the magnitude
of an IMRA high-pass band is shown in c). Details of a)-c) are show in d)-f).

textures of this image can be seen in comparing 3-b to 3-c, and the associated detailed views. The Moire
patterns showing up in the tensor product orthonormal wavelet representation are representative of the local
distortions we mean. It is instructive to think in terms of texture patches, i.e. in a rough sense pieces of the
image that are small, but large enough to identify the texture in them. Considering the woman’s scarf: In
the 2D-wavelet orthonormal basis, the local characteristics of such a patch vary with the orientation whereas
in the IMRA coefficients, the texture is visually similar regardless of orientation (much like the original —
but this also has the advantages of multiscale representation). It is important to note that the orthonormal
wavelet basis results shown here are typical of tensor product orthonormal wavelet basis in 2D, since this is
a fundamental effect of the tensor product. A similar effect is anticipated with non-separable 2D-wavelets
without a high degree of axial symmetries. It is also important not to be mislead by the directionality of the
textures shown here — after all, we are interested in ‘isotropic’ textures, not highly (locally) directional as
in this example. We coin a definition of ‘isotropic’ textures in the context of tissues in [57].

Figure 3 illustrated the preferred directions in the tensor-product approach, a property of the transform,
which will effect any texture. However, the effect is much easier to see in this highly-directional example.
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It is worth reiterating that Figure 3 is in no way a segmentation result, but rather serves to illustrate a
fundamental difficulty that segmentation algorithms face from directionality preference of the underlying
representation of the data. This is also the reason that a 2D example is used, even though our driving
application is in 3D (also where the differences are much more subtle).

Compared to the tensor product representation, the IMRA is effective in the undistorted representation
of textures regardless of local variations of orientation within the texture. We do not yet have a theoretical
understanding and of why this is occurring with the IMRA-representation as Figure 3 demonstrates neither
do we have a rigorous formulation of the concept ‘local variations of orientation within a texture’. However,
this empirically verifiable property of the IMRA-representation seems to be the strength of our Digital Tissue
Staining Algorithm (DTSA) in performing isotropic soft-tissue characterization, with good empirical results.
A detailed presentation of this application is beyond the scope of this paper and can be found in [15, 57].
The empirical results of a clinical study utilizing CT 3D-data sets of coronary artery specimens exhibiting
isotropic tissue types are reported in [38].

Fundamentally our argument is that the IMRA representation gives in this respect (i.e. directional selec-
tivity) a better feature vector space in which texture segmentation algorithms can be applied, or at least for
textures with similar properties to those discussed. Furthermore, we are working towards fully understand-
ing the problem of steerability, and characterizing the sorts of representations that match or approximate
this important property in 3D. The IMRA, the DTSA algorithm, and other ongoing work all represent steps
in this direction.
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