Vertex Nomination Via Local Neighborhood Matching

Heather G. Patsolic In collaboration with: C.E. Priebe, V. Lyzinski, and Y. Park

Johns Hopkins University

August 3, 2016

Problem Formulation

- Have two large networks on overlapping, non-identical vertex sets.
- There is a vertex of interest (VOI) in one network we'd like to identify in the other.

(b) Network B

(a) Network A

Opportunity and Problem Formulation	Challenge	Action	Resolution	Future Work
Challenge				

- Often vertex attributes alone are not enough to identify VOI in the other network.
- Networks can be too large for graph matching to be efficient.

ト イヨト イヨト

- Often vertex attributes alone are not enough to identify VOI in the other network.
- Networks can be too large for graph matching to be efficient.

So how do we proceed?

伺 ト イヨト イヨト

同下 イヨト イヨト

Mathematical Framework for Simulations: ρ -SBM

$G_1, G_2 \sim \rho - SBM$:

- Nodes are divided into groups.
- Probability of an edge existing between any pair of vertices in a graph depends only on the block membership of those vertices.
- Edges are marginally conditionally independent.
- Edge presence between vertices i and j in G₁ and vertices i and j in G₂ has correlation ρ.
- Otherwise, edge presence is independent across graphs.

Resolution

Future Work

Step 1: Acquiring Seeds

(a) Network A

(b) Network B

Figure: Find a vertex adjacent to VOI with verifiable corresponding vertex in second network (this is the initial *seed*).

Resolution

<ロ> (日) (日) (日) (日) (日)

Future Work

Step 1: Acquiring Seeds

Figure: Generate *h*-hop neighborhood around this seed in both graphs. In this example, h = 1.

<ロ> (日) (日) (日) (日) (日)

Step 1: Acquiring Seeds

Figure: Find more seeds across these two induced subgraphs. Call the full seed sets S and S'.

Step 2: Finding Candidates

- $C'_x = \{5, \dots, 34\}$ is the set of candidate (non-seed) vertices in the second induced subgraph.
- Note: if match to VOI is not in C'_x, we are doomed to failure.
 So be it; we still proceed. Assume x' exists.

(a) *h*-hop neighborhood induced sub-network of A

(b) h-hop neighborhood induced sub-network of B

ヘロッ 人間 と 人 可 と

Resolution

Future Work

Step 3: Matching Graphs

- Repeatedly use seeded graph matching (SGM), modified from [FAP12], to align the networks generated by these neighborhoods.
- Output a probability matrix P such that P[i, j] is the proportion of times vertex j in second network mapped to vertex i in first network.

(日) (周) (王) (王)

Resolution

Future Work

Step 4: Nominations for VOI

イロト イポト イヨト イヨト

VN via LNM algorithm

Input: Graphs G_1 and G_2 ; $x \in V(G_1)$; R; h

(4 同) (4 回) (4 回)

VN via LNM algorithm

Input: Graphs G_1 and G_2 ; $x \in V(G_1)$; R; hStep 1: Find pair of initial seeds $s_1 \in V(G_1)$ and $s'_1 \in V(G_2)$ so that s_1 is adjacent to x in G_1 . Generate h-hop neighborhoods around initial seeds (be sure VOI is in first neighborhood). Find more seeds if possible.

ト イポト イヨト イヨト

VN via LNM algorithm

Input: Graphs G_1 and G_2 ; $x \in V(G_1)$; R; h

Step 1: Find pair of initial seeds $s_1 \in V(G_1)$ and $s'_1 \in V(G_2)$ so that s_1 is adjacent to x in G_1 .

Generate h-hop neighborhoods around initial seeds (be sure VOI is in first neighborhood).

Find more seeds if possible.

Step 2: Record C'_{x} , the set of non-seed vertices in second *h*-hop neighborhood.

ト イポト イラト イラト

VN via LNM algorithm

Input: Graphs G_1 and G_2 ; $x \in V(G_1)$; R; h

Step 1: Find pair of initial seeds $s_1 \in V(G_1)$ and $s_1' \in V(G_2)$ so that s_1 is adjacent to x in G_1 .

Generate h-hop neighborhoods around initial seeds (be sure VOI is in first neighborhood).

Find more seeds if possible.

Step 2: Record C'_{x} , the set of non-seed vertices in second *h*-hop neighborhood.

Step 3: Run SGM algorithm (modified from [FAP12]) for matching the two neighborhoods generated by initial seeds R times. Set P to be the average of all the matchings.

소리가 소리가 소문가 소문가 ...

VN via LNM algorithm

Input: Graphs G_1 and G_2 ; $x \in V(G_1)$; R; h

Step 1: Find pair of initial seeds $s_1 \in V(G_1)$ and $s_1' \in V(G_2)$ so that s_1 is adjacent to x in G_1 .

Generate h-hop neighborhoods around initial seeds (be sure VOI is in first neighborhood).

Find more seeds if possible.

Step 2: Record C'_{x} , the set of non-seed vertices in second *h*-hop neighborhood.

Step 3: Run SGM algorithm (modified from [FAP12]) for matching the two neighborhoods generated by initial seeds R times. Set P to be the average of all the matchings.

Step 4: P[x,] is the row of probabilities. Top nominate for x' is in $\arg \max_{v \in C'_x} P[x,]$.

• Repeatedly generate pairs of graphs from a .6-correlated SBM with probability matrix

$$\Lambda = \begin{bmatrix} 0.7 & 0.3 & 0.4 \\ 0.3 & 0.7 & 0.3 \\ 0.4 & 0.3 & 0.7 \end{bmatrix}.$$

- Select VOI.
- Steps 1-4.
- Plot normalized rank of x'

$$\frac{\operatorname{\mathsf{rank}}(x')-1}{|\mathit{C}'_x|-1}$$

in histogram.

• NOTE: 0, 0.5, and 1 imply that x' was first, half-way down, and last in the nomination list, respectively.

Resolution

Future Work

Effects of number of seeds

Effect of number of seeds on VOI nomination list, using graphs with 300 vertices and 1 VOI. As the number of seeds increases, the location of x' in the nomination list decreases.

(日) (周) (王) (王)

VN-LNM

Resolution

Future Work

Effects of size discrepencies between graphs

The larger graph has 100 vertices per block, and the smaller graph has r vertices per block. The smaller graph is 0.6 correlated with an induced subgraph of the larger one. Larger graph has 3(100 - r) "junk" vertices: As the number of "junk" vertices decreases, the location of x' in the nomination list decreases.

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

Real Data Experiments

- Core of High School Facebook and Friendship Survey Networks.
- Twitter and Instagram Networks.

High School and Facebook Networks [MFB15]

(a) Core of Facebook Friendship Network (b) Core of Survey-Based Friendship Network

<ロ> (日) (日) (日) (日) (日)

Resolution

Future Work

Example of VN-LNM for HS data with VOI 27

In this example, we are stochastically better than uniform by 3 seeds.

イロン イヨン イヨン

イロト イポト イヨト イヨト

Future Work

Twitter and Instagram Networks

Figure: Twitter network on left and Instagram network on right.

Resolution

Future Work

Seeds Benefit in Instagram/Twitter Matching

Fixed VOI and fixed seed-set of size 10. For every subset of size $s \in \{2, 4, 6, 8, 10\}$ we run steps 2-4 and record the normalized rank.

イロト イポト イヨト イヨト

VN-LNM

伺 ト イヨト イヨト

Evidence Suggests...

- As the number of seeds increases, often the proportion of times the true match maps to the VOI increases (i.e. the minimum k required to obtain true match degreases).
- When the vertex sets have differing sizes the matching becomes more difficult.
- The presence of "junk" vertices complicates the problem.

• Determine bounds on how much "junk" can be added in ρ -SBM case and still guarantee, at least asymptotically, that we will match the core vertices correctly.

Future Work

- Explore how choice of seeds can be made (i.e. what makes a good seed).
- What happens when ρ is different based on block structure?
- Extend this work to finding multiple VOI across multiple networks simultaneously.

同下 イヨト イヨト

ト イポト イヨト イヨト

Acknowledgements

Thank you to the XDATA and SIMPLEX programs of the Defense Advanced Research Projects Agency and to the Acheson J. Duncan Fund for the Advancement of Research in Statistics.

References

- [FAP12] D.E. Fishkind, S. Adali, and C.E. Priebe, Seeded graph matching, arXiv:1209.0367 (2012).
- [MFB15] R. Mastrandrea, J. Fournet, and A. Barrat, Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys, PLoS ONE (2015).

伺 ト イヨト イヨト