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ABSTRACT

Given a volume of cardiac MR images, we consider the prob-
lem of segmenting the heart based on intensity and dynamics.
We first segment the heart and the chest from the background
using an algebraic technique for intensity based segmentation
called Polysegment. As the heart and the chest exhibit differ-
ent dynamics, we model the image temporal evolution as the
output of two different linear dynamical systems. Under this
model, the trajectories of the heart and chest intensities lie in
different subspaces. We thus propose a method called Spatial
GPCA for clustering data points lying in multiple subspaces,
while maintaining the spatial coherence of the data points. We
compare the segmentation results of Spatial GPCA to those of
K-Subspaces, another popular subspace clustering algorithm.

1. INTRODUCTION
Building a 3-D model of the heart is potentially very useful for
many clinical procedures, e.g., radio-frequency ablation. Cur-
rently most of the visualization for such procedures is done by
either 2-D fluoroscopy or manual segmentation from 3-D CT
models. Since fluoroscopy gives a 2-D projection of the 3-D
object, it is difficult to accurately determine a 3-D location.
On the other hand, manual segmentation is time consuming
and suffers from reliability and consistency issues.

In order to build a 3-D model for clinicians to use, the first
step is to segment the heart from other regions of the MR vol-
ume. Segmentation based on intensity only is bound to fail,
as the intensities of the heart and chest are not very different.
Likewise, traditional rigid body motion segmentation meth-
ods would fail, because the heart behaves as a non-rigid body
deforming in a periodic manner according to the cardiac cy-
cle. A simple heart segmentation method using both intensity
and dynamics is to threshold the temporal standard deviation
of the intensity at each voxel [1]. However, the method fails
with noisy sequences, as we will show in the experiments.

In this paper, we propose to model the temporal evolution
of a beating heart as a dynamic texture [2], i.e. as the output
of a time invariant linear dynamical system, and to segment
such a dynamic texture using subspace clustering techniques.
Previous work on dynamic texture segmentation [3] is based
on minimizing a Mumford-Shah like cost functional within a
level-set framework. However, level-set techniques are usu-
ally very computationally intensive. Since our long term goal

is to design a real-time system, in this paper we propose an al-
gebraic technique for dynamic texture segmentation and sub-
space clustering called Spatial GPCA. The advantage over
iterative techniques being that algebraic techniques are less
computationally intensive and do not need initialization.

2. INTENSITY BASED SEGMENTATION
MR images of the heart consist of three main regions: heart,
chest and background (which is predominantly noise). Since
the dynamics caused by variation of noise across images will
influence the segmentation, we first remove the background
noise using an intensity based segmentation method.

Currently, there is a huge body of literature on intensity
based image segmentation, including algorithms such as K-
Means and Expectation Maximization (EM) [4]. Since our
long term objective is to develop a real-time system, we use
an algebraic approach to image segmentation, called Polyseg-
ment. As the method is algebraic and non-iterative, it is faster
than EM or K-Means and does not require any initialization.

Polysegment performs image segmentation by fitting the
image intensities with a polynomial whose roots give the mean
intensity of each region. The algorithm proceeds as follows.
Letx ∈ RP be a given vector containing the image intensities
associated withP pixels or voxels. We would like to segment
x into n groups, each one having an unknown intensity value
Vi, i = 1, . . . , n, whereV1 6= V2 6= · · · 6= Vn. To this end, let
x be an arbitrary entry ofx. Then, there exists a constantVi

such thatx = Vi. This means that

(x = V1) ∨ (x = V2) ∨ (x = Vn), (1)

which can be compactly written as the following polynomial
of degreen in x

pn(x) =
n∏

i=1

(x− Vi) =
n∑

k=0

ckxk = 0. (2)

Since equation (2) is valid for every entry ofx, we can
solve for the vector of coefficientsc ∈ Rn+1 from
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whereLn ∈ RP×(n+1) is the data matrix.



Givenc, we can obtain{Vi}n
i=1 as then roots of the poly-

nomial pn(x). Given{Vi}n
i=1, the segmentation is obtained

by assigning pointj to groupi whenever

i = arg min
k=1,··· ,n

(xj − Vk)2. (4)

3. DYNAMICS BASED SEGMENTATION

3.1. Modeling the Heart Motion as a Dynamic Texture

On examining the temporal evolution of cardiac MR images
from a particular spatial location, we observe that the chest
does not exhibit any dynamics while the heart deforms ac-
cording to the cardiac cycle. Thus, we propose to model a
video sequence of a beating heart,I(t) ∈ RP , t ∈ {1 · · ·F},
as a dynamic texture, i.e. as the output of a linear dynami-
cal system (LDS), which models both the appearance at every
frame and the dynamics of all the frames. As proposed in [5],
we model a dynamic texture with an ARMA model of orderd

z(t + 1) = Az(t) + Bη(t)
I(t) = Cz(t) + w(t)

(5)

whereA ∈ Rd×d, B ∈ Rd×dη , C ∈ RP×d, η(t) ∈ Rdη is the
process noise andw(t) ∈ RP is the measurement noise.

If the scene has only one dynamic texture, one can learn
the parameters(A, B,C) optimally and in closed form using
subspace identification techniques such as N4SID [6]. How-
ever, such techniques are computationally intensive when ap-
plied to video sequences, because the number of pixels is typ-
ically very large. A sub-optimal solution can be obtained by
noticing that whenη = w = 0 the video sequence can be
stacked into a matrixW ∈ RP×F which can be written as

W = [I(1) · · · I(F )] = C[z(1) · · · z(F )] = CZ. (6)

Therefore, rank(W ) ≤ d ≤ F, P , and one can learnC and
Z from the singular value decomposition ofW . Given Z,
solving forA is a linear problem. GivenA andZ, solving for
B (assuming now thatη 6= 0) is also a linear problem [2, 5].

In the case of an MR volume of the heart, the scene is
composed of two dynamic textures: one for the chest and one
for the heart. Therefore, each row ofW lives approximately
in one out of two possible subspaces ofRF of dimension at
mostd. The problem of segmenting the heart from the chest
is then equivalent to one of clustering the rows ofW into two
subspaces. This leads us to the idea of using subspace cluster-
ing algorithms such as K-Subspaces [7] or Generalized Prin-
cipal Component Analysis (GPCA) [8] to segment the two
regions of the MR images.

However, neither GPCA nor K-Subspaces incorporate the
fact that nearby voxels should belong to the same group. Thus,
due to the presence of noise in the image, the segmentation
can have misclassification of isolated points. To overcome
this issue, we propose a modification to the GPCA algorithm,
which we dub Spatial GPCA, that incorporates spatial regu-
larization into the segmentation process.

3.2. Spatial GPCA

Spatial GPCA is an algebraic subspace clustering algorithm
that computes a normal to the subspace at a data point from
the derivatives of a polynomial that is fitted to all data points.
Once the normals are known, the data points are clustered
based on their distance to each subspace. More specifically,
let w be any of the rows ofW . Let Sc = {w : bT

c w = 0}
andSh = {w : bT

h w = 0} be the subspaces associated with
the chest and heart with normalsbc andbh, respectively. The
Spatial GPCA algorithm operates as follows:

1. Project the rows ofW ∈ RP×F onto a low-dimensional
subspace of dimensiond + 1. This can be done by first
computing the SVD ofW = USV T , and then letting
Wp ∈ RP×(d+1) be the firstd + 1 columns ofU .

2. Fit a polynomial to the rows ofWp. The rationale be-
hind this step is as follows. Letw ∈ Rd+1 be any of
the rows ofWp. Sincew must belong to one of the two
projected subspaces, saySk, then there exists a vector
bk ∈ Rd+1 normal toSk such thatbT

k w = 0. Then any
row w of Wp must satisfy the following homogeneous
polynomial of degree two ind + 1 variables

p(w) = (bT
h w)(bT

c w) = 0. (7)

This polynomial can be expressed linearly in terms of
its coefficients. For instance, ifd = 1 we havep(w) =
c1w

2
1 + c2w1w2 + c3w

2
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3. Solve for the normal vectors from the derivatives ofp.
This is because the polynomialp = 0 describes a sur-
face inRd+1, i.e. the union of the2 projected sub-
spaces. Therefore, the derivative ofp at a point gives
a vector normal to the subspace passing through that
point, i.e.

bk =
Dp(w)
‖Dp(w)‖ . (9)

4. ComputeDp(w) in a neighborhoodΩ(x) of size τ
around each voxelx. Since all voxels inΩ(x) are likely
to belong to the same group, we ”smooth” the deriva-
tives by replacing the derivative ofp at x by the prin-
cipal component of all the derivatives ofp at voxels in
Ω(x). Before computing the principal component, one
can also scale the derivatives inΩ(x) by a Gaussian
function, so as to give more weight to the central voxel
x.

5. Once the derivatives are ”smoothed”, the pointw is as-
signed to groupi where

i = arg min
k=h,c

{(bT
k Dp(w))2}. (10)



3.3. K-Subspaces

K-Subspaces is an iterative method for segmenting data lying
in multiple subspaces. Given an initial estimate for the sub-
space bases, this algorithm alternates between clustering the
data points using the distance residual to the different sub-
spaces, and computing a basis for each subspace using stan-
dard PCA. The K-Subspaces algorithm is outlined below.

1. Setm = 0 and randomly initialize the bases for the
subspacesSh andSc with orthonormal matricesU (0)

h ∈
R(d+1)×d andU

(0)
c ∈ R(d+1)×d.

2. Assign each pointwj to groupi (heart or chest) if

i = arg min
k=h,c

‖wj − U
(m)
k (U (m)

k )T wj‖2. (11)

Let w(m)
h be the set of points associated with the heart,

andw
(m)
c the set of points associated with the chest.

3. Calculate a basis for each subspaceU
(m+1)
h andU

(m+1)
c

U
(m+1)
h =PCA(w(m)

h ), U (m+1)
c =PCA(w(m)

c ). (12)

4. If w
(m+1)
h = w

(m)
h andw

(m+1)
c = w

(m)
c orm > mmax

stop. Else, setm = m + 1 and goto step 2.

As the convergence of K-Subspaces to the global opti-
mum depends strongly on correct initialization, one usually
starts the algorithm from multiple initializations. One can
avoid this issue by using the result of Spatial GPCA to ini-
tialize K-Subspaces.

4. EXPERIMENTAL RESULTS

We applied the proposed segmentation technique to a data
set consisting of 20 temporal volumes from 9 spatial loca-
tions. For computational efficiency, we applied the algorithm
to each spatial slice and downsampled the images from256×
256 to 128× 128.

Figure 1 shows intensity based segmentation results using
Polysegment and K-Means [4]. The results show that both
algorithms perform equally well, though Polysegment is frac-
tionally faster and does not require any initialization.

After removing the background using intensity based seg-
mentation, we applied Spatial GPCA and GPCA (same as
Spatial GPCA, but with step 4 omitted) to one spatial slice.
Figure 2 shows the segmentation results from both algorithms.
Note that the segmentation from the GPCA algorithm is not
spatially coherent with a lot of isolated points getting misclas-
sified. The segmentation from the Spatial GPCA algorithm
gives a spatially more coherent segmentation, particularly for
the chest, thanks to the spatial regularization step. Figure 3
shows more heart segmentation results for a few other slices.
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Fig. 1. Intensity based segmentation withn = 15 groups:
white corresponds to the group of lowest intensity (back-
ground) while white corresponds to all remaining groups.

(a) Original image

(b) GPCA segmentation

(c) Spatial GPCA segmentation

Fig. 2. Dynamics based segmentation using GPCA. (a) shows
one frame of the sequence, (b) shows the points segmented as
chest and heart using GPCA and (c) shows the segmentation
using Spatial GPCA with a windowΩ of sizeτ = 3.

Fig. 3. Spatial GPCA results showing the heart segmentation
for four other slices of the heart.

GPCA K-Subspaces Spatial GPCA

Fig. 4. Comparison of chest segmentation for a particular
spatial location.

Figure 4 shows the performance of all three algorithms on
one spatial location. Notice that spatial GPCA gives a spa-
tially more coherent segmentation of the heart than that of



GPCA and K-Subspaces. However, the spatial regularization
step in Spatial GPCA causes some regions of the chest near
the heart to be classified as heart.

τ = 3 τ = 9 τ = 3 τ = 9
Fig. 5. Effect of the window sizeτ on dynamics based seg-
mentation using Spatial GPCA.

We then studied the effect of varying the parameters of
Spatial GPCA (window size and normal scaling function) on
the quality of segmentation. Figure 5 shows the segmentation
for a window size ofτ = 3 andτ = 9. A larger window
Ω gives a spatially more coherent segmentation at the cost
of classifying parts of the chest as heart. We observed that
scaling the normals inΩ with a Gaussian window did not have
a noticeable effect on the segmentation.

A similar analysis was performed with the parameters of
K-Subspaces (number of iteration and initialization). The
number of iteration for K-subspaces was varied asmmax =
100, 400, 600. Varying mmax did not have a noticeable ef-
fect on the segmentation. However, initializing K-subspaces
with Spatial GPCA produced better results, than K-subspaces
randomly initialized.

We also compared our results to a simple method based
on thresholding the temporal standard deviation of the inten-
sities at each pixel [1]. Figure 6(a) shows the results of the
method for a spatial slice. Notice that the segmentation is
fractionally better than that of Spatial GPCA shown in Figure
2(b). Figures 6(b)-(d) show segmentation results for another
dataset in which the Spatial GPCA method outperforms the
standard deviation method. One main difference between the
two datasets is the amount of noise in each image. At this
point we are tempted to make the claim that the Spatial GPCA
based algorithm is more robust to noise. Nevertheless, we feel
that more analysis is needed before we make the claim. These
results, however, show a promising direction.

(a) (b) (c) (d)

Fig. 6. Comparison of Spatial GPCA versus Standard Devi-
ation Segmentation for the 2 datasets. (a) Standard deviation
segmentation of the first dataset. (b) Sample image from the
second dataset. (c) Dynamics based segmentation and the (d)
Standard deviation-based segmentation.

5. SUMMARY AND CONCLUSIONS

We have proposed an algorithm for segmenting the heart from
a 3-D cardiac MR volume. By modeling the temporal evo-
lution of the intensities of each region with a linear system,
we solve the segmentation problem using subspace clustering.
Our approach, called Spatial GPCA, is algebraic and does not
require initialization, making is suitable for real-time applica-
tions. Spatial GPCA also incorporates spatial regularization,
which results in a spatially more coherent segmentation. The
drawback of the algorithm, however, is that since it relies on
the dynamics for the segmentation, if a region of the heart is
static in an image sequence, it will be classified as the chest.
In such cases, we propose that the dynamics based algorithm
be used as an initialization for other methods.
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