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Example from Seismic Imaging

(a) (b)

Figure: Vertical cross-sections of volumes produced using radial (left) and
non-radial (right) filters. (Courtesy: Total E&P, USA)
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Example from Biomedical Imaging

(a) 2D slice from 3D µCT x-ray
data

(b) Slice from Intravascular
Ultra Sound data

Figure: Examples of medical 3D data sets.
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Segmentation flowchart

analysis

clustering Segmentat ion

Stack into
Feature Vectors

S. Jain Isotropic Multiresolution Analysis March 17 2009 6 / 29



Problems with tensor product basis

‘Barbara’ DB8 decomposition
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Problems with tensor product basis

‘Barbara’ DB8 high pass

S. Jain Isotropic Multiresolution Analysis March 17 2009 7 / 29



Problems with tensor product basis

IMRA high pass DB8 high pass
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Problems with tensor product basis (Zoom)

IMRA high pass DB8 high pass
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Notation and Preliminaries

We say that Ω ⊂ Rd is radial if for all O ∈ SO(d), OΩ = Ω.

A d × d matrix is expansive if it has integer entries and if all of its
eigenvalues have absolute value greater than 1.

An expansive matrix is radially expansive if M = aO, for some fixed
a > 1 and a matrix O ∈ SO(d).

A unitary dilation operator with respect to M is defined by
DMf (x) = | det M|1/2f (Mx).

For y ∈ Rd , the (unitary) shift operator Ty is defined by
Ty f (x) = f (x − y).

A function f ∈ L2(Rd) is said to be isotropic if there exists a y ∈ Rd

and a radial function g ∈ L2(Rd) such that f = Tyg .
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Definition

An IMRA is a sequence {Vj}j∈Z of closed subspaces of L2(Rd) satisfying
the following conditions:

∀j ∈ Z, Vj ⊂ Vj+1,

(DM)jV0 = Vj ,

∪j∈ZVj is dense in L2(Rd),

∩j∈ZVj = {0},

V0 is invariant under translations by integers,

V0 is invariant under all rotations.

If P0 is the orthogonal projection onto V0, then

OP0 = P0O for all O ∈ SO(d),

where O is the unitary operator given by Of (x) := f (OT x)
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Characterization of V0

Theorem
Let V be an invariant subspace of L2(Rd) under the action of the
translation group induced by Zd . Then V remains invariant under all
rotations if and only if V = PWΩ for some radial measurable subset Ω of
Rd .
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Characterization of IMRAs

Theorem
Let M be a radially expansive matrix and C := M∗. A sequence {Vj}j∈Z
is an IMRA with respect to M if and only if Vj = PWC jΩ, where Ω is
radial and satisfies

1 Ω ⊂ CΩ.

2 The set-theoretic complement of ∪∞j=1C
jΩ is null.

3 limj→∞ |C−jΩ| = 0.

Moreover the only singly generated IMRAs are precisely Vj = PWC jΩ,
where Ω is a radial subset of Td satisfying (1), (2) and (3).

S. Jain Isotropic Multiresolution Analysis March 17 2009 12 / 29



Characterization of isotropic refinable functions

Definition
A function φ in L2(Rd) is called refinable with respect to dilations induced
by an expansive matrix M, if there exists an H ∈ L∞(Td) such that

φ̂(M∗ξ) = H(ξ)φ̂(ξ), for a.e. ξ ∈ Rd .

The function H is called the low-pass filter or mask corresponding to φ.

Theorem
If φ ∈ L2(Rd) is a refinable function which is also isotropic and

lim
ξ→0

φ̂(ξ) = L 6= 0,

then φ ∈ PWρ/(ρ+1), where ρ is the dilation factor of M.
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Consequences

Corollary

There are no isotropic, refinable functions that are compactly supported
in the spatial domain.

Corollary

If the Fourier transform of φ is supported outside the ball of radius 1/2
centered at the origin then the MRA generated by φ is not an IMRA.
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Examples of IMRA

Example

The sequence of closed subspaces Vj = PW2jB(0,ρ), for any ρ > 0 and
j ∈ Z is an IMRA.

Example

Let B(0, r , s) denote the (2-dimensional) annulus centered at the origin
having inner radius r and outer radius s.

Define the sets A =
∞⋃

n=1
B(0, rn, 2

n−1), with rn = 2n−1 − (1/16)n, and

B = B(0, 1/2).
Define Ω := A

⋃
B.
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Extension Principles

Let φ be a refinable function such that φ̂ is continuous at the origin and,

lim
|ξ|→0

φ̂(ξ) = 1 .

Let H0 be the associated low pass filter, i.e.

D∗
Mφ̂ = H0φ̂.

Assume that there exists a constant B > 0 such that∑
l∈Zd |φ̂(ξ + l)|2 ≤ B a.e. on Rd .

Furthermore, let Hi , i = 1, . . . ,m, be Zd -periodic measurable functions
and define m wavelets, ψi via

D∗
Mψ̂i = Hi φ̂.
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Unitary Extension Principle

Theorem (Daubechies, Han, Ron and Shen 2003)

Assume Hi ∈ L∞(Td) for all i = 0, . . . ,m, then the following two
conditions are equivalent:

1 The set
{

D j
MTkψi : j ∈ Z, k ∈ Zd , i = 1, . . . ,m

}
is a Parseval

Frame for L2(Rd).
2 For all ξ ∈ σ(V0),

limj→−∞Θ(M∗jξ) = 1.
If q ∈ (M∗−1Zd)/Zd \ {0} and ξ + q ∈ σ(V0), then

Θ(M∗ξ)H0(ξ)H0(ξ + q) +
m∑

i=1

Hi (ξ)Hi (ξ + q) = 0.
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Fundamental function

Θ is the so-called fundamental function, defined by

Θ(ξ) =
∞∑
j=0

m∑
i=1

∣∣Hi (M
∗jξ)

∣∣2 j−1∏
l=0

∣∣∣H0(M
∗lξ)

∣∣∣2.

ΘM is the so-called mixed fundamental function, defined by

ΘM(ξ) =
∞∑
j=0

m∑
i=1

Hs
i (M

∗jξ)Ha
i (M∗jξ)

j−1∏
l=0

Hs
0(M

∗lξ)Ha
0 (M∗lξ).
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Mixed Extension Principle

Theorem (Daubechies, Han, Ron and Shen, 2003)

Assume Ha
i ,H

s
i ∈ L∞(Td) for all i = 0, . . . ,m. Then the following two

conditions are equivalent,

1 The sets Ψa :=
{

D j
MTkψ

a
i : j ∈ Z, k ∈ Zd , i = 1, . . . ,m

}
and

Ψs :=
{

D j
MTkψ

s
i : j ∈ Z, k ∈ Zd , i = 1, . . . ,m

}
is a pair of dual

frames for L2(Rd).
2 For all ξ ∈ σ(V a

0 )
⋂

σ(V s
0 ),

Ψa and Ψs are Bessel families.
limj→−∞ΘM(M∗jξ) = 1.
If q ∈ (M∗−1Zd)/Zd \ {0} and ξ + q ∈ σ(V a

0 )
⋂

σ(V s
0 ), then

ΘM(M∗ξ)Hs
0(ξ)H

a
0 (ξ + q) +

m∑
i=1

Hs
i (ξ)H

a
i (ξ + q) = 0.
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Our versions of Extension Principles

Let φ be a refinable function such that φ̂ is continuous at the origin and,

lim
|ξ|→0

φ̂(ξ) = 1 .

D∗
Mφ̂ = H0φ̂.

D∗
Mψ̂i = Hi φ̂.

Xφψ :=
{

D j
MTkψi : j ∈ N ∪ {0}, k ∈ Zd , i = 1, . . . ,m

}
∪

{
Tkφ : k ∈ Zd

}
.
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Our version of Unitary Extension Principle

Theorem
Assume Hi ∈ L∞(Td) for all i = 1, . . . ,m then Xφψ is a Parseval frame
for L2(Rd) if and only if for all q ∈ (M∗−1Zd)/Zd and for a.e.
ξ, ξ + q ∈ σ(V0),

m∑
i=0

Hi (ξ)Hi (ξ + q) = δq,0.
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Our version of Mixed Extension Principle

Theorem
Let Ha

i , Hs
i ∈ L∞(Td) for i = 1, . . . ,m, then X a

φψ and X s
φψ form a pair of

dual frames for L2(Rd) if and only if

1 X a
φψ and X s

φψ are Bessel families,

2 For all q ∈ (M∗−1Zd)/Zd and for a.e. ξ, ξ + q ∈ σ(V a
0 ) ∩ σ(V s

0 ),

m∑
i=0

Hs
i (ξ)H

a
i (ξ + q) = δq,0.
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An example of dual isotropic wavelet frames

Ha
0 = 1 inside the ball of radius b2

Ha
0 = 0 on Td \ B(0, b1)

Ha
0 |B(0,b1) is radial.
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An example of dual isotropic wavelet frames

Let ha be a Zd -periodic function defined by,

ha(ξ) =
1− Ha

0 (ξ)

|det(M)|1/2
.

S. Jain Isotropic Multiresolution Analysis March 17 2009 23 / 29



An example of dual isotropic wavelet frames

Using ha we define the analysis high pass filters

Ha
i (ξ) := e−2πi〈qi−1,ξ〉ha(ξ).
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An example of dual isotropic wavelet frames

Hs
0 = 1 inside the ball of radius b1

Hs
0 = 0 on Td \ B(0, b0)

Hs
0 |B(0,b0) is radial.
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An example of dual isotropic wavelet frames

hs = 0 inside the ball of radius b3, for some b3 > 0

hs = 1

|det(M)|1/2 on Td \ B(0, b2)

hs |Td is radial
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An example of dual isotropic wavelet frames

Using hs we define the synthesis high pass filters:

Hs
i (ξ) = e−2πi〈qi−1,ξ〉hs(ξ)
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An example of dual isotropic wavelet frames

m∑
i=0

Hs
i (ξ)H

a
i (ξ + q) = δq,0.
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2D IMRA scaling function and wavelet

(a) Fourier transform of the scaling
function φ̂

(b) Fourier transform of the wavelet
ψ̂1(2.)
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Feature spaces and feature maps

An image is a function f in L2(R3).

To each pixel z ∈ R3, we associate a ‘feature’ vector belonging to a
fixed finite dimensional space V , called the feature vector space.

The vector space of all V -valued functions h defined on R3 such
that ‖h(·)‖ is square integrable on R3 is denoted by H. Thus,

‖h‖ =
(∫

R3 ‖h(z)‖2dz
)1/2

.

Let A : L2(R3) → H be a bounded linear transformation that
associates to each f the V -valued function Af defined on R3. This
linear transformation is called a feature map.
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The vector space of all V -valued functions h defined on R3 such
that ‖h(·)‖ is square integrable on R3 is denoted by H. Thus,

‖h‖ =
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R3 ‖h(z)‖2dz
)1/2
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Steerability

Definition
Consider a bounded linear feature mapping A generating for each image f
and each voxel z ∈ R3 a feature vector Af (z) in the Euclidean space V .
We shall say that A is a steerable feature mapping if there is a mapping
U from the group G of rigid motions into the general linear group GL(V )
of V such that for each rigid motion R of R3, the invertible
transformation U(R) verifies,

A[Rf ](z) = U(R) [Af (R(z))] z ∈ R3.

Here R is the following transformation induced by R on L2(R3):

Rf (z) = f (Rz).
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An IMRA based steerable feature map

Using the functions φ and ψ, we define the following feature map:

Af (z) = (< f , Tzφ(·/8) >, < f , Tzψ(·/4) >, < f , Tzψ(·/2) >) .

This map is both translation and rotation invariant

Hence, it is steerable.
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