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ABSTRACT
We address the problem of segmenting high angular resolution dif-
fusion images of the brain into cerebral regions corresponding to
distinct white matter fiber bundles. We cast this problem as a man-
ifold clustering problem in which distinct fiber bundles correspond
to different submanifolds of the space of orientation distribution
functions (ODFs). Our approach integrates tools from sparse rep-
resentation theory into a graph theoretic segmentation framework.
By exploiting the Riemannian properties of the space of ODFs, we
learn a sparse representation for the ODF at each voxel and infer the
segmentation by applying spectral clustering to a similarity matrix
built from these representations. We evaluate the performance of our
method via experiments on synthetic, phantom and real data.

Index Terms— image segmentation, compressed sensing, graph
theory, harmonic analysis, diffusion magnetic resonance imaging.

1. INTRODUCTION

White matter fiber clustering provides significant insights into anatom-
ical structures of critical importance in atlas generation and statistical
analysis of several neurodegenerative diseases. This task can particu-
larly benefit from advanced diffusion MR imaging (dMRI) techniques
such as high angular resolution diffusion imaging (HARDI), which
has become a remarkable tool to study the microstructure of biolog-
ical tissues. HARDI provides adequate information to estimate the
orientation distribution function (ODF) [1], which characterizes the
probability distribution of water diffusion along several directions.
The ODF offers improved accuracy over the diffusion tensor (DT)
model in quantifying the anisotropy of the medium and resolving
complexities such as crossing or fanning fibers. However, in order to
make this particular representation beneficial for diagnostic and clini-
cal applications, novel segmentation schemes need to be developed
so as to properly handle the mathematical structure of the data.

In contrast to the plethora of works on DT image segmentation
proposed in the last decade –see [2] for a concise summary–, there
are only a handful of segmentation methods for HARDI data. In
[3, 4], the segmentation is performed on a non-Euclidean 5-D feature
space, named as the position orientation space. The algorithm is
implemented with a hidden Markov random field framework in [3]
and with a level set framework in [4]. However, it yields binary,
i.e., object vs. background, segmentation of relatively small cere-
bral regions due to its heavy computational load. In [5], the ODF is
modeled as a mixture of von Mises-Fisher distributions and the para-
metric segmentation is obtained by using hidden Markov measure
field models. The scheme in [6] uses the spherical harmonic (SH)
expansion of the HARDI signal at every voxel to construct a feature
vector of real SH coefficients. It subsequently uses the `2-norm as
a similarity measure and applies spectral embedding and clustering
of selected fiber bundles via diffusion maps. A similar SH-based
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representation for the ODFs is employed in [2] and the segmentation
of specific white matter regions, such as the corpus callosum and the
corticospinal tract, is performed via statistical surface evolution.

In this work, we present an algorithm to automatically segment
HARDI data into multiple cerebral regions corresponding to different
white matter fiber bundles. Our approach integrates tools from sparse
representation theory into a graph theoretic segmentation framework
that generalizes the sparse subspace clustering algorithm [7] from
Euclidean data to ODFs. Specifically, we exploit the Riemannian
properties of the space of ODFs to reformulate the problem of com-
puting the sparse representation of an ODF with respect to its neigh-
boring ODFs. These sparse representations are then used to build a
block-sparse similarity matrix to which we apply spectral clustering
for identifying the regions with distinct diffusion properties.

2. ODF ESTIMATION WITH SPHERICAL HARMONICS

In order to estimate the ODFs, we employ the reconstruction method
proposed in [8]. This method follows the basic principle in Q-ball
imaging (QBI) [1], i.e., estimating the ODFs directly from HARDI
signals via the Funk-Radon transform. In particular, it approximates
the signal at each gradient direction by a linear combination of the
modified SH basis and reconstructs sharp ODFs while enforcing spa-
tial regularity and nonnegativity of the ODF field. Section 2.1 reviews
the basics of the spherical harmonic representation and Section 2.2
summarizes the ODF reconstruction method.

2.1. Modified Spherical Harmonic Basis

Due to the physics of the diffusion phenomenon, the HARDI signal
S : S2 7→ C is often assumed to be real and antipodally symmetric.
Therefore, using the fact that any complex-valued function defined
on the 2-sphere S2 can be expressed as a combination of spherical
harmonics, the SH representation of the signal uses a modified SH
basis that is also real and symmetric. Specifically, let us consider the
spherical harmonic function Y ml : S2 7→ C of degree l and order m,

Y ml (θ, φ)=

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ, (1)

where Pml is the associated Legendre polynomial of the same degree
and order, and θ∈ [0, π] and φ∈ [0, 2π) are the polar and azimuthal
angles, respectively, representing the direction of interest (θ, φ) in
spherical coordinates. Then, following [9], the modified basis of
degree L contains R= (L+1)(L+2)

2
spherical harmonics of the form

Yr =


√

2Re{Y |m|l } if − l ≤ m < 0,

Y ml if m = 0,√
2(−1)m+1Im{Y ml } if 0 < m ≤ l,

(2)

with indices r(l,m)= l2+l+2
2

+m, where l = 0, 2, 4, . . . , L, |m|≤ l,
and Re{·} and Im{·} are the real and imaginary parts, respectively.



2.2. ODF Reconstruction

Let S0 denote the signal with no diffusion weighting, i.e., the baseline
signal, and let S(θ, φ) be the HARDI signal in the gradient direction
(θ, φ). In single shell QBI with solid angle consideration [10], the
ODF in the spatial direction (ϑ, ϕ) is given by

p(ϑ, ϕ)|ϑ=θ,ϕ=φ =
1

4π
+

1

16π2
FRT

{
∇2
b ln

(
−ln

(S(θ, φ)

S0

))}
,

(3)
where FRT is the Funk-Radon transform and ∇2

b is the Laplace-
Beltrami operator independent of the radial component.

The ODF, p, is estimated fromG samples of the signal S(θn, φn),
n=1, 2, . . . , G, by approximating the signal vector

s :=
[

ln
(
−ln

(S(θ1, φ1)

S0

))
, . . . , ln

(
−ln

(S(θG, φG)

S0

))]>
(4)

as s ≈ Bc, whereB is the G×R SH basis matrix whose n-th row is
Bn =

[
Y1(θn, φn), . . . , YR(θn, φn)

]
and c∈ RR is the unknown

vector of SH coefficients parameterizing the signal. In the estimation,
we consider the SH basis of degree L= 4⇒R= 15. In [10], c is
estimated as the least-squares solution of the approximation, whereas
in [8], the problem is reformulated to ensure the nonnegativity of the
ODFs and to enforce spatial regularity between neighboring ODFs.
In particular, assuming a tessellation scheme with M=162 gradient
directions {(ϑn, ϕn)}Mn=1, the ODF reconstructed at voxel i is repre-
sented in terms of its samples at these M directions as the following
vector pi∈RM

pi ∼
1

4π
1 +

1

16π2
CLPci s.t. ‖pi‖1 = 1, (5)

where 1 is the M×1 vector of 1’s,C is the M×R SH basis matrix
whose n-th row is Cn =

[
Y1(ϑn, ϕn), . . . , YR(ϑn, ϕn)

]
, L is the

R×R diagonal matrix of Laplace-Beltrami eigenvalues, and P is
the R×R diagonal Funk-Radon transform matrix. In [8], by using
(5) and p(ϑn, ϕn)≥ 0, ∀n, the SH coefficient vectors at N voxels,
{ci}Ni=1, are found simultaneously as the solution to the problem

min
{ci}

N∑
i=1

‖si−Bci‖22 +
∑
j∈Ni

νij‖ci−cj‖22 s.t. CLPci≥−4π1,

(6)
where Ni is a spatial neighborhood of the voxel i and νij is a non-
negative similarity factor between the data at voxels i and j. Once
{ci} are estimated, the ODF vectors {pi} are computed from (5).

In this work, we will use two distinct feature vectors for segment-
ing the N ODFs: 1) the square-root parametrization [11] psq :=

√
p

of the ODF vector and 2) its SH coefficient vector [12] csq :=C†psq,
whereC† denotes the pseudoinverse ofC. Notice that both vectors
lie on hyperspheres of different dimensions, i.e., psq ∈ SM−1 and
csq∈SR−1. For simplicity, in what follows we will refer to both of
them as ODFs and denote them by q∈Sd with d∈{M−1, R−1}.

3. SEGMENTATION ON THE SPACE OF ODFs

In order to segment ODF fields into regions of distinct diffusion prop-
erties, the algorithm needs to handle multiple manifolds. Clustering
intersecting manifolds is particularly important for analyzing crossing
fiber bundles. In those cases, methods such as Riemannian Mani-
fold Clustering [13] may not be directly applicable as the similarity
between two voxels is defined by using nearest neighbors and two
neighbors may lie in different submanifolds. The sparse subspace

clustering (SSC) method in [7], on the other hand, uses sparse rep-
resentation to cluster data in multiple intersecting linear or affine
subspaces. Therefore, we propose to extend the SSC from Euclidean
data in multiple subspaces to ODFs in multiple submanifolds.

3.1. Subspace Clustering via Sparse Representation

Sparse representation (SR) theory is based on the idea that “many sig-
nals can have a concise representation when expressed in a proper ba-
sis”. Specifically, it aims to find whether a vector z∈RD is K-sparse
with respect to a dictionary {ψi}Ni=1, i.e., if z=

∑N
i=1 wiψi=Ψw

with K�N nonzero coefficients {wi}. It is shown in [14, 15] that
under some conditions, one can recover the sparse representationw
of z by solving the problem min ‖w‖1 subject to z = Ψw.

The SSC algorithm [7] uses SR to cluster points drawn from a
union of k linear or affine independent subspaces. In particular, each
data point can be written as a linear or affine combination of all other
points. By searching for the sparsest combination, the point zi∈RD
is represented in terms of points lying in the same subspace that it is
drawn from. The SR denoted bywi∈RN−1 with entries {wij}j 6=i
can be computed by solving the optimization problem

min
{wij}

∑
j 6=i

|wij |+ µ
∥∥zi −∑

j 6=i

wijzj
∥∥
2

s.t.
∑
j 6=i

wij = 1, (7)

where µ> 0 is a constant trade-off parameter between the sparsity
of the solution and the reconstruction error. The SRs of all data
points are used to form the matrix of coefficients W =

[
wij
]

=[
w̄1, . . . , w̄N

]
∈RN×N , where w̄i is the vector with a zero inserted

at the i-th entry of the sparsest solutionwi. Following the construc-
tion of a similarity matrix A =

[
aij
]
, where aij = |wij | + |wji|,

the segmentation of the data is obtained via spectral clustering [16],
i.e., by applying k-means to the eigenvectors of the Laplacian matrix
(computed fromA) corresponding to its k smallest eigenvalues.

3.2. Extending SSC to Multiple Submanifolds

Recall that SSC aims to represent a point zi as the sparsest linear or
affine combination of the other data points. From a data reconstruction
perspective, this representation can be considered as the sparsest
solution of min ‖zi−z̃i‖2, where z̃i =

∑
j 6=i wijzj . However, in

the case of the ODF feature vectors q∈{psq, csq}, one has to use the
Riemannian properties of the manifold for minimizing the geodesic
distance between an ODF qi and its reconstruction q̃i from all other
ODFs. We thereby use Riemannian interpolation to compute q̃i
as [13]

q̃i = expqi

(∑
j 6=i

wij logqi
(qj)

)
, (8)

where log :M 7→ TqM is the logarithm map from the manifold
M, i.e., the hypersphere Sd, to its tangent space TqM at q, and
exp :TqM7→M is the exponential map. Now, since the geodesic
distance between qi and q̃i is given by ‖

∑
j 6=i wij logqi

(qj)‖2, the
problem of writing the ODF qi as a sparse combination of ODFs
{qj}j 6=i can be posed as the following convex optimization problem

min
{wij}

∑
j 6=i

|wij |+µ
∥∥∑
j 6=i

wij logqi
(qj)

∥∥
2

s.t.
∑
j 6=i

wij =1. (9)

Here, it is worth noting that the logarithm map of qj at qi (from the
hypersphere Sd to its tangent space Tqi

Sd at qi) has the following
closed form expression

logqi
(qj) =

qj − (q>i qj)qi
‖qj − (q>i qj)qi‖2

arccos(q>i qj). (10)



More importantly, the problem in (9) is the direct extension of (7)
from the Euclidean space to the Riemannian manifold.

One potential disadvantage of the method proposed so far is that
it requires solvingN optimization problems inN−1 variables. There-
fore, solving the problem in (9) may be computationally expensive
when the number of voxels is large. To address this issue, we find
the sparse representation of an ODF in a neighborhood of the voxel
i, denoted by Ωi. The cardinality of Ωi is critical in achieving the
desired sparsity: A smaller value for |Ωi| decreases computation time
at the expense of a possible loss of sparsity, whereas a larger value
favors sparsity, yet increases computation time. In our experiments,
we choose |Ωi| to be between 5 to 20 times the length of the fea-
ture vector q. This results in a modified version of the optimization
problem at each voxel, which is given by

min
{wij}

∑
j∈Ωi

|wij |+µ
∥∥∑
j∈Ωi

wij logqi
(qj)

∥∥
2

s.t.
∑
j∈Ωi

wij =1. (11)

In our experiments, we set µ = 0.01, as suggested in [7]. By solving
the problem in (11) for all the ODFs in the field, we obtain the matrix
of weightsW , which is further used for constructing the similarity
matrixA, as described in Section 3.1. The segmentation of the data
is then found by applying spectral clustering toA.

4. VALIDATION AND DISCUSSIONS

We compare our Sparse Riemannian Manifold Clustering (SRMC) al-
gorithm to Normalized Cut (Ncut) [17] and to k-means (kM) on ODFs
using both feature vectors {psq, csq}. For Ncut, we construct the
affinity matrix with entries wij =exp(−ρ(arccos(q>i qj))), where ρ
normalizes the angular distances to [0, 1]. For k-means, we compute
the dissimilarity between qi and qj as 1− q>i qj . We compare these
algorithms on the segmentation of synthetic ODF fields corrupted
with varying levels of noise. We also test our algorithm on the seg-
mentation of fiber bundles in the diffusion MR data of a phantom and
regions such as the corpus callosum and the cingulum in the brain.

Experiments on Synthetic Data. We first evaluate the perfor-
mances of SRMC, Ncut and k-means at varying levels of noise. For
this purpose, we generate synthetic data using the multi-tensor model
in [9], where the HARDI signals {S(θn, φn)} at 162 gradient direc-
tions, with S0 =1 and b=3000 s/mm2, are simulated to represent an
isotropic background and ODFs of 1, 2, or 3 fibers. Noisy HARDI sig-
nals are generated by adding complex Gaussian noise with zero mean
and standard deviation σ= S0

ζ
, where ζ is the signal-to-noise ratio

(SNR). The ODFs are reconstructed as described in Section 2.2 and
three synthetic ODF fields at different levels of complexity, i.e., in-
tersecting linear fibers (Fig. 1(a)), a circular fiber (Fig. 1(b)), and
intersecting curved fibers (Fig. 1(c)), are generated. We set the num-
ber of clusters to k=(5, 2, 4) for these data, respectively, and obtain
the segmentation. Since the ground truth segmentation is known, we
quantify the performances of these methods by using the ratio of the
number of correctly segmented voxels to the total number of voxels.

Fig. 1(d) shows the average segmentation accuracy (%) over
these ODF fields. We observe that the square-root representation psq

slightly outperforms the SH coefficient vector csq when SNR≥5. In
addition, SRMC gives more accurate segmentations than Ncut for
all SNRs and outperforms k-means except at SNR=5. However, all
the methods fail to provide acceptable rates at SNR=3. Notice that
SRMC with psq features achieves accuracies of 94% and 84% at SNR
levels of 10 and 5, respectively. This is a very promising result as 1)
these levels of SNR are in the range of image noise often observed

in real dMRI data and 2) the final segmentation obtained by SRMC
does not enforce spatial regularization.
Experiments on Phantom Data. We conduct a second set of
experiments on the dMRI data of the phantom1 shown at the top
left portion of Fig. 2(a). The HARDI signals are acquired with a
64×64 image matrix, an isotropic spatial resolution of 3 mm, and
a diffusion sensitization at b = 1500 s/mm2 applied along a set of
64 gradient directions. The ODFs are reconstructed as described in
Section 2.2 and two regions of interest (ROIs) shown in Fig. 2(a) are
selected for segmentation. Following the quantitative results in the
synthetic experiments, we select the square-root parametrization psq

as a feature and set the number of clusters to k=(3, 4) for the two
ROIs, respectively. As shown in Fig. 2(b), where different clusters are
represented with distinct colors, SRMC accurately segments crossing
and fanning fiber bundles. In addition, in the first ROI, the region of
intersection could be identified as a separate cluster if the number of
clusters is k ≥ 4. Recall also that since SRMC does not enforce any
spatial regularity, the output might look “noisy” as in the case of the
second ROI. Our method is, however, automatic and its output could
be used to initialize energy minimization-type segmentation schemes.
Experiments on Real Data. We finally test our algorithm in the
segmentation of the corpus callosum (CC) and the cingulum (CG)
from a brain dMRI dataset. The CC is the major communication
conduit linking the two hemispheres of the brain and is responsible for
distinct cognitive processes, whereas the CG bundle serves to connect
the cingulate cortex with other regions and its integrity plays a critical
role in the maintenance of the processing of cognitive functions.
Reduced fractional anisotropy in these cerebral regions is often linked
with atrophy and neurodegeneration.

For this experiment, we use a HARDI human brain dataset of 40
subjects [8] where 105 images were acquired, 11 with no diffusion
weighting and 94 with diffusion weighting at b= 1159 s/mm2, by
using a 128×128 acquisition matrix (1.8 mm in-plane resolution) and
55 axial slices (2 mm thick). Specifically, we use the mean ODFs
computed as described in [11] and focus on segmenting the aforemen-
tioned regions from two consecutive sagittal slices corresponding to
ROIs on the left hemisphere and the central sagittal plane (Fig. 2(c)).
Notice that in the first ROI, both the CC and the CG are visible,
whereas in the second ROI, only the CC can be identified. We choose
the square-root parametrization psq as features and set the number of
clusters to k= (4, 3) for the two ROIs, respectively. Fig. 2(c) also
shows the results of the proposed SRMC method. In the first slice, we
observe that the corpus callosum and the cingulum are correctly seg-
mented from the background. In fact, we oversegmented the data by
setting k=4 to reduce the effect of the fornix on the segmentation of
the cingulum. In the second slice, the corpus callosum is successfully
segmented as well in the absence of the cingulum.

5. CONCLUSIONS

We have presented a method called Sparse Riemannian Manifold
Clustering (SRMC) to segment HARDI data described by ODFs into
multiple clusters. SRMC integrates tools from sparse representation
theory into spectral clustering and exploits the Riemannian properties
of the space of ODFs to reformulate the problem of computing sparse
representations for ODFs. We observed that SRMC gives more ac-
curate segmentations than the natural extension of normalized cut
to ODFs at varying levels of noise. SRMC also produces accurate
boundaries between cerebral regions with different diffusion char-
acteristics. These boundaries could be further improved by adding

1http://www.lnao.fr/spip.php?article107
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Fig. 1. Synthetic ODF fields with (a) three in-plane and one out-of-plane fibers, generating five distinct diffusion profiles, i.e., five clusters, (b)
a circular fiber (two clusters), (c) two intersecting curved fibers (four clusters). (d) Segmentation accuracy (%) at varying levels of noise.
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Fig. 2. (a) dMRI data of the phantom and its ODFs with two ROIs, (b) Segmentation of distinct fiber bundles in those ROIs, (c) ROIs in two
consecutive sagittal slices of a brain ODF data and the segmentation of the corpus callosum (cc) and the cingulum (cg).

spatial regularization. By restricting fiber extraction and tracking to
be within these boundaries, we aim to improve the quality of white
matter atlases of the brain. However, our future work will initially
focus on further reducing the computational load in solving the prob-
lem in (11) by using homotopy techniques [18]. We will also allow
the user to interact with the method by marking scribbles with known
class labels so as to correct erroneous segmentations.
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