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René Vidal
Johns Hopkins University

Avinash Ravichandran
University of California, Los Angeles

Abstract
We consider the problem of fitting one or more subspaces

to a collection of data points drawn from the subspaces and
corrupted by noise/outliers. We pose this problem as a rank
minimization problem, where the goal is to decompose the
corrupted data matrix as the sum of a clean, self-expressive,
low-rank dictionary plus a matrix of noise/outliers. Our key
contribution is to show that, for noisy data, this non-convex
problem can be solved very efficiently and in closed form
from the SVD of the noisy data matrix. Remarkably, this is
true for both one or more subspaces. An important differ-
ence with respect to existing methods is that our framework
results in a polynomial thresholding of the singular values
with minimal shrinkage. Indeed, a particular case of our
framework in the case of a single subspace leads to classi-
cal PCA, which requires no shrinkage. In the case of mul-
tiple subspaces, our framework provides an affinity matrix
that can be used to cluster the data according to the sub-
spaces. In the case of data corrupted by outliers, a closed-
form solution appears elusive. We thus use an augmented
Lagrangian optimization framework, which requires a com-
bination of our proposed polynomial thresholding operator
with the more traditional shrinkage-thresholding operator.

1. Introduction
Subspace estimation and clustering are very important

problems with widespread applications in computer vision
and pattern recognition. In computer vision, for example,
the number of pixels in an image can be rather large, yet
most computer vision models use only a few parameters
to describe the appearance, geometry and dynamics of a
scene. This has motivated the development of a number of
techniques for finding a low-dimensional representation of
a high-dimensional data set. Conventional techniques, such
as Principal Component Analysis (PCA) [10], assume that
the data are drawn from a single low-dimensional subspace
of a high-dimensional space. In practice, however the data
could be drawn from multiple subspaces and the member-
ship of the data points to the subspaces might be unknown.
Therefore, more recent techniques, such as Generalized
Principal Component Analysis (GPCA) [20], seek to simul-
taneously cluster the data into multiple subspaces and find
a low-dimensional subspace fitting each group of points.

One of the main challenges faced by existing subspace
estimation and clustering algorithms (see [19] for a review
of the state-of-the-art methods) is that the data are often
contaminated by noise, missing entries and outliers. Tra-
ditionally, these issues have been addressed within a prob-
abilistic framework, by using hidden variable models [9]
and mixture models [17]. A major drawback of those ap-
proaches is that, with few exceptions, they result in non-
convex optimization problems. As a consequence, good ini-
tialization becomes critical for those approaches to work.

Recently, there has been a surge of methods based on
sparse representation theory and rank minimization [2, 3, 4,
6, 7, 13, 14, 16]. In principle, such methods seek to mini-
mize a non-convex function as well, such as the the number
of nonzero entries of a vector or matrix, or the rank of a ma-
trix. However, it has been shown that, under certain condi-
tions, such non-convex problems can be solved by minimiz-
ing a convex surrogate. For example, it is shown in [3, 6]
that for most underdetermined systems of linear equations,
the sparsest solution coincides with the minimal `1-norm
solution. Likewise, it is shown in [16] that the problem of
finding a low-rank approximation to a given matrix can be
solved by minimizing the nuclear norm in lieu of its rank,
under certain restricted isometry conditions generalized to
matrices. Moreover, it is shown in [2] that the exact solution
to the problem of decomposing a matrix into the sum of a
low-rank matrix and a sparse matrix can be found by min-
imizing the sum of the nuclear norm and the `1 norm. Re-
markably, this provides a convex solution to the robust PCA
problem when either the rank of the matrix or the percent-
age of outliers are small enough. The optimization involves
simple iterative shrinkage and thresholding of the singular
values of one matrix and of the entries of another matrix.

Sparse representation and rank minimization techniques
have also been applied to the subspace clustering problem.
For instance, it is shown in [7] that a point in a union of
multiple subspaces admits a sparse representation with re-
spect to the dictionary formed by all other data points. It is
also shown in [7] that, if the subspaces are independent, the
nonzero coefficients in the sparse representation of a point
correspond to other points in the same subspace. Moreover,
the nonzero coefficients can be obtained by `1 minimiza-
tion. These nonzero coefficients are then used to cluster the
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data according to the multiple subspaces. A very similar
approach is presented in [13]. The major difference is that a
low-rank representation is used in lieu of the sparsest repre-
sentation. While the same principle of representing a point
as a linear combination of others has been successfully used
when the data are corrupted by noise and outliers, from a
theoretical viewpoint it is not clear why the above methods
are effective when using a corrupted dictionary.

In this paper, we extend existing sparse representation
and rank minimization techniques in several dimensions.
First, we propose a general framework that is applicable
to both subspace estimation and subspace clustering by us-
ing a non-convex formulation. Second, we show that im-
portant particular cases of our framework can be solved in
closed form from the SVD of the data matrix, as opposed
to using `1 minimization or iterative shrinkage and thresh-
olding. Third, our framework results in a novel polynomial
thresholding operator, which reduces the amount of shrink-
age with respect to existing methods. Indeed, in the case of
a single subspace, our framework reduces to classical PCA,
which does not perform any shrinkage. Fourth, our frame-
work does not make use of a corrupted dictionary. Instead,
given the corrupted data, we search for both the clean dic-
tionary and the coefficients of the sparse representation.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews existing results on sparse representation and
rank minimization for subspace estimation and clustering.
Section 3 formulates the subspace estimation and cluster-
ing problem in the presence of noise as a rank minimiza-
tion problem. Section 4 extends our results to the case of
outliers. In this case, the solution is found by minimizing a
convex cost via an augmented Lagrange multipliers method.
Section 5 presents experiments that evaluate our method on
synthetic and real data. Section 6 gives the conclusions.

2. Background
2.1. Subspace Estimation by Sparse Representation

and Rank Minimization

Low Rank Minimization. Given a noise corrupted data
matrixD = A+E, whereA is an unknown low-rank matrix
and E represents the noise, the problem of finding a low-
rank approximation of D can be formulated as

min
A
‖D −A‖2F subject to rank(A) ≤ r. (1)

The optimal solution to this (PCA) problem is given by
A = U1Σ1V

T
1 , where U1, Σ1 and V1 are obtained from

the top r singular values and singular vectors of the data
matrix D. We may also write this as A = UHσr+1(Σ)V T ,
whereHε(x) = x1|x|>ε is the hard thresholding operator.

When r is unknown, the problem of finding a low-rank
approximation can be formulated as

min
A

rank(A) +
α

2
‖D −A‖2F , (2)

where α > 0 is a parameter. Since this problem is in general
NP hard, a common practice (see [16]) is to replace the rank
of A by its nuclear norm ‖A‖∗, i.e., the sum of its singular
values, which leads to the following convex problem

min
A

‖A‖∗ +
α

2
‖D −A‖2F . (3)

It is shown in [1] that the optimal solution to this problem is
given by A = US 1

α
(Σ)V T , where D = UΣV T is the SVD

of D and S 1
α

(Σ) is the shrinkage-thresholding operator

Sε(x) =


x− ε x > ε

x+ ε x < −ε
0 else

. (4)

Notice that the latter solution does not coincide with the
one given by PCA, which performs hard-thresholding of the
singular values of D without shrinking them by 1/α.
Principal Component Pursuit. While the above methods
work well for data corrupted by Gaussian noise, they break
down for data corrupted by gross errors. In [2] this issue is
addressed by assuming that the outliers are sparse, i.e., only
a small percentage of the entries ofD are corrupted. Hence,
the goal is to decompose the data matrix D as the sum of a
low-rank matrix A and a sparse matrix E, i.e.,

min
A,E

rank(A) + γ‖E‖0 s.t. D = A+ E, (5)

where γ > 0 is a parameter. Since this problem is in general
NP hard, a common practice is to replace the rank of A by
its nuclear and the `0 semi-norm by the `1 norm. It is shown
in [2] that, under broad conditions, the optimal solution to
the problem in (5) is identical to that of the convex problem

min
A,E

‖A‖∗ + γ‖E‖1 s.t. D = A+ E. (6)

While a closed form solution to this problem is not known,
convex optimization techniques can be used to find the min-
imizer. We refer the reader to [11] for a review of numerous
approaches. One such approach is the Augmented Lagrange
Multiplier (ALM) method, which minimizes

‖A‖∗ + γ‖E‖1 + 〈Y,D−A−E〉+
α

2
‖D−A−E‖2F . (7)

The third term enforces the equality constraint via the ma-
trix of Lagrange multipliers Y , while the fourth term (which
is zero at the optimum) makes the cost function strictly con-
vex and thus improves the convergence. The inexact ALM
method then iterates the following steps till convergence

(U, S, V ) = svd(D − Ek + α−1k Yk) (8)

Ak+1 = USα−1
k

(S)V T (9)

Ek+1 = Sγα−1
k

(D −Ak+1 + α−1k Yk) (10)

Yk+1 = Yk + αk(D −Ak+1 − Ek+1) (11)
αk+1 = ραk (12)
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This ALM method is essentially an iterated thresholding
algorithm, which alternates between thresholding the SVD
of D − E + Y/α to get A and thresholding D − A+ Y/α
to get E. The update for Y is simply a gradient ascent step.
Also, to guarantee the convergence of the algorithm, the pa-
rameter α is updated by choosing ρ > 1 so as to generate a
sequence αk that goes to infinity.

2.2. Subspace Clustering by Sparse Representation
and Rank Minimization

Consider now the more challenging problem of cluster-
ing data drawn from multiple subspaces. In what follows,
we discuss two methods based on sparse representation and
rank minimization for addressing this problem.
Sparse Subspace Clustering (SSC). The work of [7]
shows that, in the absence of noise, the subspace clustering
problem can be solved by expressing each data point as a
linear combination of all other data points. That is, we wish
to find a matrix C such that D = DC and diag(C) = 0.
In principle, this leads to an ill-posed problem with many
possible solutions. To resolve this issue, the principle of
sparsity is invoked. Specifically, every point is written as a
sparse linear combination of all other data points by mini-
mizing the number of nonzero coefficients. That is

min
C

∑
i

‖Ci‖0 s.t. D = DC and diag(C) = 0, (13)

where Ci is the i-th column of C. Since this problem is
combinatorial, a simpler `1 optimization problem is solved

min
C
‖C‖1 s.t. D = DC and diag(C) = 0. (14)

It is shown in [7, 8] that when the subspaces are either
independent or disjoint, the solution to the optimization
problems in (13) and (14) coincide. It is also shown that
Cij = 0 when points i and j are in different subspaces.
In other words, the nonzero coefficients of the i-th column
of C correspond to points in the same subspace as point
i. Therefore, one can use C to define an affinity matrix as
|C| + |CT |. The segmentation of the data is then obtained
by applying spectral clustering [22] to this affinity.

In the case of data contaminated by noise or outliers, the
SSC algorithm assumes that each data point can be written
as a linear combination of other data points up to an errorE,
i.e., D = DC +E. In the case of noise, the SSC algorithm
solves the following convex problem

min
C,E

‖C‖1+
α

2
‖E‖2F s.t. D = DC+E and diag(C) = 0.

(15)
In the case of outliers, following [15], it is assumed that
the outliers are sparse. Since both C and E are sparse, the
equation D = DC+E = [D I][CT ET ]T means that each
point is written as a sparse linear combination of a dictio-
nary composed of all other data points plus the columns of

the identity matrix I . Therefore, one can find C and E by
solving the following convex optimization problem

min
C,E
‖C‖1+‖E‖1 s.t. D = DC+E and diag(C) = 0. (16)

While SSC works well in practice, in the case of corrupted
data there is no theoretical guarantee that the nonzero coef-
ficients correspond to points in the same subspace. More-
over, notice that the model is not really a subspace plus error
model, because a contaminated data point is written as a lin-
ear combination of other contaminated points plus an error.
Low Rank Representation (LRR). This algorithm [13]
is very similar to SSC, except that it aims to find a low-
rank representation instead of a sparse representation. This
is motivated by the fact that, in the case of n independent
subspaces of dimensions r = {di}ni=1, the rank of the data
matrix is

∑n
i=1 di. With noise free data, the LRR algorithm

solves the following convex optimization problem

min
C
‖C‖∗ s.t. D = DC. (17)

It can be shown that when the noise free data are drawn from
independent linear subspaces, the optimal solution to (17) is
given by the matrix C = V1V

T
1 , where D = U1Σ1V

T
1 is

the rank r SVD of D. As shown in [21], this matrix is such
that Cij = 0 when points i and j are in different subspaces,
hence it can be used to build an affinity matrix.

In the case of data contaminated by noise or outliers, the
LRR algorithm solves the convex optimization problem

min
C
‖C‖∗ + α‖E‖2,1 s.t. D = DC + E, (18)

where ‖E‖2,1 =
∑N
k=1

√∑N
j=1 |Ejk|2 is the `2.1 norm of

the matrix of errors E. Notice that this problem is analo-
gous to (15) and (16), except that the `1 and the Frobenious
norms are replaced by the nuclear and the `2,1 norms, re-
spectively. It is argued in [13] that this allows one to better
handle outliers in one data point but not in others, since it is
a convex relaxation to the number of corrupted data points.

The LRR algorithm proceeds by solving the optimiza-
tion problem in (18) using an ALM method. The optimal C
is then used to define an affinity matrix |C|+|CT |. The seg-
mentation of the data is then obtained by applying spectral
clustering to the normalized Laplacian.

3. A Closed-Form Solution to Subspace Esti-
mation and Clustering with Noise

In this section, we propose a unified framework for both
subspace estimation and clustering in the presence of noise.
Specifically, we propose to solve the following problem

min
A,C,E

‖C‖∗+
α

2
‖E‖2F s.t. A=AC and D=A+E. (19)

While in principle this problem appears to be very similar to
those in (15) and (18), there are a number of key differences.
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First, notice that instead of expressing the noisy data as a
linear combination of itself plu noise, i.e.,D = DC+E, we
search for a clean dictionary, A, which is self-expressive,
i.e., A = AC. We then assume that the data are obtained by
adding noise to the clean dictionary, i.e., D = A + E. As
a consequence, our method searches simultaneously for a
clean dictionary, the sparse coefficients and the noise. Sec-
ond, the main difference with (15) is that the `1 norm of
the matrix of coefficients is replaced by the nuclear norm.
Third, the main difference with (18) is that the `2,1 norm of
the matrix of noise is replaced by the Frobenius norm.

As we will show in this section, the above changes re-
sult in a key difference between our method and the state
of the art: while the solution to (15) requires `1 minimiza-
tion and the solution to (18) requires an ALM method, the
solution to (19) can be computed in closed form from the
SVD of the data matrix D. The proof of this result will be
done in three steps. In Lemma 1 we will relax the constraint
A = AC and add a penalty τ

2‖A − AC‖
2
F to the cost. We

will then show that the optimal solution for C, with A kept
fixed, can be obtained in closed form from the SVD of A.
Since the optimalE isD−A, we will not consider the term
α
2 ‖E‖

2
F . Then, in Lemma 2 we will optimize the relaxed

cost over both A and C and show that the optimal A can
be obtained in closed form from the SVD of D by applying
a polynomial thresholding to the singular values of D. Fi-
nally, in Lemma 3 we will show that the solution to (19) is
given by classical PCA, except that the number of principal
components can be automatically determined.

Lemma 1 Let A = UΛV T be the SVD of a given matrix
A. The optimal solution to min

C
‖C‖∗ +

τ

2
‖A−AC‖2F is

Ĉ = V1(I − 1

τ
Λ−21 )V T1 , (20)

where U = [U1 U2], Λ = diag(Λ1,Λ2) and V = [V1 V2]
are partitioned according to the sets I1 = {i : λi > 1/

√
τ}

and I2 = {i : λi ≤ 1/
√
τ}. Moreover, the optimal value is

φ(A) =
∑
i∈I1

(1− 1

2τ
λ−2i ) +

τ

2

∑
i∈I2

λ2i . (21)

Proof. In order for Ĉ to be the minimizer, the first order
sub-differential of the cost

∂CCost = ∂‖C‖∗ − τATA(I − C), (22)

evaluated at Ĉ should contain the zero matrix, i.e., 0 ∈
∂ĈCost. We now show that Ĉ satisfies this condition. For,
recall that the sub-differential of the nuclear norm of a ma-
trix C with compact SVD C = UCΣCV

T
C is given by

∂‖C‖∗={UCV TC +W : UTCW =0,WVC =0, ‖W‖2 ≤ 1}.
(23)

Substituting this in (22) for UC = VC = V1 yields

V1V
T
1 +W − τATA(I − C) = 0. (24)

Since I−Ĉ = I−V1(I− 1
τΛ−21 )V T1 = 1

τ V1Λ−21 V T1 +V2V
T
2

and ATA = V Λ2V T = V1Λ2
1V

T
1 + V2Λ2

2V
T
2 , we obtain

V1V
T
1 +W − τ(

1

τ
V1V

T
1 + V2Λ2

2V
T
2 ) = 0. (25)

This gives us W = τV2Λ2V
T
2 , which is such that V T1 W =

WV1 = 0 and ‖W‖2F ≤ 1. Finally, if we replace the opti-
mal solution into the cost function, we get

φ(A) = ‖Ĉ‖∗ +
τ

2
‖A−AĈ‖2F

= ‖I − 1

τ
Λ−11 ‖∗ +

τ

2
‖1

τ
U1Λ−11 V T1 + U2Λ2V

T
2 ‖2F

=
∑
i∈I1

(1− 1

τ
λ−2i ) +

τ

2
(
∑
i∈I1

1

τ2
λ−2i +

∑
i∈I2

λ2i ) (26)

from which we get the desired result.

Lemma 2 Let D = UΣV T be the SVD of the data matrix
D. The optimal solution to

min
A,C
‖C‖∗ +

τ

2
‖A−AC‖2F +

α

2
‖D −A‖2F (27)

is given by

Â = UΛV T and Ĉ = V1(I − 1

τ
Λ−21 )V T1 , (28)

where each entry of Λ = diag(λ1, . . . , λn) is obtained from
one entry of Σ = diag(σ1, . . . , σn) as the solution to

σ = ψ(λ) =

{
λ+ 1

ατ λ
−3 if λ > 1/

√
τ

λ+ τ
αλ if λ ≤ 1/

√
τ
, (29)

that minimizes the cost, and the matrices U = [U1 U2], Λ =
diag(Λ1,Λ2) and V = [V1 V2] are partitioned according to
the sets I1 = {i : λi > 1/

√
τ} and I2 = {i : λi ≤ 1/

√
τ}.

Proof. For Â to be the minimizer, the first derivative of the
cost in (27) with respect to A should be equal to zero, i.e.,

τA(I − C)(I − C)T − α(D −A) = 0. (30)

Let A = [U1 U2]diag(Λ1,Λ2)[V1 V2]T be the SVD of A
partitioned according to I1 and I2. Notice that we do not
know yet that the SVDs of A and D are related, i.e. we do
not know that U = [U1 U2] and V = [V1 V2]. However,
we know from Lemma 1 that the optimal C can be obtained
from the SVD of A as Ĉ = V1(I − 1

τΛ−21 )V T1 . Therefore,

A(I−Ĉ)2 =(U1Λ1V
T
1 +U2Λ2V

T
2 )(

1

τ
V1Λ−21 V T1 +V2V

T
2 )2

=
1

τ2
U1Λ−31 V T1 + U2Λ2V

T
2 (31)

We thus have
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D=
τ

α
A(I − Ĉ)2 +A

=
1

τα
U1Λ−31 V T1 +

τ

α
U2Λ2V

T
2 +U1Λ1V

T
1 +U2Λ2V

T
2

=
[
U1 U2

] [Λ1 + 1
ταΛ−31 0
0 Λ2 + τ

αΛ2

] [
V1 V2

]T
. (32)

The last expression gives a valid SVD for D, modulo re-
ordering of the singular values. Therefore, the optimal so-
lution for A is A = UΛV T , where the entries of Λ are
related to those of Σ by equation (29).

Notice that ψ(λ) is a strictly increasing function of λ
when 3τ ≤ α. Therefore, in this case there is a unique λ for
each σ. Moreover, the singular values of Λ have the same
order as those of Σ. When 3τ > α, the solution for λ may
not be unique. In particular, up to four different solutions
could be obtained from the polynomial λ4−σλ3 + 1

ατ = 0.
Nonetheless, only one of the solutions corresponds to the
global minimum. To find the best solution, notice from (26)
that the cost function in (27) reduces to∑
i∈I1

(1− 1

2τ
λ−2i ) +

τ

2

∑
i∈I2

λ2i +
α

2
‖D −A‖2F =

∑
i∈I1

(1− 1

2τ
λ−2i ) +

τ

2

∑
i∈I2

λ2i +
α

2

∑
i

(σπ(i) − λi)2,
(33)

where π is an unknown permutation that sorts the singu-
lar values of Σ according to those of Λ. It follows from
the above equation that the best λi for each σπ(i) can be
found as the one that minimizes the ith term of the above
summation. Specifically, for each σi, we find one or more
candidate solutions λik by solving (29) and then choose the
optimal λ associated with σi as λik∗ , where K∗ is given by

arg min
k

α

2
(σi − λik)2 +

{
1− 1

2τ λ
−2
ik λik > 1

√
τ

τ
2λ

2
ik λik ≤ 1

√
τ
. (34)

Notice that the above procedure can be carried out without
knowing π, because we can simply find a λ for each σ and
determine the order of the λ’s, hence π, at the end.

Lemma 2 gives us a way to obtain A from the SVD of
the data matrix in closed form. Remarkably, the solution
is obtained by applying a polynomial thresholding opera-
tor λ = Pα,τ (σ) to the singular values of D. In practice,
when the term 1

ατ ' 0 (relative to σ) there is a much sim-
pler procedure to obtain the thresholding function. In this
case, the quartic can be immediately solved and yields three
solutions that are equal to 0 and are hence out of the range
λ > 1/

√
τ . The only valid solution to the quartic is hence

λ = σ ∀σ : σ > 1/
√
τ . (35)

Therefore, a simpler threshoding procedure can be obtained
by approximating the thresholding function with two piece-
wise linear functions. One is exact (when λ ≤ 1/

√
τ ) and

the other one is approximated (when λ > 1/
√
τ ). The ap-

proximation, however, is quite accurate for a wide range of
values for α and τ . Since we have two linear functions, we
can easily find a threshold for σ as the value σ∗ at which the
discontinuity happens. To do so, we can plug in the given
solutions in the cost (27) and compare them. We obtain

ατ

2(α+ τ)
σ2
∗ = 1− 1

2τσ2
∗
. (36)

This gives 4 solutions, out of which the only suitable one is

σ∗ =

√
α+ τ

ατ
+

√
α+ τ

α2τ
. (37)

Finally, our thresholding function can be written as

λ = P̃α,τ (σ) =

{
σi if σ > σ∗
α

α+τ σi if σi ≤ σ∗.
(38)

As τ increases, notice that the largest singular values of
D are preserved, rather than shrank by the operator S 1

α
in

(4). Notice also that the smallest singular values of D are
shrank by scaling them down, as opposed to subtracting a
threshold. Moreover, notice that in the limiting case, where
τ →∞, a hard thresholding function is obtained, where the

threshold is given by σ∗ =
√

2
α . That is, A can be obtained

from the SVD of D = UΣV T as Â = UH√ 2
α

(Σ)V T ,

where Hε(x) = x1|x|>ε is the hard thresholding operator.
An alternative derivation of this result is given next.

Lemma 3 Let D = UΣV T be the SVD of the data matrix
D. The optimal solution to

min
A,C
‖C‖∗ +

α

2
‖D −A‖2F s.t. A = AC (39)

is given by Â = U1Σ1V
T
1 and Ĉ = V1V

T
1 , where Σ1, U1

and V1 correspond to the the top r = arg min
k
k+

α

2

∑
i>k

σ2
k

singular values and singular vectors of D, respectively.

Proof. Using the method of Lagrange multipliers, with Y as
the Lagrange multiplier for A = AC , we need to optimize

‖C‖∗ +
α

2
‖D −A‖2F+ < Y,A−AC > . (40)

Without loss of generality, let us parameterizeA by its rank-
r SVD,A=U1Λ1V

T
1 , where r is arbitrary. Also, let V2 be a

basis for the orthonormal to V1, so that I = V1V
T
1 +V2V

T
2 .

It is shown in [12] that the optimal solution for C given A
is C = V1V

T
1 . The first order conditions are thus given by

V1V
T
1 +W = ATY = V1Λ1U

T
1 Y (41)

Y (I − CT ) = α(D −A)⇒ D = A+
1

α
Y V2V

T
2 . (42)

From the first equation we obtain V T2 W = 0. Since we
also have V T1 W = 0, we conclude that W = 0. This im-
plies that UT1 Y = Λ−11 V T1 and so Y must be of the form
Y = U1Λ−11 V T1 + U2B for some B. Substituting this into
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the second equation yields D = A + 1
αU2BV2V

T
2 and so

‖D − A‖2F = α−2‖BV2‖2F . This cost is minimized when
BV2 is a diagonal matrix, say Λ2, which can be chosen to
be nonnegative without loss of generality. This means that
D = [U1 U2]diag(Λ1,Λ2/α)[V1 V2]T is a valid SVD for
D. Therefore, we can choose U = [U1 U2], V = [V1 V2],
Λ1 =Σ1 and Λ2 =αΣ2. Substituting this into the cost gives

‖V1V T1 ‖∗+
α

2
‖D−A‖2F =r+

α

2
‖Σ2‖2F =r+

α

2

∑
k>r

σ2
k.(43)

r is then chosen as the minimizer of this cost. Equivalently,
one can threshold the singular values of D at

√
2/α.

4. Iterative Subspace Estimation and Cluster-
ing Algorithms in the Presence of Outliers

In this section, we propose a unified framework for both
subspace estimation and clustering in the presence of out-
liers. Specifically, we propose to solve the problem

min
A,C,E

‖C‖∗+γ‖E‖1 s.t. A=AC and D=A+E, (44)

where, following [15, 7, 2], the `1 penalty on the matrix of
outliers is motivated by the assumption that the outliers are
sparse. As in the case of noise, the major difference of this
formulation with respect to (16) and (18) is that, rather than
using a corrupted dictionary, we search simultaneously for a
clean dictionaryA, the sparse coefficientsC and the outliers
E. Also, notice that the `1 norm of the matrix of coefficients
is replaced by the nuclear norm and that the `2,1 norm of the
matrix of errors is replaced by the `1 norm.

4.1. Iterative Thresholding Approach

As in Section 3, we begin by considering a relaxed ver-
sion of the problem in (44) in which the constraints are
added to the cost function as penalties, i.e.,

min
A,C,E

‖C‖∗+γ‖E‖1+
τ

2
‖A−AC‖2F +

α

2
‖D−A−E‖2F .

(45)

Notice that the second and fourth terms do not depend on
C. Moreover, the first and third term are the same as those
considered in Lemma 1. Therefore, the optimal solution for
C is given by Ĉ = V1(1− 1

τΛ−21 )V T1 , which is obtained as
a function of the SVD of A = U1Λ1V

T
1 + U2Λ2V

T
2 . After

replacing the optimal C into (45) we obtain

min
A,E

φ(A) + γ‖E‖1 +
α

2
‖D −A− E‖2F , (46)

where φ(A) is defined in (21). Notice that if A is given, the
optimal solution forE satisfies γsign(E)−α(D−A−E) =
0. This equation can be solved in closed form by using the
shrinkage-thresholding operator

Ê = S γ
α

(D −A). (47)

Finally, the derivative of the cost with respect toA should be

zero, i.e., τA(I−C)(I−C)T −α(D−A) = 0. Following
(32) we obtain

D−Ê=
[
U1 U2

][Λ1 + 1
ταΛ−31 0
0 Λ2 + τ

αΛ2

][
V1 V2

]T
. (48)

Therefore, if Ê was known, we could use Lemma 2 to com-
pute Â and Ĉ from the SVD of D − Ê. Conversely, if Â
was known, we could compute Ê from (47). This leads
to an iterative thresholding algorithm that, starting from
E0 = 0, alternates between applying polynomial thresh-
olding to D − Ek to obtain Ak+1 = Pα,τ (D − Ek) and
applying shrinkage-thresholding to D − Ak+1 to obtain
Ek+1 = Sγ/α(D − Ak+1). When τ → ∞ the polyno-
mial thresholding operator Pα,τ is simply replaced by the
hard thresholding operator H√ 2

α

. However, notice that, as
argued in [11], such iterative procedures have slow conver-
gence compared to the ALM method.

4.2. Augmented Lagrange Multiplier Approach

In this section, we propose an alternative solution to
problem (44) that results in a small variant of [11]. We start
by considering the augmented Lagrangian formulation

‖C‖∗ +
α

2
‖D −A−E‖2F+ < Y,D −A−E > +γ‖E‖1

(49)
subject to A = AC. If we compute the first order deriva-
tives of the above cost with respect to C and A and use the
constraint A = AC, Lemma 3 tells us that A = U1Λ1V

T
1

and C = V1V
T
1 , where V1 corresponds to the singular val-

ues of D − E + α−1Y larger than
√

2/α. Given A and
C the solution for E is the usual shrinkage thresholding
E = Sγ/α(D−A+α−1Y ). We thus obtain the following:

(U, S, V ) = svd(D − Ek + α−1k Yk) (50)

Ak+1 = UH√ 2
α

(S)V T (51)

Ek+1 = Sγα−1
k

(D −Ak+1 + α−1k Yk) (52)

Yk+1 = Yk + αk(D −Ak+1 − Ek+1) (53)
αk+1 = ραk (54)

This method is identical to the ALM method in [11], ex-
cept that the shrinkage-thresholding operator S is replaced
by the hard thresholding operator H. A similar algorithm
based on the polynomial operator P can be derived when
we include the constraint A = AC in the cost function.

5. Experiments

Subspace clustering with noise. We apply our framework
to the Hopkins155 motion segmentation database [18],
which is available online at http://www.vision.jhu.
edu/data/hopkins155. The database consists of 120 se-
quences of 2 motions and 35 sequences with 3 motions. For
each sequence, point trajectories are extracted automatically
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with a tracker and the outliers are manually removed. The
task is to cluster the trajectories according to the different
motions. Since the trajectories associated with each motion
live in an affine subspace, the motion segmentation problem
is equivalent to the problem of clustering affine subspaces.
We extend our method in Lemma 1 to affine subspaces by
enforcing the coefficients to add up to 1, i.e., 1TC = 1T .
The parameter τ is chosen as τ = 426.

State-of-the-art motion segmentation algorithms use a
number of pre-processing steps before subspace clustering.
Notably, PCA is often used to project the trajectories onto
a low-dimensional space. Since our method searches for a
low-rank approximation of the data, it is not clear if apply-
ing PCA as a preprocessing step is beneficial to our frame-
work. We thus compare our method without preprocessing.

We compare our method to several existing methods in
the literature: Shape Interaction Matrix (SIM) [5], Local
Subspace Affinity (LSA) [23], Sparse Subspace Clustering
(SSC) [7], and the Low-Rank Representation (LRR) [13].
Table 1 shows the classification errors. We obtain an accu-
racy similar to that of the top-performing algorithms. How-
ever, our method is significantly faster (0.4 secs/sequence).

Subspace clustering with outliers. We apply our method
in Sect. 4.2 on 12 sequences from [21], 9 with two motions
and 3 with three motions, where 4%–35% of the point tra-
jectories are corrupted with outliers. Table 2 compares our
method against `1-based ALC [15] and SSC [7]. These re-
sults indicate the robustness of our method to outliers. In
contrast to ALC, we do not need to use `1 minimization to
correct the trajectories and then apply the segmentation al-
gorithm. The resulting sparse coefficients are used directly
to build the similarity graph and do the spectral clustering.
As one can see, we also obtain very competitive results. Fi-
nally, as one can evince from the simplicity of our algo-
rithm, the computational time is identical to that of [11].

6. Conclusions

We presented a general framework for subspace estima-
tion and clustering in the presence of noise/outliers. Our key
contribution was to show that, with noisy data, this problem
can be solved in closed form. Our algorithm amounts to an
SVD of the data matrix and a polynomial thresholding of its
singular values. Our algorithm also gives a clean dictionary
with respect to which the corrupted data can be expressed.
For data corrupted by outliers, we proposed to minimize
a non-convex cost via an augmented Lagrange multipliers
method. We tested our algorithm on two motion segmenta-
tion databases. Our approach obtained an accuracy compa-
rable to the state of the art, but significantly faster.
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Table 1. Errors on Hopkins155 data without pre/post-processing.

Method LSA SIM SSC LRR OUR
Average 8.99% 5.25% 3.89% 3.16% 3.28%

Table 2. Errors on 12 motion sequences with corrupted trajectories.

Method `1 + ALC5 `1 + ALCsp SSC OUR
Average 4.15% 3.02% 1.05% 1.22%
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