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Abstract— We present a stochastic realization theory for
sto-chastic jump-Markov linear systems (JMLSs). We derive
necessary and sufficient conditions for existence of a realization,
along with a characterization of minimality in terms of reacha-
bility and observability. We also sketch a realization algorithm
and argue that minimality can be checked algorithmically. The
main tool for solving the stochastic realization problem for
JMLSs is the formulation and solution of a stochastic realization
problem for a general class of bilinear systems with nonwhite-
noise inputs using the theory of formal power series.

I. INTRODUCTION

Realization theory is one of the central topics of control
and systems theory. Its goals are to study the conditions
under which the observed behavior of a system can be
represented by a state-space representation of a certain type
and to develop algorithms for finding a (preferably minimal)
state-space representation of the observed behavior.

For linear systems and deterministic bilinear systems, the
realization problem is relatively well understood thanks to
the works of Kalman, Brockett, Fliess, Isidori, Sontag and
Sussmann in the sixties and seventies. However, arguably
the only paper on realization of stochastic bilinear systems
is [5], which requires the input to be white noise. There
are a number of papers on identification of bilinear systems
with inputs that are not white noise, see e.g., [3], [6], [20].
However, these papers require a number of conditions on
the underlying system to operate correctly. For more general
nonlinear systems, the realization problem is not as well
understood. There exists a complete realization theory for
analytic nonlinear systems (see [21] and references therein)
and for general smooth systems [8], [19]. However, the
algorithmic aspects of this theory are not well developed.
There is a substantial amount of work on realization theory
of polynomial systems [17], and rational systems [22] both
in continuous and discrete time. However, the issue of
minimality for polynomial systems is not well understood.

For deterministic hybrid systems, one of the first works on
realization is [7], though a formal theory is not presented.
Later work deals with switched linear systems [14], switched
bilinear systems [10], linear/bilinear hybrid systems without
guards and partially observed discrete states [9], [11], and
nonlinear analytic hybrid systems without guards [15]. [12]
presents necessary and sufficient conditions for existence of
a realization of piecewise-affine autonomous hybrid systems
with guards but it does not address minimality. To the best
of our knowledge, the only paper on realization theory of
stochastic hybrid systems is [16], where only necessary
conditions for existence of a realization are presented.

In this paper we present a complete stochastic realization
theory of discrete-time stochastic jump-Markov linear sys-
tems (JMLSs). JMLSs have a vast literature and numerous
applications (see for example [4] and the references therein).
For simplicity, we consider only JMLSs with fully observed
discrete state. In addition, we assume that the continuous
state-transition depends not only on the current, but also
on the next discrete state and that the continuous state at
each time instant lives in a state-space that depends on the
current discrete state. In this way we obtain a more general
model, which we call generalized stochastic jump-Markov
linear systems. It turns out that the class of classical JMLSs
generates the same class of output processes as the new more
general class. However, by looking at more general systems
we are able to obtain necessary and sufficient conditions for
existence of a realization as well as a neat characterization
of minimality. We also formulate a realization algorithm and
argue that minimality can be checked algorithmically.

The main tool for solving the realization problem for
JMLSs is the formulation and solution to the following
generalized bilinear realization problem. Consider an output
and an input process and imagine you would like to compute
recursively the linear projection of the future outputs onto
the space of products of past outputs and inputs. Under the
assumption that the mixed covariances of the future outputs
with the products of past outputs and inputs form a rational
formal power series, we will show that one can construct a
bilinear state-space representation of the output process in the
forward innovation form. The results on realization theory
of JMLSs are then obtained by viewing the discrete state
process as an input process. To the best of our knowledge,
our solutions to both the generalized bilinear realization
problem and the JMLS realization problem are new.

II. RATIONAL POWER SERIES

This section presents several results on formal power series
[1], [18], [17]. These results will be used in §III for solving a
generalized bilinear realization problem. In turn, the solution
to this bilinear realization problem will yield a solution to
the realization problem for JMLSs, as we will show in §IV.

A. Definition and Basic Theory

Let Σ be a finite set called the alphabet. The elements
of Σ are called letters, and every finite sequence of letters
is called a word or string over Σ. Denote by Σ∗ the set of
all finite words from elements in Σ. An element w ∈ Σ∗

of length |w| = k ≥ 0 is a finite sequence w = σ1σ2 · · ·σk



with σ1, . . . , σk ∈ Σ. The empty word is denoted by ε and its
length is zero, i.e. |ε| = 0. Denote by Σ+ the set of all non-
empty words over Σ, i.e. Σ+ = Σ∗ \ {ε}. The concatenation
of two words v = ν1 · · · νk and w = σ1 · · ·σm ∈ Σ∗ is the
word vw = ν1 · · · νkσ1 · · ·σm. For any two sets J and A, an
indexed subset of A with the index set J is a map Z : J → A,
denoted by Z = {aj ∈ A | j ∈ J}, where aj = Z(j) for all
j ∈ J . The elements aj need not be different.

A formal power series S with coefficients in Rp is a map
S : Σ∗→ Rp. The values S(w) ∈ Rp, w ∈ Σ∗, are called
the coefficients of S. We denote by Rp �Σ∗� the set of
all formal power series with coefficients in Rp. A family of
formal power series is an indexed set Ψ = {Sj ∈ Rp �
Σ∗�| j ∈ J} with an arbitrary (not necessarily finite) index
set J . A family of formal power series Ψ is called rational
if there is an integer n ∈ N, a matrix C ∈ Rp×n, a collection
of matrices Aσ ∈ Rn×n indexed by σ ∈ Σ, and an indexed
set B = {Bj ∈ Rn | j ∈ J}, such that for each j ∈ J and
for all sequences σ1, . . . , σk ∈ Σ, k ≥ 0,

Sj(σ1σ2 · · ·σk) = CAσk
Aσk−1 · · ·Aσ1Bj . (1)

The 4-tuple R = (Rn, {Aσ}σ∈Σ, B, C) is called a rep-
resentation of Ψ and the number n = dim R is called the
dimension of R. A representation Rmin of Ψ is called mini-
mal if all representations R of Ψ satisfy dim Rmin ≤ dim R.
Two representations of Ψ, R = (Rn, {Aσ}σ∈Σ, B, C) and
R̃ = (Rn, {Ãσ}σ∈Σ, B̃, C̃), are called isomorphic, if there
exists a nonsingular matrix T ∈ Rn×n such that TÃσ =
AσT for all σ ∈ Σ, TB̃j = Bj for all j ∈ J , and C̃ = CT .

Let R = (Rn, {Aσ}σ∈Σ, B,C) be a representation of Ψ.
In the sequel, we will use the following short-hand notation
Aw

.= Aσk
Aσk−1· · ·Aσ1 for w = σ1 · · ·σk ∈ Σ∗ and

σ1, . . . , σk ∈ Σ, k ≥ 0. The map Aε will be identified with
the identity map. We call the representation R reachable if
dim R = dim WR and observable if OR = {0}, where WR

and OR are the following subspaces of Rn

WR = Span{AwBj | w ∈ Σ∗, |w| ≤ n− 1, j ∈ J} (2)

OR =
⋂

w∈Σ∗,|w|≤n−1

ker CAw. (3)

Let Ψ = {Sj ∈ Rp � Σ∗�| j ∈ J} be a family of
formal power series. We define the Hankel-matrix of Ψ as the
matrix HΨ ∈ R(Σ∗×I)×(Σ∗×J) whose entries are given by
(HΨ)(u,i)(v,j) = (Sj(vu))i, where I = {1, 2, . . . , p}. That
is, the element of HΨ whose row index is (u, i) and whose
column index is (v, j) is simply the ith row of the vector
Sj(vu) ∈ Rp. The following result on realization of formal
power series can be found in [18], [17], [13].

Theorem 1 (Realization of formal power series): Let
Ψ = {Sj ∈ Rp � Σ∗ �| j ∈ J} be a family of formal
power series indexed by J . Then the following holds.
(i) Ψ is rational ⇐⇒ rank HΨ < +∞.
(ii) R is a minimal representation of Ψ ⇐⇒ R is reachable

and observable ⇐⇒ dim R = rank HΨ.
(iii) All minimal representations of Ψ are isomorphic.
(iv) If n = rank HΨ < +∞, then one can construct a

representation of Ψ using the columns of HΨ (see [13]
for details).

Notice that HΨ is an infinite matrix and hence the con-
struction in part (iv) of Theorem 1 is not directly computable.
However, it is possible to compute a minimal representation
of Ψ from finitely many data using a generalization of
the well-known Kalman-Ho partial realization algorithm for
linear systems. One defines a matrix HΨ,M,N as the finite
upper-left block of the infinite Hankel matrix HΨ obtained
by taking all the rows of HΨ indexed by words over Σ of
length at most M , and all the columns of HΨ indexed by
words of length at most N . If rank HΨ,N,N = rank HΨ

holds, then there exists an algorithm for computing a minimal
representation RN of Ψ by factorizing the matrix HΨ,N+1,N .
The condition rank HΨ,N,N = rank HΨ holds, if, for
example, N is chosen to be bigger than the dimension of
some representation of Ψ. More details on the computation
of a minimal representation from a Hankel-matrix can be
found in [13] and the references therein.

B. A Notion of Stability for Formal Power Series

To derive results on stochastic realization theory, we will
need a notion of stability of a representation. To that end,
consider a formal power series S ∈ Rp�Σ∗�, and denote
by || · ||2 the Euclidean norm in Rp. Consider the sequence,
Ln =

∑n
k=0

∑
σ1∈Σ · · ·

∑
σk∈Σ ||S(σ1σ2 · · ·σk)||22. The se-

ries S is called square summable, if the limit limn→+∞ Ln

exists and it is finite. We call the family Ψ = {Sj ∈ Rp �
Σ∗ �| j ∈ J} square summable, if for each j ∈ J , the
formal power series Sj is square summable.

We now characterize square summability of a family of
formal power series in terms of the stability of its repre-
sentation. Let R = (Rn, {Aσ}σ∈Σ, B, C) be an arbitrary
representation of Ψ = {Sj ∈ Rp � Σ∗ �| j ∈ J}. Assume
that Σ = {σ1, . . . , σd}, where d is the number of elements
of Σ, and consider the matrix Ã =

∑d
i=1 Aσi

⊗Aσi
, where

⊗ denotes the Kronecker product. We will call R stable, if
the matrix Ã is stable, i.e. if all its eigenvalues λ lie inside
the unit disk (|λ| < 1). We then have the following result.

Theorem 2 ([16]): A rational family of formal power se-
ries is square summable if and only if all minimal represen-
tations are stable.

III. REALIZATION OF GENERALIZED BILINEAR SYSTEMS

This section formulates and solves a stochastic realization
problem for bilinear systems with nonwhite noise inputs
using the results in §II. Particular cases of this generalized
bilinear realization problem include realization of classical
linear and bilinear systems. Also, by allowing finite-state
Markov processes as inputs, we will obtain a solution to
the realization problem for JMLSs, as we will show in §IV.

A. Generalized Bilinear Stochastic Realization Problem

Let the output process y ∈ Rp be a wide-sense sta-
tionary and zero mean discrete-time (i.e. the time axis is
Z) stochastic process. Let the input process be a collection
{uσ ∈ R}σ∈Σ of discrete-time stochastic processes indexed



by the elements of a finite alphabet Σ. For each nonempty
word w = σ1σ2 · · ·σk ∈ Σ+, k ≥ 1, σ1, . . . , σk ∈ Σ, define

zw(t) = y(t− k)uσ1(t− k) · · ·uσk
(t− 1). (4)

We call the random variables zw(t), w ∈ Σ+ the predictor
variables. We assume that the output and predictor variables
(y(t), {zw(t) | w ∈ Σ+}) are jointly wide-sense stationary,
i.e. for all t, k ∈ Z, and for all w, v ∈ Σ+ we have

E[y(t + k)zT
w(t + k)] = E[y(t)zT

w(t)], and (5)

E[zw(t + k)zT
v (t + k)] = E[zw(t)zT

v (t)]. (6)

Notice that for any p > 0 the space Hp of zero-mean
square-integrable random variables with values in Rp is a
Hilbert-space with the scalar product < x, z >= E[xT y],
see [2]. Recall the notions of closure and orthogonal projec-
tion for Hilbert-spaces. If Z is an arbitrary subset of Hp

and x is an element of Hp, then El[x | Z] denotes the
orthogonal projection of x onto the closure of the linear
space spanned by the elements of Z. Notice that both the
output y(t) and the predictors zw(t) at time t belong to Hp.
Denote by H(t) the closure in Hp of the linear span of the
predictors {zw(t) | w ∈ Σ+} at time t. We will call H(t)
the predictor space at time t.

We are now ready to introduce our generalized bilinear
stochastic realization problem.

Problem 1 (Generalized Bilinear Stochastic Realization):
Given an output process y and an input process {uσ}σ∈Σ

indexed by a given finite alphabet Σ, find a forward
innovation state-space realization of y of the form

x(t + 1) =
∑
σ∈Σ

(Aσx(t) + Kσe(t))uσ(t)

y(t) = Cx(t) + e(t),
(7)

where the equalities are assumed to hold in the square-mean
sense. In equation (7), the system matrices are of the form
Aσ ∈ Rn×n, Kσ ∈ Rn×p, and C ∈ Rp×n for all σ ∈ Σ,
and x(t) is a random process taking values in Rn such that
Cx(t) is the orthogonal projection of the output y(t) onto
the predictor space H(t), i.e. Cx(t) = El[y(t) | H(t)] and
e(t) is the forward innovation process

e(t) = y(t)− El[y(t) | H(t)]. (8)
Remark 1 (Realization of Linear Systems): If Σ = {z}

and uz = 1, then Problem 1 reduces to the classical linear
realization problem and (7) becomes a linear state-space
model in the forward innovation form.

Remark 2 (Realization of Bilinear Systems): If uz1 = 1,
uz2 is white noise, and Σ = {z1, z2}, then Problem 1 reduces
to the classical bilinear realization problem and (7) becomes
a bilinear state-space model in the forward innovation form.

B. Generalized Bilinear Stochastic Realization Theory
To solve the generalized bilinear stochastic realization

problem, we will make a number of assumptions on the
covariances between the output and predictor variables

Λw = E[y(t)zT
w(t)] ∈ Rp×p, and (9)

Tv,w = E[zv(t)zT
w(t)] ∈ Rp×p. (10)

Assumption 1 (Admissible words): Let L be a given set of
non-empty words over Σ, i.e. L ⊆ Σ+. We call L the set
of admissible words. Every symbol σ ∈ Σ is an element of
L. Furthermore, if for some word w ∈ Σ+ and letter σ ∈ Σ
the word wσ ∈ L or σw ∈ L, then w ∈ L. Also, if w is not
admissible, i.e. w ∈ Σ+ \ L, then zw = 0 and Λw = 0.

This assumption allows us to deal with the case where not
every sequence of inputs is admissible. In particular, this will
be the case for JMLSs, where the discrete state process will
play the role of an input. We will discuss this case in §IV.

Assumption 2 (Square-summable formal power series):
For each j ∈ I = {1, . . . , p} and σ ∈ Σ, define the formal
power series S(j,σ) ∈ Rp�Σ∗� as

S(j,σ)(w) = (Λσw).,j , (11)

where (Λσw).,j denotes the jth column of the p× p covari-
ance matrix Λσw. Define the family of formal power series
Ψ with the index set J =I × Σ as

Ψ = {S(j,σ) | j ∈ I, σ ∈ Σ}. (12)

We assume that Ψ is square summable.
Assumption 3 (Positive definiteness of finite covariance):

For each N > 0, let TN = (Tw,v)w,v∈L,|w|,|v|≤N be a
finite covariance matrix formed by all matrices Tw,v

indexed by admissible words w, v ∈ L of length at most
N . For each N > 0, the matrix TN is strictly positive
definite, that is, for all S 6= 0, where Sv ∈ Rp, we have∑

w,v∈L,|w|,|v|≤N SvTv,wSw > 0.
This is mainly a technical condition, which simplifies the

proofs. It is analogous to the assumption of the strict positive
definiteness of the Toeplitz-matrix for the linear case.

Assumption 4 (Full rank innovation process): For each
σ ∈ Σ the covariance E[e(t)eT (t)u2

σ(t)] is of rank p.
This is also a technical assumption, which is used to obtain

a nice expression for Kσ . For linear systems, it boils down
to the classical requirement that y be a full rank process [2].

Assumption 5: There are nonzero reals {pσ}σ∈Σ such that
for all admissible words w, v ∈ L satisfying wσ, vσ

′ ∈ L,
and symbols σ, σ

′ ∈ Σ, we have

Twσ,vσ′ =

{
pσTw,v σ = σ

′

0 σ 6= σ
′ and Twσ,σ′ =

{
pσΛT

w σ = σ
′

0 σ 6= σ
′
.

In addition, if wσ ∈ L then for all vσ /∈ L, Tv,w = 0, and
conversely, if vσ ∈ L, then for all wσ /∈ L, Tv,w = 0.

This assumption is crucial for finding a time-invariant
matrix Kσ . For linear systems, it follows from the wide-sense
stationarity of the outputs. For bilinear systems, it follows
from the assumption that the input is white noise.

Assumption 6: For all t ∈ Z, k ≥ 0, and v ∈ Σ+, y(t−k)
and zv(t−k) belong to the closure (in the mean-square sense)
of the linear space spanned by {zw(t), w ∈ Σ+}.

This assumption is needed to ensure that the innovation
processes are uncorrelated.

We the assumptions above, we have the following result.
Theorem 3: (Stochastic realization of bilinear systems

with non-white inputs): Assume that the processes y and
{uσ}σ∈Σ satisfy Assumptions 1-6. Then, y has a realization



by a generalized bilinear system of the form (7) if and only if
Ψ is rational. Furthermore, the generalized bilinear stochastic
realization problem has a solution of the form

x(t + 1) =
∑
σ∈Σ

(
1
pσ

Aσx(t) + Kσe(t))uσ(t)

y(t) = Cx(t) + e(t)
(13)

where R = (Rn, {Aσ}σ∈Σ, {B(j,σ)}(j,σ)∈I×Σ, C) is a mini-
mal representation of Ψ, e(t) is the (uncorrelated and zero-
mean) innovation process defined in (8), and for each σ ∈ Σ

Kσ = (Bσ −
1
pσ

AσPσCT )(Tσ,σ − CPσCT )−1 (14)

where

Pσ = E[x(t)xT (t)uσ(t)uσ(t)] ∈ Rn×n and (15)

Bσ =
[
B(1,σ), B(2,σ), . . . , B(p,σ)

]
∈ Rn×p. (16)

Proof: [Sketch] Let O = [(CAw)T | w ∈ Σ∗, |w| ≤ n]T be
the observability matrix of R. Let W (n) be the number of words
of length at most n over the alphabet Σ. Define the RW (n)p-valued
random variable Yn(t) = [zf

w(t) | w ∈ Σ∗, |w| ≤ n]T , where
zf

ε (t) = yT (t) and for all w = σ1 · · ·σk ∈ Σ+, σ1, . . . , σk ∈ Σ,
k > 0, zf

w(t) = yT (t+k)uσk (t+k−1)uσk−1(t+k−2) · · ·uσ1(t).
The variable Yn(t) can be thought of as the products of future
outputs and inputs. Since R is observable, the matrix O has a left
inverse, which we will denote by O−1. Then, we define the state
x(t) as the linear projection of O−1(Yn(t)) onto the predictor space
H(t). It follows that Cx(t) = El[y(t) | H(t)]. We are left with
showing that x(t) satisfies the recursion in (13). To that end, let
HN (t) be the linear space spanned by zw(t), where w ∈ Σ+ and
|w| ≤ N . It follows that x(t) = limN→+∞ xN (t), where xN (t) =
El[O

−1(Yn(t)) | HN (t)]. In turn, using Assumption 5 we can show
that there exists a collection of matrices αN+1

σ ∈ Rn×p, such that
xN+1(t + 1) =

P
σ∈Σ( 1

pσ
AσxN (t) + αN+1

σ eN (t))uσ(t), where
eN (t) = y(t)−El[y(t) | HN (t)]. Thus, limN→+∞ eN (t) = e(t).
Also, we can show that limN→+∞ αN+1

σ = Kσ exists and satisfies
(14). By taking the limits in the expression for xN+1 we obtain (13).
The rest of the theorem can be shown using Assumptions 1–6.

Notice that Theorem 3 implies the realization construction
for linear [2] and bilinear stochastic systems [5]. Notice also
that if (y, {uw | w ∈ Σ+}) are jointly ergodic, then we
can replace stochastic processes with time series. Theorem 3
then naturally leads to the following algorithm for obtaining
a representation of the form (13) similar to [5].

Algorithm 1: (Generalized Bilinear System Realization):
1) Let y and uσ be the time-series corresponding to y and uσ ,

respectively, for t = −N, . . . , 0, . . . , N . Compute the time-
series zw, zf

w, and Yn corresponding to the processes zw, zf
w,

and Yn, respectively, by replacing all occurrences of y and
uσ with y and uσ , respectively. For each stochastic process
s ∈ RM , let PN (s)(t) = (s(t), . . . , s(t+N−1)) ∈ RM×N ,
where s is the time-series associated with the process s.

2) Approximate Λw by 1
N

PN (y)(0)(PN (zw)(0))T for all w ∈
Σ+, |w| ≤ N . Construct a finite Hankel matrix from the
approximations of Λw and use the algorithm described in
Section II to obtain a representation R of Ψ in (11)–(12).

3) Compute the observability matrix O of the representation
R. Let xN (0) ∈ Rn×N be the orthogonal projection of
the rows of O−1(PN (Yn)(0)) onto the rows of the matrix
[(PN (zw)(0))T | w ∈ Σ+, |w| ≤ N ]T .

4) For i = 1, . . . , N , let xN,i be the ith column of xN .
Approximate Pσ by 1

N

PN
i=1 xN,i(0)xT

N,i(0)u2
σ(i−1), Tσ,σ

by 1
N

PN (zσ)(0)PN (zT
σ )(0) and use (14) to compute Kσ .

5) Substitute Kσ and the matrices associated with the represen-
tation R into 13. As N goes to infinity, the matrices of the
thus obtained realization converge entry-wise to the matrices
of a generalized bilinear realization of ey.

IV. REALIZATION THEORY OF GENERALIZED JMLSS

The goal of this paper is to present a realization theory
for JMLSs [4]. However, we will look at stochastic hybrid
systems of a slightly more general form than the ones defined
in [4]. The reason is that the more general class generates
the same class of output processes as classical JMLSs, but it
is easier to establish necessary and sufficient conditions for
existence of a realization for the more general class.

A. Generalized Jump-Markov Linear Systems

A generalized jump-Markov linear system (GJMLS), H ,
is a system of the form

H :

{
x(t + 1) = Mθ(t),θ(t+1)x(t) + Bθ(t),θ(t+1)v(t)

y(t) = Cθ(t)x(t) + Dθ(t)v(t)
. (17)

Here θ, x, y and v are stochastic processes defined on the set
of integers, i.e. t ∈ Z. The process θ is called the discrete
state process and takes values in the set of discrete states
Q = {1, 2, . . . , d}. The process θ is a stationary finite-state
Markov process, with state-transition probabilities pj,i =
Prob(θ(t+1) = i | θ(t) = j) > 0 for all i, j ∈ Q. Moreover,
the probability distribution of the discrete state θ(t) is given
by π = (π1, . . . , πd)T , where πi = Prob(θ(t) = i). The
process x is called the continuous state process and takes
values in one of the continuous state-spaces Xq = Rnq ,
q ∈ Q. More precisely, for any time t ∈ Z, the continuous
state x(t) lives in the state-space component Xθ(t). The
process y is the continuous output process and takes values
in the set of continuous outputs Rp. The process v is the
continuous noise and takes values in Rm. The matrices
Mq1,q2 and Bq1,q2 are of the form Mq1,q2 ∈ Rnq2×nq1 and
Bq1,q2 ∈ Rnq2×m for any pair of discrete states q1, q2 ∈ Q.
Finally, the matrices Cq and Dq are of the form Cq ∈ Rp×nq

and Dq ∈ Rp×m for each discrete state q ∈ Q.
We will make a number of assumptions on the processes.
Assumption 7: Let Dt = {θ(t− k)}k≥0 be the collection

of past discrete states, and denote by E[z|Dt] the conditional
expectation of z given Dt. We assume that for all t ∈ Z,
– v(t) is conditionally zero mean given Dt, i.e. E[v(t) |
Dt] = 0, and for all l > 0, v(t) and v(t−l) are conditionally
uncorrelated given Dt, i.e. E[v(t)v(t− l)T | Dt] = 0,
– the collections {x(t− l),v(t− l), l ≥ 0} and {θ(t+ l), l >
0} are conditionally independent given Dt, and
– for all l ≥ 0, x(t) and v(t + l) are conditionally uncorre-
lated given Dt+l, i.e. ∀l ≥ 0, E[x(t)v(t + l) | Dt+l] = 0.

Assumption 8: The Markov process θ is stationary and
ergodic. Therefore, for all q ∈ Q,

∑
s∈Q πsps,q = πq.

Assumption 9: Let n = n1 + n2 + · · ·+ nd. The matrix

M̃ =


p1,1M1,1 ⊗M1,1 · · · pd,1Md,1 ⊗Md,1

p1,2M1,2 ⊗M1,2 · · · pd,2Md,2 ⊗Md,2

... · · ·
...

p1,dM1,d ⊗M1,d · · · pd,dMd,d ⊗Md,d

∈Rn2×n2



is stable, i.e. for any eigenvalue λ of M̃ , we have |λ| < 1.
The following result is based on the well-known criteria

for mean-square stability of JMLSs [4].
Lemma 1: Let χ be the indicator function, i.e. χ(A) = 1 if

the event A is true, and χ(A) = 0 otherwise. If Assumptions
7–9 hold, then there exists a unique collection of matrices
{Pq ∈ Rnq×nq , q ∈ Q}, such that

Pq =
∑
s∈Q

ps,qMs,qPsM
T
s,q + Bs,qQs,qB

T
s,q, (18)

where Qs,q = E[v(t)v(t)T χ(θ(t + 1) = q, θ(t) = s].
To make the continuous state and output processes x(t)

and y(t) wide-sense stationary, we also need the following.
Assumption 10: Under Assumptions 7–9, let {Pq}q∈Q, be

the unique collection of matrices satisfying (18). Recall also
the definition of Dt from Assumption 7. For all t ∈ Z, x(t)
is conditionally zero mean given Dt, i.e. E[x(t) | Dt] = 0,
and that for all q ∈ Q, E[x(t)x(t)T χ(θ(t) = q)] = Pq.

Remark 3: Note that the classical definition of a discrete-
time JMLS [4] differs from (17). The main difference is that
in our framework the continuous state transition rule depends
not only on the current, but also on the next discrete state.
Nevertheless, the classical definition and (17) are equivalent
in the following sense. On one hand, it is clear that a classical
JMLS also satisfies our definition. Conversely, a GJMLS of
the form (17) can be rewritten as a classical JMLS with
the same noise and output processes, but with the discrete
state process θ replaced by θ̃(t) = (θ(t),θ(t + 1)) and the
continuous state process and the system matrices replaced by
a continuous state process and system matrices living in the
continuous space Rn1+n2+···+nd . The reason why we choose
to work with GJMLSs of the form (17) instead of classical
JMLSs is that, as we will show later, systems of the form
(17) admit a nice realization theory. However, it is not clear
if one can also obtain such results for classical JMLSs.

B. Existence of a Realization by a GJMLS
Let ỹ be a zero-mean wide-sense stationary process taking

values in Rp. Let θ be a Markov-process taking values in
Q = {1, . . . , d}. Let H be a GJMLS of the form (17),
with discrete state process θ and output process y, satisfying
Assumptions 7-10. In the sequel we will keep θ fixed and
whenever we speak of a GJMLS realization of ỹ, we will
always mean a GJMLS of ỹ with discrete state process θ.

Definition 1 (Realization by GJMLSs): The GJMLS H is
said to be a realization of ỹ if the continuous output process
y of H is equals to ỹ in the square-mean sense, that is, for
any time instant t ∈ Z, E[(ỹ(t)−y(t))T (ỹ(t)−y(t))] = 0.

This section presents necessary and sufficient conditions
for existence of a realization of the output process ỹ by
a GJMLS with discrete state process θ. The construction
proceeds by associating a generalized bilinear system B to
the processes ỹ and θ and building a formal power series
associated with the covariance sequence of B.

Let the alphabet Σ of B be the set of pairs of discrete
states, i.e. Σ = Q × Q. For each letter (q1, q2) ∈ Σ let the
input processes of B be defined as

u(q1,q2)(t) = χ(θ(t + 1) = q2,θ(t) = q1). (19)

For each nonempty word w = σ1 · · ·σk ∈ Σ+, σ1, . . . , σk ∈
Σ, define the predictor variables as in (4), except that the
output y is replaced by the given process ỹ, i.e. zw(t) =
ỹ(t−k)uσ1(t−k +1) · · ·uσk

(t−1). Notice that if w is not
of the form w = (q0, q1)(q1, q2) · · · (qk−1, qk), for k ≥ 0 and
q0, . . . , qk ∈ Q, then zw(t) = 0. This prompts us to define
the set of admissible sequences L (see Assumption 1) as

L = {(q0, q1)(q1, q2) · · · (qk−1, qk) | k ≥ 0, q1, . . . , qk ∈ Q}.
(20)

Notice that if w = (q0, q1)(q1, q2) · · · (qk−1, qk) ∈ L, then
the covariance Λw = E[ỹ(t)zT

w(t)] can be written as

Λw = E[ỹ(t+k)ỹT (t)χ(θ(t+i) = qi, i = 0, . . . , k)]. (21)

As in (11), we can associate the covariance sequence Λw

with a family of formal power series {S(i,σ) ∈ Rp �
Σ∗�| σ ∈ Q × Q, i = 1, . . . , p}, where Si,σ(w) is the ith
column of Λσw. We denote this family by Ψey to emphasize
it depends on ỹ.

In order to find necessary and sufficient conditions for
existence of a GJMLS realization for ỹ we need to make a
number of assumptions on ỹ and θ.

Assumption 11 (Conditional independence of ỹ and θ):
For each t ∈ Z, the collection of random variables
{ỹ(t − l), l ≥ 0} and {θ(t + l) | l > 0} are conditionally
independent given {θ(t− l) | l ≥ 0}.

Assumption 12 (Stability of Ψey): The family of formal
power series Ψey is square summable.

Assumption 13 (Ergodicity and strong connectedness of θ):
The Markov process θ is stationary, ergodic and for each
q1, q2 ∈ Q the transition probability pq1,q2 > 0 is nonzero.

Assumption 14 (Positive definiteness of finite covariance):
For each w, v ∈ L, let Tv,w = E[zv(t)zT

w(t)]. We assume
that the finite matrix TN = (Tw,v)w,v∈L,|w|,|v|≤N formed
from admissible words of length at most N > 0 is strictly
positive definite, i.e. it satisfies Assumption 3 in Section III.

Assumption 15 (Full-rank predictor space): The innova-
tion process e(t) = ỹ(t) − El[ỹ(t) | {zw(t) | w ∈ Σ+}]
is full-rank, i.e. it satisfies Assumption 4 in Section III.

The following lemmas characterize the relationships
among Assumptions 11–13 and Assumptions 1–10.

Lemma 2: If ỹ has a realization by a GJMLS for which
Assumptions 7–10 hold, then Assumptions 11–13 hold. Also,
if ỹ and θ satisfy Assumptions 11–15, then they satisfy
Assumptions 1–6. In particular, Assumption 5 is satisfied
with pσ defined as the transition probability of the Markov
process θ, that is, for σ = (q1, q2), we let p(q1,q2) = pq1,q2 .

We are now ready to formulate the main theorem.
Theorem 4 (Existence of a GJMLS Realization): Assume

that ỹ and θ satisfy Assumptions 11–15. Then ỹ has a
realization by a GJMLS system if and only if Ψey is rational.

Proof: [Sketch] We first show that if Ψey is rational, then ey
has a realization by a GJMLS. If Ψ is rational, then we can find a
minimal representation R = (Rn, {Aσ}σ∈Σ, {B(i,σ)}i∈I,σ∈Σ, C)
of Ψey. Then, by apply Theorem 3, we can obtain a generalized
bilinear realization of ey of the form (13). Based on this realization
we can define a GJMLS realization HR of ey of the form

HR :

(
x̂(t + 1)= Mθ(t),θ(t+1)x̂(t) + Kθ(t),θ(t+1)e(t)ey(t) = Cθ(t)x̂(t) + e(t),

(22)



where
– Continuous state-spaces. For each q ∈ Q define Xq ⊆ Rn as
the subspace spanned by A(q1,q)AwB(i,σ) and B(i,(q1,q)) for all
q1 ∈ Q, w ∈ Σ+, σ ∈ Σ, i = 1, . . . , p. Then identify the elements
of Xq with the elements of Rnq , where nq = dimXq .
– State process. Obtain the continuous state process x̂(t) of the
GJMLS from the continuous state x(t) of the generalized bilinear
system (13) by viewing x(t) as an element of Xθ(t) and identifying
it with the corresponding vector in Rnq for q = θ(t).
– System matrices. For each q1, q2 ∈ Q, the matrix Mq1,q2 ∈
Rnq2×nq1 is the matrix associated with the linear map

Xq1 3 x 7→ 1

pq1,q2

Aq1,q2x ∈ Xq2 . (23)

For all q ∈ Q, Cq ∈ Rp×nq is the matrix associated with the linear
map Xq 3 x 7→ Cx ∈ Rp, i.e. Cq is the restriction of C to Xq .
– Noise process. The noise process is the innovation process

e(t) = ey(t)−El[ey(t) | {ey(t− k)χ(θ(t− k) = q0) · · ·
χ(θ(t) = qk) | q0, . . . , qk ∈ Q, k ≥ 0}].

(24)

– Noise gain. The matrix Kq1,q2 ∈ Rnq2×p is defined as

Kq1,q2 =(Bq1,q2 −Mq1,q2Pq1,q2CT
q1)×

× (T(q1,q2),(q1,q2) − Cq1Pq1,q2CT
q1)
−1.

(25)

In this expression, T(q1,q2),(q1,q2) ∈ Rp×p is the self covariance

T(q1,q2),(q1,q2) = E[ey(t)eyT (t)χ(θ(t) = q1, θ(t+1) = q2)]. (26)

Moreover, the matrix Pq1,q2 ∈ Rnq1×nq1 is the self covariance

Pq1,q2 = E[x̂(t)x̂T (t)χ(θ(t) = q1, θ(t + 1) = q2)]. (27)

Finally, the matrix Bq1,q2 ∈ Rnq2×p is defined as

Bq1,q2 =
ˆ
B(1,(q1,q2)), · · · , B(p,(q1,q2))

˜
, (28)

where each vector B(i,(q1,q2)) is an element of Xq2 and hence can
be identified uniquely with a vector in Rnq2 .

The system HR is a well-defined GJMLS and it satisfies As-
sumptions 7–10. We will call HR the GJMLS associated with the
representation R.

We now show that if ey has a GJMLS realization, then Ψey is
rational. To that end, assume that H is a GJMLS of the form (17)
satisfying Assumptions 7–10. We will define a representation RH ,
referred to as the representation RH associated with H , such that
RH is a representation of Ψey. We define RH as

RH = (Rn, {A(q1,q2)}(q1,q2)∈Σ, B, C), (29)

where the parameters of RH are given by
– State-space. Let n = n1 + n2 + · · ·nd and let the state-space of
RH be Rn. Notice that Rn can be viewed as a direct sum of the
individual state-spaces Xq , i.e. Rn =

L
q∈Q Xq , hence each Xq

can be viewed as a subspace of Rn.
– Matrices Aq1,q2 . For each q1, q2 ∈ Q, let Aq1,q2 ∈ Rn×n be
the matrix defined by the following property: if x ∈ Xq1 , then
Aq1,q2x = pq1,q2Mq1,q2x ∈ Xq2 ⊆ Rn and if x ∈ Xq, q 6= q1,
then Aq1,q2x = 0.
– Matrix C. The p × n matrix C is defined by the following
property; for all x ∈ Xq , Cx = Cqx.
– Initial states B. Define the family B = {B(i,(q1,q2)) | q1, q2 ∈
Q, i = 1, . . . , p} as follows. For each q1, q2 ∈ Q, i = 1, . . . , p,
B(i,(q1,q2)) is the ith column of the n× p matrixˆ

δ1,q2GT
q1,q2 δ1,q2GT

q1,q2 · · · δd,q2GT
q1,q2

˜T
. (30)

In this equation δi,j = 1 if i = j and δi,j = 0 if i 6= j, and

Gq1,q2 = pq1,q2Mq1,q2Pq1CT
q1 + Bq1,q2Wq1,q2DT

q1 ,

where Wq1,q2 = E[v(t)vT (t)χ(θ(t + 1) = q2, θ(t) = q1)]
and Pq1 ∈ Rnq1×nq1 is defined by (18). Notice that Gq1,q2 =
E[x(t)eyT (t− 1)χ(θ(t) = q2, θ(t− 1) = q1)].

The proof that HR is a GJMLS realization of ey then follows
from Theorem 3.

C. Minimality of a Realization by a GJMLS

As in the case of linear systems, it is possible that several
GJMLSs realize a given process ỹ. Hence, we are interested
in finding a realization of ỹ that is minimal in some sense.
We define the notion of a minimal realization as follows.

Definition 2 (Minimal Realization by a GJMLS): The di-
mension of a GJMLS H with discrete state process θ taking
values on Q = {1, 2, . . . , d} is defined as

dim H = n1 + n2 + · · ·+ nd, (31)

where nq is the dimension of the continuous state-space
associated with discrete state q, i.e. nq = dimXq, for q ∈ Q.
We call a realization H of ỹ minimal if dim H ≤ dim H ′

for all GJMLSs H ′ that are realizations of ỹ.
In the case of linear systems, a realization is minimal if and

only if it is reachable and observable [2]. In this subsection,
we will formulate similar concepts for GJMLSs. We first
define the notions of reachability and observability for a
GJMLS. We then show that a realization by a GJMLS is
minimal if and only if it is reachable and observable.

To that end, let H be a given GJMLS of the form (17)
that satisfies Assumptions 7–10. Let N = dim H be the
dimension of H . For all (q1, q2) ∈ Q×Q = Σ let

Gq1,q2 = E[x(t)yT (t− 1)χ(θ(t) = q2,θ(t− 1) = q1)] (32)

be a matrix in Rnq1×p. Recall the definition of L ⊂ (Q×Q)+

from (20). For any admissible word w = σ1 · · ·σk ∈ L,
where σi = (qi, qi+1) ∈ Σ for i = 1, . . . , k − 1, let

Mw = Mqk−1,qk
Mqk−2,qk−1 · · ·Mq1,q2 ∈ Rnqk

×nq1 . (33)

If w /∈ L, and |w| > 0, then Mw denotes the zero matrix. If
w = ε, then Mε denotes the identity matrix whose domain
of definition depends on the context. For each q ∈ Q, let
Lq(N) be the set of all words in L of length at most N that
end in some pair whose second component is q, i.e. Lq(N)
is the set of all words in w ∈ L such that |w| ≤ N and
w = v(q1, q) for some q1 ∈ Q and v ∈ Σ∗. Similarly, for
each q ∈ Q, let Lq(N) be the set of words in L of length
at most N that begin in some pair whose first component is
q, i.e. Lq(N) is the set of words w ∈ L such that |w| ≤ N
and w = (q, q2)v for some q2 ∈ Q and v ∈ Σ∗.

We define reachability and observability as follows.
Definition 3 (Reachability of GJMLS): For each discrete

state q ∈ Q, define the matrix RH,q ∈ Rnq×|Lq(N)|p as

[MvGq1,q2 |q1 ∈ Q, q2 ∈ Q, v ∈ Σ∗, (q1, q2)v ∈ Lq(N)].

We say that the GJMLS H is reachable, if for each discrete
state q ∈ Q, rank (RH,q) = nq.

Definition 4 (Observability of GJMLS): For each discrete
state q ∈ Q, define the matrix OH,q ∈ R|Lq(N)|p×nq as

[(Cqk
Mv)T | qk−1∈Q, qk∈Q, v ∈ Σ∗, v(qk−1, qk)∈Lq(N)]T.



We say that a GJMLS H is observable, if for each discrete
state q ∈ Q, rank (OH,q) = nq.

Recall from (29) the definition of the representation RH

associated with a GMJLS H . Recall also the definition of
reachability of a representation along with the definition of
the space ORH

in (3). Observability and reachability of a
GJMLS H can be characterized in terms of the observability
and reachability of its representation RH as follows.

Lemma 3: The GJMLS H is reachable if and only if RH

is reachable, and H is observable if and only if for each
q ∈ Q, ORH

∩ Xq = {0}.
The lemma above implies that observability and reachability
of a GJMLS can be checked by a numerical algorithm.

We are now ready to state the theorem on minimality of
a GJMLS realization.

Theorem 5 (Minimality of a realization by a GJMLS):
Let ỹ be an output process satisfying Assumptions 11–15.
A GJMLS H of the form (17) is a minimal realization of ỹ
if and only if it is reachable and observable. In addition, if
Ĥ is another GJMLS realization of ỹ given by

x̂(t + 1) = M̂θ(t),θ(t+1)x̂(t) + B̂θ(t),θ(t+1)v̂(t)

ỹ(t) = Ĉθ(t)x̂(t) + D̂θ(t)v̂(t),
(34)

where the dimension of the continuous state-space of Ĥ
corresponding to the discrete state q is n̂q, then the GJMLS
Ĥ is minimal if and only if nq = n̂q for all q ∈ Q. Fur-
thermore, there exists a collection of nonsingular matrices,
Tq ∈ Rnq×nq , q ∈ Q, such that for all q1, q2 ∈ Q

Tq2Mq1,q2T
−1
q1

=M̂q1,q2 , Cq1T
−1
q1

= Ĉq1 , Tq2Gq1,q2 =Ĝq1,q2 ,
(35)

where

Gq1,q2 = E[x(t)ỹT (t− 1)χ(θ(t) = q2,θ(t− 1) = q1)],

Ĝq1,q2 = E[x̂(t)ỹT (t− 1)χ(θ(t) = q2,θ(t− 1) = q1)].
(36)

That is, Ĥ and H are algebraically similar in some sense.

Proof: [Sketch] First, we can show that if R is a minimal
representation of Ψey, then the GJMLS HR defined in the proof
of Theorem 4 is a minimal realization of ey. It then follows from
Lemma 3 that HR is reachable and observable. Moreover, if H
is a realization of ey which is not reachable or observable, then
we can show that dim HR < dim H . Hence, minimality implies
observability and reachability.

Assume now that Ĥ is a reachable and observable GJMLS
realization of ey. Consider the representation RĤ and transform
it to a minimal representation R̂. Construct the GJMLS HR̂ and
notice that HR̂ is minimal. From reachability and observability
of H it follows that Ĥ and HR̂ are isomorphic and hence Ĥ is
minimal. Hence, reachability and observability implies minimality.
The rest of the theorem follows from the properties of minimal
rational representations.

Remark 4: Notice that in (35) we do not require any
relationship between Bq1,q2 and B̂q1,q2 . This is consistent
with the situation for linear stochastic systems.

Remark 5 (GJMLS Realization Algorithm): It is clear
that reachability and observability, and hence minimality, of
a GJMLS can be checked numerically. It is also easy to see
that Algorithm 1 can be adapted to obtain the realization
HR described in Theorem 4.

V. DISCUSSION AND CONCLUSION

We presented a realization theory for stochastic JMLSs.
The theory relies on the solution of a generalized bilinear
realization problem. This solution represents an extension of
the known results on linear and bilinear stochastic realization.
Open research avenues include extending our results to more
general classes of hybrid systems. In particular, it would be
interesting to develop realization theory for jump-Markov
linear systems with partially observed discrete states. Neces-
sary conditions for existence of a realization by a system of
this class were already presented in [16]. Another interesting
line of research is to use the presented theory for develop-
ing subspace identification algorithms for stochastic JMLSs.
Note that the classical stochastic bilinear realization theory
gave rise to a number of subspace identification algorithms,
see [6], [20], [3]. It is very likely that the presented results
will lead to very similar subspace identification algorithms.
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