SEGMENTING A BEATING HEART USING POLYSEGMENT AND SPATIAL GPCA
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ABSTRACT is to design a real-time system, in this paper we propose an al-
Given a volume of cardiac MR images, we consider the probgebraic :echni_que fo|1 ddynamic_: tlexture segrr?entstion and sub-
lem of segmenting the heart based on intensity and dynamics'.oac.e c ustermg cafed Spatia GPCA'. The a _vantage over
We first segment the heart and the chest from the backgrouﬁ&ratlve tgchmqges bemg that algebraic t(_ac_hn|gue§ are less
. . . . ; . computationally intensive and do not need initialization.
using an algebraic technique for intensity based segmentation
called Polysegment. As the heart and the chest exhibit differ-
ent dynamics, we model the image temporal evolution asthe 2. INTENSITY BASED SEGMENTATION
output of two different linear dynamical systems. Under thisMR images of the heart consist of three main regions: heart,
model, the trajectories of the heart and chest intensities lie inhest and background (which is predominantly noise). Since
different subspaces. We thus propose a method called Spattae dynamics caused by variation of noise across images will
GPCA for clustering data points lying in multiple subspacesjnfluence the segmentation, we first remove the background
while maintaining the spatial coherence of the data points. Weoise using an intensity based segmentation method.
compare the segmentation results of Spatial GPCA to those of Currently, there is a huge body of literature on intensity
K-Subspaces, another popular subspace clustering algorithfPased image segmentation, including algorithms such as K-
Means and Expectation Maximization (EM) [4]. Since our
1 INTRODUCTION long term ijectlve is to Qevelop a real—tlme system, we use
an algebraic approach to image segmentation, called Polyseg-
Building a 3-D model of the heartis potentially very useful for ment, As the method is algebraic and non-iterative, it is faster
many clinical procedures, e.g., radio-frequency ablation. Cuinan EM or K-Means and does not require any initialization.
rently most of the visualization for such proceduresis done by  pglysegment performs image segmentation by fitting the
either 2-D fluoroscopy or manual segmentation from 3-D CTimage intensities with a polynomial whose roots give the mean
models. Since fluoroscopy gives a 2-D projection of the 3-Ontensity of each region. The algorithm proceeds as follows.
object, it is difficult to accurately determine a 3-D location. | etz ¢ R be a given vector containing the image intensities
On the other hand, manual segmentation is time consumingssociated wittP pixels or voxels. We would like to segment
and suffers from reliability and consistency issues.  into n groups, each one having an unknown intensity value
In order to build a 3-D model for clinicians to use, thefirsty. ; — 1 whereV; # Vi # --- # V,,. To this end, let
step is to segment the heart from other regions of the MR vol; pe an arbitrary entry of. Then, there exists a constarit
ume. Segmentation based on intensity only is bound to faikych that: = V;. This means that
as the intensities of the heart and chest are not very different.
Likewise, traditional rigid body motion segmentation meth- (z=V1)V(z="V2)V(x=Vy), 1)
ods WO_UId fa|l, becgus_e the heart behayes asa ”0”'“9'0' bo%’hich can be compactly written as the following polynomial
deforming in a periodic manner according to the cardiac CYof degreen in =
cle. A simple heart segmentation method using both intensity n n
and dynamics is to threshold the temporal standard deviation pu(z) = H(m —V) = Z cpr® = 0. 2)
of the intensity at each voxel [1]. However, the method fails i =0
with noisy sequences, as we will show in the experiments.
In this paper, we propose to model the temporal evolution
of a beating heart as a dynamic texture [2], i.e. as the outpLi0

Since equation (2) is valid for every entry of we can
Ive for the vector of coefficientse R**! from

2 -
of a time invariant linear dynamical system, and to segment 1z x% “L:fl ‘o
such a dynamic texture using subspace clustering techniques. I oc= L xg w3 - a3 : 0 3)
Previous work on dynamic texture segmentation [3] is based " : Cn1 ’

oy e
—_

on minimizing a Mumford-Shabh like cost functional within a 1 tp x5 - x
level-set framework. However, level-set techniques are usu-
ally very computationally intensive. Since our long term goalwhereL,, € RP*("+1) is the data matrix.



Givenc, we can obtaif{V;}!_, as then roots of the poly-

nomial p,(z). Given{V;}"_,, the segmentation is obtained

by assigning poinj to group: whenever

i= arg 1 IIlll'l ( xj —Vi)2

(4)

3. DYNAMICS BASED SEGMENTATION

3.1. Modeling the Heart Motion as a Dynamic Texture

3.2. Spatial GPCA

Spatial GPCA is an algebraic subspace clustering algorithm
that computes a normal to the subspace at a data point from
the derivatives of a polynomial that is fitted to all data points.
Once the normals are known, the data points are clustered
based on their distance to each subspace. More specifically,
let w be any of the rows ofV’. Let S, = {w : bl w = 0}
andS, = {w : bl w = 0} be the subspaces associated with
the chest and heart with normdlsandby,, respectively. The

On examining the temporal evolution of cardiac MR imagesSpatial GPCA algorithm operates as follows:

from a particular spatial location, we observe that the chest
does not exhibit any dynamics while the heart deforms ac-
cording to the cardiac cycle. Thus, we propose to model a
video sequence of a beating hedit)) € Rt € {1--- F},

as a dynamic texture, i.e. as the output of a linear dynami-

cal system (LDS), which models both the appearance at every 2.

frame and the dynamics of all the frames. As proposed in [5],
we model a dynamic texture with an ARMA model of order

2(t+1) = Az(t) + Bn(t)
I(t) = Cz(t) + w(t)

whereA € R4, B € R¥*dn O € RP*4 p(t) € R is the
process noise and(t) € R” is the measurement noise.

If the scene has only one dynamic texture, one can learn
the parametergA, B, C') optimally and in closed form using
subspace identification techniques such as N4SID [6]. How-
ever, such techniques are computationally intensive when ap-
plied to video sequences, because the number of pixels is typ-
ically very large. A sub-optimal solution can be obtained by
noticing that whem; = w = 0 the video sequence can be
stacked into a matri¥’ € RP>*¥ which can be written as

W =[I(1)---I(F)] = Clz(1) - 2(F)] = CZ.

Therefore, ranli¥) < d < F, P, and one can lear@ and
Z from the singular value decomposition @f. Given Z,

solving for A is a linear problem. Giverd andZ, solving for
B (assuming now thaj # 0) is also a linear problem [2, 5].

In the case of an MR volume of the heart, the scene is
composed of two dynamic textures: one for the chest and one
for the heart. Therefore, each row Bf lives approximately
in one out of two possible subspaces®f of dimension at
mostd. The problem of segmenting the heart from the chest
is then equivalent to one of clustering the rowdfinto two
subspaces. This leads us to the idea of using subspace cluster-
ing algorithms such as K-Subspaces [7] or Generalized Prin-
cipal Component Analysis (GPCA) [8] to segment the two
regions of the MR images.

However, neither GPCA nor K-Subspaces incorporate the
fact that nearby voxels should belong to the same group. Thus,
due to the presence of noise in the image, the segmentation

(5)

can have misclassification of isolated points. To overcome °.

this issue, we propose a modification to the GPCA algorithm,
which we dub Spatial GPCA, that incorporates spatial regu-
larization into the segmentation process.

1.

© 3

Project the rows ofi” € R”*¥ onto a low-dimensional
subspace of dimensiah+ 1. This can be done by first
computing the SVD of¥ = USVT, and then letting
W, € RP*(@+1) pe the firsd + 1 columns ofU.

Fit a polynomial to the rows of,. The rationale be-
hind this step is as follows. Lab € R¢*+! be any of
the rows ofi¥/,,. Sincew must belong to one of the two
projected subspaces, sy, then there exists a vector
b;, € R4*1 normal toS), such thab; w = 0. Then any
row w of W, must satisfy the following homogeneous
polynomial of degree two id + 1 variables

p(w) = (b, w)(b; w) = 0. @)

This polynomial can be expressed linearly in terms of
its coefficients. For instance,df= 1 we havep(w) =
ciw? + cowywo + czw3, hence we can solve for the

coefficients ofp from the linear system
2 . 2

w1 wip

[c1,¢2,¢3] |wiiwa wipwep | =0. (8)
2 2
w2y ws p

Solve for the normal vectors from the derivativespof
This is because the polynomial= 0 describes a sur-
face inR?*!, j.e. the union of the projected sub-
spaces. Therefore, the derivativepoht a point gives

a vector normal to the subspace passing through that
point, i.e.

Dp(w)

% = [ Dp(w)

9)

4. ComputeDp(w) in a neighborhood(x) of size 7

around each voxet. Since all voxels if2(x) are likely

to belong to the same group, we "smooth” the deriva-
tives by replacing the derivative gfat « by the prin-
cipal component of all the derivatives pfat voxels in
Q(x). Before computing the principal component, one
can also scale the derivatives @(x) by a Gaussian
function, so as to give more weight to the central voxel

Once the derivatives are "smoothed”, the paints as-
signed to group where

i = arg min {(b; Dp(w))*}. (10)



3.3. K-Subspaces

K-Subspaces is an iterative method for segmenting data lying; -
in multiple subspaces. Given an initial estimate for the sub-,| §#
space bases, this algorithm alternates between clustering th( &
data points using the distance residual to the different sub-|:
spaces, and computing a basis for each subspace using sta

dard PCA. The K-Subspaces algorithm is outlined below.

(a) Polysegment (b) K-Means

Fig. 1. Intensity based segmentation with= 15 groups:
Tty ©) o l)wd white corresponds to the group of lowest intensity (back-
RUEFD*d andUe” € R4, ground) while white corresponds to all remaining groups.

1. Setm = 0 and randomly initialize the bases for the
subspaces;, andS, with orthonormal matriceéf,(lo) €

2. Assign each pointv; to group: (heart or chest) if

i = arg min [lw; — U (UF) ey ?. (1)

Letw!™ be the set of points associated with the heart
andwﬁm) the set of points associated with the chest.

(b) GPCA segmentation

3. Calculate a basis for each subspHé@l“) andUc(m“)

U}(Lerl) :PCA(’U);lm)), Uc(m—i-l) :PCA(w((:m)) (12)

25 & :

4. If wi™ ) = wglm) andw™ ™ = w{™ orm > Mes L ' . ——
(a) Original image (c) Spatial GPCA segmentation

stop. Else, seth = m + 1 and goto step 2.
As the convergence of K-Subspaces to the global OptiI_:|g. 2. Dynamics based segmentation using QPCA. (a) shows
C o one frame of the sequence, (b) shows the points segmented as
mum depends strongly on correct initialization, one usually . .
. LT chest and heart using GPCA and (c) shows the segmentation

starts the algorithm from multiple initializations. One can

avoid this issue by using the result of Spatial GPCA to ini-1°'"9 Spatial GPCA with a windot? of sizer = 3.

tialize K-Subspaces.

4. EXPERIMENTAL RESULTS

We applied the proposed segmentation technique to a da
set consisting of 20 temporal volumes from 9 spatial Ioca—F
tions. For computational efficiency, we applied the algorith
to each spatial slice and downsampled the images i
256 t0 128 x 128.

Figure 1 shows intensity based segmentation results using
Polysegment and K-Means [4]. The results show that both
algorithms perform equally well, though Polysegment is frac-
tionally faster and does not require any initialization.

After removing the background using intensity based seg-
mentation, we applied Spatial GPCA and GPCA (same as
Spatial GPCA, but with step 4 omitted) to one spatial slice.
Figure 2 shows the segmentation results from both algorithms.
Note that the segmentation from the GPCA algorithm is nofig. 4. Comparison of chest segmentation for a particular
spatially coherent with a lot of isolated points getting misclasSpatial location.
sified. The segmentation from the Spatial GPCA algorithm
gives a spatially more coherent segmentation, particularly for Figure 4 shows the performance of all three algorithms on
the chest, thanks to the spatial regularization step. Figure @ne spatial location. Notice that spatial GPCA gives a spa-
shows more heart segmentation results for a few other slicesially more coherent segmentation of the heart than that of

ig. 3. Spatial GPCA results showing the heart segmentation
TYor four other slices of the heart.

GPCA K-Subspaces Spatial GPCA



GPCA and K-Subspaces. However, the spatial regularization 5. SUMMARY AND CONCLUSIONS
step in Spatial GPCA causes some regions of the chest Ne@f, have proposed an algorithm for segmenting the heart from

the heart to be classified as heart.

T=3 T=9 T=3 T=9

Fig. 5. Effect of the window size- on dynamics based seg-

mentation using Spatial GPCA.

a 3-D cardiac MR volume. By modeling the temporal evo-
lution of the intensities of each region with a linear system,
we solve the segmentation problem using subspace clustering.
Our approach, called Spatial GPCA, is algebraic and does not
require initialization, making is suitable for real-time applica-
tions. Spatial GPCA also incorporates spatial regularization,
which results in a spatially more coherent segmentation. The
drawback of the algorithm, however, is that since it relies on
the dynamics for the segmentation, if a region of the heart is
static in an image sequence, it will be classified as the chest.
In such cases, we propose that the dynamics based algorithm

We then studied the effect of varying the parameters ofs ;sed as an initialization for other methods.

Spatial GPCA (window size and normal scaling function) on
the quality of segmentation. Figure 5 shows the segmentation

for a window size ofr = 3 andr = 9. A larger window
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scaling the normals i with a Gaussian window did not have
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