
Distributed Computer Vision Algorithms Through Distributed Averaging

Roberto Tron René Vidal
Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218, USA

{tron,rvidal}@cis.jhu.edu http://www.vision.jhu.edu

Abstract

Traditional computer vision and machine learning algo-
rithms have been largely studied in a centralized setting,
where all the processing is performed at a single central
location. However, a distributed approach might be more ap-
propriate when a network with a large number of cameras is
used to analyze a scene. In this paper we show how central-
ized algorithms based on linear algebraic operations can be
made distributed by using simple distributed averages. We
cover algorithms such as SVD, least squares, PCA, GPCA,
3-D point triangulation, pose estimation and affine SfM.

1. Introduction

Imagine we have a large network of N cameras for ana-
lyzing a scene. A traditional solution would be to send all
the images to a central node, where a large problem is set up
and solved. Unfortunately, this approach is not scalable. As
the number of sensors increases, the load on the central node
increases, possibly exceeding the available resources. In ad-
dition, if the central node fails, the entire network becomes
useless. Therefore, it might be better to use a distributed
approach, where each camera in the network processes its
own data, collaborates with neighboring cameras and finds a
globally optimal solution to the problem using simple local
computations. In this way, the computation load is shared by
all the nodes (which require only a fraction of the resources)
and the architecture is robust to individual node failures.

We show that, for specific linear algebra operations, such
as least squares and SVD (§3), the problem reduces to finding
the average or the minimum of a set of values in a distributed
fashion, for which well-studied algorithms are available (§2).
We also show that this is the case for a few standard machine
learning (§4) and computer vision (§5) algorithms.

Prior work. Over the past few years, many distributed algo-
rithms for camera networks have been developed (see [8]
and references therein for a review). However, different
distributed approaches have been used for different prob-
lems. In this paper we propose a more general approach
to directly translate specific centralized algorithms to their

distributed counterparts. Our basic building blocks are dis-
tributed algorithms for least squares estimation, which were
first presented in [12]. We show that the same principles can
be applied to all the algorithms covered in this paper. The
first one, Distributed PCA, has been the subject of numerous
papers (see [11] and references therein). In particular, our
method can be related to [1], with the difference that [1]
assumes fixed tree topology and uses local QR decompo-
sitions instead of arbitrary topologies and local weighted
averages. We are not aware of any previous distributed ver-
sion of GPCA [10]. Triangulation of 3-D points in a camera
network has been studied in the context of camera local-
ization [4, 8]. In those works, however, the triangulation is
performed independently at each camera, while our approach
uses all the images simultaneously. Prior work on pose esti-
mation [9] averages pose estimates computed independently
at each node, while we work directly with the image points.
Finally, while SfM is very much related to the problem of
network localization (see [8] and references therein), we
are not aware of any work that uses orthographic projec-
tion model and factorization methods in a distributed setting.
Overall, our main contribution is to address all the aforemen-
tioned problems under a common distributed optimization
framework.

2. Basic Distributed Algorithms
In this section, we review some basic distributed algo-

rithms. We represent the network with a connected undi-
rected graph G = (V, E), where V = {1, . . . , N} represents
the nodes and E ⊂ V ×V represents the pairs (i, j) ∈ E that
can communicate directly. The set of neighbors of node i
is denoted as Ni = {j ∈ V : (i, j) ∈ E} and its degree as
di = |Ni|. A path on the graph from node i to node j is
a sequence of nodes (w0, w1, . . . , wm) such that wk ∈ V ,
(wk, wk+1) ∈ E for all k and m is the length of the path.
The diameter of G is defined as the maximum length of the
shortest path among any pair of nodes.

2.1. Distributed Averaging

Assume each node has a measurement ui ∈ R and that
we need to compute the average ū = 1

N

∑N
i=1 ui.

57

A first trivial approach is to aggregate averages along a
spanning tree up to a designated central node. This approach
is the most efficient in some situations. However, it requires
selecting a central node, which could fail, and maintaining a
spanning tree, which could be difficult in the case of packet
losses. In addition, this kind of algorithm does not take
advantage of wireless communications, where messages can
be easily broadcasted from one node to its neighbors.

A second alternative approach is to use an average consen-
sus algorithm [5]. In its simplest form, each node maintains a
state xi, which is initialized with a measurement xi(0) = ui.
The nodes then iterate the difference equations

xi(t+ 1) = xi(t) + ε
∑
j∈Ni

(xj(t)− xi(t)), (1)

where ε < (maxi{di})−1. It can be shown that each
state converges to the average of the initial values, i.e.,
limt→∞ xi = ū. The main advantages are that each node
has an estimate of the mean at each iteration, that each node
needs to communicate only with its neighbors and that no
central coordination is needed. The price to pay is a larger
number of iterations to converge. Consensus algorithm can
also be adapted to situations where the topology of the net-
work is changing or packet losses are present [13]. In all our
experiments we will employ average consensus.
Extensions. Both averaging algorithms mentioned above
can be extended to the case of multivariate data ui ∈ Rm
by applying them to each component. They can also be ex-
tended to the case where each node has multiple data points
and we are interested in averaging the entire dataset. Specif-
ically, assume each node i has ni measurements {uij}ni

j=1

and we want to compute ū = 1∑N
i=1 ni

∑N
i=1

∑ni

j=1 uij . By

defining ui =
∑ni

j=1 uij we can write ū = N∑N
i=1 ni

∑N
i=1 ui

N .
Therefore, ū can be obtained by dividing the average of the
ui by the average of the ni (i.e., by averaging twice).

2.2. Distributed computation of the minimum

Assume now that we are interested in computing u =
mini ui. A simple distributed algorithm can be defined as

x(0) = ui, xi(t+ 1) = min
j∈{Ni∪i}

xj(t). (2)

It is easy to show that, after at most T = diam(G) itera-
tions, this algorithm converges to xi(T) = u ∀i ∈ V .

3. Distributed Linear Algebra Algorithms
In this section, we introduce the key insight for reducing

distributed linear algebra operations to averages. Assume
that each node i has a matrix Ai ∈ Rni×m and let n =∑N
i=1 ni. Define the matrix

A =
[
A>1 A>2 . . . A>N

]> ∈ Rn×m. (3)

For the sake of brevity, from now on we will denote (3) and
other similar quantities as A = stack({Ai}Ni=1).

Assume that we want to compute A>A (or a scaled ver-
sion of it) at each node. The problem is distributed, because
it involves data from all the nodes. Let us define

C =
1

N
A>A =

1

N

N∑
i=1

A>i Ai =
1

N

N∑
i=1

Ci, (4)

where Ci = A>i Ai is the local correlation matrix at node i.
We first remark that C is a matrix with dimension m×m,

independently of the number of nodes N and of measure-
ments n. Therefore, as the dimension of the problem grows
(for instance, if we add more nodes or data at each node),
the requirements for storing Ci and C at each node do not
change. Our second and most important remark is that C
can be computed as an average of the local Ci by using the
methods of §2.1. If N is also known at each node, then the
matrix A>A can be computed exactly. Moreover, since Ci

is symmetric, the nodes can save transmission bandwidth by
computing the Cholesky decomposition Ci = Q>i Qi and
transmitting only the factor Qi, which can be represented as
a lower triangular m× r matrix, where r is the rank of Ci.
However, computing C in this way is advantageous only if
r � n (otherwise we can just use the original data).

Assume now that each node i has also a vector bi ∈ Rni

and define the vector b = stack({bi}Ni=1). Assume we
want to compute A>b at each node or a scaled version of it.
Similarly to before, define the cross-correlation vector

d =
1

N
A>b =

1

N

N∑
i=1

A>i bi =
1

N

N∑
i=1

di, (5)

where di = A>i bi ∈ Rm is the local cross-correlation vector
at node i. As before, d can be computed using distributed
averaging and its dimension depends only on m.

In the following, we use the distributed computation of
C and d to build distributed versions of various algorithms.

3.1. Singular Value Decomposition (SVD)

Assume we want to compute the compact SVD of the
matrix A defined in (3), namely, A = UΣV>, where U ∈
Rn×r and V ∈ Rm×r have orthonormal columns, Σ ∈
Rr×r is diagonal with non-negative entries and r is the rank
of the matrix. From (4) and the SVD of A we have

C = V(
1

N
Σ2)V>, (6)

which is the SVD of C. Therefore, the nodes can recover
V (even without knowing N) after a distributed average. If
N is known, then the nodes can also recover Σ. While the
matrices V and Σ are common to all the nodes, the matrix
U must be stored similarly to A, i.e., each node computes
the part of the factorization corresponding to its data as

Ui = AiVΣ−1. (7)

58

3.2. Distributed Nullspace Estimation

Assume that, given the matrix A, we want to find the
vector

x0 = argmin
x:‖x‖=1

‖Ax‖2. (8)

It is well known that the solution is given by x0 = vm
where vm is the last column of V (completed to be a square
orthonormal matrix, if necessary). Therefore, by computing
the SVD of C, the desired result can be found at each node.

3.3. Distributed Linear Least Squares

Assume we want to solve a distributed system of equa-
tions Ax = b in a least squares sense, i.e., we want to find

x0 = argmin
x
‖Ax− b‖2. (9)

The solution can be obtained by solving A>Ax0 = A>b,
or equivalently, Cx0 = d, which is a m×m linear system
of equations that each node can solve locally after computing
the two distributed averages C and d.

4. Applications in Subspace Learning
In this section we use the basic algorithms from the pre-

vious section to build distributed versions of algorithms for
dimensionality reduction and subspace clustering.

4.1. Principal Component Analysis (PCA)

Imagine that each node i has a collection of ni vec-
tors Yi =

[
yi1, . . . ,yini

]
∈ Rm×ni . Considering all

the nodes together, we have a distributed dataset Y =[
Y1, . . . ,YN

]
∈ Rm×n. We can reduce the dimension-

ality of this dataset by employing PCA, which approximates
the vectors using an affine subspace model given by

yij ' ŷij = V̂cij + µ̂, (10)

where ŷij ∈ Rm is the approximation of yij , µ̂ ∈ Rm is an
offset vector, V̂ ∈ Rm×r̂ represents an orthonormal basis for
an r̂-dimensional space in Rm and cij are the coefficients for
ŷij in this basis. PCA finds V̂, {cij} and µ̂ that minimize
the total reconstruction error in three steps:

1. Compute µ̂ as the average of the entire dataset, i.e., µ̂ =
1
n

∑N
i=1

∑ni

j=1 yij and compute a centered version of
the data ỹij = yij − µ̂ (to which we collectively refer
as the matrix Ỹ).

2. Compute the SVD of the centered data matrix, say
Ỹ = VΣU> and set V̂ as the first r̂ columns of V.

3. Compute the coefficients as cij = V̂>ỹij .

Given this centralized solution and the algorithms pre-
sented in §3, it is easy to give a distributed version of PCA.

The average µ̂ can be computed using the algorithms in
§2.1. The matrix V can be obtained from the global correla-
tion matrix C as described in §3 by setting A = Ỹ>. The
remaining operations can all be performed locally.

Conceptually, the proposed algorithm is just a distributed
average of vectors followed by a distributed SVD. Notice
that the local storage requirements do not depend on the
number of nodes N . However, this approach gives a real
advantage only if rank(Y)� n.

We tested our distributed PCA algorithm on a synthetic
dataset distributed across a network with ten nodes in a ring
topology. Each node has ni = 50 vectors in R2 clustered
around a 1-D subspace that is slightly different for each node.
Figure 1(a) shows the distribution of the vectors and the 1-D
subspaces estimated using either only the local data at each
node or the entire dataset. Note that each single node cannot
estimate the global subspace fit alone. We used consensus
to compute the distributed average and we report in Figure
1(b) the maximum subspace angles between the estimate at
each node and the centralized solution after each consensus
iteration. The errors converge to zero for all the nodes in the
network.

−30 −20 −10 0 10 20 30
−20

−10

0

10

20

(a) Data points (different colors indicate data from different nodes),
subspaces estimated locally at each node (thin colored lines) and
subspace estimated from the entire dataset (thick black line).

0 10 20 30 40 50
0

5

10

15

Iterations

B
as

is
 a

ng
le

 e
rr

or
s

(d
eg

re
es

)

(b) Maximum subspace angle between the subspace estimated locally at
each node and the centralized solution after each iteration of consensus.

Figure 1. Results for distributed PCA.

59

4.2. Generalized PCA (GPCA)

Imagine now that the measurements at each node Yi =[
yi1 . . .yini

]
are drawn from a union ofK hyperplanes with

normals {bk}Nk=1 ∈ Rm. In other words, for any point yij
there exist a k ∈ {1, . . . ,K} such that b>k yij = 0. This is
the case, for instance, when the data Yi represent images of
faces belonging to different individuals under varying light-
ing conditions. Our goal is to obtain a distributed algorithm
that recovers the normals {bk} and clusters the data accord-
ingly. Generalized PCA (GPCA) [10] is a non-iterative
algorithm for solving this clustering problem. The idea of
GPCA is to fit a polynomial to the data and then recover the
normals from this polynomial. The main insight is to notice
that any point yij in any one of the hyperplanes satisfies

0 =

K∏
k=1

b>k yij = pK(yij) = νK(yij)
>c, (11)

where pK is a homogeneous polynomial in m variables
with MK(m) =

(
K+m−1
m−1

)
coefficients, which we denote

with the vector c ∈ RMK(m). Also, νK(yij) denotes the
Veronese map of the vector yij , which contains all the mono-
mials of degree K in the entries in yij . For the exact defini-
tion of this map, we refer the reader to [10].

The vector of coefficients c can be linearly estimated
from the data. Specifically, define the matrix Ai =
stack({νK(yij)

>}ni
j=1) at each node i and the matrix A =

stack({Ai}Ni=1) . Then, according to (11), the coefficient
vector c must satisfy Ac = 0, i.e., c is in the nullspace of A.
In the case of noisy data points that do not exactly correspond
to the subspaces, the coefficient vector can be still estimated
in a least square sense as c = argminx:‖x‖=1 ‖Ax‖2. In
both cases, each node can estimate c using the algorithm
of §3.2. Once we have obtained the coefficients c of the
polynomial pK , we use polynomial differentiation to recover
the normals. In the case of data lying perfectly on the hyper-
planes, the gradient of pK computed at one of the points yij
gives a vector which is parallel to the normal bk of the k-th
hyperplane to which that point belongs, i.e.,

∇xpK(x)|x=yij
∼ bk, where b>k yij = 0. (12)

When the data is noisy, we can still use this relation to get an
estimate (although not perfect) of the normal at each point.
Hence, all we need is to get one point in each cluster such
that we can obtain the normal for each subspace. We will
now explain how this can be done in a distributed way. In
the following, we use b̂ij (with two indexes) to indicate the
normal estimated at point yij using (12) and b̂k (with a sin-
gle index) to indicate the normal estimated by the algorithm
for the k-th subspace. The algorithm proceeds as follows:

1. Estimate b̂ij = ∇xpK(x)
‖∇xpK(x)‖

∣∣∣
x=yij

for each point.

2. Estimate the distance of each point from its subspace

as dij = |b̂
>
ijyij |.

3. For the first subspace k = 1, pick the normal at the
point with minimum dij , i.e., b̂1 = b̂ı̂̂ where (̂ı, ̂) =
argmin(i,j) dij .

4. For the other subspaces k = 2, . . . ,K, repeat
(a) Update the distances using dij ← dij

|b̂>k−1yij |+δ
,

with δ being a small regularization constant.
(b) Pick the normal at the point for which dij is mini-

mal, i.e., b̂k = b̂ı̂̂ where (̂ı, ̂) = argmin(i,j) dij .

A distributed implementation of this procedure is straight-
forward. All the steps use only local information, except for
steps (3) and (4b), which require the computation of a global
minimum. For these steps, we can use the algorithm of §2.2.
Note that, the node must exchange the normal that attains the
minimum in addition to the value of the minimum distance.
Once the normals {b̂k} have been estimated, each node can
assign each one of its points to the closest subspace. This
gives a complete, distributed version of GPCA.

We tested our algorithm on a synthetic dataset distributed
in a network of ten nodes connected with a ring topology.
Each node generates ni = 60 data points in one of three 1-D
subspaces in R2 and adds isotropic Gaussian noise whose
variance is about 15% the variance of the data. Note that
each node has only samples from one of the subspaces. Fig-
ure 2(a) shows an instance of the generated data together
with the estimated subspaces. We report in Figure 2(b) the
squared Euclidean distances between the coefficient vector
c computed with a centralized algorithm and the vectors
computed after each iteration of the consensus algorithm in
the distributed version. All the local estimates converge to
the centralized solution. In addition, the maximum angle
between any normal estimated at any node and the corre-
sponding normal from the centralized solution is 1.48 · 10−6.

5. Applications in Computer Vision
In this section we give distributed versions of three basic

but important computer vision algorithms: point triangula-
tion, linear pose estimation and affine Structure from Motion.

5.1. Point triangulation

Assume that a 3-D point P =
[
Px Py Pz

]> ∈ R3 is

visible to all the cameras and let pi =
[
pix piy

]> ∈ R2

denote its image in the i-th camera. Denote as Ri ∈ SO(3)
and T i ∈ R3 the rotation and translation of the i-th camera.
Using the standard projective camera model [2] we have

λip
h
i =

[
Ri T i

]
P h, (13)

where λi ∈ R is the depth of the point P for camera i
and the notation vh = stack(v, 1) indicates the vector v in

60

−4 −2 0 2 4

−2

−1

0

1

2

(a) Data points (different colors indicate data from different
nodes) and estimated 1-D subspaces (black lines).

0 50 100 150
10

−20

10
−10

10
0

10
10

Iterations

S
qu

ar
ed

 E
uc

lid
ea

nd
 d

is
ta

nc
es

(b) Squared Euclidean distances between the coefficient vectors c esti-
mated with the centralized and distributed GPCA algorithms after each
iteration of consensus.

Figure 2. Results for distributed GPCA.

homogeneous coordinates. Given the images {pi}Ni=1, one
can triangulate the 3-D point P using a well known linear
algorithm. First, each node i constructs

Ai = [phi]×
[
Ri T i

]
, (14)

where [pi]× is the matrix representing the cross product1.
Then, the coordinates of P can be recovered using the rela-
tion AP h = 0, where A = stack({Ai}Ni=1). In practice, in
our distributed setting, each node can recover P h from the
nullspace of A by applying the algorithm of §3.2 and then
normalize the vector so that the last entry is equal to one.
The 3-D coordinates of P are then easily extracted from P h.

We tested our algorithm on a synthetic camera setup with
five calibrated cameras looking at an object (Figure 3(a)).
For simplicity, we assumed that all the cameras can see all
the 3-D points. The images of the points in each camera
have been corrupted by adding Gaussian noise with standard
deviation equivalent to 15 pixels on a 1000×1000 image. In
Figure 3(b) we show the final reconstruction together with
the trajectories of the points as they are estimated during
successive iterations and converge to the centralized solution.

1[pi]×v = pi × v ∀v ∈ R3 and [pi]×pi = 0

5.2. Linear pose estimation

Assume we have an object defined in a predetermined
reference frame by NP points {P l}

Np

l=1 ∈ R3 and that this
object undergoes a rigid-body transformation defined by the
rotation R0 ∈ SO(3) and the translation T 0 ∈ R3. Again,
using the standard projective camera model, we have

λilp
h
il = Ri (R0P l + T 0) + T i, (15)

where pil ∈ R and λil are the image and the depth of the l-th
point for the i-th camera. The camera poses (Ri,T i) are
assumed to be known. Our goal is to design a distributed ver-
sion of the linear algorithm for recovering the pose (R0,T o)
from the images [2]. Similar to the triangulation problem, if
we multiply on the left by the cross product matrix [phil]×,
we get the relationship

[phil]× (Ri (R0P l + T 0) + T i) = 0. (16)

−2
0

2
4

6

0

5

10

−2

0

2

 x
 y

 z

x

 x

 x

 y
 z

 z
 y

 z x

 x

 y

 z
 y

y

z

(a) Synthetic camera setup of five cameras looking at an
object (a cube) composed of eight 3-D points.

−2
−1

0
1

−2
−1

0
1

−1

0

1

(b) The centralized reconstruction of the eight 3-D points (circles) and
the trajectories of each point as they are estimated after each consensus
iteration. Different colors indicate data from different nodes. The
squares indicate the estimates of the nodes after one iteration. The
errors are magnified five times for visualization purposes.

Figure 3. Results for distributed triangulation.

61

0 10 20 30 40 50
0

1

2

3

4

R
ot

at
io

n
er

ro
r [

de
gr

ee
s]

(a) Rotation errors (degrees).

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Tr
an

sl
at

io
n

er
ro

r

(b) Translation errors (Euclidean distance).

Figure 4. Results for distributed pose estimation. The plots show the
errors between the pose estimated at each node after each consensus
iteration and the pose estimated by the centralized algorithm.

This relation gives equations that are linear in the unknowns
R0 and T 0 and can be rewritten as Dilx = dil, where
the vector x = stack(vec(R0),T 0) ∈ R12 contains all the
entries of R0 and T 0, while Dil and dil contain the coeffi-
cients of the equation given by (16). To obtain a distributed
solution, each node constructs Ai = stack

(
{Dij}

Np

j=1

)
and

bi = stack
(
{dij}

Np

j=1

)
from all the constraints given by the

points that are visible in camera i. It is then possible to use
the distributed algorithm of §3.3 to estimate x. Given this
vector, one can finally extract R0 and T 0. In the presence
of noise, it might be necessary to project the estimated R0

back to the space of rotations SO(3), see [2].
We tested our algorithm on the same setup used for §5.1

(Figure 3(a)), but we now assumed that the geometry of
the cube is known and that we want to recover its pose. In
Figure 4 we report the rotation and translation errors of the
distributed algorithm with respect to the centralized version.
Both errors converge toward zero as the iterations proceed.

5.3. Distributed Affine Structure from Motion

Assume now that we have NP unknown 3-D points
{P l}NP

l=1 that are moving. Assume that each camera i collects
a video and tracks all the 3-D points forKi frames. Theoreti-
cally, each camera could solve a local Structure from Motion
(SfM) problem and obtain the 3-D structure [6]. However,
in this section we propose a distributed algorithm that uses
all the frames from all the cameras to obtain better results.

Denote as {pilk}
k=1,...,Ki

l=1,...,NP
the images of the 3-D points

projected in the i-th camera and let K =
∑N
i=1Ki. In-

stead of the projective camera model used previously, in this
section we will consider the orthographic projection model
(which can be easily generalized to the affine model [6]).
Under this assumption, the image points satisfy the equation

pilk = MikP l + tik. (17)

When the cameras are calibrated, Mik ∈ R2×3 and tik
contain the first two rows of, respectively, the rotation and
translation between the camera i and the 3-D object at frame
k. For ease of explanation, we define the motion matrices
Mi = stack({Mik}Ki

k=1), M = stack({Mi}Ni=1), and the
structure matrix S =

[
P 1 · · ·PNP

]
3×NP

. The goal of SfM
is to recover M and S from the image points {pilk}.

Since the motion and structure of the scene can only be
recovered up to a choice of the world’s reference frame, it
is customary to place the origin of the world’s reference
frame at the center of the 3-D points, so that

∑NP

l=1P l = 0.
As a consequence, tik can be estimated by each camera
as tik = 1

NP

∑NP

l=1 pilk. Each camera i can then form the
matrices Wik ∈ R2×NP , whose NP columns are the mean-
subtracted images {wilk = pilk − tik}

NP

l=1. Define Wi =

stack({Wik}Ki

k=1) and W = stack({Wi}Ni=1. It is easy to
verify that W can be factorized as

W = MS (18)

and that Wi = MiS for all i. From (18), the matrix W
is of rank at most three and it can be factorized using the
SVD of W = UΣV>. This can be done by using the
distributed algorithm of §3.1, where we identify Ai = Wi,
S = V> and Mi = UiΣ = WiV. We define {Uik}Ki

k=1

by partitioning Ui in the same way as Wi.
The estimates M and S obtained from the SVD are re-

ferred to as affine motion and structure, since they are valid
only up to an affine transformation Q ∈ R3×3. In fact,

M = UQ and S = Q−1ΣV> (19)

give a valid factorization for any invertible Q. However,
with calibrated cameras, one can fix Q by knowing that the
first two rows of each motion matrix Mik should be rows
of a rotation matrix. Since Mik = UikQ, we have that
MikM

>
ik = UikQQ>U>ik = I2×2, the two by two identity

matrix. This gives the following three linear equations for
finding the entries of the symmetric matrix Y=QQ>

e>1 U>ikYUike1 =e>2 U>ikYUike2 =1,

e>1 U>ikYUike2 =0,
(20)

where e1 =
[
1 0

]>
, e2 =

[
0 1

]>
and i = 1, . . . , N .

These equations can be rewritten as Aiy = 0, where y =
vec(Y) and the entries of Ai are functions of Ui as given
by (20). To obtain y (and hence Y) from all the equation

62

0 50 100 150
10

−10

10
−5

10
0

10
5

Iterations

M
ea

n
er

ro
r

Ring
Linear
Tree

Figure 5. Results for distributed structure from motion. Subspace
angle errors between the distributed and the centralized solutions
averaged over all the nodes and objects different kinds of topology.

from all the cameras, one can apply the algorithm of §3.2.
After this step, each node can independently compute the
common Q from the Cholesky decomposition of Y. Given
Q, from (19) we obtain S and Mik, i.e., the structure of the
scene and the pose of each camera.

We use the Hopkins 155 dataset [7] to test our algorithm.
This dataset contains features extracted from videos with
multiple moving objects. We consider separately the tracks
for each distinct object appearing in any of the videos, ob-
taining 135 single-object sequences. We simulated a network
setup with N = 5 cameras connected with a ring topology.
For each sequence, we divided the available frames roughly
equally among the cameras (to simulate the fact that each
camera can track the object from different angles). We used
150 iteration of consensus for each step of our algorithm.

We compared the final distributed and centralized solu-
tions by computing the maximum subspace angle [3] be-
tween the subspaces spanned by the rows of the structure
matrices at each node, which are invariant to the unknown
change of basis for the affine structure. The maximum er-
ror is 1.12 · 10−8 and about 95% of the time the error is
below 7 · 10−10. In all cases, the centralized and distributed
solutions are numerically equivalent.

Using the same experimental setting, we have also com-
pared different choices of topology. In Figure 5 we show
the subspace angle errors averaged over all the nodes for all
the sequences for three choices of topology: linear (each
node has at most two neighbors), ring and a binary tree. In-
tuitively, the presence of loops (ring topology) leads to faster
convergence for consensus.

6. Conclusions

In this paper we have shown how simple distributed linear
problems, such as least squares and SVD, can be easily im-
plemented by reducing them to distributed averages, which
can be computed using the spanning tree based method or
consensus. This insight provides a straightforward way to

implement a number of machine learning (PCA, GPCA) and
computer vision (triangulation, pose estimation, affine SfM)
algorithms. A distinctive feature of our algorithms is that the
amount of storage required at each node depends only on the
local data and remains constant as the number of cameras in-
creases. On the downside, these linear algorithms are usually
far from optimal and only used as an initialization for other
non-linear procedures (e.g., bundle adjustment). Also, from
the perspective of communication cost, they might not give
substantial advantages: for instance, the distributed SVD
illustrated in this paper is not efficient when the rank of the
data r is in the order of the number of vectors n. In our
future work we plan to address these challenges.
Acknowledgments. This work has been supported by the
National Science Foundation grant 0834470.

References
[1] Z.-J. Bai, R. Chan, and F. Luk. Principal component analysis

for distributed data sets with updating. Advanced Parallel
Processing Technologies, pages 471–483, 2005.

[2] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge, 2nd edition, 2004.

[3] H. Hotelling. Relations between two sets of variates.
Biometrika, 28:321–372, 1936.

[4] W. Mantzel, H. Choi, and R. Baraniuk. Distributed camera
network localization. In Asilomar Conference on Signals,
Systems and Computers, volume 2, pages 1381–1386, 2004.

[5] R. Olfati-Saber, J. Fax, and R. Murray. Consensus and coop-
eration in networked multi-agent systems. Proceedings of the
IEEE, 95(1):215–233, 2007.

[6] C. J. Poelman and T. Kanade. A paraperspective factoriza-
tion method for shape and motion recovery. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 19(3):206–18,
1997.

[7] R. Tron and R. Vidal. A benchmark for the comparison of
3-D motion segmentation algorithms. In IEEE Conference on
Computer Vision and Pattern Recognition, 2007.

[8] R. Tron and R. Vidal. Distributed algorithms for camera
sensor networks. Signal Processing Magazine, 2011.

[9] R. Tron, R. Vidal, and A. Terzis. Distributed pose averaging
in camera networks via consensus on SE(3). In International
Conference on Distributed Smart Cameras, 2008.

[10] R. Vidal, Y. Ma, and S. Sastry. Generalized Principal Com-
ponent Analysis (GPCA). IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(12):1–15, 2005.

[11] A. Wiesel and A. Hero. Decomposable principal compo-
nent analysis. IEEE Transactions on Signal Processing,
57(11):4369 –4377, 2009.

[12] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed
sensor fusion based on average consensus. In Symposium on
Information Processing of Sensor Networks (IPSN), pages
63–70, 2005.

[13] A. T. Y. Chen, R. Tron and R. Vidal. Corrective consensus:
Converging to the exact average. In Conference on Decision
and Control, 2010.

63

