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Phone: +39-049-8277709, Fax: +39-049-8277699, chiuso@dei.unipd.it

3 Department of CS, University of California, Los Angeles CA 90095, USA
Phone: (310) 825-4840, Fax: (310) 794-5056, soatto@ucla.edu

Abstract. We analyze the observability of the continuous and discrete
states of continuous-time linear hybrid systems. For the class of jump-
linear systems, we derive necessary and sufficient conditions that the
structural parameters of the model must satisfy in order for filtering and
smoothing algorithms to operate correctly. Our conditions are simple
rank tests that exploit the geometry of the observability subspaces. For
linear hybrid systems, we derive weaker rank conditions that are sufficient
to guarantee the uniqueness of the reconstruction of the state trajectory,
even when the individual linear systems are unobservable.

1 Introduction

Observability refers to the study of the conditions under which it is possible to
uniquely infer the state of a dynamical system from measurements of its output.
For discrete-event systems, the definition of current-location observability was
proposed in [12] as the property of being able to estimate the location of the
system after a finite number of steps. A similar definition was given in [11]
together with a polynomial test for observability, the so-called current-location
tree, which depends on properties of the nodes of a finite state machine associated
with the discrete-event system. For continuous systems with linear dynamics, it is
well known that the observability problem can be reduced to that of analyzing the
rank of the so-called observability matrix. This is the well known Popov-Belevic-
Hautus rank test for linear systems [10]. For nonlinear systems with smooth
dynamics, different definitions of observability have been proposed. We refer
interested readers to [8] and references therein for a recent comparison of different
definitions of observability. For hybrid systems, most of the previous work has
concentrated on the areas of modeling, stability, controllability and verification
(see previous workshop proceedings). Relatively little attention, however, has
been devoted to the study of the observability of both the continuous and discrete
states of a hybrid system.
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1.1 Prior work

To the best of our knowledge, the first attempt to characterize the observability
of hybrid systems can be found in [15], where a definition of observability is
proposed. [14] gives conditions for the observability of a particular class of linear
time-varying systems where the system matrix is a linear combination of a ba-
sis with respect to time-varying coefficients. [6] addresses the observability and
controllability of switched linear systems with known and periodic transitions.
[13] gives a condition for the observability of switched linear systems in terms of
the existence of a discrete state trajectory. [3] proposes the notion of incremental
observability for piecewise affine systems. Such a notion requires the solution of
a mixed-integer linear program in order to be tested. [16] derives necessary and
sufficient conditions for the observability of discrete-time jump-linear systems.
The conditions can be tested using simple simple rank tests on the structural pa-
rameters of the model. [5] derives different rank tests for the weak observability
of jump-Markov linear systems. [9] gives observability conditions for stochastic
linear hybrid systems in terms of the covariances of the outputs.

A problem related to observability that has been recently considered is the
design of observers for linear hybrid systems. [1] considers the case in which the
discrete state is known and proposes a Luenberger observer for the continuous
state. [2] combines location observers with Luenberger observers to design a
hybrid observer that identifies the discrete location in a finite number of steps
and converges exponentially to the continuous state.

1.2 Contributions

In this paper we study the observability of a class of linear hybrid systems known
as jump- (or switched-) linear systems, i.e., systems whose evolution is deter-
mined by a collection of linear models with continuous state xt ∈ Rn connected
by switches among a number of discrete states λt ∈ {1, 2, . . . , N}. In Section 2
we introduce a notion of observability for jump-linear systems. We define the ob-
servability index ν of a jump-linear system and use it to derive rank conditions
that the structural parameters of the model must satisfy in order for filtering
and smoothing algorithms to operate correctly. We show that the state trajectory
is observable if and only if the pairwise intersection of different observable sub-
spaces is trivial. We also show that the switching times are observable if and only
if the difference between any pair of observability matrices is nonsingular. The
rank conditions we derive are simpler than their discrete-time counterparts [16]
and can be thought of as an extension of the Popov-Belevic-Hautus rank test for
linear systems. Our conditions only depend on the geometry of the observability
subspaces, and therefore they are applicable also to the case of hybrid models
where the switching mechanism depends on the continuous state. In Section 3
we derive weaker rank conditions that guarantee the observability of a linear hy-
brid system, even if the individual linear systems are unobservable. In this case,
observability is gained by requiring that the output switches at least once in
the given observability interval. Section 4 concludes the paper with a discussion
about the role of the inputs in the observability of the discrete state.



2 Observability of jump-linear systems

We consider a class of continuous-time hybrid systems known as jump-linear
systems, i.e., systems whose evolution is determined by a collection of linear
models with continuous state xt ∈ Rn connected by switches of a number of
discrete states λt ∈ {1, 2, . . . , N}. The evolution of the continuous state xt is
described by the linear system

ẋt = A(λt)xt (1)

yt = C(λt)xt, (2)

where A(k) ∈ Rn×n and C(k) ∈ Rp×n, for k ∈ {1, 2, . . . , N}. The evolution
of the discrete state λt can be modeled, for instance, as an irreducible Markov
chain governed by the transition map π(t)

.
= P (λt+1|λt) or, as we do here, as a

deterministic but unknown input that is piecewise constant, right-continuous and
finite-valued1. Furthermore, we assume that the hybrid system admits no Zeno
executions. More specifically, we assume that the switching times {ti, i ≥ 1} are
separated by at least τ > 0; that is, we assume that ti+1 − ti ≥ τ > 0. Having a
minimum separation τ between consecutive switches is not a strong assumption
to make, since τ can be arbitrarily small, as long as it is constant and positive.

Given a jump-linear system Σ = {A(k), C(k); k = 1, . . . , N}, we focus our
attention on how to infer the state of the system {xt, λt} from the output {yt}.
The simplest instance of this problem can be informally described as follows.
Assume that we are given the model parameters A(·), C(·) and that Σ evolves
starting from an (unknown) initial condition (xt0 , λt0). Given the output {yt} in
the interval [t0, t0+T ], is it possible to reconstruct the continuous state trajectory
xt and the discrete state trajectory λt uniquely?

If the sequence of discrete states λt0 , λt1 , . . . , λt0+T is known, then the output
of the system between two consecutive jumps can be written explicitly in terms
of the model parameters A(·), C(·), and the initial value of the continuous state
xt0 as

yt =





C(λt0)eA(λt0 )(t−t0)xt0 t ∈ [t0, t1)

C(λt1)eA(λt1 )(t−t1)eA(λt0 )(t1−t0)xt0 t ∈ [t1, t2)
...

...

(3)

We thus propose the following notions of indistinguishability and observability.

1 Most of the literature on hybrid systems restricts the switching mechanism of the
discrete state to depend on the value of the continuous state. While this is generally
sensible in the study of stability, it could be a significant restriction to impose in
the context of filtering and identification. Therefore, our model is more general from
an observability point of view, since it imposes no restriction on the mechanism
that governs the transitions between discrete states. The conditions we derive are
therefore sufficient for systems with state-dependent transitions.



Definition 1 (Indistinguishability). We say that the states {xt0 , λt} and
{x̄t0 , λ̄t} are indistinguishable on the interval t ∈ [t0, t0 +T ] if the correspond-
ing outputs in free evolution {yt} and {ȳt} are equal. We use {xt0 , λt0 , . . . , λt0+T }
instead of {xt0 , λt} to denote the state when the switching times are known. We
denote the set of states which are indistinguishable from {xt0 , λt} as I(xt0 , λt).

Definition 2 (Observability). We say that a state {xt0 , λt} is observable on
t ∈ [t0, t0 +T ] if I(xt0 , λt) = {xt0 , λt}. When any admissible state is observable,
we say that the model Σ is observable.

Remark 1. Notice that we have defined observability in terms of the initial con-
tinuous state xt0 and the discrete state evolution λt rather than in terms of the
hybrid state evolution {xt, λt}. This is because if A(·), xt0 and λt are known,
then xt is automatically determined, similarly to (3).

2.1 Observability of the initial state

We first analyze the conditions under which we can determine xt0 and λt = λt0
for t ∈ [t0, t1) uniquely, i.e., before a switch occurs. We have that {xt0 , λt0} is
indistinguishable from {x̄t0 , λ̄t0} if and only if

C(λt0)eA(λt0 )(t−t0)xt0 = C(λ̄t0)eA(λ̄t0 )(t−t0)x̄t0 for t ∈ [t0, t1). (4)

After expanding both sides in Taylor series about t0, the indistinguishability
condition can be written as

y
(k)
t0 = C(λt0)A(λt0)kxt0 = C(λ̄t0)A(λ̄t0)kx̄t0 for k ≥ 0. (5)

If we letO∞(λt0) andO∞(λ̄t0) be the infinite-dimensional extended observability
matrices of the pairs (A(λt0), C(λt0)) and (A(λ̄t0), C(λ̄t0)), respectively, then the
indistinguishability condition can be compactly written as

O∞(λt0)xt0 = O∞(λ̄t0)x̄t0 . (6)

Therefore, the initial state {xt0 , λt0} is observable if and only if the rank condi-
tion rank([O∞(λt0) O∞(λ̄t0)]) = 2n holds. It turns out that, as in the linear sys-
tems case, we can restrict our attention to finite-dimensional observability matri-
ces, because the extended joint observability matrix O∞(k, k′) , [O∞(k) O∞(k′)]
equals the extended observability matrix of the 2n-dimensional system defined
by

A(k, k′) =

[
A(k) 0

0 A(k′)

]
and C(k, k′) =

[
C(k) C(k′)

]
.

Hence, we define the joint observability index of systems k and k′ as the minimum
integer ν(k, k′) such that the rank of the finite-dimensional joint observability
matrix Oj(k, k′) , [Oj(k) Oj(k′)], where

Oj(k) = [C(k)T (C(k)A(k))T · · · (C(k)A(k)j−1)T ]T , (7)



stops growing. Thus, we can rephrase the indistinguishability condition in terms
of the largest joint observability index ν , max

k 6=k′
{ν(k, k′)} ≤ 2n as

Yν(t0) ,




yt0
ẏt0
...

y
(ν−1)
t0


 = Oν(λt0)xt0 = Oν(λ̄t0)x̄t0 . (8)

From this equation we derive the following condition on the observability of the
initial state {xt0 , λt0}.

Lemma 1 (Observability of the initial state). If t1 − t0 ≥ τ > 0, then the
initial state {xt0 , λt0} is observable if and only if for all k 6= k′ ∈ {1, . . . , N} we
have rank([Oν(k) Oν(k′)]) = 2n. Furthermore, the initial state is given by

λt0 = {k : rank([Oν(k) Yν(t0)]) = n} and xt0 = Oν(λt0)†Yν(t0), (9)

where M † = (MTM)−1MT .

We illustrate the applicability of Lemma 1 with the following example.

Example 1 (Two observable linear systems give an unobservable hybrid system).
Consider the one-dimensional jump-linear system composed of the two linear
systems

ẋ = 0
and

ẋ = 0

y = c1x y = c2x ,
(10)

where c1 6= 0, c2 6= 0 and c1 6= c2. We observe that the initial state of each
linear system is observable, but the initial state of the jump-linear system is
not: One can set the initial condition of system 1 to x0 and the initial condition
of system 2 to c1x0/c2 and obtain identical outputs. That is, states {x0, 1}
and {c1x0/c2, 2} are indistinguishable. Notice that in this example the rank-2n
condition is violated, because rank([c1 c2]) = 1 < 2.

Remark 2 (Observability subspaces). Notice that the rank-2n condition implies
that each linear system (A(k), C(k)) must be observable, because it implies that
rank(Oν(k)) = n for all k ∈ {1, . . . , N}. In addition, if we denote the range of
Oν(k) as the observability subspace associated with linear system k, then the
rank-2n condition implies that the intersection of the observability subspaces of
each pair of linear systems must be trivial. In fact, the set of unobservable states
can be directly obtained from the intersection of the observability subspaces.
One could therefore introduce a notion of distance between models using the
angles between the observability subspaces, similarly to [4].



2.2 Observability of the first switching time

Lemma 1 provides conditions for the observability of the initial state {xt0 , λt0}.
We are now interested in the observability of {xt0 , λt} for t ∈ [t0, t1]. Since λt
is a piecewise constant function, we only need to concentrate on the conditions
under which the first switching time, t1, can be uniquely determined. The output
of the jump-linear system is given by

yt =

{
C(λt0)eA(λt0 )(t−t0)xt0 t ∈ [t0, t1)

C(λt1)eA(λt1 )(t−t1)eA(λt0 )(t1−t0)xt0 t ∈ [t1, t2)
(11)

and we want to determine if it is possible to also write the output as

yt =

{
C(λt0)eA(λt0 )(t−t0)xt0 t ∈ [t0, t̄1)

C(λt̄1)eA(λt̄1 )(t−t̄1)eA(λt0 )(t̄1−t0)xt0 t ∈ [t̄1, t2) .
(12)

Without loss of generality, assume that t̄1 > t1 and consider the output yt in
the interval [t1, t̄1). We observe that t1 is indistinguishable if and only if for
t ∈ [t1, t̄1)

C(λt0)eA(λt0 )(t−t1)eA(λt0 )(t1−t0)xt0 = C(λt1)eA(λt1 )(t−t1)eA(λt0 )(t1−t0)xt0 .(13)

After expanding both sides in Taylor series about t1, the indistinguishability
condition can be written as

y
(k)
t1 = C(λt0)A(λt0)kxt1 = C(λt1)A(λt1)kxt1 for k ≥ 0. (14)

As before, then the indistinguishability condition can be compactly written in
terms of the extended observability matrices as

Oν(λt0)xt1 = Oν(λt1)xt1 . (15)

Hence, t1 is indistinguishable when the difference between the observability ma-
trices Oν(λt0) − Oν(λt1) is singular. Since this could happen for any pair of
observability matrices, in order for t1 to be observable, we need to ensure that
the difference of any pair of observability matrices is nonsingular. We therefore
have the following Lemma on the observability of the first switching time.

Lemma 2 (Observability of the first switching time). If t1 − t0 ≥ τ >
0, then the first switching time is observable if and only if for all k 6= k′ ∈
{1, . . . , N} we have rank(Oν(k)−Oν(k′)) = n. Furthermore, the first switching
time can be recovered as the time instance at which the output yt is not C∞, i.e.,

t1 = min{t > t0 : Yν(t−) 6= Yν(t+)}. (16)

Remark 3 (Continuous reset map). Notice that if the continuous reset is different
from the identity map, then the switching times can be found by looking at the
discontinuities of yt directly, with no need for higher-order derivatives of yt.



Remark 4 (Unobservable subspaces). Notice that if a continuous state x is un-
observable for linear systems k and k′, then Oν(k)x = Oν(k′)x = 0, hence
(Oν(k)−Oν(k′))x = 0. Therefore, the rank-n condition rank(Oν(k)−Oν(k′)) = n
implies that the intersection of the null-spaces of any pair of observability matri-
ces, i.e., the intersection of the unobservable subspaces, must be trivial. While
this observation is irrelevant for the observability of a jump-linear system, be-
cause each linear system has to be observable (See Remark 2), it will be quite
important for uniquely reconstructing the state trajectory of unobservable jump-
linear systems, as we will discuss in Section 3.

2.3 Observability of jump-linear systems

Once xt0 , λt0 and t1 have been determined, we just repeat the process for the
remaining jumps. The only difference is that xti , i ≥ 1, will be given. How-
ever, since λt0 is originally unknown, we still need to check the rank-2n con-
dition of Lemma 1 for any pair of extended observability matrices in order for
xt0 and λt0 to be uniquely recoverable. Therefore, since the rank-2n condition
rank([Oν(k) Oν(k′)]) = 2n implies the rank-n condition rank(Oν(k)−Oν(k′)) =
n, we have the following theorem on the observability of jump-linear systems.

Theorem 1 (Observability of jump-linear systems). If for all i ≥ 0 we
have ti+1− ti ≥ τ > 0, then {xt0 , λt} is observable on t ∈ [t0, t0 + T ] if and only
if for all k 6= k′ ∈ {1, . . . , N} we have rank([Oν(k) Oν(k′)]) = 2n. Furthermore,
the state trajectory can be uniquely recovered as

λt0 = {k : rank([Oν(k) Yν(t0)]) = n}, (17)

xt0 = Oν(λt0)†Yν(t0), (18)

ti = min{t > ti−1 : Yν(t−) 6= Yν(t+)}, (19)

λti = {k : rank([Oν(k) Yν(ti)]) = n}. (20)

Remark 5 (Observability of discrete-time jump-linear systems). Notice that the
rank conditions of Theorem 1 are simpler than their discrete-time counterparts.
In discrete time, it is possible that a switch occurs at time ti but its effect in
the output appears some time steps after ti. In that case, in order to guarantee
observability, additional rank constraints need to be imposed, for example the
A(·) matrices must be nonsingular and they cannot commute. We refer interested
readers to [16] for more details about the discrete-time case.

Remark 6 (Observability of jump-linear systems in terms of observability oper-
ators). The rank constraints of Theorem 1 can also be expressed in terms of
observability operators. For example, let L(k) : Rn → C∞[0,τ ] be defined as

x 7→ y(t) = [L(k)x](t) , C(k)eA(k)tx for t ∈ [0, τ ]. (21)

Also let the adjoint observability operator L∗(k) : C∞[0,τ ] → Rn be defined as

ξ(·) 7→ x = L∗(k)ξ ,
∫ τ

0

eA(k)T (τ−s)C(k)T ξ(s) ds for ξ(·) ∈ C∞[0,τ ]. (22)



Then a linear hybrid system is observable if and only if for all k 6= k ′ ∈ {1, . . . , N}
the range of the operator L(k) × L(k′) is 2n-dimensional. This implies that
Range(L(k))∩Range(L(k′)) = {0} and that L(k)−L(k′) is injective. Then one
can reconstruct the state trajectory by orthogonally projecting the output onto
the range of these observability operators. More specifically, one can determine
the initial discrete state λt0 by looking at k such that

y(t)−
[
L(k)(L∗(k)L(k))−1L∗(k)y

]
(t) = 0 ∀t ∈ [0, τ), τ ≤ t1.

Given λt0 , the initial continuous xt0 can be determined as

xt0 = (L∗(λt0)L(λt0))−1L∗(λt0)y(t).

Similarly, the first switching time, t1, can be determined as the first time instant
t > t0 such that

y(t)−
[
L(λt0)(L∗(λt0)L(λt0))−1L∗(λt0)y

]
(t) 6= 0.

The same argument applies for the subsequent discrete states and switching
times.

Remark 7. For ease of exposition and in order to make the connection with the
discrete-time case, we have chosen to state our results in terms of derivatives of
the output. Nevertheless, when it comes to doing computations and quantifying
errors, working with grammians may turn out to be more convenient. Just to
mention one point, in practice one needs to quantify “how far” two linear systems
are and how this affects the estimation of the initial state and of the discrete
sequence in the presence of “noise”. If one considers, for instance, L2 distances
in the output spaces d[0,τ ](k) =

∫ τ
0
‖y(t) −

[
L(k)(L∗(k)L(k))−1L∗(k)y

]
(t)‖2 dt

then a natural way to measure the distance between two systems is by looking
at the subspace angles between observability subspaces, as suggested in [4]. In
fact, assume that y(t) has been generated by system 1 and we measure d[0,τ ](2)

then it holds that d[0,τ ](2) ≥ ‖y‖2 sin2(θmin) where θmin is the smallest canonical
angle between Range(L(1)) and Range(L(2)). Investigating these issues will be
the subject of future research.

Remark 8 (Role of the input in the observability of the discrete state). The no-
tion of observability we have proposed does not depend on the input. This is
consistent with the standard theory for linear systems. However, identifying the
discrete state of a jump-linear system is equivalent to a system identification
problem, where the class of possible models is restricted to a finite set. Unlike
observability, identifiability – even for linear systems – does depend on the in-
put2, and therefore the input ought to play a role in the identification of linear
hybrid systems. We discuss this further in Section 4.

2 This fact was pointed out to us by Prof. Claire Tomlin (personal communication).



3 Observability of linear hybrid systems

Theorem 1 gives necessary and sufficient conditions for the observability of a
class of linear hybrid systems known as jump-linear systems. Since the theorem
imposes no restriction on the mechanism that governs the transitions between
discrete states, the conditions of Theorem 1 remain sufficient for other classes of
linear hybrid systems in which the switching mechanism depends on the value of
the continuous state, e.g. piecewise affine systems, as long as there is a minimum
separation τ > 0 between consecutive switches. This is because, given a linear
hybrid system H, one can always associate with it a jump-linear systems Σ that
abstracts the discrete behavior as well as the interaction between discrete and
continuous states defined by the guards and invariants. Then, if the jump-linear
system Σ is observable, so is the linear hybrid system H.

However, the conditions of Theorem 1 are not necessary for the observabil-
ity of a linear hybrid system. In fact, there are cases in which the associated
jump-linear system is itself unobservable (in the sense of Definition 2), yet it is
possible to uniquely reconstruct the state trajectory from a particular output3.
Intuitively, this happens when the linear hybrid system switches from an unob-
servable state for system k to an observable one for system k′, as we illustrate
in the following example. (See [3] for additional examples in discrete-time).

Example 2 (Unique reconstruction from two unobservable linear systems). Con-
sider a two-dimensional linear hybrid system composed of the two linear systems

ẋ =

[
1 0
0 2

]
x ẋ =

[
1 0
0 2

]
x

and
y =

[
1 0
]
x y =

[
0 1
]
x .

(23)

Let t0 = 0, T = 2, x0 = [0, 1]T and assume that there is a single switch from
system 1 to system 2 at time t1 = 1. Then ν = 2,

xt =

[
0
1

]
e2t, yt =

{
0 t ∈ [0, 1)

e2t t ∈ [1, 2)
, O2(1)=

[
1 0
1 0

]
and O2(2)=

[
0 1
0 2

]
.

In this example, both linear systems are unobservable and the initial condition
lies in the unobservable subspace of system 1. Also notice that the rank-2n
condition is violated, since rank([O2(1) O2(2)]) = 2 < 4, thus Lemma 1 does
not apply. However, the first switching time can be uniquely recovered, because
the rank-n condition of Lemma 2 holds since rank(O2(2)−O2(1)) = 2. In fact,
yt is discontinuous at t1 = 1. Furthermore, one can uniquely reconstruct xt0 , λt0
and λt1 , because the unobservable subspace of system 1 is observable for system
2 and vice-versa. We make this more precise in the rest of this Section.

3 Notice that this is impossible for linear systems. A linear system is either observable,
in which case one can uniquely reconstruct the state for any given nonzero output,
or it is unobservable, in which case for any output there are always infinitely many
possible state trajectories generating it.



Following Example 2, in this section we derive weaker sufficient conditions
under which one can uniquely reconstruct the state trajectory of a linear hybrid
system given a particular output. We show how this can be done despite the
individual linear systems being unobservable or the output of the system being
zero during a switching interval. We start by assuming that we know the number
and location of the switching times in the interval [t0, t0 + T ]. According to our
discussion in the previous section, this is equivalent to assuming that for all
k 6= k′ ∈ {1, . . . , N} we have rank(Oν(k)−Oν(k′)) = n. Notice that this rank-n
condition does not require the individual linear systems to be observable. Now,
from the indistinguishability condition

Yν(t0) = Oν(λt0)xt0 = Oν(λ̄t0)x̄t0 , (24)

we have that the initial discrete state is indistinguishable whenever the intersec-
tion of any pair of observability subspaces is nontrivial, which happens if

rank([Oν(k) Oν(k′)]) < rank(Oν(k)) + rank(Oν(k′)). (25)

We thus have the following:

1. If Yν(t0) 6= 0, then the discrete state λt0 can be uniquely recovered provided
that the intersection of any pair of observability subspaces is trivial. That
is, for all k 6= k′ ∈ {1, . . . , N} we must have

rank([Oν(k) Oν(k′)]) = rank(Oν(k)) + rank(Oν(k′)). (26)

In this case we have

λt0 = {k : rank([Oν(k) Yν(t0)]) = rank(Oν(k))}. (27)

Notice that we do not needOν(k) to be full rank, hence the rank-2n condition
may be violated here.

2. If Yν(t0) 6= 0 and t1 > t0 + T , i.e., if there is no switch during the observ-
ability window, then the continuous state can be uniquely recovered if and
only if each linear system is observable, i.e., if for all k ∈ {1, . . . , N} we have
rank(Oν(k)) = n. Let λt0 be defined as in (27), then we have

xt0 = Oν(λt0)†Yν(t0). (28)

This means that, if there is no switch, then we do need every system to be
observable, hence the rank-2n condition has to be in effect.

3. If Yν(t0) 6= 0 and t1 < t0 + T , i.e., if at least one switch occurs during
the observability window, then the continuous state may not be uniquely
recovered from the output in the interval [t0, t1), but one may still be able
to uniquely recover it from the output on the whole interval [t0, t0 + T ].
Loosely speaking, we need to find a condition such that the part of xt0 that
is not observable on [t0, t1) becomes observable on [t1, t0 + T ]. For example,
imagine that there is only one switch at time t1. Then we have that

[
Oν(λt0)

Oν(λt1)eA(λt0 )(t1−t0)

]
xt0 =

[
Yν(t0)
Yν(t1)

]
. (29)



Therefore, in order to determine xt0 uniquely we need

rank

[
Oν(λt0)

Oν(λt1)eA(λt0 )(t1−t0)

]
= n. (30)

This rank condition is trivially satisfied, because the null-space of Oν(λt0)
is eA(λt0 )-invariant and we have assumed that rank(O(λt1)−O(λt0)) = n in
order for t1 to be observable (See Remark 4).
More generally, if there are j switches, t1, t2, . . . tj , on the interval [t0, t0 +T ],
Yν(ti) 6= 0 for i = 0, 1, . . . , j, and the corresponding sequence of discrete
states λt0 , λt1 , . . . , λtj can be uniquely recovered similarly to (27), then the
initial continuous state xt0 can be uniquely recovered from




Oν(λt0)
Oν(λt1)eA(λt0 )(t1−t0)

...

Oν(λtj )e
A(λtj−1

)(tj−tj−1) · · · eA(λt0 )(t1−t0)


xt0 =




Yν(t0)
Yν(t1)

...
Yν(tj)


 . (31)

Notice again that the matrix on the left is full rank thanks to the rank-n
condition rank(Oν(k)−Oν(k′)) = n.

4. If Yν(t0) = 0, then we cannot compute λt0 from (27). However, the rank
constraint in (30) guarantees that Yν(t1) = Oν(λt1)eA(λt0 )(t1−t0)xt0 6= 0.
Therefore, we can solve for λt1 uniquely similarly to (27). Given λt1 , the rank-
n condition rank(Oν(k)−Oν(k′)) = n guarantees that λt0 can be uniquely
determined as

λt0 = {k : rank

[
Oν(k) 0
Oν(λt1) Yν(t1)

]
= rank

[
Oν(k)
Oν(λt1)

]
}. (32)

More generally, whenever the output is zero in an interval [ti, ti+1), i.e.,
whenever Yν(ti) = 0, we must have that Yν(ti+1) 6= 0 from which we can
uniquely recover λti+1

as in (27). Given λti+1
one can uniquely determine

λti as in (32). Then we are back into the situation of step 3 in which the
discrete sequence is known, hence xt0 can be uniquely recovered from (31).

We summarize our discussion in the following Theorem.

Theorem 2 (Observability of linear hybrid systems). Consider a linear
hybrid system H such that the switching times satisfy ti+1 − ti ≥ τ ∀i ≥ 0, and
let Σ = {A(k), C(k); k = 1, . . . , N} be the associated jump-linear system. We
have the following.

1. Observability of the switching times: If the difference between any pair
of observability matrices is nonsingular; that is, if

for all k 6= k′ ∈ {1, . . . , N} we have rank(Oν(k)−Oν(k′)) = n, (33)

then the switching times can be uniquely recovered as the time instances at
which the output yt is not C∞, that is

ti = min{t > ti−1 : Yν(t−) 6= Yν(t+)}. (34)

We denote by j the total number of switches in the interval [t0, t0 + T ].



2. Observability of the discrete state trajectory: If in addition the inter-
section of the observability subspaces of any pair of observability matrices is
trivial, that is if for all k 6= k′ ∈ {1, . . . , N} we have

rank([Oν(k) Oν(k′)]) = rank(Oν(k)) + rank(Oν(k′)), (35)

then the discrete state trajectory can be uniquely recovered as follows:
(a) For the switching times ti such that Yν(ti) 6= 0, obtain the discrete state

similarly to (27) as

λti = {k : rank([Oν(k) Yν(ti)]) = rank(Oν(k))}. (36)

(b) For the switching times ti such that Yν(ti) = 0,
– Compute λti+1

similarly to (36) as

λti+1
= {k : rank([Oν(k) Yν(ti+1)]) = rank(Oν(k))}. (37)

– Compute λti similarly to (32) as

λti = {k : rank

[
Oν(k) 0
Oν(λti+1

) Yν(ti+1)

]
= rank

[
Oν(k)
Oν(λti+1

)

]
}. (38)

3. Observability of the initial continuous state: Under the conditions
stated before, the initial value of the continuous state can be uniquely recov-
ered as

xt0 =




Oν(λt0)
Oν(λt1)eA(λt0 )(t1−t0)

...

Oν(λtj )e
A(λtj−1

)(tj−tj−1) · · · eA(λt0 )(t1−t0)




† 


Yν(t0)
Yν(t1)

...
Yν(tj)


 . (39)

Example 3 (Unique reconstruction of the state of a linear hybrid system com-
posed of two unobservable linear systems). Consider the two-dimensional linear
hybrid system of Example 2, where t0 = 0, t1 = 1, T = 2, x0 = [0, 1]T and

ẋ =

[
1 0
0 2

]
x ẋ =

[
1 0
0 2

]
x

y =
[
1 0
]
x y =

[
0 1
]
x

xt =

[
0
1

]
e2t yt =

{
0 t ∈ [0, 1)

e2t t ∈ [1, 2)
. (40)

In this example we have ν = 2,

O2(1) =

[
1 0
1 0

]
, O2(2) =

[
0 1
0 2

]
, Y2(0) =

[
0
0

]
and Y2(1) =

[
e2

2e2

]
. (41)

Therefore, both linear systems are unobservable and the initial condition lies in
the null-space of O2(1). Also notice that the rank-2n condition is violated, since
rank([O2(1) O2(2)]) = 2 < 4, thus Lemma 1 does not apply. However, we have
rank(O2(1) − O2(2)) = 2, thus t1 can be uniquely recovered, because yt is dis-
continuous at t1 = 1. Also rank([O2(1) O2(2)]) = rank(O2(1)) + rank(O2(2)) =
1+1 = 2, thus λt1 = 2 can be uniquely recovered, because rank([O2(1) Y2(1)]) =
2 6= 1 while rank([O2(2) Y2(1)]) = 1 = 1. Given t1 and λt1 , one can estimate
λt0 = 1 uniquely from (38), and xt0 = [0, 1]T uniquely from (39).



4 Conclusions, discussion and open issues

We have presented an analysis of the observability of the continuous and discrete
states of linear hybrid systems. For jump-linear systems, we demonstrated that
under mild assumptions one can derive necessary and sufficient conditions that
the structural parameters of the model must satisfy in order to guarantee the
observability of the system. Our characterization is simple and intuitive and
sheds light on the geometry of the observability subspaces generated by the
output of a jump-linear system. For linear hybrid systems, we derived weaker
rank conditions that guarantee the uniqueness of the reconstruction of the state
trajectory, even if the individual linear systems are unobservable. In this case,
observability is gained by requiring that the given output switches at least once in
the observability interval. Although the conditions we have derived are sufficient
for the observability of linear hybrid systems in which the switching mechanism
depends on the value of the continuous state, e.g. piecewise affine systems, in
the near future we expect to obtain weaker conditions that are also necessary.

An important issue that we did not addressed is concerned with characteriz-
ing the set of observationally equivalent models. In linear systems theory, this is
done elegantly by the Kalman decomposition, which partitions the state space
into orthogonal subspaces. Future work will address a characterization of this
set for linear hybrid models.

Other aspects which remain to be investigated are the effect of measured
inputs on the observability. The analysis we have carried out in the first part
of the paper is limited to the case where the system evolves starting from some
initial state with no driving input. The conditions we have derived, therefore,
involve only the matrices A(·) and C(·). As we have anticipated in Remark 8, this
is only part of the story. In fact, estimating the discrete state can be interpreted
as the identification of a model within a finite number of possible models, and
from a finite set of data. Therefore, unfortunately, one cannot use asymptotic
results since, by assumption, switches occur in finite time. Instead, conditions
on the input, such as persistence of excitation, that play a crucial role in system
identification, will likely play an important role in the observability of hybrid
systems too. For instance, let us consider a simple example where N = 2 and
the two linear systems have identical A(·) and C(·) matrices, but different
input-to-state coefficients (say for instance that B(1) = 2B(2)). Assume that
the system is excited with white Gaussian noise. It is easy to prove that as
the discrete state jumps from system 1 to system 2, the variance of the state
increases and so does the variance of the output. Therefore, one should be able
to detect a jump even though the A(1) = A(2) and C(1) = C(2), and hence the
two models are indistinguishable according to our definition. This very simple
example should caution the reader that a sensible definition of observability
ought to also involve the input matrices (B,D). One may be tempted to give
observability conditions in terms of the covariances of the outputs, but again
this does not appear promising for at least two reasons. First, one can never
compute good approximations of stationary covariances from finite sequences
of data (in between switches). Second, well-known results [7] show that the



output covariance of a jump-Markov linear system can be realized with a finite-
dimensional ARMA model, and therefore covariance data are not sufficient to
guarantee identifiability. The quest for different statistics (for instance, higher-
order functions of the data) is worth investigating for this problem.
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