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Biomedical Imaging and segmentation

I In medical data, such as those from X-ray CT or MRI,
different tissues give rise to different textures.

I The goal is to segment different tissue types in their native
dimensionality and circumscribe as accurately as possible their
boundary surfaces.

I This assists diagnostic imaging especially when latent tissues
are picked up by this process.

I A robust algorithm must be immune to rigid motions of the
image.

I We require a multi-scale structure because textures manifest
themselves at various scales.
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Image Lattice

For all z ∈ Rd associated data f (z)
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Feature Vectors on Image Lattice

Associated feature vectors Af (z). Each vector co-ordinate is a
wavelet coefficient.
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Texture Patch

We care only about local Neighborhoods N (z) forming texture
patches of related features
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Feature spaces and feature maps

I An image is a function f in L2(R3).

I To each pixel z ∈ R3, we associate a ‘feature’ vector
belonging to a fixed finite dimensional space V , called the
feature vector space.

I The vector space of all V -valued functions h defined on R3

such that ‖h(·)‖ is square integrable on R3 is denoted by H.

Thus, ‖h‖ =
(∫

R3 ‖h(z)‖2dz
)1/2

.

I Let A : L2(R3)→ H be a bounded linear transformation that
associates to each f the V -valued function Af defined on R3.
This linear transformation is called a feature map.
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Steerability

Definition
Consider a bounded linear feature mapping A generating for each
image f and each voxel z ∈ R3 a feature vector Af (z) in the
Euclidean space V . We shall say that A is a steerable feature
mapping if there is a mapping U from the group G of rigid motions
into the general linear group GL(V ) of V such that for each rigid
motion R of R3, the invertible transformation U(R) verifies,

A[Rf ](z) = U(R) [Af (R(z))] z ∈ R3.

Here R is the following transformation induced by R on L2(R3):

Rf (z) = f (Rz).
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Qualitative Requirements of feature vectors

We summarize the properties that the feature vectors should have:

I Efficient implementation (feature extarction must be feasible
for volumes at least as large as 512× 512× 512)

I Good clustering of relevant textures.

I The features must provide localized information.

I A multi-scale structure to describe textures at different scales.

Hence, Multiresolution Analysis is an ideal choice.
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Why not orthogonal wavelets?

Why not just use the classical Discrete Wavelet Transform?

I Tensor product artifacts in higher dimensions.

I Inflexible design due to the orthogonality constraint.

I The segmentation algorithm needs approximately 5-15
dimensional feature vector space. This is hard to achieve with
DWT using applicable length scales.
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Problems with tensor product basis

Barb image DB8 decomposition
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Problems with tensor product basis (Zoom)

IMRA high pass DB8 high pass
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MRA properties

What is not required?

I We do not require orthogonality.

I In fact, we do not even require frames since we are not
interested in reconstruction/synthesis.

We do need:

I Bessel families

I efficient computation of features

I the decomposition to be isotropic (at least approximately) to
avoid directional bias

I steerability
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Definition

An IMRA is a sequence {Vj}j∈Z of closed subspaces of L2(Rn)
satisfying the following conditions:

I ∀j ∈ Z, Vj ⊂ Vj+1,

I (D)jV0 = Vj ,

I ∪j∈ZVj is dense in L2(Rn),

I ∩j∈ZVj = {0},

I V0 is invariant under translations by integers.

I V0 is invariant under all rotations.

Then V0 must be a Paley-Wiener space of a certain form, i.e. there
exists a measurable set Ω invariant under all rotations such that

f ∈ V0 ⇔ f̂ (ξ) = 0 ξ /∈ Ω.
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An example of IMRA

Let φ ∈ L2(Rd) a refinable function i.e. there exists m0 ∈ L∞(Td)
such that

φ̂(2·) = φ̂m0.

We assume that φ̂ is smooth and satisfies the following:

I φ̂ vanishes outside the ball centered at the origin with radius
r < 1/2

I φ̂(ξ) = 1 for all ξ in the ball B(0, 1
4)

Define, ψ via ψ̂(2·) = φ̂− φ̂(2·) .
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2D IMRA scaling function and wavelet

(a) Fourier transform of the scaling
function φ̂

(b) Fourier transform of the wavelet
ψ̂(2.)

S. Jain Multiscale 3-D texture segmentation



Background
Mathematical Framework

Isotropic Multiresolution Analysis
Spherical Harmonics

Definition
An Example of IMRA
Directional selectivity

Using the functions φ and ψ, we define the following feature map:

Af (z) = (< f , Tzφ(·/8) >, < f , Tzψ(·/4) >, < f , Tzψ(·/2) >) .

I This map is both translation and rotation invariant

I Hence, it is steerable.
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Directional Selectivity

IMRA High Pass tensor sin(θ) IMRA High Pass tensor cos(θ)
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Better than tensor product basis

IMRA High Pass tensor sin(θ) D8 High Pass

S. Jain Multiscale 3-D texture segmentation



Background
Mathematical Framework

Isotropic Multiresolution Analysis
Spherical Harmonics

Definition
An Example of IMRA
Directional selectivity

Better than tensor product basis

IMRA High Pass tensor cos(θ) D8 High Pass

S. Jain Multiscale 3-D texture segmentation



Background
Mathematical Framework

Isotropic Multiresolution Analysis
Spherical Harmonics

Definition
An Example of IMRA
Directional selectivity

Better than tensor product basis (Zoom)

IMRA High Pass tensor cos(θ) D8 High Pass

S. Jain Multiscale 3-D texture segmentation



Background
Mathematical Framework

Isotropic Multiresolution Analysis
Spherical Harmonics

Definition
An Example of IMRA
Directional selectivity

The filters

(c) High Pass tensor sin(θ) (d) High Pass tensor cos(θ)
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Spherical Harmonics

I Spherical harmonics of degree m are the restrictions to the
unit sphere, Sd−1 (d = 2, 3), of homogeneous harmonic
polynomials of degree m are called spherical harmonics of
degree m.

I For every m > 0, the set {Ym,n : 1 ≤ n ≤ dm} is an
orthonormal basis for the spherical harmonics of degree m.

I dm is equal to 2 in the case of R2 or 2m + 1 in the case of R3.

I For m = 0 we only have n = 0 and Y0,0 = 1.
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3D Spherical Harmonics of degree 0, 1 and 2

(e) Real part (f) Imaginary part
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More 3D Spherical Harmonics

(g) Real part of 3D Spherical Harmonics of degree 3 and 4
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Thank you for your attention !!
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