
Clustering Gene Effectors

Carey E. Priebe1, Youngser Park1, Marta Zlatic2

1JHU AMS & 2HHMI Janelia

May 7, 2011

1 Introduction: Optogenetics

How is sensory information processed by neural circuits and used to select specific motor outputs? How
are these functions of neural circuits encoded in the genome? These are the basic questions motivating our
research. We address these questions by studying an animal that is capable of complex behavior and yet
simple enough to allow systematic genetic manipulation of all parts of the neural circuitry.

Drosophila larvae sense and react to a wide range of stimuli and carry out many motor behaviors. These
abilities are controlled by a relatively small number of neurons (about 10,000) that can be grouped into
about 300 morphologically distinct neuron classes. Using the remarkable genetic toolkit generated by the
Rubin lab at Janelia, we can selectively and reproducibly label and manipulate each of these neuron classes.

Our goal is to investigate the effect of activating and inactivating single neuron classes on larval sensory
processing, decision making, and motor production. For this purpose we have developed a set of automated
high-throughput behavioral assays.

—excerpt from http://www.hhmi.org/research/fellows/zlatic.html

2 Data

We analyze the data received March 2011.
There are a total of 1026 gene effector folders. For each gene effector, there are (suppose to be) six feature

time series files: mean curves derived from the behavior of multiple individual organisms for “area”, “bias”,
“curve”, “dir”, “midline”, and “speed085”. For each feature time series, there are (suppose to be) 340 time
series points.

Six of the 1026 gene effector folders are empty,

• A@ch2,

• B@ch2,

• GMR 79E02AE 01@ch2,

• k1@ch2,

• k2@ch2,

• ppkoriginal@ch2,

and 1 of the gene effector folders,

• GMR 27F03 AE o1@ch2,
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has only 314 time series points. Therefore, we proceed with a total of 1019 gene effectors.
In summary, the data set we consider herein is given by Xift with i = 1, · · · , n = 1019 gene effectors,

f = 1, · · · , F = 6 feature time series, and t = 1, · · · , T = 340 time points per feature time series.
NB: The gene effectors not containing GMR in their file names are “important controls.” There are 11

such gene effectors, and we focus our analysis largely on these 11.
NB: Some gene effector feature time series are based on significantly fewer individual organisms than the

majority. Thus those feature time series (mean curves) have a larger standard error. Currently, this is not
accounted for in our analysis.

3 Methodology

Given the data as described above, our multiscale clustering methodology is summarized in the following
steps:

(1) Using {Xift}, obtain n× n dissimilarity matrix ∆ = [δij ] given by

δ(Xi, Xj) =
( 6∑

f=1

wf

∫
T
|s(Xif ·)(t)− s(Xjf ·)(t)|pdt

)1/p

.

(2) Using ∆, obtain n× q Euclidean embedding Z.

(3) Using Z, jointly identify low-dimensional subspaces Ddmax
and clusterings CKmax

(D) of the data in
that subspace, for various choices of dimensionality dmax ∈ {1, · · · , q} and cluster complexity Kmax ∈
{1, · · · , n}.

Step (1) involves generating a dissimilarity matrix from data. We proceed as in Priebe PAMI 2001 eq (15).
Choosing s, T , ~w = [w1, · · · , wF ]′, and p involves understanding the scientific exploitation task and data
collection protocol and subsequent exploratory data analysis. For the results presented herein, the nonpara-
metric regression function s is a polynomial smoothing splines procedure as in Ramsey & Silverman 1997,
the domain of integration is given by T = [0, 1], the weights wf =

(
maxij

∫
T |s(Xif ·)(t)− s(Xjf ·)(t)|pdt

)−1,
and p = 2. Figure 1 presents illustrative smoothing results for three choices of s. We proceed with smoothing
parameter chosen via cross-validation (Figure 1(b)).

Step (2) involves embedding a dissimilarity matrix into Euclidean space. We consider generalized mul-
tidimensional scaling (mds) as in Borg & Groenen 2005. For the results presented herein, we use classical
multidimensional scaling into Rq for q large enough (1� q ≤ n− 1) to capture (essentially) all of the signal.
Figure 2 presents the scree plot obtained via Z = mds(∆), suggesting that the first 40 embedding dimensions
capture nearly all of the variance.

Step (3) involves joint identification of subspace and cluster structure. Given Z and dmax, Kmax, the
method of Raftery & Dean JASA 2006 building on the model-based clustering method of Fraley & Raftery
JASA 2002 selects a canonical subspace D ⊂ {1, · · · , dmax} of cardinality d̂ = |D| and a clustering C of the
data in that subspace with number of clusters K̂ ∈ {1, · · · ,Kmax} so as to capture the complexity inherent
in the data. Figure 3 and Table 1 present clustering results for the case dmax = 2, Kmax = 10. NB: We
will conclude from our analysis that dmax = 2 is too small, but this Figure 3 is illustrative and presenting
higher-dimensional clustering results can be misleading. We can conclude from this Figure 3 and Table 1 that
there is real structure in this data set, and that the clustering behavior of the 11 “important controls” makes
scientific sense. Performing this model selection for various choices of dmax yields a multiscale clustering
that can be analyzed for performance and consistency across scales and thereby provide confidence in claims
of appropriate cluster complexity and cluster membership analysis. This multiscale clustering is pursued in
the Section 4.
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(a) unsmoothed
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(b) cross-validated smoothing
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(c) smoothing with λ = 0.001

Figure 1: Polynomial smoothing spline results for mean curves for feature times series “area” for four
representative gene effectors (GMR_1A03_AE_01@Ch2, lexAppkA@Ch2, pBD@Ch2v, ppkB@Ch2H124RAtp2) with
various choices of smoothing parameter λ.
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Figure 2: First 40 embedding dimensions of scree plot obtained via Z = mds(∆). (The maximum embedding
dimension allowing numerical stability is q = 843 for this data set.)

pBDs
pBD@Ch2 4 (0.74)
pBD@Ch2v 4 (0.81)

non-pBDs
lexAppkA@Ch2 1 (1.00)
lexAppkB@Ch2 1 (0.99)
ppkA@Ch2v 4 (0.95)
ppkB@Ch2BistVK5 1 (0.92)
ppkB@Ch2H124RAtp2 1,4 (0.50)
ppkB@Ch2H124RVK5 1 (0.99)
ppkB@Ch2tdTomAtp2 1 (0.89)
ppkB@Ch2tdTomVK5 3 (0.93)
ppkB@Ch2v 1 (1.00)

Table 1: Clustering results for the 11 controls with dmax = 2 and Kmax = 10 yielding d̂ = 2 and K̂ = 5
clusters (see Figure 3). The integer represents cluster membership, and the probability (in parentheses)
represents the posterior probability of class membership in that cluster. 10 of these eleven posteriors are
convincingly high; the one ambiguously-clustered observation is highlighted in red. The clustering behavior
of these 11 “important controls” makes scientific sense.

4



●

●

●

●

●
●

●
● ● ● ●

0 2 4 6 8 10

0
20

40
60

80

Index

st
d

●

●

(a) subspace selection

2 4 6 8 10

−
25

0
−

24
0

−
23

0
−

22
0

−
21

0
−

20
0

−
19

0

number of components

B
IC

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●EII
VII
EEI
VEI
EVI

VVI
EEE
EEV
VEV
VVV

(b) cluster complexity selection
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Figure 3: Clustering results with dmax = 2 and Kmax = 10. Panel (a) presents the zoomed scree plot; both
candidate canonical embedding dimensions 1 & 2 are selected (d̂ = 2). Panel (b) presents the model selection
plot for model-based clustering in these two dimensions (K̂ = 5 clusters are selected with spherical unequal
volume (VII) cluster structure and cluster cardinalities 56,266,116,496,85). Panel (c) presents the scatter
plot for the clustering. The color symbols represent class membership and the letter symbols represent 11
control gene effectors by the fourth letter in their names (see Table 1). The two pBDs fall into cluster 4
(cyan) along with one ppkA (denoted with a square), one ppkB (denoted with a square) falls into cluster 3
(green), and six of the remaining seven non-pBDs fall into cluster 1 (blue). One ppkB (denoted with a circle)
is displayed in cyan but its cluster membership is ambiguous between cluster 4 (cyan) and cluster 1 (blue).
Clusters 2 (red) and 5 (pink) are not represented among the controls.
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4 Multiscale Clustering Results

Multiscale clustering results for a suite of seven choices of the pair (dmax, Kmax) given by

(dmax,Kmax) ∈ {(2, 10), (3, 10), (4, 10), (10, 20), (20, 20), (30, 20), (40, 20)}

are presented in Table 2 and Figures 3-9. The results demonstrate that the subspace identification model
selection operation continues to choose more dimensions until dmax = 40, at which point it selects a canonical
subspace consisting of d̂ = |D| = 18 dimensions and selection of new dimensions from amongst the final
candidates becomes sufficiently rare; from this we conclude that dmax = 40 captures the signal subspace
adequately. Furthermore, the cluster structure model selection operation settles in at K̂ in the teens and the
analysis of the cluster behavior for the 11 controls (Table 2) shows that for large dmax the two pBDs continue
to cluster together while none of the non-pBDs cluster with the two pBDs, as desired; from this we conclude
that K̂ = 13 captures the cluster complexity adequately.

dmax 2 3 4 10 20 30 40
Kmax 10 10 10 20 20 20 20

d̂ 2 3 4 9 15 18 18
K̂ 5 5 4 4 13 18 13

pBDs
pBD@Ch2 4 (0.74) 1 (0.81) 3 (0.85) 3 (0.86) 8 (0.98) 10 (0.65) 6 (0.77)
pBD@Ch2v 4 (0.81) 1 (0.82) 3 (0.88) 3 (0.88) 8 (0.98) 10 (0.80) 6 (0.70)

non-pBDs
lexAppkA@Ch2 1 (1.00) 5 (1.00) 1 (1.00) 4 (1.00) 1 (0.97) 11 (0.98) 13 (1.00)
lexAppkB@Ch2 1 (0.99) 5 (0.98) 1 (1.00) 4 (1.00) 1 (1.00) 18 (0.99) 13 (0.99)
ppkA@Ch2v 4 (0.95) 1 (0.88) 3 (0.97) 3 (1.00) 8 (0.97) 6 (0.98) 1 (0.94)
ppkB@Ch2BistVK5 1 (0.92) 5 (0.53) 1 (0.98) 4 (1.00) 1 (1.00) 15 (0.91) 4 (0.81)
ppkB@Ch2H124RAtp2 1,4 (0.50) 1 (0.97) 1 (0.97) 4 (1.00) 1 (1.00) 18 (0.81) 2 (0.76)
ppkB@Ch2H124RVK5 1 (0.99) 5 (1.00) 1 (1.00) 4 (1.00) 1 (1.00) 18 (1.00) 13 (0.91)
ppkB@Ch2tdTomAtp2 1 (0.89) 1 (0.94) 1 (0.99) 4 (1.00) 1 (1.00) 1 (1.00) 9 (0.95)
ppkB@Ch2tdTomVK5 3 (0.93) 3 (0.99) 4 (0.97) 4 (1.00) 6 (1.00) 1 (0.96) 9 (1.00)
ppkB@Ch2v 1 (1.00) 5 (1.00) 1 (1.00) 4 (1.00) 11 (1.00) 11 (1.00) 13 (1.00)

Table 2: Multiscale clustering results for the 11 controls. The integers represent cluster membership, and
the probabilities (in parentheses) represent the posterior probability of class membership in that cluster.
Posterior probabilities less than 0.6 are highlighted in red. (The leftmost column is the 2-dimensional
example presented in Section 3.)

The final clustering depicted in Figure 9 (dmax = 40 and Kmax = 20 yields d̂ = 18 and K̂ = 13) produces
clusters with cardinalities c1 = 138, c2 = 42, c3 = 56, c4 = 150, c5 = 53, c6 = 140, c7 = 68, c8 = 66, c9 =
131, c10 = 6, c11 = 68, c12 = 83, c13 = 18. Only cluster #10, with c10 = 6, is worrisomely small. No single
cluster accounts for more than 15% of the 1019 total observations. The two pBD controls fall into cluster
#6 with a total of c6 = 140 observations. Cluster #13 contains a total of c13 = 18 observations, including
4 of the 9 non-pBD controls. Cluster #9 contains a total of c9 = 131 observations, including both of the
ppkB@Ch2tdTom* controls. Figures 10 and 11 show that this clustering solution does in fact capture the
general structure inherent in our data set. Figure 12 investigates cluster #13 in detail.

The multiscale clustering results taken holistically provide important information concerning co-clustering
behavior – persistence of co-clustering across scales is strong evidence of commonality. Multiscale clustering
results for all n=1019 gene effectors (cluster membership and posterior probabilities for all seven cluster-
ings) are provided as Supplementary Material file “subj-class-posterior.txt”. Tables 3 and 4 present
illustrative results therefrom.
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dmax 2 3 4 10 20 30 40
Kmax 10 10 10 20 20 20 20

d̂ 2 3 4 9 15 18 18
K̂ 5 5 4 4 13 18 13

pBDs
pBD@Ch2 4 (0.74) 1 (0.81) 3 (0.85) 3 (0.86) 8 (0.98) 10 (0.65) 6 (0.77)
pBD@Ch2v 4 (0.81) 1 (0.82) 3 (0.88) 3 (0.88) 8 (0.98) 10 (0.80) 6 (0.70)

clustered with the two pBDs
GMR 36H01 AE 01@Ch2 4 (0.87) 1 (0.80) 3 (0.90) 3 (0.69) 8 (0.89) 10 (0.84) 6 (0.79)
GMR 69F06 AE 01@Ch2 4 (0.95) 1 (0.61) 3 (0.90) 3 (0.90) 8 (0.97) 10 (0.66) 6 (0.55)
GMR 88H03 AE 01@Ch2 4 (0.79) 1 (0.78) 3 (0.86) 3 (0.84) 8 (0.98) 10 (0.84) 6 (0.93)

Table 3: Multiscale clustering results for those gene effectors which are clustered with the two pBDs across all
clustering scales. The integers represent cluster membership, and the probabilities (in parentheses) represent
the posterior probability of class membership in that cluster.

dmax 2 3 4 10 20 30 40
Kmax 10 10 10 20 20 20 20

d̂ 2 3 4 9 15 18 18
K̂ 5 5 4 4 13 18 13

one non-pBD
ppkA@Ch2v 4 (0.95) 1 (0.88) 3 (0.97) 3 (1.00) 8 (0.97) 6 (0.98) 1 (0.94)

clustered with this one non-pBD
GMR 10F10 AE 01@Ch2 4 (0.92) 1 (0.95) 3 (0.96) 3 (1.00) 8 (0.96) 6 (0.99) 1 (0.79)
GMR 22C07 AE 01@Ch2 4 (0.90) 1 (0.97) 3 (0.97) 3 (1.00) 8 (0.95) 6 (0.89) 1 (0.79)
GMR 25A08 AE 01@Ch2 4 (0.91) 1 (0.58) 3 (0.98) 3 (0.98) 8 (0.98) 6 (0.97) 1 (0.79)
GMR 43D09 AE 01@Ch2r 4 (0.88) 1 (0.98) 3 (0.95) 3 (0.89) 8 (0.98) 6 (0.98) 1 (0.79)
GMR 44D10 AE 01@Ch2r 4 (0.93) 1 (0.91) 3 (0.93) 3 (0.99) 8 (0.99) 6 (0.96) 1 (0.79)
GMR 50A11 AE 01@Ch2r 4 (0.88) 1 (0.85) 3 (0.89) 3 (1.00) 8 (0.89) 6 (0.99) 1 (0.79)
GMR 65H03 AE 01@Ch2 4 (0.95) 1 (0.98) 3 (0.98) 3 (0.99) 8 (0.54) 6 (0.98) 1 (0.79)

Table 4: Multiscale clustering results for those gene effectors which are clustered with the non-pBD ppkA@Ch2v
across all clustering scales. The integers represent cluster membership, and the probabilities (in parentheses)
represent the posterior probability of class membership in that cluster.
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(b) d̂ = 3, K̂ = 5 (EEV)

Figure 4: dmax = 3 and Kmax = 10 yields d̂ = 3 and K̂ = 5 with ellipsoidal equal volume and equal shape
(EEV) cluster structure and cluster cardinalities 364,228,186,214,27.
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(b) d̂ = 4, K̂ = 4 (VVV)

Figure 5: dmax = 4 and Kmax = 10 yields d̂ = 4 and K̂ = 4 with ellipsoidal varying volume varying shape
varying orientation (VVV) cluster structure and cluster cardinalities 60,296,507,156.
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(b) d̂ = 9, K̂ = 4 (EEV)

Figure 6: dmax = 10 and Kmax = 20 yields d̂ = 9 and K̂ = 4 with ellipsoidal equal volume equal shape
(EEV) cluster structure and cluster cardinalities 296,187,460,77.
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(b) d̂ = 15, K̂ = 13 (EEE)

Figure 7: dmax = 20 and Kmax = 20 yields d̂ = 15 and K̂ = 13 with ellipsoidal equal volume equal shape
equal orientation (EEE) cluster structure and cluster cardinalities 22,48,24,93,105,178,4,392,5,26,10,46,66.
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(b) d̂ = 18, K̂ = 18 (VEI)

Figure 8: dmax = 30 and Kmax = 20 yields d̂ = 18 and K̂ = 18 with diagonal varying volume equal shape
(VEI) cluster structure and cluster cardinalities 129,6,23,54,91,86,48,93,46,71,11,21,108,26,49,64,75,18.
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(b) d̂ = 18, K̂ = 13 (VEI)

Figure 9: dmax = 40 and Kmax = 20 yields d̂ = 18 and K̂ = 13 with diagonal varying volume equal shape
(VEI) cluster structure and cluster cardinalities 138,42,56,150,53,140,68,66,131,6,68,83,18. See also Figures
10 and 11.
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Figure 10: Depicted is the colormap of the 1019 x 1019 interpoint distances between the 1019 gene effectors
in our final (d̂ = 18)-dimensional space wherein we obtain K̂ = 13 clusters (see also Figures 9 and 11). Pink
represents small distances and cyan represents larger distances. This plot demonstrates that this clustering
solution does in fact capture the general structure inherent in our data set: the structure captured by these
13 clusters is real, and most of the structure is captured by these 13 clusters.
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Figure 11: Depicted are the mean curves for the K̂ = 13 clusters (see also Figures 9 and 10) for each of the
six time series features.
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Figure 12: Depicted is a cluster analysis plot for cluster #13 from our K̂ = 13 cluster solution
depicted in Figures 9, 10, and 11. The six time series features are plotted for all c13 = 18 ob-
servations in that cluster; the mean time series for that cluster is represented in solid black, and
the shaded region is ± one standard deviation. Notice, for instance, that cluster #13 seems to
have two clear outliers in the “bias” time series at around time 50. An interactive version of
this plot is available at http://www.cis.jhu.edu/∼parky/Data/HHMI/Excel/Z2-smoothed-d40-K20-c13.xlsx,
in which the individual outlier observations can be identified. Analogous figures for all 13 clus-
ters are available at http://www.cis.jhu.edu/∼parky/Data/HHMI/TSplots/, and interactive versions at
http://www.cis.jhu.edu/∼parky/Data/HHMI/Excel/.
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