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Abstract. We propose a closed form solution for segmenting mixtures
of 2-D translational and 2-D affine motion models directly from the im-
age intensities. Our approach exploits the fact that the spatial-temporal
image derivatives generated by a mixture of these motion models must
satisfy a bi-homogeneous polynomial called the multibody brightness
constancy constraint (MBCC). We show that the degrees of the MBCC
are related to the number of motions models of each kind. Such degrees
can be automatically computed using a one-dimensional search. We then
demonstrate that a sub-matrix of the Hessian of the MBCC encodes in-
formation about the type of motion models. For instance, the matrix
is rank-1 for 2-D translational models and rank-3 for 2-D affine mod-
els. Once the type of motion model has been identified, one can obtain
the parameters of each type of motion model at every image measure-
ment from the cross products of the derivatives of the MBCC. We then
demonstrate that accounting for a 2-D translational motion model as a
2-D affine one would result in erroneous estimation of the motion models,
thus motivating our aim to account for different types of motion models.
We apply our method to segmenting various dynamic scenes.

1 Introduction

Recently, finding effective solutions to the motion segmentation problem has be-
come an important issue in numerous emerging applications. This has motivated
the development of various algorithms for motion segmentation. [1] fits a mixture
of 2-D parametric models through successive computation of dominant motions.
[2] clusters locally estimated 2-D motion models using K-means. The drawback
of most of these approaches is that they are based on a local computation of
2-D motion, which is subject to the aperture problem and to the estimation of
a single model across motion boundaries.

Global methods deal with such problems by fitting a mixture of motion mod-
els to the entire scene. [9] fits a mixture of parametric models by minimizing a
Mumford-Shah-like cost functional. [3–8] fit a mixture of probabilistic models it-
eratively using the Expectation Maximization algorithm (EM). The drawback of
such iterative approaches is that they are very sensitive to correct initialization
and are computationally expensive.

To overcome these difficulties, more recent work [10–13] proposes to solve
the problem globally by fitting a polynomial to all the image measurements and
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then factorizing this polynomial to obtain the parameters of each 2-D motion
model. These approaches have been shown to be effective at finding a good initial
estimate for iterative approaches as shown in [12] where the method has been
extended to most 2-D and 3-D motion models. [14] integrates the algorithms of
[13] and [2] to solve the motion segmentation problem. It applies [13] to a window
around every pixel in the scene and thus can account for multiple motions in
every such window. K-means is performed on a subset of these locally estimated
motion model parameters to get the motion model parameters describing the
entire scene.

Unfortunately, all the aforementioned approaches to motion segmentation
assume that the scene can be modeled as a mixture of motion models of the
same type. In practice, this is a significant limitation, because most dynamic
scenes exhibit different types of motions. For instance, in the sequence shown in
Figure 1 the background is a translating image of a robot on a floor, where as
the foreground has a rotating patch that undergoes an affine motion. One could
argue that the 2-D translational model is a particular case of a 2-D affine model,
hence the problem could be solved by fitting a mixture of 2-D affine motion
models. In practice, however this results in poor performance, because in most
cases the data associated with simpler models is not rich enough to accurately
define the parameters of a more complex model. In fact, as we shall demonstrate
later, it is not valid to use algebraic methods such as [13] to estimate a 2-D
translational model as a special case of a 2-D affine motion model.

Fig. 1. Sequence consisting of a 2-D translational and a 2-D affine motion model.

We are therefore faced with the problem of fitting multiple models of different
type to the image data without knowing which pixels correspond to which model.
There are many reasons why this problem is significantly more challenging than
fitting motion models of the same type.

1. The number of parameters defining each motion model is not the same,
hence one cannot directly apply methods based on clustering in the space
of parameters, such as K-means, as the parameters to be clustered live in
spaces of different dimensions.

2. The number of data points needed to fit a model is not the same, hence it
may be difficult to fit one model at a time, e.g., with RANSAC [15], without
knowing how many points to use. One could use the maximum number of
points needed to define the more complex model, but this may lead to poor
performance, as argued before.
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1.1 Paper Contributions

We propose a closed form solution to the problem of fitting an unknown number
of 2-D motion models of different type to the image derivatives, without know-
ing which pixels move according to the same motion model. To the best of our
knowledge, there is no prior work other than [16] addressing this problem in a
purely algebraic setting. However, [16] is a feature-based method, while ours is
a direct method. As such, finding a general methodology that solves the motion
segmentation problem for all kinds of motion models is at this point elusive.
Therefore, in this paper we restrict our attention to 2-D translational and 2-D
affine motion models, and propose an algebraic method that solves simultane-
ously for the type of motion model at every image measurement, the parameters
of each motion model, and the segmentation of the image data.

Our algorithm proceeds as follows. We fit a bi-homogeneous polynomial called
the multibody brightness constancy constraint (MBCC) to the image measure-
ments. We show that the degrees of the MBCC are related to the number of
translational and affine motions and that such degrees can be automatically com-
puted using a one-dimensional search. We then inspect the rank of a sub-matrix
of the Hessian of the MBCC at every pixel, and show it encodes information
about the type of motion model associated with the pixel. More specifically, this
matrix is rank-1 for 2-D translational models and rank-3 for 2-D affine mod-
els. We demonstrate that for any given image measurement, we can obtain the
parameters of each type of motion model at that measurement, from the cross
products of the derivatives of the MBCC, using an extension of the method re-
ported in [13]. We also explain why the method of [13] cannot be used to estimate
a 2-D translational model as a degenerate case of a 2-D affine motion model,
thus emphasizing the need to account for multiple types of motion models.

2 Segmenting Motions of Different Types

Consider a motion sequence taken by a moving camera observing an unknown
number of independently and rigidly moving objects. Assume that each one of the
surfaces in the scene is Lambertian, so that the optical flow u(x) = [u, v, 1]> ∈ P2

of pixel x = [x, y, 1]> ∈ P2 is related to the spatial-temporal image derivatives
at pixel x, y(x) = [Ix, Iy, It]> ∈ R3, by the well-known brightness constancy
constraint (BCC)

y>u = Ixu + Iyv + It = 0. (1)

We assume that the optical flow in the scene is generated by nt 2-D transla-
tional motion models {ui ∈ P2}nt

i=1

u = ui i = 1, . . . nt (2)

and by na 2-D affine motion models {Ai ∈ R3×3}na
i=1

u = Aix =




a>i1
a>i2

0, 0, 1


 x i = 1, . . . , na. (3)
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After combining the 2-D translational and 2-D affine motion models with the
BCC (1) we obtain

y>ui = 0 and y>Aix = 0 (4)

respectively. Notice that the total number of motion models n = nt +na may be
larger than the number of independent rigid-body motions because of perspective
effects, depth discontinuities, occlusions, transparent motions, etc.

In the presence of n = 1 motion, the above motion constraints are either
linear or bilinear on the image measurements (x,y) and linear on the motion
parameters u1 or A1. Therefore, if the type of motion model is known, one can
estimate the motion model linearly from a collection of N image measurements
{(xj , yj)}N

j=1 using one of the equations in (4). In the presence of nt +na motion
models, we cannot solve the problem linearly because we do not know

1. The type of motion model associated with each image measurement (x, y).
2. The parameters of the motion model associated with each image measure-

ment (x, y), or equivalently the segmentation of the data.
3. The number of translational and affine motion models.

Therefore, we are faced with the following problem:

Problem 1 (Segmenting motion models of different types). Given the spatial-
temporal derivatives {(Ixj , Iyj , Itj))}N

j=1 of a motion sequence generated from nt

translational and na affine motion models, estimate the number of motion mod-
els (na, nt), the optical flow u(xj) and the type of motion model at each pixel
{xj}N

j=1, and the motion parameters of the nt + na models, without knowing
which image measurements correspond to which motion model.

2.1 Multibody Brightness Constancy Constraint for Motions of
Different Types

Let (x, y) be an image measurement associated with any of the motion mod-
els. According to the BCC (1) there exists a motion model Mk whose optical
flow uk(x) satisfies y>uk(x) = 0. Therefore, the following multibody brightness
constancy constraint (MBCC) must be satisfied by every pixel in the image

MBCC(x,y) =
nt∏

i=1

(y>ui)
na∏

j=1

(y>Ajx) = 0. (5)

From equation (5) we can see that if na = 0, the MBCC is a homogeneous
polynomial of degree nt in y = [y1, y2, y3]> which can be written as a linear
combination of the monomials yn1

1 yn2
2 yn3

3 with coefficients Un1,n2,n3 . By stacking
all the monomials in a vector νnt(y)∈RMnt and the coefficients in a multibody
optical flow vector U ∈RMnt , where Mnt=

(nt+1)(nt+2)
2 , we can express the MBCC

as [13]

MBCC(x, y) = νnt(y)>U =
nt∏

i=1

(y>ui). (6)
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The vector νnt
(y)∈RMnt is also known as the Veronese map of y of degree nt.

Similarly, if nt = 0, the MBCC is a bi-homogeneous polynomial of degree
na in (x,y). The coefficients of this polynomial can be stacked into a multibody
affine matrix A ∈ RMna×Mna , so that the MBCC can be written as [13]

MBCC(x, y) = νna
(y)>Aνna

(x) =
na∏

j=1

(y>Ajx). (7)

In the case of nt translational and na affine motion models, if we let the
(m1, m2,m3)th row of A be aT

m1,m2,m3
, we can write the MBCC as

(
νnt(y)>U)(

νna(y)>Aνna(x)
)

=
(∑

yn1
1 yn2

2 yn3
3 Un1,n2,n3

)(∑
ym1
1 ym2

2 ym3
3 aT

m1,m2,m3
νna

(x)
)

=
∑

yn1+m1
1 yn2+m2

2 yn3+m3
3 Un1,n2,n3a

T
m1,m2,m3

νna(x)

= νna+nt
(y)>Mνna

(x) = 0.

We call M∈ RMna+nt×Mna the multibody motion matrix, because it contains
information about all the motion models {ui}nt

i=1 and {Ai}na
i=1. Note that when

na = 0, M is equivalent to the multibody optical flow U and when nt = 0, M
is equivalent to the multibody affine matrix A.

2.2 Computing the Multibody Motion Matrix

In order to compute the multibody motion matrix M, note that the MBCC
holds at every image measurement {(xj , yj)}N

j=1. Therefore, we can compute M
by solving the linear system,

L(na,nt)m = 0, (8)

where the jth row of L(na,nt) ∈ RN×Mna+nt Mna is given as (νna+nt(yj) ⊗
νna(xj))> and m is the stack of the columns of M.

If na > 0, notice that some entries of M are zero, because the entries (3, 1)
and (3, 2) of each Ai are zero. Therefore, we can obtain a more robust estimate
of M in the presence of noise by solving the linear system

L̃(na,nt)m̃ = 0, (9)

where m̃ ∈ RMnt+naMna−Z(na,nt) is the same as m, but with the correspond-
ing Z(na,nt) zero entries removed, and L̃(na,nt) ∈ RN×(Mna+ntMna−Z(na,nt)) is
the same as L(na,nt), but with Z(na,nt) columns removed. We solve for m̃ in a
least-squares sense as the singular vector of L(na,nt) associated with its small-
est singular value. The scale of M is obtained from M(Mna+nt ,Mna) = 1, as
ui(3) = Aj(3, 3) = 1.
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2.3 Computing the Number of Motion Models

Note that in order to solve for M from the linear system L̃(na,nt)m̃ = 0, we need
to know the number of translational and affine models, nt and na, respectively.
This problem is indeed more challenging than estimating the number of motion
models when all the models are of the same type. This is because there can
be multiple possible combinations of (na, nt) for a given data set, as we shall
elucidate later in this section.

In order to determine the number of models, we assume that the image mea-
surements (xj , yj) are non-degenerate, i.e. they do not satisfy any homogeneous
polynomial in (x, y) of degree less than na in x or less than nt + na in y. This
assumption is analogous to the standard assumption in structure from motion
that image measurements do not live in a critical surface. Under this assumption,
we have the following:

Theorem 1 (Number of translational and affine motion models). Let
L̃(n′a,n′t) ∈ R

N×Mn′t+n′a Mn′a−Z(n′a,n′t) be the matrix in (9), but computed with the
Veronese map of degree n′a in x and n′a + n′t ≥ 1 in y. If rank(Ai) ≥ 2 for
all i = 1, . . . , na, and a large enough set of image measurements in general
configuration is given, then the number of affine and translational motions is,
respectively, given by

na = argmin
n′a
{n′a : ∃n′t ≥ 0 : L̃(n′a,n′t) drops rank by 1}

nt = argmin
n′t
{n′t : L̃(na,n′t) drops rank by 1}. (10)

Proof. From the non-degeneracy assumption we have that

1. If n′a < na or n′t +n′a < nt +na, there is no polynomial of degree n′a in x or
of degree n′a + n′t in y fitting the data, hence L̃(n′a,n′t) is of full column rank.

2. If n′t + n′a = nt + na and n′t ≤ nt, there is exactly one polynomial fitting
the data, namely νn′t+n′a(y)>Mνn′a(x), thus L̃(n′a,n′t) drops rank by 1. This
is true for all n′t ≤ nt, given n′t + n′a = nt + na, because each translational
motion model can also be interpreted as an affine motion model.

3. If n′t + n′a > nt + na and n′a ≥ na, there are two or more polynomials of
degree n′a in x and n′a + n′t in y that fit the data, namely any multiple of
the MBCC. Therefore, the null space of L̃(n′a,n′t) is at least two-dimensional
and L̃(n′a,n′t) drops rank by more than 1.

We conclude that there can be multiple values of (n′a, n′t) for which the matrix
L̃(n′a,n′t) drops rank exactly by 1, i.e. whenever n′t + n′a = nt + na and n′t ≤ nt.
Thus, the correct number of motions (na, nt) can be obtained as in (10).

As a consequence of the theorem, we can immediately devise a strategy to
search for the correct number of motions. Since we know that the correct number
of motions occurs for the minimum value of n′a such that n′t + n′a = nt + na and
L̃(n′a,n′t) drops rank by 1, we can initially set (n′a, n′t) = (0, 1), and then increase
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Fig. 2. Plot of the possible pairs of (n′a, n′t) that give a unique solution for the MBCC.
The correct number of motions is (na, nt) = (3, 2).

n′a while keeping n′a + n′t constant and check if L̃(n′a,nt) drops rank. If L̃(n′a,n′t)
does not drop rank, we increase n′a + n′t by one, reset n′a = 0 and repeat the
process until L̃(n′a,n′t) drops rank by 1 for the first time. This process will stop at
the correct (na, nt).

Figure 2 shows the possible solutions for which the data matrix would have
a rank deficiency of 1 and illustrates our method for searching for the number
of motions (na, nt) in the particular case of na = 3 affine motions and nt = 2
translational motions. In this case, we search for the correct (na, nt) in the
following order (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), · · · (0, 5), (1, 4), (2, 3),(3, 2).

Notice that the proposed search strategy will give the correct number of
motions with perfect data, but will fail with noisy data, because L̃(n′a,n′t) will
be full rank for all (n′a, n′t). In this case, we can find (na, nt) as the pair that
minimizes the cost function




σ2
Mn′t+n′aMn′a−Z(n′a,n′t)

(L̃(n′a,n′t))
∑Mn′t+n′a Mn′a−Z(n′a,n′t)

−1

j=1 σ2
j (L̃(n′a,n′t))




1
2

+ κ(n′a + n′t) + µn′a, (11)

where σj(L) is the jth singular value of L, and κ and µ are parameters that
penalize increasing the complexity of the multibody motion model M. As be-
fore, this two-dimensional optimization problem is reduced to a one-dimensional
search by evaluating the cost function for values of (n′a, n′t) chosen in the order
(0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), · · · .

2.4 Computing the Motion Type at Each Pixel

Given the number of motion models (na, nt) and the multibody motion model
M, we now show how to determine the type of motion model associated with
each pixel: 2-D translational or 2-D affine. As it turns out, this can be done in
a remarkably simple way by looking at the rank of the matrix

H(x, y) =
∂MBCC(x, y)

∂y∂x
∈ R3×3. (12)
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For the sake of simplicity, consider a scene whose optical flow at every
pixel can be modeled by one translational and one affine motion model, u
and A, respectively. In this case, the MBCC for the scene can be written as
MBCC(x,y) = (y>u)(y>Ax), hence

H(x, y) = uy>A + (y>u)A. (13)

Therefore, if an image measurement comes from the translational motion model
only, i.e. if y>j u = 0, then

H(xj , yj) = u(y>j A) =⇒ rank(H(xj ,yj)) = 1. (14)

Similarly, if the image measurement comes from the affine motion model, i.e. if
y>j Axj = 0, then

H(xj , yj) = u(y>j A) + (y>j u)A =⇒ rank(H(xj , yj)) = 3. (15)

This simple observation for the case na = nt = 1 generalizes to any value of
na and nt as stated in the following theorem.

Theorem 2 (Identification of the type of motion model). Given the
multibody motion model M of the scene, the type of motion model associated
with an image measurement (xj , yj) can be found as follows

1. 2-D translational if rank(H(xj ,yj)) = 1.
2. 2-D affine if rank(H(xj , yj)) = 3.

Thanks to Theorem 2, we can automatically determine the type of motion
model associated with each image measurements. In the case of noisy image
data, we declare a model to be 2-D affine if

9∑

i=1

|det(H̃i(xj , yj))|
‖H̃i(xj , yj))‖2 + δ

> ε, (16)

where H̃i(xj ,yj), i = 1, . . . , 9 are all the distinct 2× 2 sub-minors of H(xj ,yj).
δ is added in equation (16) to prevent the term on the left from blowing up when
any of the H̃i(xj ,yj), i = 1, . . . , 9 has a value close to 0.

2.5 Computing the Motion Model at Each Pixel

Given the number and types of motion models, and the multibody motion model
M, we now show how to compute the individual 2-D translational {ui}nt

i=1 and
2-D affine {Ai}na

i=1 motion models. One possibility is to simply separate the data
into two groups, 2-D translational data and 2-D affine data, and then solve
separately for the 2-D translational and 2-D affine motion models by using the
algorithms in [13] for motion models of the same type. This amounts to solving
for the multibody optical flow U in (6) and the multibody affine matrix A in
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(7), and then applying polynomial differentiation to obtain {ui}nt
i=1 from U and

{Ai}na
i=1 from A. However, at this point we already have the multibody motion

M which is a matrix representation for U ⊗ A + A ⊗ U . Therefore, having to
recompute U and A would be extra unnecessary computation.

In this section, we show that the last steps of the method in [13] for motions
of the same type can also be applied to motions of different type by showing
that one can directly compute {ui}nt

i=1 and {Ai}na
i=1 from the derivatives of the

MBCC defined byM. We first notice that one can compute the optical flow u(x)
at each pixel in closed form, without knowing which motion model is associated
with each pixel. To this end, notice that, since each pixel x is associated with one
of the n = nt+na motion models, there is a k = 1, . . . , n such that y>uk(x) = 0,
where uk(x) is the optical flow evaluated as per the kth motion model. Note
that the product

∏
` 6=i(y

>u`(x)) = 0 for all i 6= k. Therefore, the optical flow
at a pixel can be obtained as

∂MBCC(x, y)
∂y

=
nt+na∑

i=1

ui(x)
∏

6̀=i

(y>u`(x)) ∼ uk(x). (17)

Since the last entry of uk(x) is 1, we can scale the derivative accordingly and
this immediately gives us the optical flow at all pixels belonging to only one
motion model at a time. If a pixel happens to belong to two motion models, e.g.,
in regions of low texture for which y = 0, then the MBCC has a repeated factor,
hence its derivative is zero, and we cannot compute u(x) as before.

In the case of 2-D translational motions, the motion model is precisely the
optical flow at each pixel. Since we already know which pixels obey a 2-D trans-
lation model, we can take the optical flow at those pixels only and obtain the
nt different values {ui}nt

i=1 using any clustering algorithm in R2, e.g., K-means.
Alternatively, one can choose nt pixels {xi}nt

i=1 with reliable optical flow and
then obtain ui = u(xi). Since we know that the image derivative y at a pixel
x must be orthogonal to the optical flow u(x), one can choose a measurement
(xnt , ynt

) that minimizes

d2
nt

(x, y) =
|MBCC(x, y)|2

‖Λ∂MBCC(x,y)
∂y ‖2‖y‖2

. (18)

The remaining measurements for (xi−1,yi−1) for i = nt, nt−1, . . . , 2 are chosen
by minimizing

d2
i−1(x, y) =

d2
i (x, y)

|y>u(xi)|2
‖Λu(xi)‖2

. (19)

Notice that in choosing the points there is no optimization involved. We just
need to evaluate the distance functions at each point and choose the one giving
the minimum distance. Once the {ui}nt

i=1 are calculated we can cluster the data

by assigning (xj , yj) to the model i that minimizes (y>j ui)
2

‖ui‖2 .
In the case of 2-D affine motion models, one can obtain the affine motion

model associated with an image measurement (x, y) from the cross products of
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the derivatives of the MBCC constraint. More specifically, note that if (x, y)
comes from the ith motion model, i.e. if y>Aix = 0, then

∂MBCC(x, y)
∂x

∼ y>Ai. (20)

That is, the partials of the MBCC with respect to x give linear combinations
of the rows of the affine model at x. Now, since the optical flow u = [u, v, 1]>

at pixel x is known, we can evaluate the partials of the MBCC at (x, y1), with
y1 = [1, 0,−u]>, and (x,y2), with y2 = [0, 1,−v]>, to obtain the following linear
combination of the rows of Ai

gi1 ∼ ai1 − ue3 and gi2 ∼ ai2 − ve3, (21)

where ei is the ith row of the identity matrix. Let bi1 = gi1 × e3 ∼ ai1 × e3

and bi2 = gi2 × e3 ∼ ai2 × e3. Although the pairs (bi1, e1) and (bi2, e2) are
not actual image measurements, they do satisfy e>1 Aibi1 = a>i1bi1 = 0 and
e>2 Aibi2 = a>i2bi2 = 0. Therefore we can immediately compute the rows of Ai

up to scale factors λi1 and λi2 as

ã>i1 = λ−1
i1 a>i1 =

∂MBCC(x, y)
∂x

∣∣∣∣
(x,y)=(bi1,e1)

, (22)

ã>i2 = λ−1
i2 a>i2 =

∂MBCC(x, y)
∂x

∣∣∣∣
(x,y)=(bi2,e2)

. (23)

Finally, from the optical flow equations u = Aix we have that u = λi1ã
>
i1x and

v = λi2ã
>
i2x, hence the unknown scales are automatically given by

λi1 =
u

ã>i1x
and λi2 =

v
ã>i2x

. (24)

By applying this method to all pixels in the image obeying a 2-D affine motion
model, we can effectively compute one affine matrix A for each pixel, without yet
knowing the segmentation of the image measurements according to the na affine
models. In order to obtain na different affine matrices, we only need to apply
the method to na pixels corresponding to each one of the na models. We can
automatically choose the na pixels at which to perform the computation using
the same methodology proposed for 2-D translational motions, i.e. by choosing
points that minimize (18) and a modification of (19). For the 2-D affine models,
(19) is modified as

d2
i−1(x, y) =

d2
i (x, y)
|y>Aix|2
‖Λ(Aix)‖2

. (25)

Once the {Ai}na
i=1 are calculated we cluster the data by assigning (xj , yj) to

the model i that minimizes (y>j Aixj)
2

‖Aixj‖2 .
Note that if we were to account for a 2-D translational motion as a 2-D

affine motion, we would have ai1 ∼ ai2 ∼ e3.Then (21) would give us that
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gi1 ∼ gi2 ∼ e3 and hence imply that bi1 = gi1 × e3 = 0 and bi2 = gi2 × e3 = 0,
and the entire framework for estimating the 2-D affine motion model breaks
down. Consequently, it is not possible to estimate a 2-D translational model as
a 2-D affine model using the framework of [13]. Note that if na = 0 or nt = 0,
our algorithm is the same as [13].

2.6 Segmentation Scheme

We have demonstrated that given the spatial-temporal image derivatives y at
each pixel x in the image, one can obtain a 2-D translational or a 2-D affine
motion model describing the optical flow of that pixel using a linear technique.
The fundamental reason for this to be possible is that, even though different
regions in the image obey different motion models, by taking the product of the
equations defining each model in the MBCC, one obtains a multibody motion
model that is satisfied by every pixel in the image. This multibody model does
not take the region of support of each motion model into account and treats
each pixel independently. As such, whether two pixels are far or close to each
other has no effect on whether they belong to the same group or not, because
the segmentation given by the MBCC is based purely on motion information.

In most real sequences, however, nearby pixels usually move according to
the same motion model. Therefore, even though the MBCC leads to an elegant
closed form solution to segmentation, the segmentation results of the scheme
discussed in section 2.5 will have a lot of holes, as is evident in the results of
[13]. One would then have to use some ad-hoc method for smoothing the results.

We would like to design a segmentation scheme that incorporates spatial reg-
ularization, because it is expected that, in general, the points that are spatially
near by will obey the same motion model. Hence, we adopt the following seg-
mentation scheme. We assign to every pixel {xj}N

j=1, one of the nt + na motion
models that are evaluated as per the discussion in Section 2.5. We consider a
window W(xj) around every pixel xj and choose the model that minimizes the
sum of the squares of the BCC evaluated at every pixel in the window. That is,
we assign to xj a motion model M as follows.

M(xj) = min
k=1...nt+na

{Mk :
∑

xm∈W(xj)

(y>muk(xm))2}, (26)

where uk(xj) is the optical flow evaluated at xj according to the motion model
Mk. This is equivalent to assigning to a window the motion model that gives
the least residual with respect to the BCC for that window. By applying this
procedure to all pixels in the image, {xj}N

j=1, we can segment the entire scene.
One can then refine the motion model parameters by re-calculating the motion
parameters for each segment.

3 Experimental Results

In this section, we analyze the performance of our proposed algorithm for seg-
menting image measurements arising from multiple motion models.
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3.1 Synthetic Data: Estimation of Number of Motion Models

We first demonstrate the performance of the algorithm in the estimation of
the number of 2-D motion models in the presence of noise. For a particular
(na, nt) we first randomly generate na 2-D affine and nt 2-D translational motion
models and then randomly choose 500 points for each model. The optical flow
u at each point is generated according to its corresponding motion model and
this is then used to generate a random vector y of spatial and temporal image
derivatives satisfying the brightness constancy constraint (1). The coordinates
of y are constrained to be in [−1, 1] to simulate image intensities in the [0, 1]
range. Zero-mean Gaussian noise with standard deviation σ ∈ [0, 0.01] is added
to the partial derivatives y. We run 1000 trials for each noise level and for every
trial we estimate the number of translational and affine motion models as per
(11). We used κ = 1.5× 10−4 and µ = 2× 10−5 in our experiments.

The results are displayed in the form of histograms in Figure 3. Each his-
togram helps us analyze the number of trials in which our algorithm predicts
a particular number of translational or affine models at different noise levels.
It can be seen that in most cases the estimation of the number of models is
very good. In fact, we see that when the number of models is not correctly esti-
mated, it usually is the case that a translational model is estimated as an affine
model. In such cases, the number of affine models is overestimated and the num-
ber of translational models is underestimated. This can be easily verified from
the histograms. Note that the estimation of number of models is quite good for
(na, nt) = (2, 1) and (na, nt) = (1, 2) but the estimation of number of transla-
tional models is not good for (na, nt) = (1, 1). This leads us to believe that the
estimation process is sensitive with respect to κ and µ.

3.2 Real Data

We now demonstrate the performance of our algorithm on real world sequences.
The pixels co-ordinates are normalized to be 0 mean and lie between −1 and 1.
We use the combinations (na, nt) = (0, 2) and (na, nt) = (2, 0) for the methods
of [13]. We use (na, nt) = (1, 1) for our method and use windows of size 3× 3 to
describe local neighborhoods for our segmentation scheme. In each frame, points
that do not correspond to a particular group are colored black.

Figure 4 shows the segmentation of the sequence shown in Figure 1, obtained
using the methods in [13] and our method. As mentioned earlier, the rotating
patch in the foreground obeys a 2-D affine motion model, while the background
obeys a 2-D translational motion model. Note that the group of points obeying
the 2-D affine motion (shown in white color) is estimated quite accurately using
our method. The segmentation obtained assuming two 2-D translational motions
is bad. This is expected, because it is not possible to represent a 2-D affine motion
as a 2-D translational motion. The segmentation obtained assuming 2-D affine
motions is also bad. This is in conjunction with our argument that we cannot use
the method of [13] to estimate a 2-D translational motion as a special case of a 2-
D affine motion. Our method on the other hand gives good segmentation results
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Fig. 3. Results of estimation of number of motion models for 1000 trials and noise
levels with σ ∈ [0, 0.01] for the cases (na, nt) = (1, 1), (2, 1) and (1, 2). Every histogram
has the number of true motion models listed above it in the format nt = n1, na = n2.

as we account for the correct types of motion models in the scene. Although
there are a few areas that are segmented incorrectly by our method, note that
these patches are textureless. Since they can obey any motion model, they are
expected to be segmented arbitrarily.

Figure 5 shows the segmentation of the sequence shown in the first row, ob-
tained using the methods of [13] and our method. The sequence in Figure 5 has
a rotating image frame of a parking lot in the background that is obeying a 2-D
affine motion. The patch in the foreground is undergoing a left-upward trans-
lational motion. Note that our method gives much better segmentation results
than [13]. In fact, the areas that are incorrectly segmented mostly correspond to
textureless patches in the scene.

4 Summary and Conclusions

We have presented a closed form solution for segmenting the motion of a scene
consisting of a mixture of 2-D translational and 2-D affine motion models, di-
rectly from the image intensities. We have shown that if one were to adopt the
algebraic approach of [13], it is imperative that we do not estimate a 2-D trans-
lational model as a degenerate case of a 2-D affine model. The highlight of our
algorithm is that it provides an algebraic framework that lets us deal with a
mixture of motion models of different types.

A major bottleneck in the performance of the method is the evaluation of
the rank of H(x, y). If the rank is not estimated properly then this will result
in an incorrect identification of type of motion. This could obviously result in a
bad estimation of the motion model parameters and hence poor segmentation.
Future work entails finding a robust way of estimating the rank of H(x,y).
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Segmentation results of [13] using nt = 2, na = 0

Segmentation results of [13] using nt = 0, na = 2

Points satisfying 2-D affine motion as predicted by our method

Segmentation results of our method using nt = 1, na = 1

Fig. 4. Comparison of segmentation results of our method with the methods of [13].
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Frames from the sequence to be segmented

Segmentation results of [13] using nt = 2, na = 0

Segmentation results of [13] using nt = 0, na = 2

Segmentation results of our method using nt = 1, na = 1

Fig. 5. Comparison of segmentation results of our method with the methods of [13].


