CEP & his team
Department of Applied Mathematics and Statistics
Johns Hopkins University
The data is originally from: http://snap.stanford.edu/data/com-Friendster.html
J. Yang and J. Leskovec. “Defining and Evaluating Network Communities based on Ground-truth”. ICDM, 2012.
Cluster \(\hat{X} \in \mathbb{R}^{14}\) into \(\hat{R}=16\) clusters determined by average silhouette width criterion, denote each subgraph as \(\hat{H}_r\).
Summary of the clusters:
| cluster | subg.order | subg.size | lcc.order | lcc.size | 
|---|---|---|---|---|
| 1 | 3173696 | 72340821 | 3108471 | 72334735 | 
| 2 | 2848386 | 9809441 | 1599429 | 9779706 | 
| 3 | 8576519 | 69283994 | 7870961 | 69245017 | 
| 4 | 1514469 | 57410892 | 1330725 | 57371638 | 
| 5 | 3771122 | 35569898 | 3729532 | 35567654 | 
| 6 | 2478497 | 11371576 | 1319927 | 11347569 | 
| 7 | 1557016 | 19108803 | 1416238 | 19079683 | 
| 8 | 3901613 | 59921089 | 3407165 | 59836037 | 
| 9 | 4376262 | 27046756 | 4113274 | 27030566 | 
| 10 | 9140083 | 54467095 | 7558797 | 54369954 | 
| 11 | 4529703 | 44110968 | 4278925 | 44099897 | 
| 12 | 3267543 | 63617581 | 3164782 | 63612517 | 
| 13 | 1167628 | 13690178 | 1115613 | 13685395 | 
| 14 | 5311510 | 31262924 | 4624917 | 31205512 | 
| 15 | 7194615 | 134588427 | 7189683 | 134588231 | 
| 16 | 2799704 | 70325838 | 2758483 | 70323822 | 
#     cluster        subg.order        subg.size           lcc.order      
#  Min.   : 1.00   Min.   :1167628   Min.   :  9809441   Min.   :1115613  
#  1st Qu.: 4.75   1st Qu.:2719402   1st Qu.: 25062268   1st Qu.:1553631  
#  Median : 8.50   Median :3519332   Median : 49289032   Median :3285974  
#  Mean   : 8.50   Mean   :4100523   Mean   : 48370393   Mean   :3661683  
#  3rd Qu.:12.25   3rd Qu.:4725155   3rd Qu.: 65034184   3rd Qu.:4365423  
#  Max.   :16.00   Max.   :9140083   Max.   :134588427   Max.   :7870961  
#     lcc.size        
#  Min.   :  9779706  
#  1st Qu.: 25042845  
#  Median : 49234926  
#  Mean   : 48342371  
#  3rd Qu.: 65020642  
#  Max.   :134588231
Reembed \(\hat{H}_r\) into \(\mathbb{R}^{d=100}\) using adjacency spectral embedding, denoted \(\hat{X}_r\).
Calculate dissimilarity measures among \(\hat{X}_r\) using a kernel method, denoted \(\hat{S}\).
Cluster \(\hat{S}\) to estimate \(\hat{B}\) and \(\hat{\rho}\).
 
 
prepared by youngser@jhu.edu on Mon Mar 9 16:57:26 2015