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Abstract

We introduce a theory of scan statistics on graphs and apply the ideas to

the problem of anomaly detection in a time series of Enron email graphs.
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1 Introduction.

Consider a directed graph (digraph) D with vertex set V (D) and arc set A(D)

of directed edges. For instance, we may think of D as a communications or so-

cial network, where the n = |V (D)| vertices represent people or computers or

more general entities and an arc (v, w) ∈ A(D) from vertex v to vertex w is to be

interpreted as meaning “the entity represented by vertex v is in directed commu-

nication with or has a directed relationship with the entity represented by vertex

w.” We are interested in testing the null hypothesis of “homogeneity” against al-

ternatives suggesting “local subregions of excessive activity.” Toward this end, we

develop and apply a theory of scan statistics on random graphs.

2 Scan Statistics.

Scan statistics are commonly used to investigate an instantiation of a random field

X (a spatial point pattern, perhaps, or an image of pixel values) for the possi-

ble presence of a local signal. Known in the engineering literature as “moving

window analysis”, the idea is to scan a small window over the data, calculating

some local statistic (number of events for a point pattern, perhaps, or average

pixel value for an image) for each window. The supremum or maximum of these

locality statistics is known as the scan statistic, denoted M(X). Under some spec-

ified “homogeneity” null hypothesis H0 on X (Poisson point process, perhaps, or

Gaussian random field) the approach entails specification of a critical value cα

such that PH0
[M(X) ≥ cα] = α. If the maximum observed locality statistic

is larger than or equal to cα, then the inference can be made that there exists a

nonhomogeneity — a local region with statistically significant signal.
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An intuitive approach to testing these hypotheses involves the partitioning of

the region X into disjoint subregions. For cluster detection in spatial point pro-

cesses this dates to Fisher’s 1922 “quadrat counts” [Fisher and Mackenzie, 1922];

see [Diggle, 1983]. Absent prior knowledge of the location and geometry of po-

tential nonhomogeneities, this approach can have poor power characteristics.

Analysis of the univariate scan process (d = 1) has been considered by many

authors, including [Naus, 1965], [Cressie, 1977], [Cressie, 1980], and [Loader, 1991].

For a few simple random field models exact p−values are available; many ap-

plications require approximations to the p−value. The generalization to spatial

scan statistics is considered in [Naus, 1965], [Adler, 1984], [Loader, 1991], and

[Chen and Glaz, 1996]. As noted by [Cressie, 1993], exact results for d = 2 have

proved elusive; approximations to the p−value based on extreme value theory are

in general all that is available. [Naiman and Priebe, 2001] present an alternative

approach, using importance sampling, to this problem of p−value approximation.

3 Scan Statistics on Graphs.

The order of the digraph, n = |V (D)|, is the number of vertices. The size of the

digraph, |A(D)|, is the number of arcs. For v, w ∈ V (D) the digraph distance

d(v, w) is defined to be the minimum directed path length from v to w in D.

For non-negative integer k (the scale) and vertex v ∈ V (D) (the location),

consider the closed kth-order neighborhood of v in D, denoted Nk[v; D] = {w ∈

V (D) : d(v, w) ≤ k}. We define the scan region to be the induced subdigraph

thereof, denoted

Ω(Nk[v; D])(1)
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with vertices V (Ω(Nk[v; D])) = Nk[v; D] and arcs A(Ω(Nk[v; D])) = {(v, w) ∈

A(D) : v, w ∈ Nk[v; D]}. A locality statistic at location v and scale k is any

specified digraph invariant Ψk(v) of the scan region Ω(Nk[v; D]). For concrete-

ness consider for instance the size invariant, Ψk(v) = |A(Ω(Nk[v; D]))|. Notice,

however, that any digraph invariant (e.g. density, domination number, etc.) may be

employed as the locality statistic, as dictated by application. The “scale-specific”

scan statistic Mk(D) is given by some function of the collection of locality statis-

tics {Ψk(v)}v∈V (D); consider for instance the maximum locality statistic over all

vertices,

Mk(D) = max
v∈V (D)

Ψk(v).(2)

This idea is introduced in [Priebe, 2004].

Under a null model for the random digraph D (for instance, the Erdos-Renyi

random digraph model) the variation of Ψk(v) can be characterized and Mk(D)

large indicates the existence of an induced subdigraph (scan region) Ω(Nk[v; D])

with excessive activity. A test can be constructed for a specific alternative of

interest concerning the structure of the excessive activity anticipated. However, if

the anticipated alternative is, more generally, some form of “chatter” in which one

(small) subset of vertices communicate amongst themselves (in either a structured

or an unstructured manner) then our scan statistic approach promises more power

than other approaches.

Finally, we wish to consider the scan statistic which accounts for variable

scale. Let K ⊂ {1, · · · , n − 1} be a collection of scales, and let Ψ′

k be a scale-

standardized version of the locality statistic Ψk. For instance, for given α ∈ (0, 1),

find gk,α(·) such that Ψ′

k(v) = gk,α(Ψk(v)) satisfies P [Ψ′

k(v) ≥ cα] ≈ α for all

v ∈ V (D) and for all k ∈ K. This standardization imposes upon each locality
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statistic the same probability of exceedance. Then the scan statistic MK(D) is

given by

MK(D) = max
k∈K

max
v∈V (D)

Ψ′

k(v)(3)

and we reject for large values of MK(D).

For the Enron data considered in this paper, as for much social network data,

no appropriate simple null random graph model is obvious. The dataset, as we

process it, consist of a time series of digraphs D1, D2, · · · , DT=189. We will pro-

ceed conditionally: we will assume that the data (or the statistics derived from

the data) have some short-time stationarity properties under the null, so that a

moving window approach is appropriate. We will be concerned with discovering

anomalies that appear as digraphs which differ substantially from those seen in the

recent past. In particular, we wish to detect subdigraphs with an unusually high

connectivity, as measured by our statistic. This conditional approach alleviates

the requirement to posit an appropriate and simple null graph model — but does

require some (approximate) stationarity.

4 The Enron Data.

The Enron email dataset is available online [enr, b]. This dataset consists of a col-

lection of 150 folders corresponding to the email to and from senior management

and others at Enron, collected over a period from about 1998 to 2002. The emails

have been minimally processed to correct integrity problems. Some emails have

been deleted, as have all attachments. Thus, while imperfect, this dataset repre-

sents a rich environment in which to perform text analysis and link analysis. More

information on this dataset can be found online [enr, a].
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One consequence of the processing of these data is that some of the orig-

inal email addresses have been changed. Invalid addresses were converted to

no address@enron.com. In several cases, individuals have multiple addresses,

which are clearly a result of some post-processing: for example, John Q. Public

has email addresses john.public@enron.com and q..public@enron.com. In this

study we will treat such cases as distinct; one potential goal might be to recognize

this “aliasing” from the link analysis alone, without reference to the content of the

messages. This will be discussed further in Section 7.1.

5 Whence Our Enron Graphs?

The data are collected from “about 150 users” — mostly Enron executives, but

also some energy traders, executive assistants, etc. However, our graphs are based

on 184 users, which is the number of unique addresses we obtain from the ‘From’

line of emails in the ‘Sent’ boxes after manually removing some addresses which

are clearly not associated with the 150 users. (NB: Neither of the two extreme

options — keeping all addresses, or merging to the point of one-to-one correspon-

dence between addresses and known users — seems practical; the former yields

too many obvious aliases and extraneous addresses, and no simple unassailable

version of the latter presents itself to us. Thus, we proceed with an admittedly

imperfect collection of vertices.) In addition, some of the time stamps in the orig-

inal data are clearly invalid, occurring before Enron existed, so we restrict our

attention to a period of 189 weeks, from 1998 through 2002.

For each week t = 1, · · · , 189, there is a digraph Dt = (V, At) with |V | = 184

vertices and directed edges (arcs) At, where (v, w) ∈ At ⇐⇒ vertex v sends at
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least one e-mail to vertex w during the t-th week. We make no distinction between

emails sent “To”, “CC” or “BCC”.

6 Statistics and Time Series.

Our time-dependent scale-k locality statistic is given by

Ψk,t(v) = |A(Ω(Nk[v; Dt]))|(4)

for k ∈ {1, 2, · · · , K}. In an abuse of notation, we will let Ψ0,t(v) = outdegree(v; Dt).

Figure 1 shows the three statistics

Mk,t = max
v

Ψk,t(v); k = 0, 1, 2(5)

as well as size(Dt), as functions of time (weeks) t = 1, · · · , 189 for the 189

weeks under consideration. (Figures 8–11 show these four curves separately.)

The raw locality statistics Ψk,t(v) are inadequate for our purposes. Con-

sider, for instance, the situation in which one vertex, v, has a lot of activity

throughout time, and another vertex, w, has but one tenth this amount of activ-

ity until one week in which w triples its activity. Without some form of vertex-

dependent standardization, the increase in activity for w will go unnoticed, as

v = arg max Ψk,t(v) regardless of w’s increased activity. Thus the locality statis-

tics Ψk,t(v) must be standardized using vertex-dependent recent history.

Our vertex-standardized locality statistic, for k = 0, 1, 2, is given by

Ψ̃k,t(v) = (Ψk,t(v) − µ̂k,t,τ (v)) / max(σ̂k,t,τ(v), 1)(6)

where

µ̂k,t,τ(v) =
1

τ

t−1∑

t′=t−τ

Ψk,t′(v)(7)
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and

σ̂2
k,t,τ (v) =

1

τ − 1

t−1∑

t′=t−τ

(Ψk,t′(v) − µ̂k,t,τ(v))2.(8)

That is, we standardize the locality statistic Ψk,t(v) by a vertex-dependent mean

and standard deviation based on recent history. (The denominator in Ψ̃k,t(v) is

forced to be greater than or equal to one to eliminate fragility due to vertices with

little or no variation in activity.)

In Figure 2 we plot the standardized scan statistics

M̃k,t = max
v

Ψ̃k,t(v)(9)

against t over the 189 weeks. (Figures 12–14 show these three curves separately.)

This approach requires a vertex-dependent local stationarity assumption. The

validity of a stationarity assumption is obviously suspect over the entire 189 weeks,

but short-time near-stationarity (we use τ = 20) may be reasonable as a null

model.

7 Anomaly Detection.

Given the standardized scan statistic time series M̃k,t presented in Figure 2, we

now consider anomaly detection.

For simplicity, we consider a temporally-normalized version of M̃k,t,

Sk,t = (M̃k,t − µ̃k,t,`)/ max(σ̃k,t,`, 1),(10)

where µ̃k,t,` and σ̃k,t,` are the running mean and standard deviation estimates of

M̃k,t based on the most recent ` time steps. (Here we use ` = 20.) Detections are
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defined here as weeks for which M̃k,t achieves a value greater than five standard

deviations above its mean; i.e., times t such that Sk,t > 5

Figure 3 depicts S2,t for a 20 week period from February 2001 through June

2001. We observe that the second order scan statistic indicates a clear anomaly at

t∗ = 132 (maxv Ψ̃2,132(v) is a seven sigma event) in May 2001. This anomaly is

apparent, in hindsight, in Figure 2.

Inference performed using simple sigmages is inadequate in this case, of course,

because there is no reason to believe that the distribution of Sk,t is normal or

that Sk,t and Sk,t′ are independent. Computational methods such as the bootstrap

would be appropriate. We consider exceedance probabilities of an extreme value

distribution, the Gumbel, fit via the method of moments. S2,132 = 7.3; 7.3 stan-

dard deviations yields a p−value < 10−10, assuming normality. While the signif-

icance for the detection at t∗ = 132 is not so drastic under the more reasonable

Gumbel model, we nevertheless obtain an exceedance probability < 10−6, which

remains convincing. Bonferonni analysis suggests that if the Ψ̃k,t are approxi-

mately distributed as a t19 then the detection is significant; however, if the distri-

bution of the Ψ̃k,t has extraordinarily heavy tails (e.g., Cauchy) then the α = 0.05

level critical value may be greater than 7.3. Thus, under a reasonable range of null

distributions, the detection at t∗ = 132 is statistically significant.

Figure 4 shows the graph topology, sans isolates, for our ‘detection’ graph

D132. Our vertex of interest, v∗ = arg maxv Ψ̃2,132(v), is identified with email

address email90. Of note is the fact that arg maxv Ψ0,132(v) = email83. That is,

the vertex of maximum outdegree for t∗ = 132 is not the cause of our detection.

Furthermore, arg maxv Ψ1,132(v) = email83, arg maxv Ψ2,132(v) = email147,

arg maxv Ψ̃0,132(v) = email147, and arg maxv Ψ̃1,132(v) = email75. Thus the
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detection based on v∗ = email90 is apparent only when using the standardized

second order scan statistic.

Table 1 gives some relevant numerical values for the ‘detection’ graph D132.

There is excessive activity among the elements of the closed 2-neighborhood

of our vertex of interest v∗ which is not accounted for by its outdegree (or its

closed 1-neighborhood). In fact, v∗ communicates, in particular, with other ver-

tices each of which has high outdegree. This type of excessive local activity is

precisely the raison d’etre for our scan statistics; our approach exhibits the ability

to detect this anomaly.

Is this detection an event of interest? It is statistically significant, but the objec-

tive of our scan statistic methodology is to sift through massive communications

data to find potentially informative events for the purpose of directing additional,

more time consuming investigations. The ultimate determination of the practi-

cal significance of this or any detection must be made on the basis of subsequent

analysis. There is a coinciding insider trading event on the Enron time line . . .

but there are many insider trading events on the Enron time line! Ideally, one

would hope to find a link between the detected excess activity and that insider

trading. Such a forensic analysis will require delving into the content of the email

messages and associated meta-data.

Time t∗ = 132 is the only week among the 189 under consideration for which

S2,t ≥ 5. Detections for the other scan statistics — orders 0, 1, and 3 — that may

be worth pursuing are summarized here. For maximum standardized outdegree,

there are three weeks with S0,t ≥ 5: 58 (week of December 16, 1999), 96 (week

of September 7, 2000), 146 (week of August 23, 2001) for the standardized first

order scan statistic, we obtain (almost) the same three detections: 58, 94, 146.
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The standardized third order scan statistic produces detections at t∗ = 132 and at

week 87.

7.1 Aliasing.

In the case of the detection at t∗ = 132,

v∗ = arg max
v

Ψ̃2,132(v) = email90,(11)

perusal of the emails shows that email90 and email141 are really the same per-

son. User email90 had no activity before t∗ = 132, at which time email141

switched to the email90 identifier. Thus we have detected an instance of alias-

ing, which could perhaps have been addressed during the manual merging stage

wherein we settled on the collection of 184 vertices to consider. Of course, this

identification does in fact require perusal of the emails, which perusal was sug-

gested by the detection . . . precisely the point of the exercise!

However, it may be possible to automatically identify such aliasing events.

Given the detection (v∗, t∗) we can immediately identify email90 as having had

no activity prior to t∗ = 132. From this point, we may employ a “matched filter”

scheme to determine candidates for aliasing by matching the pattern of email90’s

activity at or after t∗ = 132 against the pattern of other vertices’ activity prior to

t∗ = 132. Vertices with a high score for some matching function will be deemed

likely candidates for further investigation.

For instance, we may compute, for each vertex v ∈ V \ {v∗}, the simple score

st∗,κ(v; v∗) =

t∗−1∑

t′=t∗−κ

|N1(v; Dt′) ∩ N1(v
∗; Dt∗)|.(12)
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In this case we obtain email141 = arg maxv st∗,κ(v; v∗) with κ ≥ 5. That is, for

this simple case, the aliasing can be automatically identified and resolved.

This idea of employing matched filters to time series of graphs, introduced

here in a very simplistic fashion, will be pursued in more detail elsewhere.

7.2 Another Detection.

The detection of v∗ = arg maxv Ψ̃2,132(v) = email90 at t∗ = 132, while real and

interesting, is due to the fact that email90 had not been active prior to t∗ = 132.

We may be interested, instead, in detections for which activity increases from a

non-zero baseline. That is, we consider the statistic

Ψ̃k,t(v) · I{µ̂0,t,τ (v) > c},(13)

where I{E} is the indicator function taking value one if event E occurs and taking

value zero otherwise, which requires there to have been some recent activity.

For c = 1, one such detection of this type, for which the order k = 2 scan

statistic detects but the order k = 0 and k = 1 scan statistics do not detect, is

v∗ = email152 at t∗ = 152 (the week of October 4, 2001).

Table 2 gives the scan statistics for this detection for the weeks up to and

including t∗. Here we see clearly the increase in activity, and we see that it is not

due to order 0 or order 1 locality statistics. (N.B. It does appear that a detection at

t∗ − 2 may be appropriate.)

However, further investigation indicates that this detection is due to the fact

that email152 communicates with email154, and email154 is an order 0 locality

statistic detection at t∗ = 152 due to a massive increase in outdegree (see Table

3).
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Thus, in some sense, neither the email90 / email141 detection at t∗ = 132

nor the email152 / email154 detection at t∗ = 152 is really due to the type of

excessive “chatter” in which we are most interested.

7.3 Detecting Chatter.

For each time t and vertex v, consider the order 2 statistic

Ψ̃′

t(v) =
(
Ψ̃2,t(v) · It,τ (v)

)
/ max(γt(v), 1).(14)

Here the term It,τ (v) is the product of three indicator functions,

I{µ̂0,t,τ > c1},(15)

I{Ψ0(v) < σ̂0,t,τ (v)c2 + µ̂0,t,τ (v)},(16)

I{Ψ1(v) < σ̂1,t,τ (v)c3 + µ̂1,t,τ (v)}.(17)

That is, we gate the second order scan statistic so that some minimal level of

recent activity is required, and we insist that the order 0 and order 1 scan statistics

do not yield detections. In this way we narrow the class of alternatives under

consideration — the types of anomalous activities that will be deemed detections;

we seek a detection in which the excess activity is due to chatter amongst the 2-

neighbors. We include an “inhomogeneity penalty” γt(v), the standard deviation

of the outdegrees of the neighbors N1(v
∗; Dt∗), in the denominator of Ψ̃′

t(v) to

further narrow our search to the case of “balanced chatter” (and to rule out events

such as the email152 / email154 detection at t∗ = 152).

The arg max(v,t) Ψ̃′

t(v) is given by (v∗, t∗) = (email164, 109). (The value

of t∗ = 109 corresponds to the week of December 7, 2000.) Figure 5 displays

M̃ ′

t = maxv Ψ̃′

t(v) as well as the temporally-normalized version S ′

t.
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The raw locality statistics Ψk,t(v
∗) for the time range {t∗ − 5, · · · , t∗} leading

up to this detection are given in Table 4. As can be seen from Table 4, the raw

locality statistics for k = 0 and k = 1 do not have a substantial signal at t∗ = 109,

while for k = 2 the presence of an anomaly is clear.

The inhomogeneity penalty for this detection is γt∗(v
∗) ≈ 1.7; the outdegrees

of the five neighbors of v∗ = email164 are 6,6,6,7,10.

The induced subdigraph at t∗ = 109, Ω(N2[v
∗; Dt∗]), is depicted in Figure 6.

We see that v∗ = email164 has five neighbors, each of which has outdegree be-

tween six and ten. That is, this detection is due to v∗ communicating with a moder-

ate subset of vertices, each of whom communicates with another moderate subset.

Comparing this graph with email164’s induced subdigraph Ω(N2[v
∗; Dt∗−1]) at

t∗ − 1 = 108 (black arcs and associated vertices in Figure 7) gives a clear, albeit

simplistic, indication that change has occurred. Figure 7 gives additional infor-

mation regarding this change, depicting the subdigraph induced at t∗ − 1 = 108

by the union of email164’s 2-neighborhood at t∗ − 1 = 108 and email164’s 2-

neighborhood at t∗ = 109. The arcs corresponding to communications between

members of email164’s closed 2-neighborhood at t∗ − 1 = 108 are depicted

in black; gray arcs represent other communications in D108 between vertices in

email164’s 2-neighborhood at t∗ = 109. Figure 7 shows that this detection is

not the result of a simple increase in the size of v∗’s neighborhood, but that the

vertices in the neighborhood at t∗, while active at t∗ − 1, have also increased their

activity. Thus, the detection is not due solely to v∗ joining a larger group; in addi-

tion, the group itself is more active as well. We interpret this figure as suggesting

that this detection is robust — insensitive to small changes in the graph.
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8 Discussion.

A theory of scan statistics on graphs offers promise for detecting anomalies in

time series of graphs.

We have employed perhaps overly-simplistic time series and inference meth-

ods, for purposes of illustration; more elaborate methods such as exponential

smoothing, detrending, and variance stabilization may be appropriate. In addi-

tion, multivariate time series (one time series for each vertex v, in this case) have

a theory all their own — e.g., vector autoregressive models — which we have

ignored here. And, of course, for data such as this Enron corpus, robust versions

of moment estimates we have employed are called for.

Nevertheless, despite our simplistic approach to these various issues, we have

demonstrated the potential utility of the scan statistic approach to the problem of

anomaly detection in a time series of Enron email graphs. Much remains to be

done — mathematically, computationally, and with respect to data and meta-data

analysis. Of particular interest is the extension of these scan statistics to weighted

graphs (and hypergraphs), allowing for the detection of anomalies related to the

number (and possibly type) of messages sent, as opposed to the simpler case con-

sidered herein.

Noteworthy as a closing fact is that the procedures introduced herein can all

be performed in a real-time, streaming data environment. That is, a sliding one-

week window, rather than disjoint one-week windows, can be utilized and nothing

presented herein causes a common laptop computer difficulty in keeping up. Thus,

these procedures can be applied in scenarios of on-line analysis, in addition to the

forensic scenario offered by this Enron corpus.
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Figure 1: Time series of scan statistics and max degree (Mk,t for k = 0, 1, 2),

as well as digraph size, for weekly Enron email digraphs during a period of 189

weeks from 1998–2002. (See also Figures 8–11.)
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Figure 2: Time series of standardized scan statistics and max degree (M̃k,t for

k = 0, 1, 2) for weekly Enron email digraphs during a period of 189 weeks from

1998–2002. (See also Figures 12–14.)
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Figure 3: Sk,t, the temporally-normalized standardized scan statistics, on zoomed-

in time series of Enron e-mail graphs during a period of 20 weeks in 2001. Top:

k = 0; Middle: k = 1; Bottom: k = 2. This figure shows a detection (a stan-

dardized statistic M̃k,t which achieves a value greater than 5 standard deviations

above its running mean, or a temporally-normalized standardized statistic Sk,t in

this plot taking a value greater than 5) at week t∗ = 132 in May 2001 for scale

k = 2, but not for k = 1 or k = 0.
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Figure 4: Plot of the ‘detection’ Enron email graph D132 (sans isolates) for which

our scan statistic methodology detects an anomaly. The center vertex, email90, is

v∗ = arg maxv Ψ̃2,132.
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Figure 5: Plot of order 2 statistics M̃ ′

t and S ′

t showing the maximum at t∗ = 109

in December 2000. This is the email164 “excessive chatter” detection.
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Figure 6: Plot of the ‘detection’ Enron email graph Ω(N2[v
∗ =

email164; Dt∗=109]).
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Figure 7: An induced subgraph of D108. Black arcs and associated vertices repre-

sent email164’s induced subdigraph Ω(N2[v
∗; Dt∗−1]) at t∗ − 1 = 108. Gray

arcs represent other communications in D108 between vertices in email164’s

2-neighborhood at t∗ = 109. Comparing this figure with Figure 6 provides

information regarding the change from t∗ − 1 = 108 to t∗ = 109 for the

(v∗ = email164, t∗ = 109) detection.
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Table 1 Details for the ‘detection’ graph D132.

time t∗ 132 (week of May 17, 2001)

size(D132) 267

scale k Mk,132 M̃k,132 Sk,132

0 66 8.3 0.32

1 93 7.8 −0.35

2 172 116.0 7.30

3 219 174.0 5.20

number of isolates 50

Table 2 Locality statistics Ψk,t(v
∗ = email152) for the time range {t∗−5, · · · , t∗}

leading up to the v∗ = email152 detection at t∗ = 152.

scale k Ψk,t∗−5:t∗(v
∗)

0 [ 1 , 2 , 1 , 3 , 1 , 2]

1 [ 1 , 2 , 2 , 9 , 2 , 4]

2 [ 1 , 2 , 2 , 19 , 4 , 175]

3 [ 1 , 2 , 2 , 58 , 6 , 268]
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Table 3 Locality statistics Ψk,t(v = email154) for the time range {t∗−5, · · · , t∗}

leading up to the v∗ = email152 detection at t∗ = 152.

scale k Ψk,t∗−5:t∗(v)

0 [ 3 , 2 , 0 , 2 , 3 , 62]

1 [ 3 , 3 , 0 , 3 , 6 , 154]

2 [ 4 , 3 , 0 , 37 , 11 , 229]

3 [ 4 , 3 , 0 , 98 , 16 , 267]

Table 4 Locality statistics Ψk,t(v
∗) for the time range {t∗ − 5, · · · , t∗} leading up

to the email164 detection at t∗ = 109.

scale k Ψk,t∗−5:t∗(v
∗)

0 [ 3 , 5 , 4 , 5 , 4 , 5]

1 [11 , 13 , 10 , 10 , 11 , 18]

2 [14 , 35 , 21 , 38 , 13 , 65]
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Figure 8: Time series of digraph size for weekly Enron email digraphs during a

period of 189 weeks from 1998–2002. (See also Figure 1.)
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Figure 9: Time series of scan statistic M0,t (max degree) for weekly Enron email

digraphs during a period of 189 weeks from 1998–2002. (See also Figure 1.)
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Figure 10: Time series of scan statistic M1,t for weekly Enron email digraphs

during a period of 189 weeks from 1998–2002. (See also Figure 1.)
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Figure 11: Time series of scan statistic M2,t for weekly Enron email digraphs

during a period of 189 weeks from 1998–2002. (See also Figure 1.)
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Figure 12: Time series of standardized scan statistic M̃0,t for weekly Enron email

digraphs during a period of 189 weeks from 1998–2002. (See also Figure 2.)
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Figure 13: Time series of standardized scan statistic M̃1,t for weekly Enron email

digraphs during a period of 189 weeks from 1998–2002. (See also Figure 2.)
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Figure 14: Time series of standardized scan statistic M̃2,t for weekly Enron email

digraphs during a period of 189 weeks from 1998–2002. (See also Figure 2.)
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