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Abstract
We study the rank and geometry of the multibody fundamen-
tal matrix, a geometric entity characterizing the two-view
geometry of dynamic scenes consisting of multiple rigid-
body motions. We derive an upper bound on the rank of the
multibody fundamental matrix that depends on the number
of independent translations. We also derive an algebraic
characterization of the SVD of a multibody fundamental
matrix in the case of two or odd number of rigid-body mo-
tions with a common rotation. This characterization allows
us to project an arbitrary matrix onto the space of multibody
fundamental matrices using linear algebraic techniques.

1. Introduction
Given two perspective views of a scene containing multiple
rigidly moving objects, we consider the problem of estimat-
ing the motion of each object relative to the camera, without
knowing which measurements belong to which object.

When the scene is static, i.e., when either the camera
or a single object move rigidly, it is well-known [7] that if
x1,x2 ∈ P

2 are two perspective images of a point in 3-D
space, then they must satisfy the epipolar constraint

x>
2 Fx1 = 0, (1)

where F ∈ R
3×3 is a rank-2 matrix called the fundamen-

tal matrix. The epipolar constraint can be used to estimate
F and the camera motion from a set of point correspon-
dences using linear techniques such as the eight-point algo-
rithm. In the case of a calibrated camera, it is also known
that F factors as F = [T ]×R, where [T ]× ∈ so(3) is a
skew-symmetric matrix associated with the camera transla-
tion T ∈ R

3 and R ∈ SO(3) is the camera rotation. The
space so(3)×SO(3) is known as the essential manifold and
can be characterized as the space of matrices with singu-
lar values {‖T‖, ‖T‖, 0}. Such a characterization is crucial
when estimating F from noisy correspondences, because it
allows us to project a noisy linear estimate of F onto a geo-
metrically correct essential matrix.
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The work of [14] proposes a generalization of the eight-
point algorithm to the more general and challenging case
of dynamic scenes in which both the camera and an un-
known number of objects with unknown 3-D structure move
independently. The paper shows that applying a polyno-
mial embedding to the image points leads to the so-called
multibody epipolar constraint and its associated multibody
fundamental matrix F . The method computes the number
of motions from a rank constraint on the image measure-
ments, estimates the multibody fundamental matrix using
least squares, and the individual fundamental matrices us-
ing multivariate polynomial factorization or differentiation.

Unfortunately, the method is not yet reliable in the pres-
ence of noise, because of the following reasons:

1. The polynomial embedding is not invariant with re-
spect to rotations or translations of the image data,
which makes it difficult to characterize the space of
multibody fundamental matrices. Such a characteriza-
tion is crucial for improving the performance of linear
algorithms in the presence of noisy data.

2. The multibody fundamental matrix F is computed
linearly, without taking into account nonlinear con-
straints dictated by its rank and geometry. Therefore,
the estimate of F may not be geometrically correct in
the presence of noise, meaning that it may not perfectly
factor into the multiple fundamental matrices associ-
ated with each one of the rigid-body motions.

In this paper, we show how to overcome these difficul-
ties by exploiting the rank and geometry of the multibody
fundamental matrix. More specifically,

1. Rank: we show that the rank of F depends on the
number of independent translational motions and on
the number of times they are repeated. Our results
complete the analysis in [14], which deals with the par-
ticular case of one repeated translational motion.

2. Geometry: we show that in the case of n rigid-body
motions with common rotation, F factors as the prod-
uct of a symmetric (n even) or skew-symmetric (n
odd) matrix times a rotation matrix. When the number



of motions is two or odd, this leads to a characteriza-
tion of the SVD of F . This characterization is possi-
ble thanks to a slightly new definition of the polyno-
mial embedding that makes the singular values of the
multibody fundamental matrix invariant with respect
to rotations of the image data.

3. Projection: we show that the characterization of the
SVD of F can be used to project an arbitrary matrix
estimated from noisy correspondences onto the space
of multibody fundamental matrices using linear alge-
braic techniques.

To the best of our knowledge, there is no prior work
studying the geometry and projection onto the space of
multibody fundamental matrices. In fact, finding a linear al-
gebraic characterization of this space is an extremely chal-
lenging problem. Therefore, although the case of two or
odd number of motions with common rotations may appear
to be restrictive, we believe this case is an important step
toward solving the general case.
Previous work. Most prior work on dynamic scene recon-
struction proceeds by first segmenting image measurements
into various motion models, and then estimating a single
motion model for each group of measurements, or else in
an iterative manner with the aid of the EM algorithm. The
number of models can also be estimated in a probabilistic
framework using model selection techniques such as [10, 6].
However, the convergence of iterative/probabilistic methods
to the global optimum depends strongly on correct initial-
ization [10, 9]. This has motivated the recent development
of geometric approaches to dynamic scene reconstruction
which do not require initialization. Algebraic approaches
include methods for multiple moving objects seen by an or-
thographic camera [1, 5, 17, 11], self-calibration from mul-
tiple motions [2], multiple points moving in planes [8], seg-
mentation of two [16] and multiple [14, 15] rigid-body mo-
tions from two or three [4] perspective views.

2. Multibody Epipolar Geometry
Given a set of point correspondences {(xj

1,x
j
2)}N

j=1 gen-
erated from n independently and rigidly moving objects,
our goal is to estimate their associated fundamental matrices
{Fi}n

i=1 and the object to which each image pair belongs.
To this end, let (x1,x2) be an arbitrary image pair asso-

ciated with any of the n moving objects. Then, there exists
a fundamental matrix Fi ∈ R

3×3 such that the epipolar
constraint x>

2 Fix1 = 0 is satisfied. Therefore, regardless
of the object associated with the image pair, the following
multibody epipolar constraint [14] must be satisfied by the
fundamental matrices {Fi}n

i=1 and the image pair (x1,x2)

MEC(x1,x2)
.
=

n∏

i=1

(
x>

2 Fix1

)
= 0. (2)

The multibody epipolar constraint (MEC) is a homoge-
neous polynomial of degree n in each of x1 or x2. There-
fore, if we let x1 = [x1, y1, z1]

>, then equation (2) viewed
as a function of x1 can be written as a linear combination of
the following Mn

.
= (n + 1)(n + 2)/2 independent mono-

mials {xn
1 , xn−1

1 y1, x
n−1
1 z1, . . . , z

n
1 }. After collecting all

these monomials into a vector

νn(x1) = [. . . , γn1,n2,n3
xn1

1 yn2

1 zn3

1 , . . .]> ∈ R
Mn , (3)

where γn1,n2,n3
=

√
n!

n1!n2!n3!
with 0 ≤ n1, n2, n3 ≤ n,

n1 +n2 +n3 = n, the MEC can be written as the following
a bilinear expression in νn(x1) and νn(x2) (see [14]):

νn(x2)
>Fνn(x1) = 0. (4)

The matrix F ∈ R
Mn×Mn is called the multibody funda-

mental matrix, and is a natural generalization of the funda-
mental matrix F ∈ R

3×3 to the case of n moving objects.
The embedding νn : R

3 → R
Mn is known in algebraic

geometry as the Veronese map of degree n [3].

Remark 1 (Rotation invariant) Notice that our definition
of the Veronese map is slightly different from the one in [14],
as we deliberately multiply the monomial xn1

1 yn2

1 zn3

1 by the
coefficient γn1,n2,n3

. As we will show in Theorem 2, this
new definition of the Veronese map makes it rotation invari-
ant, a property that will be shown to be crucial for charac-
terizing the space of multibody fundamental matrices.

Thanks to the Veronese map, we can write the epipolar
constraint for all N point correspondences as

V nf
.
=

[
νn(x1

2)⊗νn(x1
1) · · · νn(xN

2 )⊗νn(xN
1 )

]>
f =0, (5)

where f ∈ R
M2

n is the stack of the rows of F and ⊗ repre-
sents the Kronecker product. Given F , which can be com-
puted as the least squares solution of (5), the individual fun-
damental matrices {Fi}n

i=1 are obtained by factorizing the
bi-homogeneous polynomial

νn(x2)
>Fνn(x1) =

n∏

i=1

(
x>

2 Fix1

)
= 0 (6)

into a product of bilinear forms [14], or from the second
order derivatives of the MEC [12].

Notice that the multibody fundamental matrix F is deter-
mined by the fundamental matrices of the individual rigid
motions {Fi}n

i=1. Since these fundamental matrices are
of rank two and/or belong to the essential manifold, the
multibody fundamental matrix is not an arbitrary matrix in
R

Mn×Mn , but must satisfy some nonlinear constraints, such
as rank constraints and/or geometric constraints. Such con-
straints are clearly not exploited by the linear algorithm of



[14]. Therefore, the linear estimate of the multibody funda-
mental matrix may not be geometrically correct in the pres-
ence of noise, meaning that its associated MEC may not
perfectly factor as a product of epipolar constraints.

Such problems motivate our development in the rest of
this paper.

3. Rank of the Multibody Fundamen-
tal Matrix

It is well-known [7] that the rank of a fundamental matrix
F is two. The vector e in its left null space is called the
epipole and satisfies the following relationship e>F = 0.

In the case of n rigid-body motions, there exist n
epipoles {ei}n

i=1 such that e>
i Fi = 0. This implies that

(
e>

i F1x
) (

e>
i F2x

)
· · ·

(
e>

i Fnx
)

= νn(ei)
>Fνn(x) = 0,

for all x ∈ P
2. Since the vector νn(x) spans all of R

Mn

when x ranges over P
2,1 we immediately have [14]

νn(ei)
>F = 0 for i = 1, . . . , n. (7)

Therefore, the multibody fundamental matrix F is also rank
deficient, because the n embedded epipoles {νn(ei)}n

i=1 lie
in its left null space. Notice, however, that the dimension
of the null space of F need not be n, because the embed-
ded epipoles may not be linearly independent. For instance,
if two different rigid-body motions have the same transla-
tion, but different rotation, then they have the same epipole,
hence the same embedded epipole.

The purpose of this section is to characterize the null
space of F as a function of the number of motions n,
the number of different epipoles ne ≤ n (different up
to a scale factor) and the number of times {ki}ne

i=1, with∑ne

i=1 ki = n, that each epipole is repeated.2 More specifi-
cally, we prove the following theorem.

Theorem 1 (Null space of F) Let F be the multibody fun-
damental matrix generated by n fundamental matrices. Let
ne be the number of different epipoles and ki, i = 1, . . . , ne,
be the number of times each different epipole is repeated.
The rank of the multibody fundamental matrix is bounded
by

rank(F) ≤ Mn −
ne∑

i=1

Mki−1 ≤ Mn − n, (8)

where the inequality on the right hand side is true regardless
of whether the epipoles are repeated or not.

1This is simply because the Mn monomials in νn(x) are linearly in-
dependent.

2The particular case in which one epipole is repeated k times, and the
other n − k epipoles are different can be found in [14].

The formal proof of the theorem is organized as follows.
In Section 3.1, we show that if an epipole ei is repeated ki

times, then all the derivatives of νn of order less than ki

evaluated at ei lie in the left null space of F . In Section 3.2,
we show that only Mki−1 of these derivatives are linearly
independent, thus each different epipole contributes with an
Mki−1-dimensional subspace to null(F). In Section 3.3 we
show that these ne subspaces are independent, meaning that
they intersect only at 0. Therefore, the dimensionality of the
null space of F is at least

∑ne

i=1 Mki−1 ≥ n.

3.1. Partial derivatives at repeated epipoles
In this subsection, we show that when an epipole ei is re-
peated ki times, not only νn(ei) is in the null space of F ,
as shown by equation (7), but also the derivatives of νn(x)
of order less than ki at ei. Before proving this, we need the
following technical lemma, which allows us to express the
derivatives of the nth order MEC as a linear combination of
MECs of lower order.

Lemma 1 Let F (n) be the multibody fundamental matrix
generated by F1, . . . , Fn. Let F (n−l)

j be a multibody fun-
damental matrix generated by a choice of n− l out of the n
fundamental matrices for j = 1, . . . ,

(
n
l

)
. Then ∀(l1, l2, l3),

such that l1 + l2 + l3 = l, ∀x=[x, y, z]>, ∀y∈P
2, we have

∂l(νn(x)>F (n)νn(y))

∂xl1∂yl2∂zl3
=

(n

l)∑

j=1

αjνn−l(x)>F (n−l)
j νn−l(y),

where the coefficient αj ∈ R depends on F (n) and y, but is
independent of x.

We are now ready to show that the derivatives of νn at a
repeated epipole lie in the left null space of F .

Lemma 2 If ei ∈ P
2 is an epipole that is repeated ki times,

and x = [x, y, z]>, then ∀(l1, l2, l3), such that l1+l2+l3 =
l ≤ ki − 1, we have

∂lνn(x)>

∂xl1∂yl2∂zl3

∣∣∣∣
ei

F = 0. (9)

Proof. Since ei is repeated ki times, there are ki fundamental
matrices whose left null space is ei. Then any choice of n − l

fundamental matrices with l ≤ ki − 1 will contain at least one
fundamental matrix whose left null space is ei. From (7) we have
that ei is an epipole for each one of the multibody fundamental
matrices F

(n−l)
j with l ≤ ki − 1, i.e., νn−l(ei)

>F
(n−l)
j = 0.

This, together with Lemma 1, implies that for all y ∈ P
2 and for

all (l1, l2, l3) such that l1 + l2 + l3 = l ≤ ki − 1

∂lνn(x)>

∂xl1∂yl2∂zl3

˛

˛

˛

˛

ei

Fνn(y) = 0.

Since this is true for all y ∈ P
2, the claim follows.



3.2. Dimension of the subspaces spanned by
the partial derivatives

In this subsection, we show that an epipole repeated ki times
contributes to the null space of F with a subspace of dimen-
sion at least Mki−1. The result is a consequence of the fol-
lowing facts: 1) the subspace spanned by the partial deriva-
tives of order l is included in any of the subspaces spanned
by higher order partial derivatives; and 2) the dimension of
the subspace spanned by the derivatives of order l is Ml.

As for the first fact, notice that each entry of νn(x) is of
the form γn1,n2,n3

xn1yn2zn3 with n1 +n2 +n3 = n. After
some simple algebraic calculations, we can show that

(n − l)
∂lνn(x)

∂xl1∂yl2∂zl3
(10)

= [
∂l+1νn(x)

∂xl1+1∂yl2∂zl3
,

∂l+1νn(x)

∂xl1∂yl2+1∂zl3
,

∂l+1νn(x)

∂xl1∂yl2∂zl3+1
]x.

Therefore, if we let Al(x) be the span of the lth order par-
tial derivatives of νn(x), then (10) implies that Al(x) ⊆
Al+1(x) for all 0 ≤ l < n. By simple induction we have
that if ei is an epipole that is repeated ki times, then

A0(ei) ⊆ A1(ei) ⊆ · · · ⊆ Aki−1(ei). (11)

As a consequence of (11), studying the dimension of the
subspace spanned by all the partial derivatives at a repeated
epipole up to a certain order, boils down to finding the di-
mension of the subspace spanned by the partial derivatives
of exactly that order. The following lemma shows that all
the derivatives of a fixed order are linearly independent,
hence the dimension of Al(x) is Ml.

Lemma 3 For x ∈ P
2 and l < n, all the lth order partial

derivatives
{

∂lνn(x)
∂xl1∂yl2∂zl3

}

l1+l2+l3=l
are linearly indepen-

dent. Hence, the dimension of Al(x) is Ml.

Proof. Our goal is to show that

X

l1+l2+l3=l

αl1,l2,l3

∂lνn(x)

∂xl1∂yl2∂zl3
= 0 (12)

if and only if αl1,l2,l3=0 for all (l1, l2, l3) such that l1+l2+l3 = l.
Since x = [x, y, z]> 6= 0, without loss of generality let us as-
sume that x 6= 0. Notice each entry of ∂lνn(x)

∂xl1∂yl2∂zl3
is of the form

xn1−l1yn2−l2zn3−l3 . Hence the first entry of (12) has the form
αl,0,0x

n−l = 0, and therefore αl,0,0 = 0. By sequentially apply-
ing the same reasoning to entries of νn(x) of the form xn1yn2zn3 ,
where (n1, n2, n3) = (n+l1−l, l2, l3) for l1 = l−2, l−3, . . . , 0,
we obtain αl1,l2,l3xn−l = 0, and so αl1,l2,l3 = 0 as claimed.

3.3. Independence of subspaces corresponding
to different epipoles

In this subsection, we show that the subspaces associated
with different epipoles are independent, in the sense that
they intersect only at 0. Therefore, the dimension of the
left null space of F , which contains the union of the sub-
spaces associated with each one of the ne different epipoles,
is lower bounded by the sum of the dimensions of these sub-
spaces. The main result is summarized in Lemma 4.

Lemma 4 Given two different epipoles e1 and e2 that are
repeated k1 and k2 times, respectively, the span of the par-
tial derivatives at e1 and e2 intersect only at 0, i.e.,

Ak1−1(e1) ∩ Ak2−1(e2) = {0}. (13)

This completes the proof of the rank constraint on the multi-
body fundamental matrix rank(F) ≤ Mn − ∑ne

i=1 Mki−1.
Furthermore, because

∑ne

i=1 Mki−1 ≥ n when
∑ne

i=1 ki =
n, we immediately know that rank(F) ≤ Mn−n regardless
of whether the epipoles are repeated or not.

4. Geometry of the Space of Multibody
Fundamental Matrices

Recall from Section 2 that given enough point correspon-
dences, one can compute the corresponding multibody fun-
damental matrix F by solving the linear system V nf = 0

in (5). With perfect data, the linearly estimated F will auto-
matically satisfy the rank constraints studied in the previous
section. However, with noisy data the so-computed F may
not be geometrically correct, because the rank constraints
are not taken into account.

In this section, we propose to enforce these constraints
by first estimating the null space of V n ignoring the inter-
nal algebraic structure of F , and then projecting the matrix
thus obtained onto the space of multibody fundamental ma-
trices. Our analysis applies to both the uncalibrated case,
in which we only need to enforce rank constraints on F ,
as well as the calibrated case, in which the singular values
of F must satisfy additional constraints due to the geome-
try of so(3) × SO(3). First, we introduce some invariant
properties of the Veronese map and multibody fundamen-
tal matrix. Then, we use these properties to characterize
the singular values of F under some constrained scenarios.
Later, we propose a linear algebraic technique to project the
linearly estimated F onto the multibody fundamental space,
by exploiting both the rank and singular value constraints.

4.1. Invariance properties of the Veronese map
Before studying the geometry of the multibody fundamental
matrix, let us first explore some invariance properties of the
Veronese map, which will be important for the theoretical
development in the following subsections.



Theorem 2 The Veronese map as defined in (3) has the fol-
lowing properties for all x,y ∈ P

2:

• Inner product invariance: νn(y)>νn(x) = (y>x)n.
• Linear invariance: For all A ∈ R

3×3 there exists an
A ∈ R

Mn×Mn such that for all x, νn(Ax) = Aνn(x).
• Rotation invariance: For all R ∈ SO(3) there exists
R ∈ SO(Mn) such that for all x, νn(Rx) = Rνn(x).

Note that the rotation invariance property of the Veronese
map implies that if the image measurements {(xj

1,x
j
2)}N

j=1

are related by a multibody fundamental matrix F , then the
rotated image measurements {(R1x

j
1, R2x

j
2)}N

j=1, where
R1, R2 ∈ SO(3), are related by a multibody fundamen-
tal matrix F ′ = R>

2 FR1, where R1,R2 ∈ SO(Mn). This
is because

νn(R2x2)
>F ′νn(R1x1) = νn(x2)

>R>
2 FR1νn(x1).

Therefore, F and F ′ share the same singular values. This
property is crucial for characterizing the singular values of
F , as we show in the next subsection.

4.2. SVD of the multibody essential matrix
In the case of one motion, if we further assume that the
camera calibration parameters are known, then F is usually
called the essential matrix and can be expressed as [7]:

F = [T ]×R, with [T ]× ∈ so(3), R ∈ SO(3), (14)

where [T ]× ∈ se(3) is a skew-symmetric matrix generating
the cross product by T ∈ R

3. This property allows us to
characterize the singular values of F as {‖T‖, ‖T‖, 0}.

In this subsection, we aim to generalize this result to n
rigid-body motions by characterizing the singular values of
the multibody essential matrix F . To the best of our knowl-
edge, there is no prior work addressing this problem, which
we believe to be very challenging. Therefore, we restrict our
attention to the case of rigid-body motions with common
rotation. This case shows up, e.g., when a rigidly moving
camera observes multiple translating objects. We show that
in this case F can be written as the product of a symmetric
(n even) or skew-symmetric (n odd) matrix with a rotation
matrix as stated by the following theorem.

Theorem 3 Let {(R, Ti) ∈ SE(3)}n
i=1 be n independent

rigid-body motions sharing a common rotation matrix R.
Their multibody essential matrix F can be expressed as

F = T R, (15)

where T ∈ R
Mn×Mn is a multibody fundamental ma-

trix corresponding to purely translational motions {Ti}n
i=1

which is either symmetric (n even) or skew-symmetric (n
odd), and R ∈ SO(Mn) is a rotation matrix in R

Mn .

Proof. Notice that Fi = [Ti]×R, hence for all x1, x2 ∈ P
2, and

x′
1 = Rx1, the multibody epipolar constraint can be written as

ν
>
n (x2)Fνn(x1) =

n
Y

i=1

(x>
2 [Ti]×Rx1) =

n
Y

i=1

(x>
2 [Ti]×x

′
1) =

ν
>
n (x2)T νn(x′

1) = ν
>
n (x2)T νn(Rx1) = ν

>
n (x2)T Rνn(x1),

where the last step follows from the rotation invariance property
of the Veronese map. Therefore, F = T R, where T ∈ R

Mn×Mn

is a multibody fundamental matrix corresponding to purely trans-
lational motions {Ti}

n
i=1, as claimed. Furthermore, note that T

is the symmetric tensor product of n essential matrices associated
with n purely translational motions. Since such essential matrices
are skew-symmetric, we have that T > = (−1)nT , hence T is
symmetric when n is even and skew-symmetric otherwise.

Thanks to Theorem 3, we can characterize the SVD of a
multibody essential matrix with a common rotation for an
odd number of motions, as stated by the following theorem.

Theorem 4 (Singular values of a multibody essential
matrix with odd number of motions) Let n be an odd
number of independent rigid-body motions {R, Ti}n

i=1 with
a common rotation R ∈ SO(3). The corresponding multi-
body essential matrix has a SVD F = UΣV >, with

Σ = diag{σ1, σ1, σ2, σ2, . . . , σm, σm, 0, . . . , 0}, (16)

where σ1 ≥ . . . ≥ σm ≥ 0 and m = bMn−n
2 c, where bxc

is the largest integer that is less than or equal to x ∈ R.

Proof. Let T be the multibody fundamental matrix corresponding
to n translations {Ti}

n
i=1. Based on Theorem 3, T shares the

same singular values with F . T is a skew-symmetric matrix when
n is odd, and it is well-known that all non-zero singular values
of a skew-symmetric matrix must appear in pairs. Furthermore,
by Theorem 1, the rank of T is upper bounded by Mn − n, which
means that T has at least n or n+1 zero singular values, depending
on whether Mn − n is a multiple of two or not, respectively.

Unfortunately, the above singular value characterization
does not generalize to an even number of motions, because
in this case the multibody essential matrix for purely trans-
lational motions is symmetric. However, when the number
of independent motions is two, we are still able to com-
pletely specify the singular values of the multibody essen-
tial matrix, though using another method. More precisely,
we have the following result.

Theorem 5 (Singular values of two-body essential matrix)
Let F be the multibody essential matrix corresponding
to two independent motions (R, T1) and (R, T2) with a
common rotation R. Its singular values σ1 ≥ . . . ≥ σ6 are




σ1 = σ2 =

√
2||T1||2||T2||2+2(T1·T2)2

2

σ3 = ||T1||||T2||
2 − T1·T2

2 , σ4 = ||T1||||T2||
2 + T1·T2

2

σ5 = σ6 = 0

(17)

Furthermore, σ2
1 = σ2

2 = σ2
3 + σ2

4 .



Proof. From Theorem 3, it is sufficient to characterize the singular
values of the multibody essential matrix T corresponding to two
translational motions T1 and T2. To this end, let R0 be a rotation
matrix that maps T1 to T ′

1 = R0T1 = ||T1||[1, 0, 0]>, and let
T ′

2 = R0T2. Then the multibody fundamental matrix associated
with the two translational motions T ′

1 and T ′
2 = [u, s, v]>

T ′ = ‖T1‖

2

6

6

6

6

6

6

6

4

0 0 0 0 0 0

0 0 0 0 v
2

−
√

2u
2

0 0 0 −
√

2v
2

u
2

0

0 0 −
√

2v
2

0 0 0
0 v

2
u
2

0 −s 0

0 −
√

2u
2

0 s 0 0

3

7

7

7

7

7

7

7

5

is much simpler, yet shares the same SVD with T and F due to
the rotation invariance property. The proof of the theorem follows
by direct calculation of the singular values of T ′.

4.3. Projection onto multibody essential space
Given a characterization of the space of multibody essential
matrices, our remaining task is to enforce these constraints
in the estimation of F . We achieve this by projecting the
linearly estimated multibody fundamental matrix onto the
multibody essential manifold. The projection consists of
two main steps. First (Theorem 6), we show that the clos-
est matrix B (in Frobenius norm) to an arbitrary matrix A
can be obtained by minimizing the sum-of-squares distance
among their corresponding singular values. Second (Theo-
rems 7 and 8) we show how to find the optimal singular val-
ues for each one of the characterizations of the multibody
essential matrix.

Theorem 6 Let the singular values of A,B ∈ R
m×m be

σ1(A) ≥ . . . ≥ σm(A) and σ1(B) ≥ . . . ≥ σm(B). Then

min
U>U=I, V >V =I

||A − UBV >||2f =
m∑

i=1

(σi(A) − σi(B))2,

where ||A||f =
√

trace(A>A) is the Frobenius norm. Fur-
thermore, if A = U0diag{σ1(A), . . . , σm(A)}V >

0 , then the
minimizing matrices U∗ and V ∗ are such that U∗BV ∗T =
U0diag{σ1(B), . . . , σm(B)}V >

0 .

Based on this projection theorem, one can find a matrix
B with constrained singular values that is closest in Frobe-
nius norm to an arbitrary matrix A by replacing the singular
values of A by those with the desired structure.

In the case of uncalibrated cameras, as shown in Theo-
rem 1, the rank of the multibody fundamental matrix F is
upper bounded by Mn − n when there are n independent
motions, hence F has at least n zero singular values. Such
a rank constraint can be enforced by simply setting the n
smallest singular values of the estimated F to 0.

In the case of calibrated cameras, the next two theorems
show how to enforce both rank and singular value con-
straints for the motions with common rotation. The proof
of the theorems is very straightforward: We solve an opti-
mization problem in the spirit of Theorem 6 with constraints
as specified in Theorems 4 and 5 respectively, using the
method of Lagrange multipliers.

Theorem 7 (Projection onto the n-body essential space
for an odd number of motions with common rotation)
Let F̂ ∈ R

Mn×Mn be the estimate of an n-body essential
matrix with common rotation and n odd. Let the SVD of
F̂ be F̂ = U0diag{σ̂1, . . . , σ̂Mn

}V >
0 , σ̂1 ≥ . . . ≥ σ̂Mn

.
The n-body essential matrix F which minimizes the error
||F̂ − F||f is given by F = U0diag{σ1, . . . , σMn

}V >
0 ,

where σ2i−1 = σ2i = σ̂2i−1+σ̂2i

2 for 1 ≤ i ≤ bMn−n
2 c

and 0 otherwise.

Theorem 8 (Projection onto two-body essential space)
Let F̂ ∈ R

6×6 be the estimate of a two-body essential
matrix with common rotation. Let the SVD of F̂ be
F̂ = U0diag{σ̂1, . . . , σ̂6}V >

0 , where σ̂1 ≥ . . . ≥ σ̂6. The
two-body essential matrix F which minimizes the error
||F̂ − F||f is given by F = U0diag{σ1, . . . , σ6}V >

0 ,
where σ1 = σ2 = β

√
σ̂2

3 + σ̂2
4 , σ3 = βσ̂3, σ4 = βσ̂4,

σ5 = σ6 = 0 and β = 1
3 ( σ̂1+σ̂2√

σ̂2

3
+σ̂2

4

+ 1).

5. Experiments
In our experiments, we compare the following algorithms:

1. GPCA: The Generalized Principal Component Analy-
sis (GPCA) method [12, 13] is specifically designed
for purely translational motions. In this case, the
epipolar constraint reduces to the linear equation

x>
2 [Ti]×x1 = T>

i (x2 × x1) = T>
i ` = 0, (18)

where ` = (x2 × x1) ∈ R
3. Consequently, the seg-

mentation of 3-D translational motions is equivalent to
clustering data {`} lying on a collection of hyperplanes
in R

3 whose normal vectors are {Ti}n
i=1.

2. Multibody epipolar constraint without projection
(MEC-noprojection): This method is described in [14].
Based on the multibody epipolar constraint (MEC) in
(4), the method estimates the multibody fundamental
matrix F linearly by solving (5). Then, it computes
the epipolar line in the second view `

j
2 associated with

each image pair (xj
1,x

j
2) from the derivatives of the

MEC, and obtains the epipole in the second view ei for
each independent motion by clustering all the epipolar
lines using the GPCA algorithm [13]. The segmen-
tation of the image data is obtained by assigning im-
age pair (xj

1,x
j
2) to the ith motion whose associated



epipole ei is closest to the epipolar line `
j
2. Finally,

the single-body fundamental matrix Fi and the rigid-
body motions {(Ri, Ti)}n

i=1 are computed using the
standard 8-point algorithm.

3. Multibody epipolar constraint with projection (MEC-
projection): This algorithm is essentially the same as
MEC-noprojection, except for two main differences.
First, the linearly estimated multibody fundamental
matrix F is projected onto the multibody essential
manifold by enforcing the rank and singular value con-
straint, as described in Section 4.3. Second, the seg-
mentation of the image features is obtained by first
computing the epipole ej for each image pair (xj

1,x
j
2)

by a polynomial differentiation method as described in
[14], and then assigning the image pair (xj

1,x
j
2) to the

ith motion whose associated epipole ei is closest to the
epipole ej of (xj

1,x
j
2).

Synthesized data: First, we evaluate the performance of
our motion segmentation algorithm as a function of the
amount of noise in the image measurements on the synthe-
sized data. More specifically, we randomly pick n = 2 col-
lections of N = 100 feature points each and apply a differ-
ent rigid-body motion (R, Ti) ∈ SE(3), with R ∈ SO(3)
the rotation and Ti ∈ R

3 the translation (i = 1, . . . , n).
Zero-mean Gaussian noise with standard deviation (std)
from 0 to 2.0 pixels is added to the images x1 and x2 in-
dependently. The image size is 500 × 500 pixels, and we
run 500 trials for each noise level. For each trial, the error
between the true motions {(Ri, Ti)}n

i=1 and the estimates
{(R̂i, T̂i)}n

i=1 is computed as3

Translation error =
1

n

n∑

i=1

acos
( T>

i T̂i

‖Ti‖‖T̂i‖

)
(degrees).

Rotation error =
1

n

n∑

i=1

acos
( trace(RiR̂

>
i ) − 1

2

)
(degrees).

The segmentation error is estimated by computing the per-
centage of incorrectly classified feature points.

The left column of Figures 1(a)-(c) plots the mean er-
ror in translation, rotation and segmentation as a func-
tion of noise (standard deviation in pixels), in the case of
two purely translational motions with translation directions
T1 = [1, 0, 1]> and T2 = [1, 0,−1]>. We also generated
data undergoing two rigid-body motions with translations
T1 and T2 and a common rotation R. The rotation axis is
chosen at random, and the rotation angle is gradually in-
creased from 0 to 30 degrees. The noise level is fixed at 2.0
pixel standard deviation. Similarly to the pure translational
case, we plot the mean error in translation, rotation and seg-
mentation as a function of the rotation angle for the GPCA
and MEC-based algorithms in the right column of Figure 1.

3We do not compute the rotation error for the GPCA method because it
assumes that each rigid-body motion is pure translational.

Notice that in the case of purely translational motions,
the GPCA-based algorithm outperforms the MEC-based al-
gorithms. This is because GPCA is specifically designed
for purely translational motions. However, notice that as
the amount of rotation increases, the performance of GPCA
deteriorates very quickly, while the MEC-based algorithms
have almost constant error. This is expected, as the GPCA
algorithm is only applicable to translational motions.

Comparing the result of MEC-projection to that of MEC-
noprojection, we can clearly observe an improvement in the
recovered rigid-body motion in the sense of reducing the ro-
tation and translation errors. However, on average, the error
in the segmentation of the point correspondences increases
with the projection. This is because our method minimizes
the sum of the squares of the MECs, which does not depend
on the segmentation. Therefore, the projection step is meant
to improve the estimation of motion parameters, which does
not necessarily guarantee that feature classification will im-
prove.

Real images: We also evaluate the performance of our
motion segmentation algorithm on 22 pairs of real images
taken from the three-car sequence shown in Figure 2. Orig-
inally, there are three independent motions between every
two frames, among which the first two are pure transla-
tional. In order to use the MEC-projection algorithm, we ar-
tificially create a situation where there is a common rotation
between every pair of frames as follows: Let {(xj

1,x
j
2)} be

a set of point correspondences between two frames, and J1,
J2 and J3 be three sets of indices of feature points on the
three independently moving objects respectively. We first
compute the rigid-body motion (R, T3) of the third object
from its own image correspondences {(xj

1,x
j
2) : j ∈ J3}

using the standard eight-point algorithm, i.e.,

Kx
j
2 ∼ RKx

j
1 + T3, j ∈ J3,

where K is the camera calibration matrix. Because the first
and second motions are pure translational, we know that

Kx
j
2 ∼ Kx

j
1 + Ti, j ∈ Ji and i ∈ {1, 2}.

Therefore, if we let x̃
j
1 = K−1R>Kx1 (j ∈ J1 ∪ J2),

clearly the rotated point correspondences (x̃j
1,x

j
2) (j ∈ Ji)

undergoe a new rigid-body motion (R, Ti), where i∈{1, 2}.
In particular, we collect the point correspondences

{(x̃j
1,x

j
2) : j ∈ J1} ∪ {(xj

1,x
j
2) : j ∈ J3}, which un-

dergo a two-body motion with a common rotation following
the above reasoning, and apply our motion segmentation al-
gorithm. In Figure 2, the results as the segmentation error
of MEC-projection and MEC-nonprojection are compared
at 22 pairs of frames. We can see that projection improves
the segmentation results significantly in most cases. This is
encouraging as it suggests that a better estimation of mo-
tion parameters due to the projection indeed improves the
feature classification in some situations.



6. Conclusions
We have presented a new approach for the analysis of dy-
namic scenes containing multiple rigidly moving objects.
Our approach is based on a characterization of the space
of multibody fundamental matrices in terms of its rank and
geometry, which can be used to obtain a more robust esti-
mate of the multibody fundamental matrix in the presence
of noise via a suitable projection. Our characterization is
restricted to the case of two or odd number of rigid-body
motions with a common rotation. It remains open how to
characterize the space of multibody fundamental matrices
with different rotations or with an even number of motions.
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Figure 1: Error in the estimation of the translation, rotation
(degrees) and segmentation (percentage). In the left col-
umn, there are two purely translational motions, with the
x-axis indicating the standard deviation of the Gaussian ad-
ditive noise in the image points (in pixels); in the right col-
umn, there are two independent motions with a common
rotation, with the x-axis indicating the rotation angle (in
degrees). The noise level is 2.0 pixel standard deviation.
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Figure 2: Percentage of misclassification on a real sequence
with 2 independent motions with common rotation for dif-
ferent frame pairs. The x-axis indicates frame pair index.
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