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René Vidal
Johns Hopkins University

Baltimore, MD
rvidal@cis.jhu.edu

Abstract

We propose a scheme to introduce directionality in the
Random Walker algorithm for image segmentation. In par-
ticular, we extend the optimization framework of this algo-
rithm to combinatorial graphs with directed edges. Our
scheme is interactive and requires the user to label a few
pixels that are representative of a foreground object and of
the background. These labeled pixels are used to learn in-
tensity models for the object and the background, which al-
low us to automatically set the weights of the directed edges.
These weights are chosen so that they bias the direction
of the object boundary gradients to flow from regions that
agree well with the learned object intensity model to regions
that do not agree well. We use these weights to define an en-
ergy function that associates asymmetric quadratic penal-
ties with the edges in the graph. We show that this energy
function is convex, hence it has a unique minimizer. We pro-
pose a provably convergent iterative algorithm for minimiz-
ing this energy function. We also describe the construction
of an equivalent electrical network with diodes and resistors
that solves the same segmentation problem as our frame-
work. Finally, our experiments on a database of 69 images
show that the use of directional information does improve
the segmenting power of the Random Walker algorithm.

1. Introduction

Image segmentation refers to the problem of dividing an
image into a number of disjoint regions such that the fea-
tures of each region are consistent with each other. Since
images generally contain a lot of objects that are further sur-
rounded by clutter, it is often not possible to define a unique
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segmentation. In other words, the segmentation problem
can be ill-posed when working in an unsupervised frame-
work. Interactive algorithms allow the user to label a few
pixels as either object or background, thereby making the
segmentation problem well posed.

Traditional variational methods approach the segmenta-
tion problem by minimizing energy functionals that favor
alignment of the object boundary with regions of high in-
tensity gradient (e.g., [9, 2]). Recently, Vasilevskiy and Sid-
diqi [11] noted that the direction of the intensity gradient
contains valuable information that can improve the quality
of the resulting segmentation. More specifically, this direc-
tional information is used to define a vector field and the
segmentation problem is subsequently posed as the estima-
tion of the object boundary that maximizes the flux of this
vector field. It was experimentally shown in [11] and [5]
that the use of such directional information can greatly ben-
efit the segmentation of elongated objects.

Kolmogorov and Boykov adopted the use of directional
gradients in discrete optimization. They solved the image
segmentation problem via max-flow/min-cut on a combina-
torial graph with directed edges [6]. The authors analyzed
the use of Finsler metrics to compute the boundary length
of the segmented object and subsequently showed that the
use of directed edges is conceptually related to the flux of
vector fields defined on the graph. This work additionally
corroborated the ability of directional gradient information
(i.e., graphs with directed edges) to aid the segmentation
of thin structures. Later, Boykov and Funka-Lea demon-
strated that the introduction of directional information also
improves the ability of Graph Cuts to segment general ob-
jects rather than just elongated structures [1]. Subsequent
work has shown that the formulation of such directional-
ity in Graph Cuts also has utility in applications other than
segmentation [8].

In this work, we focus our interest on Grady’s Random
Walker algorithm. This algorithm estimates the segmen-
tation as the solution to the Dirichlet problem formulated
on a combinatorial graph with boundary conditions [4]. It
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was shown in [4], that the Random Walker algorithm has
some advantages with respect to Graph Cuts. For instance
it avoids the “shrinking bias” and metrication errors. Also,
it easily generalizes to the case of more than two labels.
However, a salient feature of the Random Walker algorithm
is that it employs symmetric penalties for detecting the im-
age gradients. Motivated by the recent success in using the
direction of the image gradients to improve segmentation
quality in both continuous and combinatorial algorithms,
we propose an approach that incorporates directional infor-
mation in the Random Walker algorithm.

The construction introduced by Kolmogorov and
Boykov for using gradient directionality on a graph in-
volved replacing undirected edges between neighboring
nodes with directed edges. Kolmogorov and Boykov then
used the results from [7] to show that these directed edges
may be equivalently converted back to undirected edges
with source (“t-link”) terms introduced. A natural approach
to introducing directionality (i.e., directed edges) into the
Random Walker algorithm might be to apply a similar trans-
formation. Unfortunately, the transformation applied in the
Graph Cuts case is only possible because of the linear de-
pendence of each pairwise energy term on the difference of
potentials between nodes. In contrast, the Random Walker
algorithm employs a quadratic penalty (see [10]), which
makes such a construction unsuitable.

Doyle and Snell showed that one can construct an equiv-
alent electrical network with purely resistive impedances,
such that the network solves the Dirichlet problem with
boundary conditions [3]. Therefore, the optimization of the
Random Walker algorithm has an equivalent circuit theory
formulation. In this paper, we show that this original cir-
cuit theory formulation can be modified in order to inter-
pret the directed edges as circuit branches with diodes and
resistors. In particular, this modification ensures that the
circuit branches exhibit different impedances based on the
direction of the current flow through the branches. It is of
interest to note that the equivalent circuit theory and ran-
dom walk interpretations of the Random Walker algorithm
of [4] are no longer equivalent when asymmetric penalties
are employed in the graph with directed edges.

The paper is organized as follows. In Section 2, we re-
view the classical Random Walker algorithm and describe
the construction of the equivalent electrical network that
solves the same optimization problem. In Section 3, we
propose our modification to this network that serves to ex-
tend the Random Walker algorithm to the realm of graphs
with directed edges. This formulation helps us pose the seg-
mentation problem as a constrained optimization problem.
In Section 4, we establish the existence and uniqueness of
the solution to this optimization problem and outline an al-
gorithm for the numerical estimation of this solution. We
also discuss the details of another contribution of this paper,

where we provide the machinery to automatically choose
the weights of the directed edges in the graph. Finally, in
Section 5 we present qualitative and quantitative results that
show how our proposed framework helps improve the seg-
mentation results given by the Random Walker algorithm.

2. Image Segmentation Using the Random
Walker Algorithm

In this section, we present a short review of the classical
Random Walker algorithm for image segmentation. This
will consequently help us appreciate why its framework is
restricted to the realm of graphs with undirected edges.

Recall that the Random Walker algorithm poses image
segmentation as an optimization problem on a combinato-
rial graph. Therefore, before we proceed, we shall formally
define the graph that we work with. The same notation shall
be used for the rest of the paper.

A graph G consists of a pair G = (V, E) with nodes
vi ∈ V and edges eij ∈ E ⊂ V × V . The nodes on the
graph typically correspond to pixels in the image. An edge
that spans two vertices vi and vj is denoted by eij , and
we follow the convention that eij is oriented from vi to vj .
The neighborhood of a node vi, denoted byN (vi), is given
by the set of all nodes vj that share an edge with vi. We
construct a weighted graph by assigning to each edge eij
a non-negative value wij that is referred to as its weight.
For graphs with undirected edges, we note that for all edges
eij ∈ E , we have wij = wji. This equality need not hold
for graphs with directed edges.

The Random Walker algorithm requires the user to inter-
act with it and mark representative seed nodes for the ob-
ject and the background in the image. These seeds embed
membership constraints in the graph and are subsequently
used to predict the memberships of the remaining unmarked
nodes. The setM ⊂ V contains the locations of the nodes
marked as seeds and the set U ⊂ V contains the locations
of the unmarked nodes. By constructionM∩ U = ∅ and
M ∪ U = V . We further split the set M into the sets
O ⊂ M and B ⊂ M that contain the locations of the
seeds for the object and the background, respectively. By
construction, we have O ∩ B = ∅ and O ∪ B =M.

The Random Walker algorithm proceeds by first defin-
ing the weight of edge eij as wij = e−β‖Ii−Ij‖2 , β > 0,
where Ii refers to the intensity of the ith pixel. The user de-
fined seeds provide the boundary conditions on the graph.
The seeds corresponding to the object and background are
assigned values x = 1 and x = 0, respectively. The estima-
tion of the memberships {xi}vi∈U of the unmarked nodes is
then posed as the problem of estimating a harmonic function
that satisfies the boundary constraints given by the seeds.
This framework is also referred to as the Dirichlet problem



with boundary conditions, the solution of which is given as

{xi}vi∈U = argmin
x

∑
eij∈E

wij(xi − xj)2,

s.t. xi = 1, if vi ∈ O and xi = 0, if vi ∈ B.
(1)

The maximum principle for harmonic functions states
that such functions achieve their maximum and minimum
value at the boundary. Hence, the value of xi at any un-
marked node vi is constrained to lie in [0, 1] [3]. Moreover,
xi is the probability that a random walker starting from
node vi reaches the object seeds before the background
seeds. Therefore, by placing a decision boundary of x =
0.5 (for the two label case) on the values at the unmarked
seeds, the algorithm obtains a segmentation of the image.

The setup in (1) has the interesting property that there ex-
ists an equivalent electrical network that solves the same op-
timization problem. The network is represented by the same
graph constructed by the Random Walker algorithm. Every
node in the graph corresponds to a node in the network.
The edge weights correspond to the conductance values of
resistors connecting neighboring nodes, i.e. 1

Rij
= wij . The

background seeds provide the network’s ground, while the
object seeds act as unit voltage sources with respect to the
ground. Therefore, each background seed vi ∈ B is at po-
tential xi = 0V and each object seed vi ∈ O is at potential
xi = 1V , where all measurements are with respect to the
ground. From network theory, we know that the potentials
at the unmarked nodes distribute themselves such that they
satisfy Kirchoff’s current and voltage laws. It can be shown
that these potentials minimize the energy dissipated by the
network, which is given by the expression in (1) [3].

3. Electrical Networks for Asymmetric
Quadratic Penalty Schemes

In this section, we discuss how the the numerical frame-
work of the classical Random Walker algorithm can be ex-
tended to graphs with directed edges. We introduce the op-
timization problem that needs to be solved for this purpose,
and describe the construction of equivalent electrical net-
works that solve the same optimization problem. These net-
works help provide an intuition for the behavior and prop-
erties of our proposed framework.

The construction of the electrical network described in
Section 2 helps us appreciate why the Random Walker al-
gorithm is designed for undirected edges. The resistor is a
symmetric network element and we note from the expres-
sion in (1) that a transition from vi to vj is penalized the
same as a transition from vj to vi. To introduce direc-
tionality, we would like the penalties to depend on the di-
rection of the current flow between a pair of nodes. More
specifically, the desired behavior is as described in Table 1.
Consequently, we modify the energy function minimized by

Type of edges Penalty for Penalty for
xi ≥ xj xi < xj

Undirected (wij = wji) wij(xi − xj)2 wij(xj − xi)2

Directed (wij 6= wji) wij(xi − xj)2 wji(xj − xi)2

Table 1. Different penalty schemes for graphs with undirected
edges and graphs with directed edges.

the Random Walker algorithm to estimate the memberships
{xi}vi∈U of the unmarked nodes as the minimizer of

E(x)=
∑

eij∈E

[
wijI(xi ≥ xj)+wjiI(xi < xj)

]
(xi−xj)2,

(2)
subject to the constraints xi = 1, if vi ∈ O and xi =
0, if vi ∈ B. We use I(A) as an indicator function of
the event A, such that I(A) = 1, if the event A is true
and I(A) = 0 otherwise. Note that the energy minimized
by the Random Walker algorithm is a special case of E(x)
where ∀eij ∈ E , wij = wji. A simple check by plugging
wij = wji in our subsequent analysis will show that the
conclusions of our general framework reduce to the stan-
dard results known about the Random Walker algorithm.

It is interesting to look at what implications this modifi-
cation has in the domain of electrical networks. The values
xi have the same interpretation as in the classical random
walker setup, i.e. they represent the potentials at the nodes
in the network. The seeds for the object and background
provide the voltage sources and the ground. The modifi-
cation is in the construction of the network elements con-
necting neighboring nodes. Directionality is introduced by
connecting every pair of neighboring nodes with diodes and
resistors as shown in Figure 1. If the diodes are ideal, they
are active only when the potential drop across them is pos-
itive. Therefore, if xi is greater than xj , the diode Dij is
active and the diode Dji is off. The current flows from vi
to vj and the value of the resistance between the nodes is
equal to Rij = 1

wij
. By a similar argument one can see that

if xj is greater than xi, the current flows from vj to vi and
the resistance between the nodes is Rji = 1

wji
.

It is of interest to note that while the circuit theory and
random walk interpretations of the Random Walker algo-
rithm of [4] are equivalent in the case of an undirected

Figure 1. Resistor-diode configuration between a pair of nodes.



graph, the two interpretations are no longer equivalent when
directed edges are employed in the graph. Although it
would have been possible to formulate a Random Walker
algorithm using a directed walk, it can be verified that such
an algorithm would still penalize the boundary gradients in
a symmetric fashion. However, the circuit that we have
formulated clearly employs asymmetric penalty schemes.
Therefore, the incorporation of asymmetric penalties into
the Random Walker algorithm corresponds to a general-
ization of the energy dissipated by the network and is not
equivalent to a random walk on a directed graph.

4. Numerical Minimization of Asymmetric
Quadratic Energies on Directed Graphs

In this section, we shall establish that the proposed en-
ergy function E(x) is guaranteed to have a unique mini-
mizer. As we shall elaborate, the optimization required for
estimating this minimizer is not as simple as that of the Ran-
dom Walker algorithm. Recall that the constructed network
contains diodes which are essentially non-linear devices. As
a result, the potentials cannot be obtained by merely solving
a linear system. To this effect, we shall outline an iterative
algorithm for numerically estimating the minimizer.

4.1. Uniqueness and Existence of Solution

The fact that E(x) has a minimizer follows naturally
from the construction of the network. Note that if we are
provided information about all the active diodes, one can
treat the network as having purely resistive impedances, the
values of which are governed by the activity of the diodes.
Since the impedance for each edge can take on one out of
two values, there is a finite number (≤ 2|E|) of such purely
resistive networks. For each of these networks, recall that
the Random Walker algorithm guarantees the existence of a
unique minimizer of the energy dissipated by the network.
Therefore, one can go through the entire list of these resis-
tive networks, in order to find the potentials of the unmarked
nodes that minimize E(x). Hence, our optimization prob-
lem is guaranteed to have a solution.

From the discussion above, we know that the solu-
tion to our optimization problem is obtained by applying
the Random Walker algorithm to a resistive network, the
impedances of which are governed by the diodes’ activity.
Recall from Section 2 that the potentials at the unmarked
nodes, as estimated by the Random Walker algorithm, are
constrained to take values between 0 and 1. Consequently,
we know that any solution to our optimization problem must
satisfy (a) xi = 1, if i ∈ O, (a) xi = 0, if i ∈ B, and (c)
xi ∈ [0, 1], if i ∈ U . It is easy to verify that this set (say X )
of possible solutions is convex. Therefore, it is sufficient to
establish that E(x) is a strictly convex function on X , in
order to establish uniqueness of the minimizer.

In particular, consider any arbitrary scalar λ ∈ [0, 1] and
two arbitrary vectors x,y ∈ X such that x 6= y. Define the
vector z ∈ X as z = λx + (1 − λ)y. To establish strict
convexity of E(·), it is sufficient to prove that

λE(x) + (1− λ)E(y) ≥ E(z), (3)

with equality occurring iff λ = 0 or λ = 1. In what follows,
we shall prove (3) by showing that for each edge eij ∈ E ,

λ
[
wijI(xi ≥ xj) + wjiI(xi < xj)

]
(xi − xj)2

+(1− λ)
[
wijI(yi ≥ yj) + wjiI(yi < yj)

]
(yi − yj)

2

≥
[
wijI(zi ≥ zj) + wjiI(zi < zj)

]
(zi − zj)2,

(4)

with equality occurring iff λ = 0 or λ = 1. Notice that
this would essentially require us to verify (4) for 6 possi-
ble cases, based on the sign of the potential drop across an
edge. More specifically, we would have to verify (4) for the
following cases.

1. xi ≥ xj ,yi ≥ yj , zi ≥ zj

2. xi ≥ xj ,yi < yj , zi ≥ zj

3. xi ≥ xj ,yi < yj , zi < zj

4. xi < xj ,yi ≥ yj , zi ≥ zj

5. xi < xj ,yi ≥ yj , zi < zj

6. xi < xj ,yi < yj , zi < zj

We shall verify (4) for cases 1 and 2 only. The proof for
case 1 is similar to the proof for case 6. Similarly, the proof
for case 2 can be used to construct the proofs for cases 3-5.

Proof for the case xi ≥ xj ,yi ≥ yj , zi ≥ zj

The proof in this case is very simple. Essentially, we need
to verify that (4) holds true, by checking the fact that

λwij(xi−xj)2+(1−λ)wij(yi−yj)
2−wij(zi−zj)2 ≥ 0.

(5)
After substituting zi = λxi + (1 − λ)yi and zj = λxj +
(1 − λ)yj into (5) and rearranging the resulting terms, we
see that the expression in the left hand side of (5) can be
written as λ(1− λ)wij [(xi − xj)− (yi − yj)]2.

This expression is non-negative and is identically equal
to zero if and only if (a) λ = 0, (b) λ = 1, or (c) xi −xj =
yi − yj . Note that although we get an extra undesirable
condition (c) for the left hand side of (5) being identically
equal to zero, we shall show later that this does not affect
our proof for the strict convexity of E(·).



Proof for the case xi ≥ xj ,yi < yj , zi ≥ zj

In this case, we need to verify (4) by checking the fact that

λwij(xi−xj)2+(1−λ)wji(yi−yj)
2−wij(zi−zj)2 ≥ 0.

(6)
We use a result from the proof for case 1, to observe that
the expression in the left hand side of (6) can be rewritten as
(1−λ)[λwij [(xi−xj)−(yi−yj)]2+(wji−wij)(yi−yj)2].

Now, note that although λ is allowed to take values in
[0, 1] in general, it is actually constrained to a smaller set in
this case. It can take only those values in [0, 1] that ensure
that the hypothesis of this case is satisfied, i.e. zi ≥ zj . We
therefore see that we have the result

λxi + (1− λ)yi ≥ λxj + (1− λ)yj

=⇒λ ≥
yj − yi

(xi − xj)− (yi − yj)
> 0.

(7)

Therefore, λ is constrained to take values in
( yj−yi

(xi−xj)−(yi−yj)
, 1]. We use this constraint to derive

a lower bound for λwij [(xi − xj)− (yi − yj)]2 as

λwij [(xi − xj)− (yi − yj)]
2

≥λ2wij [(xi − xj)− (yi − yj)]
2 (because λ ≤ 1)

>wij(yi − yj)
2. (because λ >

yj − yi
(xi − xj)− (yi − yj)

)

(8)

Given this lower bound on λwij [(xi−xj)−(yi−yj)]2,
we can obtain a lower bound for the expression in the left
hand side of (6) as

λwij [(xi − xj)− (yi − yj)]
2 + (wji − wij)(yi − yj)

2

>[wij(yi − yj)
2 + (wji − wij)(yi − yj)

2]

=wji(yi − yj)
2.

(9)

We use this inequality to conclude that the expression in
the left hand side of (6) is non-negative and is identically
equal to zero if and only if λ = 1. The proof for case 2 is
now complete.

Note that cases 2,3,4 and 5 always give a strict inequality
if λ /∈ {0, 1}. The only area of concern when λ /∈ {0, 1},
is when all the edges satisfy either case 1 or case 6. This is
due to the condition (c) as derived for case 1, which states
that ∀eij ∈ E , (xi −xj) = (yi − yj). However, recall that
the hypothesis states that the values of xi are fixed at all the
nodes vi ∈ M that correspond to the seeds. Coupled with
these fixed boundary conditions, condition (c) implies that
∀vi ∈ V,xi = yi, which contradicts the hypothesis that
x 6= y. Therefore, this extra condition does not affect our
proof, and we conclude that E(·) is strictly convex.

4.2. Algorithm Details

As motivated earlier, the potentials cannot be estimated
in a linear fashion. One could adopt a brute force approach
and scan all the possible resistive networks to find the min-
imizer of E(x). However, this approach is computationally
very expensive. Alternatively, we can adopt a mesh analysis
and estimate the mesh currents in the network. However,
this estimation would require us to enforce the additional
constraint that the current flowing across an edge is consis-
tent with the direction of the active diode. This becomes a
problem of quadratic programming, which can be computa-
tionally cumbersome.

In what follows, we shall outline the steps for numeri-
cally estimating the minimizer of the energy functionE(x).
For the sake of simplicity, let us define a Laplacian matrix
Lx whose entries depend on the graph’s edge weights and
the node potentials as

Lx
ij =


wijI(xi ≥ xj) + wjiI(xi < xj) if eij ∈ E ,
−
∑
k∈N (vi)

Lx
ik if i = j,

0 otherwise.
(10)

Consequently, the energy E(x) that is to be minimized can
be expressed in terms of the potentials x as

E(x) = x>Lxx

=
[

x>U x>M
] [ Lx

U B
B> LM

] [
xU
xM

]
= x>UL

x
UxU + 2x>UBxM + x>MLMxM ,

(11)

where the vectors xM and xU refer to the potentials of the
seeds and the unmarked points. Recall from Section 2, that
the potentials at the seeds take values 0 or 1, while the po-
tentials at the unmarked nodes always lie in [0, 1]. There-
fore, the orientation of the diodes is fixed in the immediate
neighborhood of the seeds. Consequently, we can drop the
dependencies of the matrices of LM and B on x since they
define the connections of the seeds with their neighboring
nodes. Having formalized our definitions, we outline the
steps of our proposed framework in Algorithm 1. Essen-
tially, we estimate the desired solution by adopting an iter-
ative scheme that descends the energy function E(x).

Note that E(x) is differentiable. Moreover, E(x) is also
convex, hence one can use a gradient descent approach to
estimate the minimizer ofE(x). However, such approaches
are known to have slow convergence. Consequently, we
may adopt a Newton descent approach, where the Hessian
H(x) = ∂2E(x)

∂x2
U

is used to estimate the search direction as

d = −H−1(x)∂E(x)
∂xU

. Unfortunately, E(x) is not C2 and
its Hessian cannot be evaluated for all xU ∈ [0, 1]|U|. In
particular, whenever xi = xj , for some eij ∈ E , the Hes-
sian does not exist. Consequently, we operate in a Newton



Algorithm 1 (Numerical Scheme for Minimizing Eε(x)).

• Set the values of the potentials xM at the marked nodes
as xi = 1, if i ∈ O and xi = 0, if i ∈ B. Initialize
the values of the potentials at the unmarked nodes by
setting them to 0, i.e. x

(0)
U = 0.

• Set i = 0;

• While |x(i+1)
U − x

(i)
U | > δ

– Estimate x
(i+1)
U as the minimizer of x>Lx(i)

x,
which is given by x

(i+1)
U = −[Lx(i)

U ]−1BxxM

– i = i+ 1

• end while

descent like framework, where the Hessian is approximated
by the Laplacian Lx, which is defined for all x. In fact, it
is interesting to observe that if ∀eij ∈ E ,xi 6= xj , then the
Laplacian Lx is identically equal toH(x).

We make an interesting observation that when the graph
is connected, the Laplacian matrix Lx has only one null
vector given by the constant vector of 1s. In such a case
Lx
U is positive definite, and this can be verified via a proof

by contradiction. Assume that there exists some non zero
xU such that x>UL

x
UxU ≤ 0. Now set xM = 0M . It can

be verified from (11) that x>Lxx = x>UL
x
UxU ≤ 0. This

contradicts the fact that the Laplacian is positive definite
with the only null vector given by the constant vector of 1s.

Now, notice from Algorithm 1, that the the up-
date of the unmarked potentials at the ith step, is
given by the vector dx(i) = x

(i+1)
U − x

(i)
U =

−
(
Lx(i)

U

)−1 [
Lx(i)

U x
(i)
U +BxM

]
. Hence, we see

that since Lx(i)

U is positive definite, (dx(i))> ∂E(x)
∂xU

=

−∂E(x)
∂xU

>
(Lx(i)

U )−1 ∂E(x)
∂xU

< 0, when ∂E(x)
∂xU

6= 0. We
therefore conclude that the update direction dx(i) is a de-
scent direction at x(i). Since the energy function is bounded
below by a unique minimum, our algorithm will converge
to the correct solution. Notice that we choose a tolerance
parameter δ, in order to regulate how close one wants to be
to the true solution.

4.3. Automatic Selection of Asymmetric Penalty
Schemes

So far, we have introduced our framework that ex-
tends the Random Walker algorithm to graphs with directed
edges. We shall now discuss how the weights of these edges
should be defined so that our proposed algorithm segments
the object reliably. For this purpose, we devise a machinery
that biases the direction of the object boundary gradients to

flow from regions which agree well with a learned intensity
model of the object to regions that do not agree well.

More specifically, given the object/background seeds,
which are interactively provided by a user, we build inten-
sity models for the object as well as the background. A
simple example of such models is a histogram of the seeds’
intensities. These intensity models are then used to estimate
the posterior probability Pi of each node vi ∈ V belong-
ing to the object or not. We hence have an image whose
intensity values are given by these posterior probabilities
{Pi}vi∈V . Note that this is a representative intermediate
segmentation of the image and not the final segmentation.
The final segmentation is obtained by applying Algorithm 1
to this image of posterior probabilities.

We set the edge weights such that a decrease in the
posterior probabilities across an edge is penalized more
than an increase in the probabilities. For example, con-
sider a pair of neighboring nodes vi and vj and assume
without loss of generality that Pi > Pj . We define the
weights of the directed edge as wij = e−βhl(Pi−Pj)

2
and

wji = e−βlh(Pi−Pj)
2

for some βhl ≥ βlh ≥ 0. This scheme
of choosing the edge weights helps in directing the bound-
ary gradients to flow from pixels with a high probability of
belonging to the object to pixels with a low probability.

Note that one can always apply Algorithm 1 to segment
the original image rather than the image of probabilities,
by manually deciding the asymmetric penalty scheme. The
aforementioned scheme serves the purpose of increasing
the generality of our interactive segmentation algorithm so
that the intensity gradients to be favored do not need to be
known in advance. Note that this penalty scheme is not spe-
cific to our algorithm and could easily be incorporated into
other algorithms which make use of gradient directionality.

5. Results

In this section, we compare the segmentation results of
our proposed framework with those of the Random Walker
algorithm. We present qualitative as well as quantitative
results on a database of 69 medical images. In particular,
we try to show that introducing directional information im-
proves the Random Walker algorithm’s performance.

In the results, the seeds are displayed in red for the object
and in green for the background. The segmentation bound-
ary estimated by the algorithms is shown in blue. In all
the experiments involving Algorithm 1, we use δ = 10−4

and set the value of ε to the machine precision. We use a 4
connected graph for our experiments and all the remaining
edges are assigned zero weights.

Note that in the qualitative results we use Algorithm 1 to
segment the original image rather than the image of pos-
terior probabilities. Consequently, we manually decided
whether we wanted to place a harder penalty on the increase



or decrease in intensity values, rather than adopting our pro-
posed automatic scheme. The purpose of these examples is
to analyze the advantage of introducing directional informa-
tion in the classical Random Walker algorithm. In the quan-
titative results, we use the automatic scheme for setting the
weights and operate on the image of posterior probabilities.

5.1. Qualitative Comparison on Synthetic Data

Figure 2 compares the results of segmenting synthetic
images using the Random Walker algorithm with symmetric
as well as asymmetric penalties. These images are designed
such that the user is faced with multiple possibilities for the
segmentation boundary.

The first image contains a grey disc (I = 0.5) against a
black background (I = 0). In such an image, one would
like to have the ability to place the object boundary at the
inner or outer circle of the disc. Note that the classical Ran-
dom Walker algorithm places the segmentation boundary at
the inner circle. The second image of size 256×256 is sim-
ilar in nature and contains a grey bar (I = 0.5) against a
black background (I = 0). As motivated earlier, one would
like to be able to place the object boundary at either edge of
the bar. The classical Random Walker algorithm, however,
always places the segmentation boundary at the center of
the image due to symmetry of the seeds with respect to the
image. In both cases, we see that the introduction of direc-
tional information in the Random Walker algorithm can be
used to obtain the desired segmentations.

5.2. Qualitative Comparison on Real Data

Figure 3 presents a qualitative comparison of the perfor-
mance of the classical Random Walker algorithm on real

(a) symmetric (b) directional (c) directional

Figure 2. Results on synthetic images: Column(a) shows the re-
sults obtained using symmetric penalties for increases and de-
creases in intensities. Column (b) shows the results obtained when
we place higher penalties for decrease in intensities and column (c)
indicates results with higher penalties for increase in intensities.

medical images with that of our proposed framework. We
use β = 90 to set the symmetric penalties for the Random
Walker algorithm, and βhl = 90 and βlh = 10 to define
asymmetric penalties. For the first two images, we place
harsher penalties on increases in intensity. For the last two
images, we place harsher penalties on decreases in intensity.

In most images, the image contrast at the object bound-
ary is not very high, thereby causing the classical Ran-
dom Walker algorithm to place erroneous boundaries at the
sharpest edges close to the true boundary. In addition, there
are cases when the effect of the seeds is restricted by the
Random Walker algorithm to a neighborhood that is smaller
than we would like. This behavior is due to the presence of
sharp edges close to the seeds. We see that our proposed
framework is able to get better segmentations and obtain a
more accurate boundary, as is reflected in the images.

5.3. Quantitative Comparison on Real Data

We evaluated our algorithm on 69 3-D medical datasets
containing a single target that was manually segmented by a
clinical practitioner. Each volume also contains manually-
placed foreground and background seeds by the same clini-

(a) Original image & seeds (b) Symmetric penalties (c) Directional penalties

Figure 3. Our extension of the Random Walker algorithm that in-
troduces directional nature can be used to improve the segmenta-
tion results given by the classical Random Walker algorithm.



cal practitioner that provided the manual segmentation. The
data was acquired from a Siemens computed tomography
(CT) scanner and contained a range of segmentation tar-
gets including tumors, lymph nodes, cysts and other le-
sions. The data was acquired using different scanners,
with different reconstruction kernels and the clinical input
(ground truth and seeds) was given by different clinical part-
ners. Therefore, our results should not be biased by the
details of a particular acquisition protocol or clinical indi-
vidual. The datasets we used for segmentation were typ-
ically cropped from larger data acquisitions and ranged in
size from roughly 40×40×40 to 128×128×128. We use
the seeds contained in the datasets in order to find the seg-
mentation using the Random Walker algorithm and our pro-
posed method. For the classical Random Walker algorithm,
we set the symmetric penalties using β = 50 across all the
trials. We use the parameters βhl = 50 and βlh = 12.25 to
define the asymmetric penalties in our proposed algorithm.

Let G(vi) and S(vi) denote the ground truth segmen-
tation and the estimated segmentation for a node vi ∈ V .
We used the metrics normalized volume difference (ν) and
normalized object overlap (ρ) as defined in (12) and (13)
to evaluate the quality of segmentation In general, a good
segmentation result is marked by a low value for ν and a
high value for ρ. Table 2 shows the statistics for these met-
rics obtained after using both the algorithms to segment the
volumes in the database.

Normalized volume difference :

ν =
|
∑
vi∈V G(vi)−

∑
vi∈V S(vi)|∑

vi∈V G(vi)
. (12)

Normalized object overlap :

ρ =

∑
vi∈V G(vi) · S(vi)∑

vi∈V G(vi) + S(vi)−G(vi) · S(vi)
. (13)

We see that our proposed framework gives improve-
ments on the order of 0.1%− 0.2% in these metrics. While
these improvements are not necessarily significant, we ar-
gue that the seeds marked by the medical practitioners are
good enough to provide accurate segmentations using the
Random Walker algorithm.

Method ν ρ
Random Walker 27.34% (mean) 63.92% (mean)

(symmetric) 14.74% (median) 68.76% (median)
Random Walker 26.98% (mean) 64.06% (mean)

(directional) 14.29% (median) 68.83% (median)

Table 2. Quantitative comparison of the classical Random Walker
algorithm with our proposed framework that introduces directional
nature in the Random Walker algorithm.

6. Conclusions
We have presented an interactive image segmentation al-

gorithm that extends the Random Walker algorithm to op-
erate on combinatorial graphs with directed edges. The
segmentation problem is posed as the minimization of a
quadratic energy function defined on this graph. The pro-
posed energy has a unique minimizer, which can be es-
timated using an iterative scheme proposed by us. Our
scheme typically requires just 4–5 iterations to converge to
the solution, with a Random Walker like optimization being
solved at each iteration. Comprehensive testing shows that
the introduction of directional nature in the Random Walker
algorithm helps improve its segmentation results.
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