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Abstract

Clustering, Dimensionality Reduction, and Side Information

By

Hiu Chung Law

Recent advances in sensing and storage technology have created many high-volume, high-

dimensional data sets in pattern recognition, machine learning, and data mining. Unsupervised

learning can provide generic tools for analyzing and summarizing these data sets when there is no

well-defined notion of classes. The purpose of this thesis is to study some of the open problems

in two main areas of unsupervised learning, namely clustering and (unsupervised) dimensionality

reduction. Instance-level constraint on objects, an example of side-information, is also considered

to improve the clustering results.

Our first contribution is a modification to the isometric feature mapping (ISOMAP) algorithm

when the input data, instead of being all available simultaneously, arrive sequentially from a data

stream. ISOMAP is representative of a class of nonlinear dimensionality reduction algorithms that

are based on the notion of a manifold. Both the standard ISOMAP and the landmark version

of ISOMAP are considered. Experimental results on synthetic data as well as real world images

demonstrate that the modified algorithm can maintain an accurate low-dimensional representation

of the data in an efficient manner.

We study the problem of feature selection in model-based clustering when the number of clusters

is unknown. We propose the concept of feature saliency and introduce an expectation-maximization

(EM) algorithm for its estimation. By using the minimum message length (MML) model selection

criterion, the saliency of irrelevant features is driven towards zero, which corresponds to performing

feature selection. The use of MML can also determine the number of clusters automatically by

pruning away the weak clusters. The proposed algorithm is validated on both synthetic data and

data sets from the UCI machine learning repository.

We have also developed a new algorithm for incorporating instance-level constraints in model-

based clustering. Its main idea is that we require the cluster label of an object to be determined

only by its feature vector and the cluster parameters. In particular, the constraints should not

have any direct influence. This consideration leads to a new objective function that considers both

the fit to the data and the satisfaction of the constraints simultaneously. The line-search Newton

algorithm is used to find the cluster parameter vector that optimizes this objective function. This

approach is extended to simultaneously perform feature extraction and clustering under constraints.

Comparison of the proposed algorithm with competitive algorithms over eighteen data sets from

different domains, including text categorization, low-level image segmentation, appearance-based

vision, and benchmark data sets from the UCI machine learning repository, shows the superiority of

the proposed approach.
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Chapter 1

Introduction

The most important characteristic of the information age is the abundance of data. Advances in

computer technology, in particular the Internet, have led to what some people call “data explosion”:

the amount of data available to any person has increased so much that it is more than he or she can

handle. According to a recent study1 conducted at UC Berkeley, the amount of new data stored on

paper, film, magnetic, and optical media is estimated to have grown 30% per year between 1999 and

2002. In the year 2002 alone, about 5 exabytes of new data have been generated. (One exabyte is

about 1018 bytes, or 1000000 terabytes). Most of the original data are stored in electronic devices

like hard disks (Table 1.1). This increase in both the volume and the variety of data calls for advances

in methodology to understand, process, and summarize the data. From a more technical point of

view, understanding the structure of large data sets arising from the data explosion is of fundamental

importance in data mining, pattern recognition, and machine learning. In this thesis, we focus on

two important techniques for data analysis in pattern recognition: dimensionality reduction and

clustering. We also investigate how the addition of constraints, an example of side-information, can

assist in data clustering.

1.1 Data Analysis

The word “data,” as simple as it seems, is not easy to define precisely. We shall adopt a pattern

recognition perspective and regard data as the description of a set of objects or patterns that can be

processed by a computer. The objects are assumed to have some commonalities, so that the same

systematic procedure can be applied to all the objects to generate the description.

1.1.1 Types of Data

Data can be classified into different types. Most often, an object is represented by the results

of measurement of its various properties. A measurement result is called “a feature” in pattern

recognition or “a variable” in statistics. The concatenation of all the features of a single object

forms the feature vector. By arranging the feature vectors of different objects in different rows, we

get a pattern matrix (also called “data matrix”) of size n by d, where n is the total number of objects

and d is the number of features. This representation is very popular because it converts different

kinds of objects into a standard representation. If all the features are numerical, an object can be

1http://www.sims.berkeley.edu/research/projects/how-much-info-2003/
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Table 1.1: Worldwide production of original data, if stored digitally, in terabytes (TB) circa 2002.
Upper estimates (denoted by “upper”) assume the data are digitally scanned, while lower estimates
(denoted by “lower”) assume the digital contents have been compressed. It is taken from Table 1.2 in
http://www.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm. The
precise definitions of “paper,” “film,” “magnetic,” and “optical” can be found in the web report.

storage
medium

upper,
2002

lower, 2002 upper,
1999–2000

lower,
1999-2000

% change,
upper

Paper 1,634 327 1,200 240 36%
Film 420,254 74,202 431,690 58,209 -3%

Magnetic 5,187,130 3,416,230 2,779,760 2,073,760 87%
Optical 103 51 81 29 28%
Total 5,609,121 3,416,281 3,212,731 2,132,238 74.5%

represented as a point in Rd. This enables a number of mathematical tools to be used to analyze

the objects.

Alternatively, the similarity or dissimilarity between pairs of objects can be used as the data

description. Specifically, a dissimilarity (similarity) matrix of size n by n can be formed for the

n objects, where the (i, j)-th entry of the matrix corresponds to a quantitative assessment of how

dissimilar (similar) the i-th and the j-th objects are. Dissimilarity representation is useful in ap-

plications where domain knowledge suggests a natural comparison function, such as the Hausdorff

distance for geometric shapes. Examples of using dissimilarity for classification can be seen in [132],

and more recently in [202]. Pattern matrix, on the other hand, can be easier to obtain than dis-

similarity matrix. The system designer can simply list all the interesting attributes of the objects

to obtain the pattern matrix, while a good dissimilarity measure with respect to the task can be

difficult to design.

Similarity/dissimilarity matrix can be regarded as more generic than pattern matrix, because

given the feature vectors of a set of objects, a dissimilarity matrix of these objects can be generated by

computing the distances among the data points represented by these feature vectors. A similarity

matrix can be generated either by subtracting the distances from a pre-specified number, or by

exponentiating the negative of the distances. Pattern matrix, on the other hand, can be more flexible

because the user can adjust the distance function according to the task. It is easier to incorporate

new information by creating additional features than modifying the similarity/dissimiliarity measure.

Also, in the common scenarios where there are a large number of patterns and a moderate number

of features, the size of pattern matrix, O(nd), is smaller than the size of similarity/dissimilarity

matrix, O(n2).

A third possibility to represent an object is by discrete structures, such as parse trees, ranked

lists, or general graphs. Objects such as chemical structures, web pages with hyperlinks, DNA

sequences, computer programs, or customer preference for certain products have a natural discrete

structure representation. Graph-related representations have also been used in various computer

vision tasks, such as object recognition [145] and shape-from-shading [217]. Representing structural

objects using a vector of attributes can discard important information on the relationship between

different parts of the objects. On the other hand, coming up with the appropriate dissimilarity

or similarity measure for such objects is often difficult. New algorithms that can handle discrete

structure directly have been developed. An example is seen in [154], where a kernel function (diffusion

kernel) is defined on different vertices in a graph, leading to improved classification performance for

categorical data. Learning with structural data is sometimes called “learning with relational data,”
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Figure 1.1: Comparing feature vector, dissimilarity matrix and a discrete structure on a set of
artificial objects. (Left) Extracting different features (color, area, and shape in this case) leads to a
pattern matrix. (Center) A dissimilarity measure on the objects can be used to compare different
pairs of objects, leading to a dissimilarity matrix. (Right) If the user can provide relational properties
on the objects, a discrete structure like a directed graph can be created.

and several workshops2 have been organized on this theme.

In Figure 1.1, we provide a simple illustration contrasting feature vector, dissimilarity matrix,

and discrete structure representation for a set of artificial objects. Each of the representations

corresponds to a different view of the objects. In practice, the system designer has to choose the

representation that he or she thinks is the most relevant to the task.

In this thesis, we focus on feature vector representation, though dissimilarity/similarity informa-

tion in the form of instance-level constraints is also considered.

1.1.2 Types of Features

Even within the feature vector representation, descriptions of an object can be classified into different

types. A feature is essentially a measurement, and the “scale of measurement” [244] proposed by

Stevens can be used to classify features into different categories. They are:

Nominal: discrete, unordered. Examples: “apple,” “orange,” and “banana.”

Ordinal: discrete, ordered. Examples: “conservative,” “moderate,” and “liberal”.

2A NIPS workshop in 2002 (http://mlg.anu.edu.au/unrealdata/) and several ICML workshops
(2004:http://www.cs.umd.edu/projects/srl2004/) (2002:http://demo.cs.brandeis.edu/icml02ws/) (2000:http:
//www.informatik.uni-freiburg.de/~ml/icml2000_workshop.html) have been held on how to learn with structural
or relational data.
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Interval: continuous, no absolute zero, can be negative. Examples: temperature in Fahrenheit.

Ratio: continuous, with absolute zero, positive. Examples: length, weight.

This classification scheme, however, is not perfect [256]. One problem is that a measurement may

not fit well into any of the categories listed in this scheme. An example for this is given in chapter

5 in [191], which considers the following types of measurements:

Grades: ordered labels such as Freshmen, Sophomore, Junior, Senior.

Ranks: starting from 1, which may be the largest or the smallest.

Counted fractions: bounded by zero and one. It includes percentage, for example.

Counts: non-negative integers.

Amounts: non-negative real numbers.

Balances: unbounded, positive, or negative values.

Most people would agree that these six types of data are different, yet all but the third and the last

would be “ordinal” in the scheme by Stevens. “Counted fractions” also do not fit well into any of

the category proposed by Stevens.

Consideration of different types of features can help us to design appropriate algorithms for

handling different types of data arising from different domains.

1.1.3 Types of Analysis

The analysis to be performed on the data can also be classified into different types. It can be ex-

ploratory/descriptive, meaning that the investigator does not have a specific goal and only wants to

understand the general characteristics or structure of the data. It can be confirmatory/inferential,

meaning that the investigator wants to confirm the validity of a hypothesis/model or a set of as-

sumptions using the available data. Many statistical techniques have been proposed to analyze the

data, such as analysis of variance (ANOVA), linear regression, canonical correlation analysis (CCA),

multidimensional scaling (MDS), factor analysis (FA), or principal component analysis (PCA), to

name a few. A useful overview is given in [245].

In pattern recognition, most of the data analysis is concerned with predictive modeling: given

some existing data (“training data”), we want to predict the behavior of the unseen data (“testing

data”). This is often called “machine learning” or simply “learning.” Depending on the type of

feedback one can get in the learning process, three types of learning techniques have been suggested

[68]. In supervised learning, labels on data points are available to indicate if the prediction is correct

or not. In unsupervised learning, such label information is missing. In reinforcement learning, only

the feedback after a sequence of actions that can change the possibly unknown state of the system

is given. In the past few years, a hybrid learning scenario between supervised and unsupervised

learning, known as semi-supervised learning, transductive learning [136], or learning with unlabeled

data [195], has emerged, where only some of the data points have labels. This scenario happens

frequently in applications, since data collection and feature extraction can often be automated,

whereas the labeling of patterns or objects has to be done manually and this is expensive both

in time and cost. In Chapter 5 we shall consider another hybrid scenario where instance-level

constraints, which can be viewed as a “relaxed” version of labels, are available on some of the data

points.
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Figure 1.2: An example of dimensionality reduction. The face images are converted into a high
dimensional feature vector by concatenating the pixels. Dimensionality reduction is then used to
create a set of more manageable low-dimensional feature vectors, which can then be used as the
input to various classifiers.

1.2 Dimensionality Reduction

Dimensionality reduction deals with the transformation of a high dimensional data set into a low

dimensional space, while retaining most of the useful structure in the original data. An example

application of dimensionality reduction with face images can be seen in Figure 1.2. Dimensionality

reduction has become increasingly important due to the emergence of many data sets with a large

number of features. The underlying assumption for dimensionality reduction is that the data points

do not lie randomly in the high-dimensional space; rather, there is a certain structure in the locations

of the data points that can be exploited, and the useful information in high dimensional data can

be summarized by a small number of attributes.

1.2.1 Prevalence of High Dimensional Data

High dimensional data have become prevalent in different applications in pattern recognition, ma-

chine learning, and data mining. The definition of “high dimensional” has also changed from tens

of features to hundreds or even tens of thousands of features [101].

Some recent applications involving high dimensional data sets include: (i) text categorization,

the representation of a text document or a web page using the popular bag-of-words model can

lead to thousands of features [277, 254], where each feature corresponds to the occurrence of a

keyword or a key-term in the document; (ii) appearance-based computer vision approaches interpret

each pixel as a feature [253, 22]. Images of handwritten digits can be recognized using the pixel

values by neural networks [170] or support vector machines [255]. Even for a small image with

size 64 by 64, such representation leads to more than 4,000 features; (iii) hyperspectral images3 in

remote sensing lead to high dimensional data sets: each pixel can contain more than 200 spectral

3Information on hyperspectral images can be found at http://backserv.gsfc.nasa.gov/nips2003hyperspectral.
html and http://www.eoc.csiro.au/hswww/Overview.htm.
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measurements in different wavelengths; (iv) the characteristics of a chemical compound recorded by

a mass spectrometer can be represented by hundreds of features, where each feature corresponds to

the reading in a particular range; (v) microarray technology enables us to measure the expression

levels of thousands of genes simultaneously for different subjects with different treatments [6, 273].

Analyzing microarray data is particularly challenging, because the number of data points (subjects

in this case) is much smaller than the number of features (expression levels in this case).

High dimensional data can also be derived in applications where the initial number of features is

moderate. In an image processing task, the user can apply different filters with different parameters

to extract a large number of features from a localized window in the image. The features are then

summarized by applying a dimensionality reduction algorithm that matches the task at hand. This

(relatively) automatic procedure contrasts with the traditional approach, where the user hand-crafts

a small number of salient features manually, often with great effort. Creating a large feature set

and then summarizing the features is advantageous when the domain is highly variable and robust

features are hard to obtain, such as the occupant classification problem in [78].

1.2.2 Advantages of Dimensionality Reduction

Why should we reduce the dimensionality of a data set? In principle, the more information we have

about each pattern, the better a learning algorithm is expected to perform. This seems to suggest

that we should use as many features as possible for the task at hand. However, this is not the case

in practice. Many learning algorithms perform poorly in a high dimensional space given a small

number of learning samples. Often some features in the data set are just “noise” and thus do not

contribute to (sometimes even degrade) the learning process. This difficulty in analyzing data sets

with many features and a small number of samples is known as the curse of dimensionality [211].

Dimensionality reduction can circumvent this problem by reducing the number of features in the

data set before the training process. This can also reduce the computation time, and the resulting

classifiers take less space to store. Models with small number of variables are often easier for domain

experts to interpret. Dimensionality reduction is also invaluable as a visualization tool, where the

high dimensional data set is transformed into two or three dimensions for display purposes. This

can give the system designer additional insight into the problem at hand.

The main drawback of dimensionality reduction is the possibility of information loss. When done

poorly, dimensionality reduction can discard useful instead of irrelevant information. No matter what

subsequent processing is to be performed, there is no way to recover this information loss.

1.2.2.1 Alternatives to Dimensionality Reduction

In the context of predictive modeling, (explicit) dimensionality reduction is not the only approach to

handle high dimensional data. The naive Bayes classifier has found empirical success in classifying

high dimensional data sets like webpages (the WEB→KB project in [50]). Regularized classifiers

such as support vector machines have achieved good accuracy for high dimensional data sets in the

domain of text categorization [135]. Some learning algorithms have built-in feature selection abilities

and thus (in theory) do not require explicit dimensionality reduction. For example, boosting [90] can

use each feature as a “weak” classifier and construct an overall classifier by selecting the appropriate

features and combining them [261].

Despite the apparent robustness of these learning algorithms in high dimensional data sets, it

can still be beneficial to reduce the dimensionality first. Noisy features can degrade the performance

of support vector machines because values of the kernel function (particular RBF kernel that de-

pends on inter-point Euclidean distances) become less reliable if many features are irrelevant. It is
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beneficial to adjust the kernel to ignore those features [156], effectively performing dimensionality

reduction. Concerns related to efficiency and storage requirement of a classifier also suggest the use

of dimensionality reduction as a preprocessing step.

The important lesson is: dimensionality reduction is useful for most applications, yet the tol-

erance for the amount of information discarded should be subject to the judgement of the system

designer. In general, a more conservative dimensionality reduction strategy should be employed if a

classifier that is more robust to high dimensionality (such as support vector machines) is used. The

dimensionality of the data may still be somewhat large, but at least little useful information is lost.

On the other hand, if a more traditional and easier-to-understand classifier (like quadratic discrim-

inant analysis) is to be used, we should reduce the dimensionality of the data set more aggressively

to a smaller number, so that the classifier can competently handle the data.

1.2.3 Techniques for Dimensionality Reduction

Dimensionality reduction techniques can be broadly divided into several categories: (i) feature se-

lection and feature weighting, (ii) feature extraction, and (iii) feature grouping.

1.2.3.1 Feature Selection and Feature Weighting

Feature selection, also known as variable selection or subset selection in the statistics (particularly

regression) literature, deals with the selection of a subset of features that is most appropriate for

the task at hand. A feature is either selected (because it is relevant) or discarded (because it is

irrelevant). Feature weighting [271], on the other hand, assigns weights (usually between zero and

one) to different features to indicate the saliencies of the individual features. Most of the literature

on feature selection/weighting pertains to supervised learning (both classification [122, 151, 26, 101]

and regression [186]).

Filters, Wrappers, and Embedded Algorithms Feature selection/weighting algorithms can

be broadly divided into three categories [26, 151, 101]. The filter approaches evaluate the relevance

of each feature (subset) using the data set alone, regardless of the subsequent learning task. RELIEF

[147] and its enhancement [155] are representatives of this class, where the basic idea is to assign

feature weights based on the consistency of the feature value in the k nearest neighbors of every

data point. Wrapper algorithms, on the other hand, invoke the learning algorithm to evaluate the

quality of each feature (subset). Specifically, a learning algorithm (e.g., a nearest neighbor classifier,

a decision tree, a naive Bayes method) is run using a feature subset and the feature subset is assessed

by some estimate related to the classification accuracy. Often the learning algorithm is regarded as a

“black box” in the sense that the wrapper algorithm operates independent of the internal mechanism

of the classifier. An example is [212], which used genetic search to adjust the feature weights for

the best performance of the k nearest neighbor classifier. In the third approach (called embedded

in [101]), the learning algorithm is modified to have the ability to perform feature selection. There

is no longer an explicit feature selection step; the algorithm automatically builds a classifier with a

small number of features. LASSO (least absolute shrinkage and selection operator) [250] is a good

example in this category. LASSO modifies the ordinary least square by including a constraint on

the L1 norm of the weight coefficients. This has the effect of preferring sparse regression coefficients

(a formal statement for this is proved in [65, 64]), effectively performing feature selection. Another

example is MARS (multivariate adaptive regression splines) [91], where choosing the variables used

in the polynomial splines effectively performs variable selection. Automatic relevance detection in
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neural networks [177] is another example, which uses a Bayesian approach to estimate the weights

in the neural network as well as the relevancy parameters that can be interpreted as feature weights.

Filter approaches are generally faster because they are classifier-independent and only require

computation of simple quantities. They scale well with the number of features, and many of them

can comfortably handle thousands of features. Wrapper approaches, on the other hand, can be

superior in accuracy when compared with filters, which ignore the properties of the learning task at

hand [151]. They are, however, computationally more demanding, and do not scale very well with

the number of features. It is because training and evaluating a classifier with many features can

be slow, and the performance of a traditional classifier with a large number of features may not be

reliable enough to estimate the utilities of individual features. To get the best results from filters

and wrappers, the user can apply a filter-type technique as preprocessing to cut down the feature

set to a moderate size, and then use a wrapper algorithm to determine a small yet discriminative

feature subset. Some state-of-the-art feature selection algorithms indeed adopt this approach, as

observed in [102]. “Embedded” algorithms are highly specialized and it is difficult to compare them

in general with filter and wrapper approaches.

Quality of a Feature Subset Feature selection/weighting algorithms can also be classified ac-

cording to the definition of “relevance” or how the quality of a feature subset is assessed. Five

definitions of relevance are given in [26]. Information-theoretic methods are often used to evaluate

features, because the mutual information between a relevant feature and the class labels should be

high [15]. Non-parametric methods can be used to estimate the probability density function of a

continuous feature, which in turn is used to compute the mutual information [159, 251]. Correlation

is also used frequently to evaluate features [278, 104]. A feature can be declared irrelevant if it is

conditionally independent of the class labels given other features. The concept of Markov blanket is

used to formalize this notion of irrelevancy in [153]. RELIEF [147, 155] uses the consistency of the

feature value in the k nearest neighbors of every data point to quantify the usefulness of a feature.

Optimization Strategy Given a definition of feature relevancy, a feature selection algorithm can

search for the most relevant feature subset. Because of the lack of monotonicity (with respect to the

features) of many feature relevancy criteria, a combinatorial search through the space of all possible

feature subsets is needed. Usually, heuristic (non-exhaustive) methods have to be adopted, because

the size of this space is exponential in the number of features. In this case, one generally loses any

guarantee of optimality of the selected feature subset. Different types of heuristics, such as sequential

forward or backward searches, floating search, beam search, bi-directional search, and genetic search

have been suggested [36, 151, 209, 275]. A comparison of some of these search heuristics can be found

in [211]. In the context of linear regression, sequential forward search is often known as stepwise

regression. Forward stagewise regression is a generalization of stepwise regression, where a feature

is only “partially” selected by increasing the corresponding regression coefficient by a fixed amount.

It is closely related to LASSO [250], and this relationship was established via least angle regression

(LARS), another interesting algorithm on its own, in [72].

Wrapper algorithms generally include a heuristic search, as is the case for filter algorithms with

feature quality criteria dependent on the features selected so far. Note that feature weighting

algorithms do not involve a heuristic search because the weights for all features are computed

simultaneously. However, the computation of the weights may be expensive. Embedded approaches

also do not require any heuristic search. The optimal parameter is often estimated by optimizing a

certain objective function. Depending on the form of the objective function, different optimization

strategies can be used. In the case of LASSO, for example, a general quadratic programming solver,
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homotopy method [198], a modified version of LARS [72], or the EM algorithm [80] can be used to

estimate the parameters.

1.2.3.2 Feature Extraction

In feature extraction, a small set of new features is constructed by a general mapping from the high

dimensional data. The mapping often involves all the available features. Many techniques for feature

extraction have been proposed. In this section, we describe some of the linear feature extraction

methods, i.e., the extracted features can be written as linear combinations of the original features.

Nonlinear feature extraction techniques are more sophisticated. In Chapter 2 we shall examine some

of the recent nonlinear feature extraction algorithms in more detail. The readers may also find two

recent surveys [284, 34] useful in this regard.

Unsupervised Techniques “Unsupervised” here refers to the fact that these feature extraction

techniques are based only on the data (pattern matrix), without pattern label information. Principal

component analysis (PCA), also known as Karhunen-Loeve Transform or simply KL transform, is

arguably the most popular feature extraction method. PCA finds a hyperplane such that, upon pro-

jection to the hyperplane, the data variance is best preserved. The optimal hyperplane is spanned by

the principal components, which are the leading eigenvectors of the sample covariance matrix. Fea-

tures extracted by PCA consist of the projection of the data points to different principal components.

When the features extracted by PCA are used for linear regression, it is sometimes called “principal

component regression”. Recently, sparse variants of PCA have also been proposed [137, 291, 52],

where each principal component only has a small number of non-zero coefficients.

Factor analysis (FA) can also be used for feature extraction. FA assumes that the observed high

dimensional data points are the results of a linear function (expressed by the factor loading matrix)

on a few unobserved random variables, together with uncorrelated zero-mean noise. After estimating

the factor loading matrix and the variance of the noise, the factor scores for different patterns can

be estimated and serve as a low-dimensional representation of the data.

Supervised Techniques Labels in classification and response variables in regression can be used

together with the data to extract more relevant features. Linear discriminant analysis (LDA) finds

the projection direction such that the ratio of between-class variance to within-class variance is

the largest. When there are more than two classes, multiple discriminant analysis (MDA) finds

a sequence of projection directions that maximizes a similar criterion. Features are extracted by

projecting the data points to these directions.

Partial least squares (PLS) can be viewed as the regression counterpart of LDA. Instead of

extracting features by retaining maximum data variance as in principal component regression, PLS

finds projection directions that can best explain the response variable. Canonical correlation analysis

(CCA) is a closely related technique that finds projection directions that maximize the correlation

between the response variables and the features extracted by projection.

1.2.3.3 Feature Grouping

In feature grouping, new features are constructed by combining several existing features. Feature

grouping can be useful in scenarios where it can be more meaningful to combine features due to the

characteristics of the domain. For example, in a text categorization task different words can have

similar meanings and combining them into a single word class is more appropriate. Another example

is the use of power spectrum for classification, where each feature corresponds to the energy in a
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certain frequency range. The preset boundaries of the frequency ranges can be sub-optimal, and the

sum of features from adjacent frequency ranges can lead to a more meaningful feature by capturing

the energy in a wider frequency range. For gene expression data, genes that are similar may share

a common biological pathway and the grouping of predictive genes can be of interest to biologists

[108, 230, 59].

The most direct way to perform feature grouping is to cluster the features (instead of the objects)

of a data set. Feature clustering is not new; the SAS/STAT procedure “varclus” for variable cluster-

ing was written before 1990 [225]. It is performed by applying the hierarchical clustering method on

a similarity matrix of different features, which is derived by, say, the Pearson’s correlation coefficient.

This scheme was probably first proposed in [124], which also suggested summarizing one group of

features by a single feature in order to achieve dimensionality reduction. Recently, feature clustering

has been applied to boost the performance in text categorization. Techniques based on distribution

clustering [4], mutual information [62], and information bottleneck [238] have also been proposed.

Features can also be clustered together with the objects. As mentioned in [201], this idea has been

known under different names in the literature, including “bi-clustering” [41, 150], “co-clustering”

[63, 61], “double-clustering” [73], “coupled clustering” [95], and “simultaneous clustering” [208].

A bipartite graph can be used to represent the relationship between objects and features, and the

partitioning of the graph can be used to cluster the objects and the features simultaneously [281, 61].

Information bottleneck can also be used for this task [237].

In the context of regression, feature grouping can be achieved indirectly by favoring similar

features to have similar coefficients. This can be done by combining ridge regression with LASSO,

leading to the elastic net regression algorithm [290].

1.3 Data Clustering

The goal of (data) clustering, also known as cluster analysis, is to discover the “natural” grouping(s)

of a set of patterns, points, or objects. Webster4 defines cluster analysis as “a statistical classification

technique for discovering whether the individuals of a population fall into different groups by making

quantitative comparisons of multiple characteristics.” An example of clustering can be seen in

Figure 1.3. The unlabeled data set in Figure 1.3(a) is assigned labels by a clustering procedure in

order to discover the natural grouping of the three groups as shown in Figure 1.3(b).

Cluster analysis is prevalent in any discipline that involves analysis of multivariate data. It is

difficult to exhaustively list the numerous uses of clustering techniques. Image segmentation, an

important problem in computer vision, can be formulated as a clustering problem [94, 128, 234].

Documents can be clustered [120] to generate topical hierarchies for information access [221] or

retrieval [20]. Clustering is also used to perform market segmentation [3, 39] as well as to study

genome data [6] in biology.

Clustering, unfortunately, is difficult for most data sets. A non-trivial example of clustering

is shown in Figure 1.4. Unlike the three well-separated, spherical clusters in Figure 1.3, the seven

clusters in Figure 1.4 have diverse shapes: globular, circular, and spiral in this case. The densities and

the sizes of the clusters are also different. The presence of background noise makes the detection of

the clusters even more difficult. This example also illustrates the fundamental difficulty of clustering.

The diversity of “good” clusters in different scenarios make it virtually impossible for one to provide

a universal definition of “good” clusters. In fact, it has been proved in [149] that it is impossible

for any clustering algorithm to achieve some fairly basic goals simultaneously. Therefore, it is not

4http://www.m-w.com/
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(b) Clustering Result

Figure 1.3: The three well-separated clusters can be easily detected by most clustering algorithms.
Images in this thesis/dissertation are presented in color.

surprising that many clustering algorithms have been proposed to address the different needs of

“good clusters” in different scenarios.

In this section, we attempt to provide a taxonomy of the major clustering techniques, present a

brief history of cluster analysis, and present the basic ideas of some popular clustering algorithms

in the pattern recognition community.

1.3.1 A Taxonomy of clustering

Many clustering algorithms have been proposed in different application scenarios. Perhaps the

most important way to classify clustering algorithms is hierarchical versus partitional. Hierarchical

clustering creates a tree of objects, where branches merging at the lower levels correspond to higher

similarity. Partitional clustering, on the other hand, aims at creating a “flat” partition of the set of

objects with each object belonging to one and only one group.

Clustering algorithms can also be classified by the type of input data used (pattern matrix

or similarity matrix), or by the type of the features, e.g. numerical, categorical, or special data

structures, such as rank data, strings, graphs, etc. (See Section 1.1.1 for information on different

types of data.) Alternatively, a clustering algorithm can be characterized by the probability model

used, if any, or by the core search (optimization) process used to find the clusters. Hierarchical

clustering algorithms can be described by the clustering direction, either agglomerative or divisive.

In Figure 1.5, we provide one possible hierarchy of partitional clustering algorithms (modified

from [131]). Heuristic-based techniques refer to clustering algorithms that optimize a certain notion

of “good” clusters. The goodness function is constructed by the user in a heuristic manner. Model-

based clustering assumes that there are underlying (usually probabilistic) models that govern the

clusters. Density-based algorithms attempt to estimate the data density and utilize that to construct

the clusters.

One may further sub-divide heuristic-based techniques depending on the input type. If a pattern

matrix is used, the algorithm is usually prototype-based, i.e., each cluster is represented by the most

typical “prototype.” The k-means and the k-medoids algorithms [79] are probably the best known

in this category. If a dissimilarity or similarity matrix is used as the input, two sub-categories are

possible: those based on linkage (single-link, average-link, complete-link, and CHAMELEON [142]),
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(b) Clustering Result

Figure 1.4: Diversity of clusters. The seven clusters in this data set (denoted by the seven different
colors), though easily identified by human, are difficult to detect automatically. The clusters are of
different shapes, sizes, and densities. The presence of background noise makes the clustering task
even more difficult.

and those inspired from graph theory, such as min-cut [272] and spectral clustering [234, 194].

Model-based algorithms often refer to clustering by using a finite mixture distribution [184], with

each mixture component interpreted as a cluster. Spatial clustering can involve a probabilistic model

of the point process. For density-based methods, the mean-shift algorithm [45] finds the modes of

the data densities by the mean-shift operation, and the cluster label is determined by which “basin

of convergence” a point is located. DENCLUE [111] utilizes a kernel (non-parametric) estimate for

the data density to find the clusters.

1.3.2 A Brief History of Cluster Analysis

According to the scholarly journal archive JSTOR5, the first appearance of the word “cluster” in the

title of a scholarly article was in 1739 [11]: “A Letter from John Bartram, M. D. to Peter Collinson,

F. R. S. concerning a Cluster of Small Teeth Observed by Him at the Root of Each Fang or Great

Tooth in the Head of a Rattle-Snake, upon Dissecting It”. The word “cluster” here, though, was

used only in its general sense to denote a group. The phrase “cluster analysis” first appeared in

1954 and it was suggested as a tool to understand anthropological data [43]. In its early days,

cluster analysis was sometimes referred to as grouping [48, 85], and biologists called it “numerical

taxonomy” [242].

Early research on hierarchical clustering was mainly done by biologists, because these techniques

helped them to create a hierarchy of different species for analyzing their relationship systematically.

According to [242], single-link clustering [240], complete-link clustering [213], and average-link clus-

tering [241] first appeared in 1957, 1948, and 1958, respectively. Ward’s method [266] was proposed

in 1963. Partitional clustering, on the other hand, is closely related to data compression and vector

quantization. This link is not surprising because the cluster labels assigned by a partitional cluster-

5http://www.jstor.org
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Figure 1.5: A taxonomy of clustering algorithms.

ing algorithm can be viewed as the compressed version of the data. The most popular partitional

clustering algorithm, k-means, has been proposed several times in the literature: Steinhaus in 1955

[243], Lloyd in 1957 [174], and MacQueen in 1967 [178]. The ISODATA algorithm by Ball and Hall in

1965 [8] can be regarded as an adaptive version of k-means that adjusts the number of clusters. The

k-means algorithm is also attributed to Forgy (like [140] and [99]), though the reference for this [88]

only contains an abstract and it is not clear what Forgy exactly proposed. The historical account of

vector quantization given in [99] also presents the history of some of the partitional clustering algo-

rithms. In 1971, Zahn proposed a graph-theoretic clustering method [280], which is closely related

to single-link clustering. The EM algorithm, which is the standard algorithm for estimating a finite

mixture model for mixture-based clustering, is attributed to Dempster et al. in 1977 [58]. Interest

in mean-shift clustering was revived in 1995 by Cheng [40], and Comaniciu and Meer further popu-

larized it in [45]. Hoffman and Buhmann considered the use of deterministic annealing for pairwise

clustering [115], and Fischer and Buhmann modified the connectedness idea in single-link clustering

that led to path-based clustering [84]. The normalized cut algorithm by Shi and Malik [233] in 1997

is often regarded as the first spectral clustering algorithm, though similar ideas were considered by

spectral graph theorists earlier. A summary of the important results in spectral graph theory can

be found in the 1997 book by Chung [42]. The emergence of data mining leads to a new line of

clustering research that emphasizes efficiency when dealing with huge database. DBSCAN by Ester

et al. [77] for density-based clustering and CLIQUE by Agrawal et al. [2] for subspace clustering

are two well-known algorithms in this community.

The current literature on cluster analysis is vast, and hundreds of clustering algorithms have

been proposed in the literature. It will require a tremendous effort to list and summarize all the

major clustering algorithms. The reader is encouraged to refer to a survey like [130] or [79] for an

overview of different clustering algorithms.

1.3.3 Examining Some Clustering Algorithms

In this section, we will examine two very important clustering algorithms used in the pattern recog-

nition community: the k-means algorithm and the EM algorithm. Other clustering algorithms that

are used regularly in pattern recognition include the mean-shift algorithm [45, 44, 40], pairwise clus-
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tering [115, 116], path-based clustering [84, 83], and spectral clustering [234, 139, 269, 194, 258, 42].

Let {y1, . . . ,yn} be the set of n d-dimensional data points to be clustered. The cluster label of

yi is denoted by zi. The goal of (partitional) clustering is to recover zi, with zi ∈ {1, . . . , k}, where

k denotes the number of clusters specified by the user. The set of yi with zi = j is referred to as

the j-th cluster.

1.3.3.1 The k-means algorithm

The k-means algorithm is probably the best known clustering algorithm. In this algorithm, the j-th

cluster is represented by the “cluster prototype” µj in Rd. Clustering is done by finding zi and µj
that minimize the following cost function:

Jk−means =

n∑

i=1

||yi − µzi ||
2 =

n∑

i=1

k∑

j=1

I(zi = j)||yi − µj ||2. (1.1)

Here, I(zi = j) denotes the indicator function, which is one if the condition zi = j is true, and zero

otherwise. To optimize Jk−means, we first assume that all µj are specified. The values of zi that

minimize Jk−means are given by

zi = argmin
j

||yi − µj ||2. (1.2)

On the other hand, if zi is fixed, the optimal µj can be found by differentiating Jk−means with

respect to µj and setting the derivatives to zero, leading to

µj =

∑k
j=1 I(zi = j)µj
∑k
j=1 I(zi = j)

=

∑n
i=1,zi=j

µj

number of i with zi = j
. (1.3)

Starting from an initial guess on µj , the k-means algorithm iterates between Equations (1.2) and

(1.3), which is guaranteed to decrease the k-means objective function until a local minimum is

reached. In this case, µj and zi remain unchanged after the iteration, and the k-means algorithm

is said to have converged. The resulting zi and µj constitute the clustering solution. In practice,

one can stop if the change in successive values of Jk−means is less than a threshold.

The k-means algorithm is easy to understand and is also easy to implement. However, k-means

has problems in discovering clusters that are not spherical in shape. It also encounters some difficul-

ties when different clusters have a significantly different number of points. k-means also requires a

good initialization to avoid getting trapped in a poor local minimum. In many cases, the user does

not know the number of clusters in advance, which is required by k-means. The problem of deter-

mining the value of k automatically still does not have a very satisfactory solution. Some heuristics

have been described in [125], and a recent paper on this is [106].

Because the k-means algorithm alternates between the two conditions of optimality, it is an

example of alternating optimization. The k-means clustering result can be interpreted as a solution

to vector quantization, with a codebook of size k and a square error loss function. Each µj is a

codeword in this case. The k-means algorithm can also be viewed as a special case of fitting a

Gaussian mixture, with covariance matrices of all the mixture components fixed to be σ2I and σ

tends to zero (for the “hard” cluster assignment). The k-medoid algorithm is similar to k-means,

except that µj is restricted to be one of the given patterns yi.

There is also an online version of k-means. When the i-th data point yi is observed, the cluster
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center µj that is the nearest to yi is found. µj is then updated by

µnew
j = µj + α(yi − µj), (1.4)

where α is the learning rate. This learning rule is an example of “winner-take-all” in competitive

learning, because only the cluster that “wins” the data point can learn from it.

1.3.3.2 Clustering by Fitting Finite Mixture Model

The k-means algorithm is an example of “hard” clustering, where a data point is assigned to only

one cluster. In many cases, it is beneficial to consider “soft” clustering, where a point is assigned to

different clusters with different degrees of certainties. This can be done either by fuzzy clustering or

by mixture-based clustering. We prefer the latter because it has a more rigorous foundation.

In mixture-based clustering, a finite mixture model is fitted to the data. Let Y and Z be the

random variables for a data point and a cluster label, respectively. Each cluster is represented by

the component distribution p(Y |θj), where θj denotes the parameter for the j-th cluster. Data

points from the j-th cluster are assumed to follow this distribution, i.e., p(Y |Z = j) = p(Y |θj). The

component distribution p(Y |θj) is often assumed to be a Gaussian when Y is continuous, and the

corresponding mixture model is called “a mixture of Gaussians”. If Y is categorical, multinomial

distribution can be used for p(Y |θj). Let αj = P (Z = j) be the prior probability for the j-th

cluster. The key idea of a mixture model is

p(Y |Θ) =

k∑

j=1

P (Y |Z = j)P (Z = j) =

k∑

j=1

αjp(Y |θj), (1.5)

where Θ = {θ1, . . . , θk, α1, . . . , αk} contains all the model parameters. The mixture model can be

understood as a two-stage data generation process. First, the hidden cluster label Z is sampled

from a multinomial distribution with parameters (α1, . . . , αk). The data point Y is then generated

according to the mixture distribution determined by Z, i.e., Y is sampled from p(Y |θj) if Z = j.

The degree of membership of yi to the j-th cluster is determined by the posterior probability of

Z equals to j given yi, i.e.,

p(Z = j|Y = yi) =
p(Z = j, Y = yi)

p(Y = yi)
=

αjp(Y |θj)
∑k
j=1 αjp(Y |θj)

. (1.6)

If a “hard” clustering is needed, yi can be assigned to the cluster with the highest posterior proba-

bility P (Z|Y = yi).

The parameter Θ can be determined using the maximum likelihood principle. We seek Θ that

minimizes the negative log-likelihood:

Jmixture = −
n∑

i=1

log

k∑

j=1

αjp(yi|θj). (1.7)

For brevity of notation, we write p(yi|θj ) to denote p(Y = yi|θj).
The EM algorithm can be used to optimize Jmixture. EM is a powerful technique for parameter

estimation when some of the data are missing. In the context of a finite mixture model, the missing

data are the cluster labels. Starting with an initial guess of the parameters, the EM algorithm

alternates between the “E-step” and the “M-step”. Let rij = P (Z = j|Y = yi,Θ
old), where
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Θold is the current parameter estimate. In the E-step, we compute the expected complete data

log-likelihood, also known as the Q-function:

Q(Θ||Θold) = E



n∑

i=1

log p(yi, zi)


 =

n∑

i=1

k∑

j=1

rij

(
logαj + log p(yi|θj)

)
(1.8)

Note that the expectation is done with respect to the old parameter value via rij . Computationally,

E-step requires calculation of rij . In the M-step, Θ that maximizes Q(Θ||Θold) is found:

Θnew = arg max
Θ

Q(Θ||Θold). (1.9)

The M-step is guaranteed to decrease Jmixture. By repeating the E-step and the M-step, the

negative log-likelihood continues to decrease until a local minimum is reached.

Convergence Proofs on the EM algorithm In this section, we shall state the well-known proof

in the literature that the M-step indeed decreases Jmixture, thereby showing that the EM algorithm

does converge to a local minimum of Jmixture. We consider the correctness of the EM algorithm in

a more general setting, where Y and Z are redefined to mean “observed data” and “missing data,”

respectively. Note that the data points and the missing labels are examples of observed data and

missing data, respectively.

In this general setting, Q(Θ||Θold) can be written as

Q(Θ||Θold) =
∑

Z

p(Z|Y,Θold) log p(Y, Z|Θ) (1.10)

Our first proof is based on the concavity of the logarithm function. Because M-step maximizes

Q(Θ), Q(Θnew) −Q(Θold) ≥ 0. Observe that

Q(Θnew) −Q(Θold)

=
∑

Z

p(Z|Y,Θold)
(
log p(Y, Z|Θnew) − log p(Y, Z|Θold)

)

= log p(Y |Θnew) − log p(Y |Θold) +
∑

Z

p(Z|Y,Θold) log
p(Z|Y,Θnew)

p(Z|Y,Θold)

≤ log p(Y |Θnew) − log p(Y |Θold) + log
∑

Z

p(Z|Y,Θold)
p(Z|Y,Θnew)

p(Z|Y,Θold)

= log p(Y |Θnew) − log p(Y |Θold).

The inequality is due to the concavity of logarithm, and the fact that p(Z|Y,Θold) can be viewed as

“weights” because they are non-negative and
∑
Z p(Z|Y,Θold) = 1. Since Q(Θnew)−Q(Θold) ≥ 0,

the above implies log p(Y |Θnew) − log p(Y |Θold) ≥ 0. So, the update of parameter from Θold to

Θnew indeed improves the log-likelihood of the observed data. When Θold = Θnew, the inequality

becomes an equality, and we reach a local minimum of log p(Y |Θ).

Note that the above argument holds as long as Q(Θnew) − Q(Θold) ≥ 0. Thus it suffices to

increase (instead of maximizes) the expected complete log-likelihood in the M-step. The resulting

algorithm that only increases the expected complete log-likelihood is known as the generalized EM

algorithm.
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It is interesting to note a variant of the EM algorithm used in [80] for Bayesian pa-

rameter estimation. The goal is to find Θ that maximizes log p(Θ|Y ). Since the missing

data in [80] are continuous, the expectation is performed by integration instead of summa-

tion. The E-step computes
∫
p(Θ|Z, Y ) log p(Z|Θold, Y ) dZ, and the M-step solves Θnew =

arg maxΘ
∫
p(Z|Θold, Y ) log p(Θ|Z, Y ) dZ. The correctness of this variant of the EM algorithm

can be seen by the following:

∫
p(Z|Θold, Y ) log p(Θnew|Z, Y ) dZ −

∫
p(Z|Θold, Y ) log p(Θold|Z, Y ) dZ

=

∫
p(Z|Θold, Y )

(
log p(Θnew|Y ) + log p(Z|Θnew, Y ) − logP (Z|Y )

− log p(Θold|Y ) − log p(Z|Θold, Y ) + logP (Z|Y )
)
dZ

= log p(Θnew|Y ) − log p(Θold|Y ) +

∫
p(Z|Θold, Y ) log

p(Z|Θnew, Y )

p(Z|Θold, Y )
dZ

≤ log p(Θnew|Y ) − log p(Θold|Y )

Note that p(Θ|Z, Y ) = p(Θ|Y )p(Z|Θ, Y )/p(Z|Y ).

Our second proof of the EM algorithm is to regard it as a special case of variational method.

Here, we follow the presentation in [205]. Let T (Z) be an unknown variable distribution on the

missing data Z. Since p(Y |Θ) = p(Y, Z|Θ)/p(Z|Y,Θ), we have

log p(Y |Θ) = log p(Y, Z|Θ) − log p(Z|Y,Θ)

log p(Y |Θ) =
∑

Z

T (Z) log p(Y, Z|Θ) −
∑

Z

T (Z) log p(Z|Y,Θ)

=
∑

Z

T (Z) log
p(Y, Z|Θ)

T (Z)
+DKL(T (Z)||p(Z|Y,Θ))

Here, DKL(T (Z)||p(Z|Y )) is the Kullback Leibler divergence defined as

DKL(TQ(Z)||p(Z|Y )) =
∑

Z

TQ(Z) log
T (Z)

p(Z|Y )
.

Note that the divergence is always nonnegative, meaning that s =
∑
Z T (Z) log

p(Y,Z|Θ)
T (Z)

is a lower

bound of log p(Y |Θ). Variational method maximizes log p(Y |Θ) indirectly by finding Θ and T (Z)

that maximizes s, under a restriction on the form of T (Z). The EM algorithm can be regarded as

a special case of variational method, which does not put any restriction on T (Z). It is easy to show

that in this case s is maximized with respect to T (Z) if T (Z) = p(Z|Y,Θ). With this choice of

T (Z), s is no longer a lower bound but exactly equals log p(Y |Θ), because the divergence term is

zero. Maximizing s with respect to Θ is the same as maximizing
∑
Z p(Z|Y,Θ) log p(Y, Z|Θ), which

is the Q-function.

1.4 Side-Information

In many pattern recognition problems, the performance of advanced classifiers like support vector

machines and simple classifiers like k-nearest neighbors are more or less the same. It is the “quality”

of the input information (in terms of discrimination power), instead of the type of the classifier, that is
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the determining factor in the classification accuracy. However, research effort in pattern recognition

and machine learning has focused on devising better classifiers. One is more likely to improve the

performance of practical systems by incorporating additional domain/contextual information, than

by improving the classifier. Side-information, i.e., information other than what is contained in

feature vectors and class labels, is relevant here because it provides alternative means for the system

designer to input more prior knowledge into the classficiation/clustering system, therefore boosting

its performance.

Side-information arises because some aspects of a pattern recognition problem cannot be specified

via the class labels and the feature vectors. It can be viewed as a complement to the given pattern or

proximity matrix. Examples of side-information include alternative metrics between objects, known

data groupings or associations, additional labels or attributes (such as soft biometric traits [123]),

relevance of different features, and ranks of the objects.

Side-information is particularly valuable to clustering, owing to the inherent arbitrariness in the

notion of a cluster. Given different possibilities to cluster a data set, side information can help us to

identify the cluster structure that is the most appropriate in the context that the clustering solution

will be used. A set of constraints, which specify the relationship between different cluster labels,

is probably the most natural type of side-information in clustering. Constraints arise naturally in

many clustering applications. For example, in image segmentation one can have partial grouping

cues for several regions in the image to assist in the overall clustering [279]. Clustering of customers

in a market-basket database can have multiple records pertaining to the same person. In video

retrieval tasks different users may provide alternative annotations of images in small subsets of

a large database [110]. Such groupings may be used for semi-supervised clustering of the entire

database. “Orthogonality” to a known or trivial partition of the data set is another type of side-

information for clustering, and this requirement can be incorporated via a variant of information

bottleneck [97].

1.5 Overview

In the remainder of this thesis, we shall first provide an in-depth survey of some nonlinear dimen-

sionality reduction methods in Chapter 2. We then present our work on how to convert ISOMAP,

one of the algorithms described in Chapter 2, to its incremental version in Chapter 3. In Chap-

ter 4, we present our algorithm on the problem of estimating the relevance of different features in a

clustering context. Chapter 5 describes our proposed approach to perform model-based clustering

in the presence of constraints. Finally, we conclude with some of our contributions to the field and

outline some research directions in Chapter 6.
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Chapter 2

A Survey of Nonlinear

Dimensionality Reduction

Algorithms

In section 1.2 we described the importance of dimensionality reduction and presented an overall

picture of different approaches for dimensionality reduction. This chapter continues the discussion

in section 1.2.3.2, where linear feature extraction methods like principal component analysis (PCA)

and linear discriminant analysis (LDA) were mentioned. Linear methods are easy to understand

and are very simple to implement, but the linearity assumption does not hold in many real world

scenarios. Images of handwritten digits do not conform to the linearity assumption [113]; rotation,

shearing, and variation of stroke widths can at best be approximated by linear functions only in a

small neighborhood (as in the use of tangent distance [68]). A transformation as simple as translating

an object on a uniform background cannot be represented as a linear function of the pixels. This

has motivated the design of nonlinear mapping methods in a general setting. Note, however, that

a globally nonlinear mapping can often be approximated by a linear mapping in a local region. In

fact, this is the essence of many of the algorithms considered in this chapter.

In this chapter, we shall survey some of the recent nonlinear dimensionality reduction algorithms,

with an emphasis on several algorithms that perform nonlinear mapping via the notion of learning

the data manifold. Since we are mostly interested in unsupervised learning, supervised nonlinear

dimensionality methods such as hierarchical discriminant regression (HDR) [118] are omitted from

this survey. Some of the methods considered in this chapter have also been surveyed recently in

[284] and [34].

2.1 Overview

The history of nonlinear mapping is long, tracing back to Sammon’s mapping in 1969 [223]. Over

time, different techniques have been proposed, such as projection pursuit [93] and projection pursuit

regression [92], self organizing maps (SOM) [152], principal curve and its extensions [107, 249, 239,

144], auto-encoder neural networks [7, 57], generative topographic maps (GTM) [24], and kernel

principal component analysis [228]. A comparison of some of these methods can be found in [180].

A new line of nonlinear mapping algorithms has been proposed recently based on the notion of

manifold learning. Given a data set that is assumed to be lying approximately on a (Riemannian)
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(a) (b)

Figure 2.1: An example of a manifold. This example is usually known as the “Swiss roll”. (a)
Surface of the manifold. (b) Data points lying on the manifold.

manifold in a high dimensional space, dimensionality reduction can be achieved by constructing

a mapping that respects certain properties of the manifold. Isometric feature mapping (ISOMAP)

[248], locally linear embedding (LLE), Laplacian eigenmap [16], semidefinite embedding [268], chart-

ing [29], and co-ordination-based ideas [220, 257] are some of the examples. The utility of manifold

learning has been demonstrated in different applications, such as face pose detection [103, 172], face

recognition [283, 276], analysis of facial expressions [75, 38], human motion data interpretation [133],

gait analysis [75, 74], visualization of fiber traces [32], and wood texture analysis [196].

In this chapter, we shall review some of these algorithms, with an emphasis towards the manifold-

based nonlinear mapping algorithms. It is hoped that this exposition can help the reader to become

familiar with these recent exciting developments in nonlinear dimensionality reduction. Table 2.1

provides a comparison of the algorithms we are going to discuss. We want to point out that there

are many other interesting manifold-related ideas that have been omitted in this chapter. Examples

include stochastic embedding [112], locality preserving projections [109], Hessian eigenmap [67],

semidefinite embedding [268] and its extension [267], the co-ordination type methods described in

[257], [134] and [285], as well as the method in [31] which is related to Laplacian eigenmap. Robust

statistics techniques can be used too [214]. It is also possible to learn a Parzen window along the

data manifold [260].

The rest of this chapter is organized as follows. We first define our notation and describe some

properties of a manifold in Section 2.2. Sammon’s mapping, probably the earliest nonlinear mapping

algorithm, is discussed in Section 2.3. Auto-associative neural network [7], also known as auto-

encoder neural networks [57], is described in Section 2.4. Kernel PCA is described in Section 2.5,

followed by ISOMAP in Section 2.6, LLE in Section 2.7, and Laplacian eigenmap in Section 2.8.

Three closely related ideas that involve combining different local co-ordinates are described in Section

2.9. We then show some results of running these algorithms on simple data sets in Section 2.10.

Finally, we summarize our survey in Section 2.11.

2.2 Preliminary

Let Y = {y1, . . . ,yn} be the high-dimensional data set, where yi ∈ RD and D is usually large.

Let Y = [y1, . . . ,yn] be the D × n data matrix. We seek a transformation of Y that maps yi to
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Key idea Key Computation Iterative Parameters Manifold

Sammon [223] Minimize Sammon’s stress Gradient descent Yes none No

auto-associative neural
networks [7, 57]

Neural network for feature extraction and
data reconstruction

Neural network training Yes none No

KPCA [228] PCA in feature space eigenvectors of a large, full ma-
trix

No kernel function No

ISOMAP [248] Preserve geodesic distances all pair shortest path; eigenvec-
tors of a large, full matrix

No neighborhood Yes

LLE [226] Same reconstruction weights eigenvectors of a large, sparse
matrix

No neighborhood Yes

Laplacian eigenmap [16] Smooth graph embedding eigenvectors of a large, sparse
matrix

No neighborhood;
width parameter

Yes

Global coordination [220] Mixture of factor analyzers; Unimodal pos-
terior of global coordinate

EM algorithm derived by varia-
tional principle

Yes Number of local
models

Yes

Charting [29] Nearby Gaussians are similar; Global coor-
dinate by least square

constrained linear equations;
eigenvectors of a small, full
matrix

No neighborhood (see
caption)

Yes

LLC [247] Local models are given; Global coordinate
by LLE criterion

generalized eigenvectors of a
small, full matrix

No a mixture model fit-
ted to the data

Yes

Table 2.1: A comparison of nonlinear mapping algorithms reviewed in this chapter. The dimensionality of the low dimensional space is assumed to be
known, though some of these algorithms can also estimate it. “Neighborhood” refers to N(xi) defined in section 2.2. If an algorithm is inspired from
the notion of a manifold, we put an entry of “yes” in the “Manifold” column. Note that the neighborhood in charting [29] can be estimated from the
data instead of having to be specified by the user. A matrix is “large” if its size is n by n, where n is the size of the data set. Only the few leading
or trailing eigenvectors are needed if eigen-decomposition is performed.
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its low dimensional counterpart xi, where xi ∈ Rd and d is small. Let X = [x1, . . . ,xn] be the

d× n matrix. We shall assume that different yi do not lie randomly in RD , but approximately on

a manifold, which is denoted by M. The manifold may simply be a hyperplane, or it can be more

complicated. An example of a “curved” manifold with the data points lying on it can be seen in

Figure 2.1. This manifold assumption is reasonable because many real world phenomena are driven

by a small number of latent factors. The high dimensional feature vectors observed are the results of

applying a (usually unknown) mapping to the latent factors, followed by the introduction of noise.

Consequently, high dimensional vectors in practice lie approximately on a low dimensional manifold.

Strictly speaking, what we refer to as “manifold” in this thesis should properly be called “Rie-

mannian manifold.” A Riemannian manifold is smooth and differentiable, and contains the notion

of length. We leave the precise definition of Riemannian manifold to encyclopedias like Mathworld1

and Wikipedia2, and describe only some of its properties here. Every y in the manifold M has a

neighborhood N(y) that is homeomorphic3 to a set S, where S is either an open subset of Rd, or

an open subset on the closed half of Rd.

This mapping φy : N(y) 7→ S is called a co-ordinate chart, and φy(y) is called the “co-ordinate”

of y. A collection of co-ordinate charts that covers the entire M is called an atlas. If y is in two

co-ordinate charts φy1 and φy2, y will have two (local) co-ordinates φy1(y) and φy2(y). These

two co-ordinates should be “consistent” in the sense that there is a map to convert between φy1(y)

and φy2(y), and the map is continuous for any path in N(y1) ∩N(y2). For any yi and yj in M,

there can be many paths in M that connect yi and yj . The shortest of such paths is called the

geodesic4 between yi and yj . For example, the geodesic between two points on a sphere is an arc

of a “great circle”: a circle whose center coincides with the center of the sphere (Figure 2.2). The

length of the geodesic between yi and yj is the geodesic distance between yi and yj .

To perform nonlinear mapping, one can assume that there exists a mapping φglobal(.) that maps

all points on M to Rd. The “global co-ordinate” of y, denoted by x = φglobal(y), is regarded as

the low dimensional representation of y. In general, such a mapping may not exist5. In that case,

a mapping that preserves a certain property of the manifold can be constructed to obtain x.

Many of the nonlinear mapping algorithms that are manifold-based require a concrete definition of

N(yi), the neighborhood of yi. Two definitions are commonly used. In ε-neighborhood, yj ∈ N(yi)

if ||yi−yj || < ε, where the norm is the Euclidean distance in RD. In knn-neighborhood, yj ∈ N(yi)

if yj is one of the k nearest neighbors of yi in Y , or vice versa. In both cases, ε or k is a user-defined

parameter. knn neighborhood has the advantage that it is independent of the scale of the data,

though it can lead to too small a neighborhood when the number of data points is large. Note that

the neighborhood can be defined in a data-driven manner [29] instead of being specified by a user.

2.3 Sammon’s mapping

Sammon’s mapping [223], which is an example of metric least square scaling [49], is perhaps the most

well-known algorithm for nonlinear mapping. Sammon’s mapping is an algorithm for multidimen-

1http://mathworld.wolfram.com
2http://en2.wikipedia.org/
3Two (topological) spaces are homeomorphic if there exists a continuous and invertible function between the two

spaces, and that the inverse function is also continuous.
4Strictly speaking, geodesics are curves with zero covariant derivatives of their velocity vectors along the curve. A

shortest curve must be a geodesic, whereas a geodesic might not be a shortest curve.
5For example, there is no such map (homeomorphism) between all points on a sphere and R

2. However, if we
exclude the north pole of a sphere, we can construct such a mapping.
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Great Circle

A
B

Figure 2.2: An example of a geodesic. For two points A and B on the sphere, many lines (the
dash-dot lines) can be drawn to connect them. However, the shortest of these lines, which is the
solid line joining A and B, is called the geodesic between A and B. In the case of a sphere, the
geodesic is simply the great circle.

sional scaling and it maps a set of n items into an Euclidean space based on the dissimilarity values.

This problem is related to the metric embedding problem considered by theoretical computer scien-

tists [119]. Sammon’s mapping can be used for dimensionality reduction if the dissimilarity matrix

is based on the Euclidean distance between the data points in the high dimensional space.

Given a n by n matrix of dissimilarity values {δij}, where δij denotes the dissimilarity between

the i-th and the j-th items, we want to map the n items to n points {x1, . . . ,xn} in a low dimensional

space, such that the distance between xi and xj is as “close” to δij as possible. Many different

definitions of closeness have been proposed, with the “Sammon’s stress”, defined by Sammon, being

the most popular. The Sammon’s stress S is defined by

S =
∑

i<j

(dij − δij)
2

δij

/∑

i<j

δij, (2.1)

where dij = ||xi − xj || is the distance between xi and xj . The quantity (dij − δij)
2 measures the

discrepancy between the observed dissimilarities with the actual distances. It is weighted by δ−1
ij

because if the dissimilarity is large, we should be more tolerant to the discrepancy. The division

by
∑
i<j δij makes S scale free. Sammon proposed the following iterative equation to find xi that

minimize S

xnew
ik = xik − MF

∂S

∂xik

/∣∣∣ ∂
2S

∂x2
ik

∣∣∣, (2.2)

where MF is a “magic factor”, usually set to 0.3 or 0.4. Now, differentiating d2ij =
∑
k′(xik′−xjk′)

2
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with respect to xik , we get

2dij∂dij = 2(xik − xjk)∂xik

∂dij

∂xik
=
xik − xjk

dij
.

So, the gradient of S is

∂S

∂xik
=
( 2∑

i<j δij

) m∑

j=1,j 6=i

dij − δij

dijδij
(xik − xjk)

=
( 2∑

i<j δij

) m∑

j=1,j 6=i

(
1

δij
− 1

dij

)
(xik − xjk),

(2.3)

where xik is the k-th component in xi. For the second order information, note that

(
2∑

i<j δij

)−1
∂

∂xuv

∂S

∂xik

=I(v = k)
m∑

j=1,j 6=i

(
1

δij
− 1

dij

)
(I(u = i) − I(u = j))

+

m∑

j=1,j 6=i

1

d2ij

(xik − xjk)

(
I(u = i)

xiv − xjv

dij
+ I(u 6= i)I(u = j)

xjv − xiv

dij

)

=I(v = k)


I(u = i)

m∑

j=1,j 6=i

(
1

δij
− 1

dij

)
− I(u 6= i)

(
1

δiu
− 1

diu

)


+ I(u = i)

m∑

j=1,j 6=i

(xik − xjk)(xiv − xjv)

d3ij

+ I(u 6= i)
(xik − xuk)(xuv − xiv)

d3iu

(2.4)

where I(.) is the indicator function defined as

I(true) = 1 I(false) = 0.

One can use a nonlinear optimization algorithm other than Equation (2.2) to minimize S. It is

also possible to implement Sammon’s mapping by a feed-forward neural network [180] or in an

incremental manner [129]. Note that Sammon’s mapping is “global” and considers all the interpoint

distances between the n items. This can be a drawback for data like the Swiss roll data set, where

Euclidean distances between pairs of points that are far away from each other do not reveal the true

structure of the data.

2.4 Auto-associative neural network

A special type of feed-forward neural network, “auto-associative neural network” [7, 57], can be

used for nonlinear dimensionality reduction. An example of such a network is shown in Figure 2.3.

The idea is to model the functional relationship between xi and yi by a neural network. If xi is

a good representation for yi, it should contain sufficient information to reconstruct yi via a neural
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Figure 2.3: Example of an auto-associative neural network. This network extracts xi with 3 features
from the given data yi with 8 features.

network (decoding network), with the “decoding layer” as its hidden layer. To obtain xi from yi,

another neural network (encoding network) is needed, with the “encoding layer” as its hidden layer.

The encoding network and the decoding network are connected so that the output of the encoding

network is used as the input of the decoding network, and both of them correspond to xi. The

high-dimensional data points yi are used as both the input and the target for training in this neural

network. Sum of square error can be used as the objective function for training. Note that the

neural network in Figure 2.3 is just an example; alternative architecture can be used. For example,

multiple hidden layers can be used, and the number of neurons in the encoding and decoding layers

can also be different.

The advantage of this approach is that mapping a new y to the corresponding x is easy: just feed

y to the neural network and extract the output of the encoding layer. Also, there exists a number

of software packages for training neural networks. The drawback is that it is difficult to determine

the appropriate network architecture to best reduce the dimension for any given data set. Also,

training of a neural network involves an optimization problem that is considerably more difficult

than the eigen-decomposition required by some other nonlinear mapping methods like ISOMAP,

LLE, or Laplacian eigenmap, which we shall examine later in this chapter.

2.5 Kernel PCA

The basic idea of kernel principal component analysis (KPCA) is to transform the input patterns

to an even higher dimensional space nonlinearly and then perform principal component analysis in

the new space. It is inspired from the success of the support vector machines (SVM) [189].
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2.5.1 Recap of SVM

Consider a mapping φ : RD 7→ H, where H is a Hilbert space. H can be, for example, a (very) high

dimensional Euclidean space. By convention, RD and H are called the input space and the feature

space, respectively. The point yi in RD is first transformed into the Hilbert space H by φ(yi). SVM

assumes a suitable transformation φ(.) such that the transformed data set is more linearly separable

in H than in RD, and a large margin classifier in H is trained to separate the transformed data. It

turns out that the large margin classifier can be trained by using only the inner product between the

transformed data 〈φ(yi), φ(yj )〉, without knowing φ(.) explicitly. Therefore, in practice, the kernel

function K(yi,yi) is specified instead of φ(.), where

K(yi,yi) = 〈φ(yi), φ(yj )〉.

Specifying the kernel function K(., .) instead of the mapping φ(.) has the advantage of computational

efficiency when H is of high dimension. Also, this allows us to generalize to infinite dimensional H,

which happens when the radial basis function kernel is used. This use of kernel function to replace

an explicit mapping is often called “the kernel trick”. Intuitively, the kernel function, being an inner

product, represents the similarity between yi and yj .

The kernel trick can be illustrated by the following example with D = 2. Let φ(yi) ≡
(y2i1,

√
2yi1yi2, y

2
i2)T , where yi = (yi1, yi2)T . The kernel function corresponding to this φ(.) is

K(yi,yj) = (yi1yj1 + yi2yj2)2, because

K(yi,yj) = (yi1yj1 + yi2yj2)2

= y2i1y
2
j1 + 2yi1yj1yi2yj2 + y2i2y

2
j2

= (y2i1,
√

2yi1yi2, y
2
i2)(y2j1,

√
2yj1yj2, y

2
j2)T

= φ(yi)
T φ(yj ).

Many different kernel functions have been proposed. Polynomial kernel, defined as K(yi,yj) =

(yTi yj + 1)r with r as the parameter (degree) of the kernel, corresponds to a polynomial decision

boundary in the input space. The radial basis function (RBF) kernel is defined by K(yi,yj) =

exp(ω||yi−yj ||2), where ω is the width parameter. SVM classifiers using RBF kernel are related to

RBF neural networks, except that for SVM, the centers of the basis functions and the corresponding

weights are estimated by the quadratic programming solver simultaneously [229]. The choice of the

appropriate kernel function in an application is difficult in general. This is still an active research

area, with many principles being proposed [121, 154, 227].

2.5.2 Kernel PCA

One important lesson we can learn from SVM is that a linear algorithm in the feature space corre-

sponds to a nonlinear algorithm in the input space. Different types of nonlinearity can be achieved

by different kernel functions. Kernel PCA [228] utilizes this to generalize PCA to become nonlinear.

For ease of notation, we shall assume H is of finite dimension6.

KPCA follows the steps of the standard PCA, except the data set under consideration is

6The case for infinite dimensional H is similar, with operators replacing matrices and eigenfunctions replacing
eigenvectors.
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{φ(y1), . . . , φ(yn)}. Let φ̃(yi) be the “centered” version of φ(yi),

φ̃(yi) = φ(yi) −
1

n

n∑

i=1

φ(yi).

The covariance matrix C is given by

C =
1

n

∑

i

φ̃(yi)φ̃(yi)
T .

The eigenvalue problem λv = Cv is solved to find the (kernel) principal component v. Because

v =
1

λ
Cv =

1

λn

∑

i

φ̃(yi)
(
φ̃(yi)

T v
)
,

v is in the subspace spanned by φ̃(yi), and it can be written as

v =
∑

j

αjφ̃(yj ).

Denote α = (α1, . . . , αn). Let K̃ be the symmetric matrix such that its (i, j)-th entry K̃ij is

φ̃(yi)
T φ̃(yj ). Rewrite λv = Cv as

λ
∑

j

αjφ̃(yj ) =
1

n

∑

ij

αjK̃ijφ̃(yi). (2.5)

By multiplying both sides with φ̃(yl)
T , we have

λ
∑

j

αjK̃lj =
1

n

∑

ij

αjK̃ijK̃li ∀l, (2.6)

which, in matrix form, can be written as

λnK̃α = K̃2α. (2.7)

Since K̃ is symmetric, K̃ and K̃2 have the same set of eigenvectors. This set of eigenvectors is also

the solution to the generalized eigenvalue problem in Equation (2.7). Therefore, α, and hence v,

can be found by solving λα = K̃α. For projection purposes, it is customary to normalize v to norm

one. Since ||v||2 = αT K̃α, we should divide α by
√
αT K̃α. To perform dimensionality reduction

for y, it is first mapped to the feature space as φ̃(y), and its projection on v is given by

φ̃(y)T v =
∑

i

φ̃(y)T αiφ̃(yi) = αT k̃y, (2.8)
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where k̃y =
(
φ̃(y)T φ̃(y1), . . . , φ̃(y)T φ̃(yn)

)T
. Finally, by rewriting the relationship

K̃ij = φ̃(yi)
T φ̃(yj )

=


φ(yi) −

1

n

n∑

l=1

φ(yl)



T 
φ(yj ) −

1

n

n∑

k=1

φ(yk)




= φ(yi)
T φ(yj ) −

1

n

n∑

l=1

φ(yl)
T φ(yj )

− 1

n

n∑

k=1

φ(yk)T φ(yi) +
1

n2

n∑

k=1

n∑

l=1

φ(yk)T φ(yk)

in matrix form, we have

K̃ = HnKHn, (2.9)

where Hn = I − 1
n1n,n is a centering matrix with 1n,n denoting a matrix of size n by n with

all entries one, and K is the kernel matrix with its (i, j)-th entry given by K(yi,yj). A similar

expression can be derived for φ̃(y)T φ̃(yj).

KPCA solves the eigenvalue problem of a n by n matrix, which may be larger than the D by D

matrix considered by PCA. Recall D is the dimension of yi. The number of possible features to be

extracted in KPCA can be larger than D. This contrasts with the standard PCA, where at most D

features can be extracted. An interesting problem related to KPCA is how to map z, the projection

of φ(y) into the subspace spanned by the first few kernel principal components, back to the input

space. This can be useful for, say, image denoising with KPCA [185]. The search for the “best” y′
such that φ(y′) ≈ z is known as the pre-image problem and different solutions have been proposed

[160, 5].

In summary, KPCA consists of the following steps.

1. Let K be the kernel matrix, where Kij = φ(yi,yj ). Compute K̃ by

K̃ = HnKHn.

2. Solve the eigenvalue problem λα = K̃α and find the eigenvectors corresponding to the largest

few eigenvalues.

3. Normalize α by dividing it by
√
αT K̃α.

4. For any y, its projection to a principal component can be found by αT k̃y, where

k̃y = Hn(ky − 1

n
K1n,1),

ky = (K(y,y1), . . . ,K(y,yn) and 1n,1 is a n by 1 vector with all entries equal to one.

2.6 ISOMAP

The basic idea of isometric feature map (ISOMAP) [248] is to find a mapping that best preserves the

geodesic distances between any two points on a manifold. Recall that the geodesic distance between

two points on a manifold is defined as the length of the shortest path on the manifold that connects
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the two points. ISOMAP constructs a mapping from yi to the xi (xi ∈ Rd) such that the Euclidean

distance between xi and xj in Rd is as close as possible to the geodesic distance between yi and yj
on the manifold.

Geodesic distances are hard enough to find when the manifold is known, let alone in the current

case where the manifold is unknown and only points on the manifold are given. So, ISOMAP

approximates the geodesic distances by first constructing a neighborhood graph to represent the

manifold. The vertex vi in the neighborhood graph G = (V,E) corresponds to the high dimensional

data point yi. An edge e(i, j) between vi and vj exists if and only if yi is in the neighborhood of

yj , N(yj ), and the weight of this edge is ||yi − yj ||. Details of N(yj) are described in section 2.2.

An example of a neighborhood graph is shown in Figure 2.4(b) for the data shown in Figure 2.4(a).

ISOMAP approximates a path on the manifold by a path in the neighborhood graph. The geodesic

between yi and yj corresponds to the shortest path between vi and vj . The estimation problem of

the geodesic distances between all pairs of points yi and yj thus becomes the all-pairs shortest path

problem in the neighborhood graph. It can be solved [46] either by the Floyd-Warshall algorithm,

or by Dijkstra’s algorithm with different source vertices. The latter is more efficient because the

neighborhood graph is sparse. An example of how the shortest path approximates the geodesic is

shown in Figure 2.4(c). It can be shown that the shortest path distances converge to the geodesic

distances asymptotically [18].

The next step of ISOMAP finds xi that best preserve the geodesic distances. Let gij denote the

estimated geodesic distance between yi and yj , and write G = {g̃ij} as the geodesic distance matrix.

The optimal xi can be found by applying the classical scaling [49], a simple multi-dimensional scaling

technique. Let dij = ||xi − xj ||. Without loss of generality, assume
∑
i xi = 0. We have the

following:

d2ij = (xi − xj )
T (xi − xj ) = ||xi||2 + ||xj ||2 − 2xTi xj

∑

i

d2ij =
∑

i

||xi||2 + n||xj ||2

∑

ij

d2ij = 2n
∑

i

||xi||2

So,
∑

i

||xi||2 =
1

2n

∑

ij

d2ij

||xj ||2 =
1

n

∑

i

d2ij −
1

2n2

∑

ij

d2ij

and

2xTi xj =
1

n

∑

j

d2ij +
1

n

∑

i

d2ij −
1

n2

∑

ij

d2ij − d2ij. (2.10)

If we replace dij with the estimated geodesic distance gij in Equation (2.10), bij , the target inner

product between xi and xj , is given by

bij =
1

2


 1

n

∑

j

g2ij +
1

n

∑

i

g2ij −
1

n2

∑

ij

g2ij − g2ij


 . (2.11)

Let A = {aij} with aij = −1
2g

2
ij . Equation (2.11) means that B = HnAHn, where B = {bij},

Hn = I − 1
n1n,n and 1n,n denotes a n by n matrix with all entries one.
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(b) Neighborhood graph and geodesic approximation
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Figure 2.4: Example of neighborhood graph and geodesic distance approximation. (a) Input data.
(b) The neighborhood graph and an example of the shortest path. (c) This is the same as (b), except
the manifold is flattened. The true geodesic (blue line) is approximated by the shortest path (red
line).
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Computing HnAHn is effectively a centering operation on A, i.e., each column is subtracted by

its corresponding column mean, and each row is subtracted by its corresponding row mean. Because

multiplication of Hn has this effect of “zeroing” the means for different rows and columns, Hn is

often referred to as the centering matrix. The centering operation is also seen in other embedding

algorithm such as KPCA (section 2.5). Since B is the matrix of target inner product, we have

B ≈ XTX, where X = [x1, . . . ,xn]. We recover X by finding the best rank-d approximation for B,

which can be obtained via the eigen-decomposition of B. Let λ1, . . . , λd be the d largest eigenvalues

of B with corresponding eigenvectors v1, . . . ,vd. We have X = [
√
λ1v1, . . . ,

√
λdvd]

T . Here, we

assume λi > 0 for all i = 1, . . . , d. Unlike Sammon’s mapping, the objective function for the optimal

X is less explicit: it is the sum of the square error (squared Frobenius norm) between the target

inner product (bij) and the actual inner product (xTi xj).

One drawback of ISOMAP is the O(n2) memory requirement for storing the dense matrix of

geodesic distances. Also, solving the eigenvalue problem of a large dense matrix is relatively slow.

To reduce both the computational and memory requirements, landmark ISOMAP [55] sets apart a

subset of Y as landmark points and preserves only the geodesic distances from yi to these landmark

points. A similar idea has been applied to Sammon’s mapping before [25]. A continuum version of

ISOMAP has also been proposed [282]. ISOMAP can fail when there is a “hole” in the manifold

[66]. We also want to note that an exact isometric mapping of a manifold is theoretically possible

only when the manifold is “flat”, i.e., when the curvature tensor is zero, as pointed out in [16].

To summarize, ISOMAP consists of the following steps:

1. Construct a neighborhood graph using either the ε neighborhood or the knn neighborhood.

2. Solve the all pair shortest path problem on the neighborhood graph to obtain an estimate of

the geodesic distances gij .

3. Compute A = {aij}, where aij = −1
2g

2
ij , and B = HnAHn.

4. The d largest eigenvalues and the corresponding eigenvectors of B are found and X =

[
√
λ1v1, . . . ,

√
λdvd]

T .

2.7 Locally Linear Embedding

In locally linear embedding (LLE) [219, 226], each local region on a manifold is approximated by a

linear hyperplane. LLE maps the high dimensional data points into a low dimensional space so that

the local geometric properties, represented by the reconstruction weights, are best preserved.

Specifically, yi is reconstructed by its projection ŷi on the hyperplane H passing through its

neighbors N(yi) (defined in section 2.2). Mathematically,

yi ≈ ŷi =
∑

j

wijyj ,

with the constraint
∑
j wij = 1 to reflect the translational invariance for the reconstruction. By

minimizing the sum of square error of this approximation, we can also achieve invariance for rotation

and scaling. The weights wij reflect the local geometric properties of yi. This interpretation on

wij , however, is reasonable only when yi is well approximated by ŷi, i.e., when yi is close to H .
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The weights are found by solving the following optimization problem:

min
{wij}

||yi −
∑

j

wijyj ||2 subject to
∑

j

wij = 1, wij = 0 if yj 6∈ N(yi) for all i. (2.12)

Now, write N(yi) = {yτ1 , . . . ,yτL} and denote zj = yτj . Note that yi 6∈ N(yi). The optimization

problem (2.12) can be solved efficiently by first constructing a L by L matrix F such that fjk =

(zj − xi)
T (zk − xi). Equivalently, F = (Z− xi11,L)T (Z− xi11,L), where F = {fjk}, 11,L is a 1

by L vector with all entries one, and Z = [z1, . . . , zl]. The next step is to solve the equation

Fu = 1l,1 (2.13)

and then we normalize7 the solution u by ũj = uj/
∑
j uj . The values of ũj are assigned to the

corresponding wij , i.e., wi,τj
= uj , and the rest of wij are set to zero. Sometimes, F can be

singular. This can happen when the neighborhood size L is larger than D, the dimension of yi. In

this case, a small regularization term δIL is added to F before solving the Equation (2.13). This

regularization has the effect of preferring values of wij with small
∑
j w

2
ij . Finding uj is efficient

because only small linear systems of equations are solved. Note that uj can be negative and ŷi can

be outside the convex hull of N(yi).

In the second phase of LLE, we seek X = [x1, . . . ,xn] such that xi ≈
∑
j wijxj , and xi ∈ Rd.

To make the problem well-defined, additional constraints
∑
i xi = 0 and

∑
i xix

T
i = Id are needed.

The second constraint has the effect of both fixing the scale and enforcing different features in xi
to carry independent information by requiring the sample covariances between different variables in

xi to be zero. The optimization problem is now

min
{xi}

||xi −
∑

j

wijxj ||2 subject to
∑

i

xi = 0 and
∑

i

xix
T
i = Id. (2.14)

Note the similarity between Equations (2.12) and (2.14). Let x(i) denote the i-th row of X. Equation

(2.14) can be rewritten as

min
X

trace(X(I −W)T (I −W)XT ) subject to 11,mx(i) = 0 and x(i)T x(i) = δij . (2.15)

This can be solved by eigen-decomposition on M = (I − W)T (I − W). Note that M is positive

semi-definite. Let vj be the eigenvector corresponding to the (j + 1)-th smallest eigenvalue. The

optimal X is given by X = [v1, . . . ,vd]
T . The first constraint is automatically satisfied because

1n,1 is the eigenvector of M with eigenvalue 0. This eigenvalue problem is relatively easy because

M is sparse and can be represented as a product of sparser matrices (I −W)T and (I −W).

The above exposition of LLE assumes the pattern matrix as input. LLE can be modified to work

with a dissimilarity matrix [226]. There is also a supervised extension of LLE [53, 54], which uses

the class labels to modify the neighborhood structure. The kernel trick can also be applied to LLE

to visualize the data points in the feature space [56]. The case when LLE is applied to data sets

with natural clustering structure has been examined in [206].

In summary, LLE includes the following steps:

7The normalization is valid because
P

j uj = 11,mF
−1

1m,1 and hence
P

j uj cannot be zero, by the positive

definiteness of F
−1.
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1. Find the neighbors of each yi according to either ε-neighborhood or knn neighborhood.

2. For each yi, form the matrix F and solve the equation Fu = 1L,1. After normalizing u by

ũj = uj/
∑
j uj , set wi,τj

= ũj and the remaining wij to zero.

3. Find the second to the (d+1)-th smallest eigenvalues of (I−W)T (I−W) by a sparse eigenvalue

solver and let {v1, . . . ,vd} be the eigenvectors.

4. Obtain the reduced dimension representation by X = [v1, . . . ,vd]
T .

2.8 Laplacian Eigenmap

The approach taken by Laplacian eigenmap [16] for nonlinear mapping is different from those of

ISOMAP and LLE. Laplacian eigenmap constructs orthogonal smooth functions defined on the

manifold based on the Laplacian of the neighborhood graph. It has its roots in spectral graph

theory [42].

As in ISOMAP, a neighborhood graph G = (V,E) is first constructed. Unlike ISOMAP, where

the weight wij of the edge (vi, vj) represents the distance between vi and vj , the weight in Laplacian

eigenmap represents the similarity between vi and vj . The weight wij can be set by

wij = exp

(
−
||xi − xj ||2

4t

)
, (2.16)

with t as an algorithmic parameter, or it can be simply set to one. The use of the exponential

function to transform a distance value to a similarity value can be justified by its relationship to the

heat kernel [16].

The nonlinear mapping problem is recast as the graph embedding problem that maps the vertices

in the neighborhood graph G to Rd. The first step is to find a “good” function f(.) : V 7→ R that

maps the vertices in G to a real number. Since the domain of f(.) is finite, f(.) can be represented

by a vector u, with f(vi) = ui. According to spectral graph theory, the smoothness of f can be

defined by

S ≡ 1

2

∑

ij

wij(ui − uj)
2. (2.17)

The intuition of S is that, for large wij , the vertices vi and vj are “similar” and hence the difference

between f(vi) and f(vj) should be small if f(.) is smooth. A smooth mapping f(.) is desirable

because a faithful embedding of the graph should assign similar values to vi and vj when they are

close. We can rewrite S as

S =
1

2

∑

ij

(wiju
2
i + wiju

2
j − 2uiuj)

=
1

2

(∑

i

u2i

∑

j

wij +
∑

j

u2j

∑

i

wij − 2
∑

ij

wijuiuj
)

=
∑

i

u2i

∑

j

wij −
∑

ij

wijuiuj = uTLu,

(2.18)

where L is the graph Laplacian defined by L = D−W, W = {wij} is the graph weight matrix, and

D is a diagonal matrix with dii =
∑
j wij . The matrix L can be thought of as the Laplacian operator
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on functions defined on the graph. Since dii can be interpreted as the importance of vi, the natural

inner product between two functions f1(.) and f2(.) defined on the graph is 〈f1, f2〉 = uT1 Du2.

Because the constant function is the smoothest and is uninteresting, we seek f(.) to be as smooth

as possible while being orthogonal to the constant function. The norm of f(.) is constrained to be

one to make the problem well-defined. Thus we want to solve

min
u

uTLu subject to uTDu = 1 and uTD1n,1 = 0. (2.19)

This can be done by solving the generalized eigenvalue problem

Lu = λDu, (2.20)

after noting that 1n,1 is a solution to Equation (2.20) with λ = 0. Here, 1n,1 denotes a n by

1 vector with all entries one. As L is positive semi-definite, the eigenvector corresponding to the

second smallest eigenvalue of Equation (2.20) yields the desired f(.). In general, d orthogonal8

functions {f1(.), . . . , fd(.)} that are as smooth as possible are sought to map the vertices to Rd.

The functions can be obtained by the eigenvectors corresponding to the second to the (d + 1)-th

smallest eigenvalues in Equation (2.20). The low dimensional representation of yi is then given by

xi = (f1(vi), f2(vi), . . . , fd(vi))
T . In matrix form, X = [u1, . . . ,ud]

T .

The embedding problem of the neighborhood graph and the embedding problem of the points

in the manifold is related in the following way. A smooth function f(.) that maps the point yi in

the manifold to xi ∈ Rd is preferable, because a faithful mapping should give similar values (small

||xi−xj ||) to yi and yj when ||yi−yj || is small. A small ||yi−yj || corresponds to a large wij in the

graph. Thus, intuitively, a smooth function defined on the graph corresponds to a smooth function

defined on the manifold. In fact, this relationship can be made more rigorous, because the graph

Laplacian is closely related to the Laplace-Beltrami operator on the manifold, which in turn is related

to the smoothness of a function defined on the manifold. The eigenvectors of the graph Laplacian

correspond to the eigenfunctions of the Laplace-Beltrami operator, and the eigenfunctions with small

eigenvalues provide a “smooth” basis of the functions defined on the manifold. The neighborhood

graph used in Laplacian eigenmap can thus be viewed as a discretization tool for computation on

the manifold.

There is also a close relationship between Laplacian eigenmap and spectral clustering. In fact, the

spectral clustering algorithm in [194] is almost the same as first performing Laplacian eigenmap and

then applying k-means clustering on the low dimensional feature vectors. The manifold structure

discovered by Laplacian eigenmap can also be used to train a classifier in a semi-supervised setting

[182]. The Laplacian of a graph can also lead to an interesting kernel function (as in SVM) for vertices

in a graph [154]. This idea of nonlinear mapping via graph embedding has also been extended to

learn a linear mapping [109] as well as generalized to the case when a vector is associated with each

vertex in the graph [31].

To sum up, the steps for Laplacian eigenmap include:

1. Construct a neighborhood graph of Y by either the ε-neighborhood or the knn neighborhood.

2. Compute the edge weight wij by either exp(||yi − yj ||2/(4t)), or simply set wij to 1.

3. Compute D and the graph Laplacian L.

8Orthogonality is preferred as it suggests the independence of information. Also, in PCA, each of the extracted
features is orthogonal to the others.
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4. Find the second to the (d + 1)-th smallest eigenvalues in the generalized eigenvalue problem

Lu = λDu and denote the eigenvectors by u1, . . . ,ud. The low dimensional feature vectors

are given by X = [u1, . . . ,ud]
T .

2.9 Global Co-ordinates via Local Co-ordinates

Recall that in section 2.2, an atlas of a manifold M is defined as a collection of co-ordinate charts

that covers the entire M, and overlapping charts can be “connected” smoothly. This idea has

inspired several nonlinear mapping algorithms [220, 29, 247] which construct different local charts

and join them together.

There are two stages in these type of algorithms. First, different local models are fitted to the

data, usually by the means of a mixture model. Each local model gives rise to a local co-ordinate

system. A local model can be, for example, a Gaussian or a factor analyzer. Let zis be the local

co-ordinate given to yi by the s-th local co-ordinate system. Let ris denote the suitability of using

the s-th local model for yi. We require ris ≥ 0 and
∑
s ris = 1. The introduction of ris can

represent the fact that only a small number of local models are meaningful for each yi. Typically,

ris is obtained as the posterior probability of the s-th local model, given yi.

In the second stage, different local co-ordinates of yi are combined to give a global co-ordinate.

Let gis be the global co-ordinate of yi due to the s-th local model, and let gi ∈ Rd be the

corresponding “combined” global co-ordinate. In the three papers we have considered here, gis is

simply the affine transform of the local co-ordinate, gis = Lsz̃is. Here, z̃is is the “augmented” zik ,

z̃is = [zTik, 1]T . Ls is the (unknown) transformation matrix with d rows for the s-th local model.

Note that it is desirable for neighboring local models to be “similar” so that the global co-ordinates

are more consistent. An important characteristic of the algorithms in this section is that, unlike

ISOMAP, LLE, or Laplacian eigenmap, extension for a point y that is outside the training data Y
is easy after computing zs and rs for different s.

2.9.1 Global Co-ordination

In the global co-ordination algorithm in [220], the first and the second stages are performed simul-

taneously by the variational method. The first stage is done by fitting a mixture of factor analyzers.

Under the s-th local model, a data point is modeled by

yi = µs + Λszis + εis, (2.21)

where µs is the mean, Λs is the factor loading matrix, and εis is the noise that follows N (0,Ψs),

a multivariate Gaussian with mean 0 and covariance Ψs. By the definition of factor analyzer, Ψs
is diagonal. The hidden variable zis is assumed to follow N (0, I). The scale of zis is unimportant

because it can be absorbed by the factor loading matrix. Let αs be the prior probability of the s-th

factor analyzer. The parameters are {αs,µs,Λs,Ψs}, and the data density is given by

p(yi) =
∑

s

∫

zis
p(yi|s, zis)p(zis|s)P (s)dzis

=
∑

s
αs(2π)−D/2

(
det(ΛsΛ

T
s + Ψs)

)−1/2

exp
(
−1

2
(yi − µs)T (ΛsΛ

T
s + Ψs)

−1(yi − µs)
)
.

(2.22)
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We define ris as the posterior probability of the s-th local model given yi, P (s|yi), and it can

be computed based on Equation (2.22). Equation (2.22) also gives rise to p(zis|s,yi) and hence

p(gis|s,yi), because gis is a function of zis and Ls. The posterior probability of the global co-

ordinate is defined as

p(gi|yi) =
∑

s
P (s|yi)p(gis|s,yi). (2.23)

Equation (2.23) assumes that the overall global co-ordinate gi is selected among different gis, with

s stochastically selected according to the posterior probability of the s-th model. In the case where

yi is likely to be generated either by the j-th or the k-th local model, the corresponding global

co-ordinates gij and gik should be similar. This implies that the posterior density p(gi|yi) should

be unimodal. Enforcing the unimodality of p(gi|yi) directly is difficult. So, the authors in [220]

instead drive p(gi|yi) to be as similar to a Gaussian distribution as possible by adding an extra

term to the log-likelihood objective function to be maximized:

Φ =
∑

i

log p(yi) −
∑

is

DKL
(
q(gi, s|yi)||p(gi, s|yi)

)
. (2.24)

Here, DKL(Q||P ) is the Kullback-Leibler divergence defined as

DKL(Q||P ) =

∫
Q(y) log

Q(y)

P (y)
dy, (2.25)

and q(gi, s|yi) is assumed to be factorized as

q(gi, s|yi) = qi(gi|xi)qi(s|yi)

with qi(gi|yi) as a Gaussian and qi(s|yi) as a multinomial distribution. This addition of a divergence

term between a posterior distribution and a factorized distribution is commonly seen in the literature

on the variational method. The objective function in Equation (2.24) can be maximized by an EM-

type algorithm, which estimates the parameters {αs,µs,Λs,Ψs,Ls} as well as the parameters for

qi(gi|yi) and qi(s|yi). Since the first and the second stages are carried out simultaneously, local

models that lead to consistent global co-ordinates are implicitly favored.

2.9.2 Charting

For the charting algorithm in [29], the first and the second stages are performed separately. This

decoupling decreases the complexity of the optimization problem and can reduce the chance of

getting trapped in poor local minima. In the first stage, a mixture of Gaussians is fitted to the data,

p(y) =
∑

s
αsN (µs,Σs), (2.26)

with the constraint that two adjacent Gaussians should be “similar”. This is achieved by using a

prior distribution on the mean vectors and the covariance matrices that encourages the similarity of

adjacent Gaussians:

p({µs}, {Σs}) ∝ exp
(
−
∑

s

∑

j,j 6=s
λs(µj)DKL(N (µs,Σs)||N (µj ,Σj))

)
, (2.27)
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where λs(µj) measures the closeness between the locations of the s-th and the j-th Gaussian com-

ponents. It is set to λs(µj) ∝ exp(−||µs −µj ||2/(2σ2)), where σ is a width parameter determined

according to the neighborhood structure. The prior distribution also makes the parameter estima-

tion problem more well-conditioned. In practice, n Gaussian components are used, with the center of

the i-th component µi set to yi and the weight of each component set to 1/n. The only parameters

to be estimated are the covariance matrices. The MAP estimate of the covariance matrices can be

shown to satisfy a set of constrained linear equations and they are obtained by solving this set of

equations.

In the second stage, the local co-ordinate zis is first obtained as zis = VT (xi − µs), where V

consists of the d leading eigenvectors of Σs. We can regard zis as the feature extracted from yi
using PCA on the s-th local model. The local model weight ris is, once again, set to the posterior

probability of the s-th local model given yi. The transformation matrices L are found by solving

the following weighted least square problem:

min
{Ls}

∑

i,j,k

rijrik ||Lj z̃ij − Lk z̃ik ||2F . (2.28)

Here, ||X||2F denotes the square of the Frobenius norm, ||X||2F ≡ trace(XTX). Intuitively, we want

to find the transformation matrices such that the global co-ordinates due to different local models are

the most consistent in the least square sense, weighted by the importance of different local models.

Equation (2.28) can be solved as follow. Let K and h be the number of local models and the

length of the augmented local co-ordinate z̃is, respectively. Define Z̃s = [z̃1s, . . . , z̃ns] as the h by

n matrix of local co-ordinates using the s-th local model for all the data points. Define the Kh

by n matrix Ts by Ts = [0n,(s−1)h, Z̃
T
s ,0n,(K−s)h]T , where 0n,m denotes a zero matrix with

size n by m. Let Ps be a n by n diagonal matrix where the (i, i)-th entry is ris. The solution

to Equation (2.28) is given by the d trailing eigenvectors of the Kh by Kh matrix QQT , where

Q =
∑
j
∑
k,j 6=k

(
(Tj−Tk)PjPk

)
. Note that the second stage is independent of the first stage. In

particular, alternative collection of local models can be used, as long as zis and ris can be calculated.

2.9.3 LLC

The LLC algorithm described in [247] concerns the second stage only. Given the local co-ordinates

zis and the model confidences ris computed from the first stage, the LLC algorithm finds the best

Ls such that the local geometric properties are best preserved in the sense of the LLE loss function.

The global co-ordinate gi is assumed to be a weighted sum in the form

gi =
∑

s
risgis =

∑

s
risLsz̃is. (2.29)

Suppose there are K local models, each of which gives a local co-ordinate zis in a h − 1

dimensional space9. We stack z̃isris for different s to get a vector of length Kh, ui =

[ri1z̃
T
i1, ri2z̃

T
i2, . . . , riK z̃TiK ]T , and concatenate different Ls to form a d by Kh matrix J =

[L1,L2, . . . ,LK ]. (Each Ls is of size d by h.) Equation (2.29) can be rewritten as gi = Jui.

The global co-ordinate matrix, G = (g1, . . . ,gn), is thus given by G = JU, where U is a Kh by

n matrix U = [u1, . . . ,un]. Denote the i-th row of J by j(i). If we substitute G as Y in the LLE

9In general, different local models can give local co-ordinates with different lengths, as emphasized in [247]. Here
we assume a common h for the ease of notation.
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objective function in equation (2.15), we have

min
J

trace(JU(I −W)T (I −W)UT JT )

subject to j(i)U1n,1 = 0 and j(i)UUT j(j)T = δij,

(2.30)

where W is defined in the same way (the neighborhood reconstruction weight) as in section 2.7.

Here, 1n,1 denotes a n by 1 vector with all entries one. Note that obtaining W is efficient (see

section 2.7 for details). The value of j(i) can be obtained as the solution of the generalized eigenvalue

problem
(
U(I − W)T (I − W)UT

)
v = λ(UUT )v. The authors in [247] claim that the j(i) thus

obtained satisfies the constraint j(i)U1m,1 = 0 automatically because U1m,1 is an eigenvector of

the generalized eigenvalue problem with eigenvalue 0. However, this is not true in general. In any

case, the authors in [247] use the eigenvectors corresponding to the second to the (d+1)-th smallest

eigenvalues as the solution of J. Note that this generalized eigenvalue problem is about a Kh by

Kh matrix, instead of a large n by n matrix in the original LLE. After finding j(i), J and hence Ls
are reconstructed. The global co-ordinate is obtained via equation (2.29).

The idea of this algorithm is somewhat analogous to the locality preserving projection (LPP)

algorithm [109]. LPP simplifies the eigenvalue problem by the extra information that the projection

should be linear, whereas the current algorithm simplifies the eigenvalue problem by the given

mixture model.

2.10 Experiments

We applied some of these algorithms on three synthetic 3D data sets. The data manifold and the

data points can be seen in Figure 2.5. The first data set, parabolic, consists of 2000 randomly

sampled data points lying on a paraboloid. It is an example of a nonlinear manifold with a simple

analytic form – a second degree polynomial in the co-ordinates in this case. The second data set swiss

roll and the third data set S-curve are commonly used for validating manifold learning algorithms.

Again, 2000 points are randomly sampled from the “Swiss roll” and the S-shaped surface to create

the data sets, respectively. KPCA, ISOMAP, LLE, and Laplacian eigenmap were run on these 3D

data sets to project the data to 2D. We have implemented KPCA and Laplacian eigenmap ourselves,

while the implementations for ISOMAP10 and LLE11 were downloaded from their respective web

sites. For ISOMAP, LLE, and Laplacian eigenmap, knn neighborhood with k = 12 is used. The

edge weight is set to one for Laplacian eigenmap. For KPCA, polynomial kernel with degree 2 is

used. For comparison, the standard PCA and Sammon’s mapping were also performed on these

data sets. Sammon’s mapping is initialized by the result of PCA.

The results of these algorithms can be seen in Figures 2.6, 2.7, and 2.8. The data points are

colored differently to visualize their locations on the manifold. We intentionally omit the “goodness-

of-fits” or “error” on the projection results, because the criteria used by different algorithms (Sam-

mon’s stress in Sammon’s mapping, correlation of distances in ISOMAP, reconstruction error in LLE,

residue variance in PCA and KPCA, to name a few) are very different and it can be misleading to

compare them.

For the parabolic data set, we can see in Figures 2.6(b) and 2.6(c) that both ISOMAP and LLE

recover the intrinsic co-ordinates very well, because the changes in the color of the data points after

10ISOMAP web site: http://stanford.isomap.edu
11LLE web site: http://www.cs.toronto.edu/~roweis/lle/
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embedding are smooth. Since this manifold is quadratic, we expect that KPCA with a quadratic

kernel function should also recover the true structure of the data. It turns out that the first two

kernel principal components cannot lead to a clean mapping of the data points. Instead, the second

and the third kernel principal components extract the structure of the data (Figure 2.6(a)). The

first two features extracted by Laplacian eigenmap cannot recover the desired trend in the data. The

target structure with slight distortion can be recovered if the second and the third extracted features

are used instead (Figure 2.6(d)). PCA and Sammon’s mapping cannot recover the structure of this

data set (Figures 2.6(e) and 2.6(f)). The similarity of the results of PCA and Sammon’s mapping

can be attributed to the fact that Sammon’s mapping is initialized by the PCA solution. The initial

PCA solution is already a good solution with respect to Sammon’s stress for this low-dimensional

data set.

For the data set swiss roll, we can see from Figures 2.7(b) and 2.7(c) that ISOMAP and LLE

performed a good job “unfolding” the manifold. For Laplacian eigenmap, once again, the first two

extracted features cannot be interpreted easily, though the structure of the data set is revealed if the

second and the third features are used (Figure 2.7(d)). KPCA cannot recover the intrinsic structure

of the data set no matter which kernel principal component is used. An example of the poor result of

KPCA is shown in Figure 2.7(a). PCA and Sammon’s mapping also cannot recover the underlying

structure (Figures 2.7(e) and 2.7(f)). The results for the third data set S-curve (Figure 2.8) are

similar to those of swiss roll, with the exception that Laplacian eigenmap can recover the desired

structure using the first two extracted features.

In addition to these synthetic data sets, we have also tested these nonlinear mapping algorithms

on a high-dimensional real world data set: the face images used in [175] The task here is to classify a

64 by 64 face image in this data set as either the “Asian class” or the “non-Asian class”. This data

set will be described in more details in Section 3.3. The results of mapping these 4096D data points

to 3D can be seen in Figure 2.9. Data points from the two classes are shown in different colors. The

(training) error rates using quadratic discriminant analysis are also computed for different mappings.

As we can see from Figures 2.9(a), 2.9(d), 2.9(e) and 2.9(f), the mapping results by Laplacian

eigenmap, KPCA, PCA and Sammon’s mapping are not very useful. The two classes are not well-

separated, and the error rates are also high. ISOMAP maps the two classes more separately and has

smaller error rates (Figure 2.9(b)). For LLE (Figure 2.9(c)), although the mapping results look a

bit unnatural, the error rate turns out to be the smallest, indicating the two classes are reasonably

separated. It should be noted that the intrinsic dimensionality of this data set is probably higher

than 3. So, mapping the data to 3D, while good for visualization, can lose some information and is

suboptimal for classification.

From these experiments, we can see that both ISOMAP and LLE recover the intrinsic structure

of the data sets well. The performance of Laplacian eigenmap is less satisfactory. We have attempted

to set the edge weight by the exponential function of distances (Equation (2.16)) instead of one, but

the preliminary results suggest that a good choice of the width parameter t is hard to obtain. The

standard PCA and Sammon’s mapping cannot recover the target structure of the data. It is not

surprising, because PCA is a linear algorithm and the underlying structure of the data cannot be

reflected by any linear function of the features. For Sammon’s mapping, it does not give very good

results because Sammon’s mapping is “global”, meaning that the relationship between all pairs of

data points in the 3D space is considered. Local properties of the manifold cannot be modeled. The

reason for the failure of KPCA is that the parametric representation of the manifold for swiss roll

and S-curve and the face images is hard to obtain, and is certainly not quadratic. So, the assumption

in KPCA is violated and this leads to poor results.

39



2.11 Summary

In this chapter, we have described different approaches for nonlinear mapping based on fairly differ-

ent principles. The algorithms ISOMAP, LLE, and Laplacian eigenmap are non-iterative and require

mainly eigen-decomposition, which is well understood with many off-the-shelf algorithms available.

ISOMAP, LLE, and Laplacian eigenmap are basically non-parametric algorithms. While this pro-

vides extra flexibility to model the manifold, more data points are needed to give a good estimate

of the low dimensional vector. The basic version of some of the algorithms (Sammon’s mapping,

ISOMAP, LLE, and Laplacian eigenmap) cannot generalize the mapping to patterns outside the

training set Y , though an out-of-sample extension has been proposed [17].

There are interesting connections between some of these algorithms. ISOMAP, LLE, and Lapla-

cian Eigenmap can be shown to be the special cases of KPCA [105]. The matrix M in LLE can be

shown to be related to the square of the Laplacian Beltrami operator [16], an important concept

in Laplacian eigenmap. While these techniques have been successfully applied to high dimensional

data sets like face images, digit images, texture images, motion data, and textual data, the relative

merits of these algorithms in practice are still not clear. More comparative studies like the one in

[196] would be helpful.
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Figure 2.5: Data sets used in the experiments for nonlinear mapping. The manifold and the data
points are shown. The data points are colored according to the major structure of the data as
perceived by human.
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Figure 2.6: Results of nonlinear mapping algorithms on the parabolic data set. “2nd and 3rd” in
the captions means that we are showing the second and the third components, instead of the first
two.
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Figure 2.7: Results of nonlinear mapping algorithms on the swiss roll data set. “2nd and 3rd” in
the captions means that we are showing the second and the third components, instead of the first
two.
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Figure 2.8: Results of nonlinear mapping algorithms on the S-curve data set.
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Figure 2.9: Results of nonlinear mapping algorithms on the face images. The two classes (Asians
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Chapter 3

Incremental Nonlinear

Dimensionality Reduction By

Manifold Learning

In Chapter 2, we discussed different algorithms to achieve dimensionality reduction by nonlinear

mapping. Most of these nonlinear mapping algorithms operate in a batch mode1, meaning that all

the data points need to be available during training. In applications like surveillance, where (image)

data are collected sequentially, batch method is computationally demanding: repeatedly running

the “batch” version whenever new data points become available takes a long time. It is wasteful

to discard previous computation results. Data accumulation is particularly beneficial to manifold

learning algorithms due to their non-parametric nature. Another reason for developing incremental

(non-batch) methods is that the gradual changes in the data manifold can be visualized. As more and

more data points are obtained, the evolution of the data manifold can reveal interesting properties

of the data stream. Incremental learning can also help us to decide when we should stop collecting

data: if there is no noticeable change in the learning result with the additional data collected, there

is no point in continuing. The intermediate result produced by an incremental algorithm can prompt

us about the existence of any “problematic” region: we can focus the remaining data collection effort

on that region. An incremental algorithm can be easily modified to incorporating “forgetting”, i.e.,

the old data points gradually lose their significance. The algorithm can then adjust the manifold in

the presence of the drifting of data characteristics. Incremental learning is also useful when there

is an unbounded stream of possible data to learn from. This situation can arise when a continuous

invariance transformation is applied to a finite set of training data to create additional data to reflect

pattern invariance.

In this chapter, we describe a modification of the ISOMAP algorithm so that it can update the

low dimensional representation of data points efficiently as additional samples become available.

Both the original ISOMAP algorithm [248] and its landmark points version [55] are considered.

We are interested in ISOMAP because it is intuitive, well understood, and produces good mapping

results [133, 276]. Furthermore, there are theoretical studies supporting the use of ISOMAP, such

as its convergence proof [18] and the conditions for successful recovery of co-ordinates [66]. There is

also a continuum extension of ISOMAP [282] as well as a spatio-temporal extension [133]. However,

1Sammon’s mapping can be implemented by a feed-forward neural network [180] and hence can be made online if
an online training rule is used.
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the motivation of our work is applicable to other mapping algorithms as well.

The main contributions of this chapter include:

1. An algorithm that efficiently updates the solution of the all-pairs shortest path problems.

This contrasts with previous work like [193], where different shortest path trees are updated

independently.

2. More accurate mappings for new points by a superior estimate of the inner products.

3. An incremental eigen-decomposition problem with increasing matrix size is solved by subspace

iteration with Ritz acceleration. This differs from previous work [270] where the matrix size

is assumed to be constant.

4. A vertex contraction procedure that improves the geodesic distance estimate without additional

memory.

The rest of this chapter is organized as follows. After a recap of ISOMAP in section 3.1, the

proposed incremental methods are described in section 3.2. Experimental results are presented in

section 3.3, followed by discussions in section 3.4. Finally, in section 3.5 we conclude and describe

some topics for future work.

3.1 Details of ISOMAP

The basic idea of the ISOMAP algorithm was presented in Section 2.6. It maps a high dimensional

data set y1, . . . ,yn in RD to its low dimensional counterpart x1, . . . ,xn in Rd, in such a way that

the geodesic distance between yi and yj on the data manifold is as close to the Euclidean distance

between xi and xj in Rd as possible. In this section, we provide more algorithmic details on how the

mapping is done. This also defines the notation that we are going to use throughout this chapter.

The ISOMAP algorithm has three stages. First, a neighborhood graph is constructed. Let ∆ij be

the (Euclidean) distance between yi and yj . A weighted undirected neighborhood graph G = (V,E)

with the vertex vi ∈ V corresponding to yi is constructed. An edge e(i, j) between vi and vj exists

if and only if yi is a neighbor of yj , i.e., yi ∈ N(yj). The weight of e(i, j), denoted by wij , is set

to ∆ij . The set of indices of the vertices adjacent to vi in G is denoted by adj(i).

ISOMAP proceeds with the estimation of geodesic distances. Let gij denote the length of the

shortest path sp(i, j) between vi and vj . The shortest paths are found by the Dijkstra’s algorithm

with different source vertices. The shortest paths can be stored efficiently by the predecessor matrix

πij , where πij = k if vk is immediately before vj in sp(i, j). If there is no path from vi to vj , πij
is set to 0. Conceptually, however, it is useful to imagine a shortest path tree T (i), where the root

node is vi and sp(i, j) consists of the tree edges from vi to vj . The subtree of T (i) rooted at va is

denoted by T (i; a). Since gij is the approximate geodesic distance between yi and yj , we shall call

gij the “geodesic distance”. Note that G = {gij} is a symmetric matrix.

Finally, ISOMAP recovers xi by using the classical scaling [49] on the geodesic distance. Define

X = [x1, . . . ,xn]. Compute B = −1/2HG̃H, where H = {hij}, hij = δij − 1/n and δij is

the delta function, i.e., δij = 1 if i = j and 0 otherwise. The entries g̃ij of G̃ are simply g2ij .

We seek XTX to be as close to B as possible in the least square sense. This is done by setting

X = [
√
λ1v1 . . .

√
λdvd]

T , where λ1, . . . , λd are the d largest eigenvalues of B, with corresponding

eigenvectors v1, . . . ,vd.
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3.2 Incremental Version of ISOMAP

The key computation in ISOMAP involves solving an all-pairs shortest path problem and an eigen-

decomposition problem. As new data arrive, these quantities usually do not change much: a new

vertex in the graph often changes the shortest paths among only a subset of the vertices, and the

simple eigenvectors and eigenvalues of a slightly perturbed real symmetric matrix stay close to their

original values. This justifies the reuse of the current geodesic distance and co-ordinate estimates

for update. We restrict our attention to knn neighborhood, since ε-neighborhood is awkward for

incremental learning: the neighborhood size should be constantly decreasing as additional data

points become available.

The problem of incremental ISOMAP can be stated as follows. Assume that the low dimensional

co-ordinates xi of yi for the first n points are given. We observe the new sample yn+1. How should

we update the existing set of xi and find xn+1? Our solution consists of three stages. The geodesic

distances gij are first updated in view of the change of neighborhood graph due to vn+1. The

geodesic distances of the new point to the existing points are then used to estimate xn+1. Finally,

all xi are updated in view of the change in gij .

In section 3.2.1, we shall describe the modification of the original ISOMAP for incremental

updates. A variant of ISOMAP that utilizes the geodesic distances from a fixed set of points

(landmark points) [55] is modified to become incremental in section 3.2.2. Because ISOMAP is

non-parametric, the data points themselves need to be stored. Section 3.2.3 describes a vertex

contraction procedure, which improves the geodesic distance estimate with the arrival of new data

without storing the new data. This procedure can be applied to both the variants of ISOMAP.

Throughout this section we assume d (dimensionality of the projected space) is fixed. This can be

estimated by analyzing either the spectrum of the target inner product matrix or the residue of the

low rank approximation as in [248], or by other methods to estimate the intrinsic dimensionality of

a manifold [143, 171, 47, 35, 33, 259, 207].

3.2.1 Incremental ISOMAP: Basic Version

We shall modify the original ISOMAP algorithm [248] (summarized in section 3.1) to become in-

cremental. Details of the algorithms as well as an analysis of their time complexity are given in

Appendix A. Throughout this section, the shortest paths are represented by the more economical

predecessor matrix, instead of multiple shortest path trees T (i).

3.2.1.1 Updating the Neighborhood Graph

Let A and D denote the set of edges to be added and deleted after inserting vn+1 to the neighborhood

graph, respectively. An edge e(i, n+ 1) should be added if (i) vi is one of the k nearest neighbors of

vn+1, or (ii) vn+1 replaces an existing vertex and becomes one of the k nearest neighbors of vi. In

other words,

A = {e(i, n+ 1) : ∆n+1,i ≤ ∆n+1,τn+1
or ∆i,n+1 ≤ ∆i,τi

}, (3.1)

where τi is the index of the k-th nearest neighbor of vi.

For D, note that a necessary condition to delete the edge e(i, j) is that vn+1 replaces vi (vj ) as

one of the k nearest neighbors of vj (vi). So, all the edges to be deleted must be in the form e(i, τi)

with ∆i,n+1 ≤ ∆i,τi
. The deletion should proceed if vi is not one of the k nearest neighbors of vτi

after inserting vn+1. Therefore,

D = {e(i, τi) : ∆i,τi
> ∆i,n+1 and ∆τi,i

> ∆τi,ιi}, (3.2)
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1: Input: e(a, b), the edge to be removed; {gij}; {πij}
2: Output: F(a,b), set of “affected” vertex pairs
3: Rab := ∅; Q.enqueue(a);
4: while Q.notEmpty do

5: t := Q.pop; Rab = Rab ∪ {t};
6: for all u ∈ adj(t) do

7: If πub = a, enqueue u to Q;
8: end for

9: end while{Construction of Rab finishes when the loop ends.}
10: F(a,b) := ∅;
11: Initialize T ′, the expanded part of T (a; b), to contain vb only;
12: for all u ∈ Rab do

13: Q.enqueue(b)
14: while Q.notEmpty do

15: t := Q.pop;
16: if πat = πut then

17: F(a,b) = F(a,b) ∪ {(u, t)};
18: if vt is a leaf node in T ′ then

19: for all vs in adj(t) do

20: Insert vs as a child of vt in T ′ if πas = t
21: end for

22: end if

23: Insert all the children of vt in T ′ to the queue Q;
24: end if

25: end while

26: end for{∀ u∈Rab, ∀ s∈T (u; b), sp(u, s) uses e(a, b).}

Algorithm 3.1: ConstructFab: F(a,b), the set of vertex pairs whose shortest paths are invalidated

when e(a, b) is deleted, is constructed. Rab is the set of vertices such that if u ∈ Rab, the shortest
path between a and u contains e(a, b).

where ιi is the index of the k-th nearest neighbor of vτi after inserting vn+1 in the graph. Note

that we have assumed there is no tie in the distances. If there are ties, random perturbation can be

applied to break the ties.

3.2.1.2 Updating the Geodesic Distances

The deleted edges can break existing shortest paths, while the added edges can create improved

shortest paths. This is much more involved than it appears, because the change of a single edge can

modify the shortest paths among multiple vertices.

Consider e(a, b) ∈ D. If sp(a, b) is not simply e(a, b), deletion of e(a, b) has no effect on the

geodesic distances. Hence, we shall suppose that sp(a, b) consists of the single edge e(a, b). We

propagate the effect of the removal of e(a, b) to the set of vertices Rab (Figure 3.1). Rab is used in

turn to construct F(a,b), the set of all (i, j) pairs with e(a, b) in sp(i, j). This is done by ConstructFab

(Algorithm 3.1), which finds all the vertices vt under T (a; b) such that sp(u, t) contains vb, where

u ∈ Rab. The set of vertex pairs whose shortest paths are invalidated due to the removal of edges

in D is thus F = ∪e(a,b)∈DF(a,b). The shortest path distances between these vertex pairs are

updated by ModifiedDijkstra (Algorithm 3.2) with source vertex vu and destination vertices C(u).

It is similar to the Dijkstra’s algorithm, except that only the geodesic distances from vu to C(u)

(instead of all the vertices) are unknown. Note that both vu and C(u) are derived from F .

The order of the source vertex in invoking ModifiedDijkstra can impact the run time significantly.

An approximately optimal order is found by interpreting F as an auxiliary graph B (the undirected

edge e(i, j) is in B iff (i, j) ∈ F ), and removing the vertices in B with the smallest degree in a greedy
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1: Input: u; C(u); {gij}; {wij}
2: Output: the updated geodesic distances {guv}
3: for all j ∈ C(u) do

4: H := adj(j) ∩
`

V/C(u)
´

;
5: δ(j) = mink∈H (guk + wkj), or ∞ if H = ∅;
6: Insert δ(j) to a heap with index j;
7: end for

8: while the heap is not empty do

9: k := the index of the entry by “Extract Min” on the heap;
10: C(u) := C(u)/{k}; guk := δ(k); gku := δ(k);
11: for all j ∈ adj(k) ∩ C(u) do

12: dist := guk + wkj ;
13: If guk + wkj < δ(j), perform “Decrease Key” on δ(j) to become dist;
14: end for

15: end while

Algorithm 3.2: ModifiedDijkstra: The geodesic distances from the source vertex u to the set of
vertices C(u) are updated.

1: Input: Auxiliary graph B
2: Output: None. The geodesic distances are updated as a side-effect
3: l[i] := an empty linked list, for i = 1, . . . , n;
4: for all vu ∈ B do

5: f := degree of vu in B. Insert vu to l[f ];
6: end for

7: pos := 1;
8: for i := 1 to n do

9: If l[pos] is empty, increment pos one by one and until l[pos] is not empty;
10: Remove vu, a vertex in l[pos], from the graph B;
11: Call ModifiedDijkstra(u, adj(u) in B);
12: for all vj that is a neighbor of vu in B do

13: Find f such that vj ∈ l[f ] by an indexing array;
14: Remove vj from l[f ] if f = 1, and move vj from l[f ] to l[f − 1] otherwise;
15: pos = min(pos, f − 1);
16: end for

17: end for

Algorithm 3.3: OptimalOrder: a greedy algorithm to remove the vertex with the smallest degree
in the auxiliary graph B. The removal of vu corresponds to the execution of ModifiedDijsktra

(Algorithm 3.2) with u as the source vertex.

manner (OptimalOrder, Algorithm 3.3). When vu is removed from B, ModifiedDijkstra is called

with source vertex vu and C(u) as the neighbors of vu in B.

The next stage of the algorithm finds the geodesic distances between vn+1 and the other vertices.

Since all the edges in A (edges to be inserted) are incident on vn+1, we have

gn+1,i = gi,n+1 = min
j such that
e(n+1,j)∈A

(
gij + wj,n+1

)
∀i. (3.3)

Finally, we consider how A can shorten other geodesic distances. This is done by first locating

all the vertex pairs (va, vb), both adjacent to vn+1, such that vb → vn+1 → va is a better shortest

path between va and vb. Starting from va and vb, UpdateInsert (Algorithm 3.4) searches for all the

vertex pairs that can use the new edge for a better shortest path, based on the updated graph.

For all the priority queues in this section, binary heap is used instead of the asymptotically faster

Fibonacci’s heap. Since the size of our heap is typically small, binary heap, with a smaller time
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(a) An example of neighborhood graph (b) The shortest path tree T (a) and Rab

Figure 3.1: The edge e(a, b) is to be deleted from the neighborhood graph shown in (a). The shortest
path tree T (a) is shown as directed arrows in (b). Rab (c.f. Algorithm 3.1) consists of all the vertices
vu such that sp(b, u) contains e(a, b), i.e., πub = a.

Figure 3.2: Effect of edge insertion. T (a) before the insertion of vn+1 is represented by the arrows
between vertices. The introduction of vn+1 creates a better path between va and vb. S denotes the
set of vertices such that t ∈ S iff sp(b, t) is improved by vn+1. Note that vt must be in T (n+1; a).
For each u ∈ S, UpdateInsert (Algorithm 3.4) finds t such that sp(u, t) is improved by vn+1, starting
with t = b.

constant, is likely to be more efficient.

3.2.1.3 Finding the Co-ordinates of the New Sample

The co-ordinate xn+1 is found by matching its inner product with xi to the values derived from the

geodesic distances. This approach is in the same spirit as the classical scaling [49] used in ISOMAP.

Define γ̃ij = ||xi − xj ||2 = ||xi||2 + ||xj ||2 − 2xTi xj . Since
∑n
i=1 xi = 0, summation over j and

then over i for γ̃ij leads to

||xi||2 =
1

n

(∑

j

γ̃ij −
∑

j

||xj ||2
)
,

∑

j

||xj ||2 =
1

2n

∑

ij

γ̃ij.

Similarly, if we define γi = ||xi − xn+1||2, we have

||xn+1||2 =
1

n

( n∑

i=1

γi −
n∑

i=1

||xi||2
)
,

xTn+1xi = −1

2

(
γi − ||xn+1||2 − ||xi||2

)
∀i.
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1: Input: a; b; {gij}; {wij}
2: Output: {gij} are updated because of the new shortest path va → vn+1 → vb.
3: S := ∅; Q.enqueue(a);
4: while Q.notEmpty do

5: t := Q.pop; S := S ∪ {t};
6: for all vu that are children of vt in T (n + 1) do

7: if gu,n+1 + wn+1,b < gu,b then

8: Q.enqueue(u);
9: end if

10: end for

11: end while{S has been constructed.}
12: for all u ∈ S do

13: Q.enqueue(b);
14: while Q.notEmpty do

15: t := Q.pop; gut := gtu := gu,n+1 + gn+1,t;
16: for all vs that are children of vt in T (n + 1) do

17: if gs,n+1 + wn+1,a < gs,a then

18: Q.enqueue(s);
19: end if

20: end for

21: end while

22: end for{∀ u ∈ S, update sp(u, t) if vn+1 helps.}

Algorithm 3.4: UpdateInsert: given that va → vn+1 → vb is a better shortest path between va
and vb after the insertion of vn+1, its effect is propagated to other vertices.

If we approximate γ̃ij by g2ij and γi by g2i,n+1, the target inner product fi between xn+1 and xi
can be estimated by

2fi ≈
∑
j g

2
ij

n
−
∑
lj g

2
lj

n2
+

∑
l g

2
l,n+1

n
− g2i,n+1. (3.4)

xn+1 is obtained by solving XT xn+1 = f in the least-square sense, where f = (f1, . . . , fn)T . One

way to interpret the least square solution is by noting that X = (
√
λ1v1 . . .

√
λdvd)

T , where

(λi,vi) is an eigenpair of the target inner product matrix. The least square solution can be written

as

xn+1 = (
1√
λ1

vT1 f , . . . ,
1√
λd

vTd f)T . (3.5)

The same estimate is obtained if Nyström approximation [89] is used.

A similar procedure is used to compute the out-of-sample extension of ISOMAP in [55, 17].

However, there is an important difference: in these studies, the inner product between the new

sample and the existing points is estimated by

2f̃i =

n∑

j=1

g2ij

n
− g2i,n+1. (3.6)

It is unclear how this estimate is derived. This estimate is different from that in Equation (3.4)

because
∑
l g

2
l,n+1/n−

∑
ij g

2
ij/n

2 does not vanish in general; in fact, most of the time this is a large

number. Empirical comparisons indicate that our inner product estimate given in Equation (3.4) is

much more accurate than the one in Equation (3.6).

Finally, the new mean is subtracted from xi, i = 1, . . . , (n+1), to ensure
∑n+1
i=1 xi = 0, in order

to conform to the convention in the standard ISOMAP.
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3.2.1.4 Updating the Co-ordinates

The co-ordinates xi should be updated in view of the modified geodesic distance matrix Gnew. This

can be viewed as an incremental eigenvalue problem, as xi can be obtained by eigen-decomposition.

However, since the size of the geodesic distance matrix is increasing, traditional methods (such as

those described in [270] or [30]) cannot be applied directly. We update X by finding the eigenvalues

and eigenvectors of Bnew by an iterative scheme. Note that gradient descent can be used instead

[168].

A good initial guess for the subspace of dominant eigenvectors of Bnew is the column space

of XT . Subspace iteration together with Rayleigh-Ritz acceleration [96] is used to find a better

eigen-space:

1. Compute Z = BnewV and perform QR decomposition on Z, i.e., we write Z = QR and let

V = Q.

2. Form Z = VTBnewV and perform eigen-decomposition of the d by d matrix Z. Let λi and

ui be the i-th eigenvalue and the corresponding eigenvector.

3. Vnew = V[u1 . . .ud] is the improved set of eigenvectors of Bnew.

Since d is small, the time for eigen-decomposition of Z is negligible. We do not use any variant

of inverse iteration because Bnew is not sparse and its inversion takes O(n3) time.

3.2.1.5 Complexity

In Appendix A.4, we show that the overall complexity of the geodesic distance update can be

written as O(q(|F | + |H |) + µν log ν + |A|2), where F and H contain vertex pairs whose geodesic

distances are lengthened and shortened because of vn+1, respectively, q is the maximum degree of

the vertices in the graph, µ is the number of vertices with non-zero degree in B, and ν = maxi κi.

Here, κi is the degree of the i-th vertex removed from the auxiliary graph B in Algorithm 3.3. We

conjecture that ν, on average, is of the order O(log µ). Note that µ ≤ 2|F |. The complexity is thus

O(q(|F | + |H |) + µ logµ log logµ + |A|2). In practice, the first two terms dominate, leading to the

effective complexity O(q(|F | + |H |).
We also want to point out that Algorithm 3.2 is fairly efficient; its complexity to solve the all-

pairs shortest path by updating all geodesic distances is O(n2logn+ n2q). This is the same as the

complexity of the best known algorithm for the all-pairs shortest path problem of a sparse graph,

which involves running Dijkstra’s algorithm multiple times with different source vertices. For the

update of co-ordinates, subspace iteration takes O(n2) time because of the matrix multiplication.

3.2.2 ISOMAP With Landmark Points

One drawback of the original ISOMAP is its quadratic memory requirement: the geodesic distance

matrix is dense and is of size O(n2), making ISOMAP infeasible for large data sets. Landmark

ISOMAP was proposed in [55] to reduce the memory requirement while lowering the computation

cost. Instead of all the pairwise geodesic distances, landmark ISOMAP finds a mapping that pre-

serves the geodesic distances originating from a small set of “landmark points”. This idea is not

entirely new, and the authors in [25] refer to it as the “reference point approach” in the context of

embedding.

Without loss of generality, let the first m points, i.e., y1, . . . ,ym, be the landmark points.

After constructing the neighborhood graph as in the original ISOMAP, landmark ISOMAP uses
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I := ∅;
for all (ri, si, w

old
i , wnew

i ) in the input do

Swap ri and si if vri
is a child of vsi

in T (a);
if vsi

is a child of vri
in T (a) then

J := {vsi
}∪ descendent of vsi

in T (a);
gaj = gaj + wnew

i − wold
i ∀j ∈ J ;

I = I ∪ J ;
end if

end for

for all j ∈ J do

b := mink∈adj(j) gak + wkj ; {Find a new path to vj}
Q.enqueue(j, arg mink∈adj(j) gak + wkj , b) if b < gaj

end for

Algorithm 3.5: InitializeEdgeWeightIncrease for the shortest path tree from va, T (a). The inputs

are the four tuples (ri, si, w
old
i , wnew

i ), meaning the weight of e(ri, rj ) should increase from wold
i

to wnew
i . Q is the queue of vertices to be processed in Algorithm 3.7.

the Dijkstra’s algorithm to compute the m × n landmark geodesic distance matrix G = {gij},
where gij is the length of the shortest path between vi (a landmark point) and vj . In [55] the

authors suggest that X can be found by first embedding the landmark points and then embedding

the remaining points with respect to the landmark points. This is similar to the modification of

the Sammon’s mapping made by Biswas et al. in [25] to cope with large data sets. However,

our preliminary experiments indicate that this is not very robust, particularly when the number

of landmark points is small. Instead, we follow the implementation of landmark ISOMAP2 and

decompose B = HmG̃Hn by singular value decomposition, B = USVT = (U(S)1/2)(V(S)1/2)T ,

where UTU and VTV are identity matrices of corresponding sizes, and S is a diagonal matrix of

singular values. The vectors corresponding to the largest d singular values are used to construct a

low-rank approximation, B ≈ QTX.

3.2.2.1 Incremental Landmark ISOMAP

After updating the neighborhood graph, the incremental version for landmark ISOMAP proceeds

with the update of geodesic distances. Since only the shortest paths from a small number of source

vertices are maintained, the computation that can be shared among different shortest path trees

is limited. Therefore, we update the shortest path trees independently by adopting the algorithm

I presented in [193], instead of the algorithm in section 3.2.1.2. First, Algorithm 3.5 is called to

initialize the edge weight increase, which includes edge deletion as a special case. Algorithm 3.7 is

then executed to rebuild the shortest path tree. Algorithm 3.6 is then called to initialize the edge

weight decrease, which includes edge insertion as a special case. Algorithm 3.7 is again called to

rebuild the tree. Deletion of edges is done before the addition of edges because this is more efficient

in practice.

The co-ordinate of the new point xn+1 is determined by solving a least-square problem similar

to that in section 3.2.1.3. The difference is that the columns of Q, instead of X, are used. So,

QT xn+1 = f is solved in the least-square sense. Finally, we use subspace iteration together with

Ritz acceleration [236] to improve singular vector estimates. The steps are

1. Perform SVD on the matrix BX, U1S1V
T
1 = BX

2We are referring to the “official” implementation by the authors of ISOMAP in http://isomap.stanford.edu.
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I := ∅;
for all (ri, si, w

old
i , wnew

i ) in the input do

Swap ri and si if ga,ri
> ga,si

;
diff := ga,ri

+ wnew
i − ga,si

;
if diff < 0 then

Move vsi
to be a child of vri

in T (a);
J := {vsi

}∪ descendent of vsi
in T (a);

gaj = gaj + diff ∀j ∈ J ;
I = I ∪ J ;

end if

end for

for all j ∈ J do

for all k ∈ adj(j) do

Q.enqueue(k, j, gaj + wjk) if gaj + wjk < gak

end for

end for

Algorithm 3.6: InitializeEdgeWeightDecrease for the shortest path tree from va, T (a). The inputs

are the four tuples (ri, si, w
old
i , wnew

i ), meaning the weight of e(ri, rj) should decrease from wold
i

to wnew
i . Q is the queue of vertices to be processed in Algorithm 3.7.

while Q.notEmpty do

(i, j, d) := ‘Extract Min” on Q;
diff = d − gai;
if diff < 0 then

Move vi to be a child of vj in T (a);
gai = d;
for all k ∈ adj(i) do

newd = gai + wik;
Q.enqueue(k,i,newd) if newd < gak;

end for

end if

end while

Algorithm 3.7: Rebuild T (a) for those vertices in the priority queue Q that need to be updated.

2. Perform SVD on the matrix BTU1, U2S2V
T
2 = BTU1

3. Set Xnew = U2(S2)1/2 and Qnew = U1(S2)1/2

As far as time complexity is concerned, the time to update one shortest path tree is

O(δd log δd + qδd), where δd is the minimum number of nodes that must change their distance

or parent attributes or both [193], and q is the maximum degree of vertices in the neighborhood

graph. The complexity of updating the singular vectors is O(nm), which is linear in n, because the

number of landmark points m is fixed.

3.2.3 Vertex Contraction

Owing to the non-parametric nature of ISOMAP, the data points collected need to be stored in the

memory in order to refine the estimation of the geodesic distances gij and the co-ordinates xi. This

can be undesirable if we have an arbitrarily large data stream.

One simple solution is to discard the oldest data point when a pre-determined number of data

points has been accumulated. This has the additional advantage of making the algorithm adaptive

to drifting in data characteristics. The deletion should take place after the completion of all the
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updates due to the new point. Deleting the vertex vi is easy: the edge deletion procedure is used to

delete all the edges incident on vi for both ISOMAP and landmark ISOMAP.

We can do better than deletion, however. A vertex contraction heuristic can be used to record

the improvement in geodesic distance estimate without storing additional points. Most of the in-

formation the new vertex vn+1 contains about the geodesic distance estimate is represented by the

shortest paths passing through vn+1. Suppose sp(a, b) can be written as va  vi → vn+1 → vb.

The geodesic distance between va and vb can be preserved by introducing a new edge e(i, b) with

weight (wi,n+1 + wn+1,b), even though vn+1 is deleted. Both the shortest path tree T (a) and

the graph are updated in view of this new edge. This procedure cannot create inconsistency in any

shortest path trees, because the subpath of any shortest path is also a shortest path. This heuristic

increases the density of the edges in the graph, however.

Which vertex should be contracted? A simple choice is to contract the new vertex vn+1 after

adjusting for the change of geodesic distances. Alternatively, we can delete the vertices that are

most “crowded” so that the points are spread more evenly along the manifold. This can be done by

contracting the non-landmark point whose nearest neighbor is the closest to itself.

3.3 Experiments

We have implemented our main algorithm in Matlab, with the graph theoretic parts written in C++.

The running time is measured on a Pentium IV 3.2 GHz PC with 512MB memory running Windows

XP, using the profiler of Matlab with the java virtual machine turned off.

3.3.1 Incremental ISOMAP: Basic Version

We evaluated the accuracy and the efficiency of our incremental algorithm on several data sets. The

first experiment was on the Swiss roll data set. It is a typical benchmark for manifold learning.

Because of its “roll” nature, geodesic distances are more appropriate in understanding the structure

of this data set than Euclidean distances. Initialization was done by finding the co-ordinate estimate

xi for 100 randomly selected points using the “batch” ISOMAP, with a knn neighborhood of size

6. Random points from the Swiss roll data set were added one by one, until 1500 points were

accumulated. The incremental algorithm described in section 3.2.1 was used to update the co-

ordinates. The first two dimensions of xi corresponded to the true structure of the manifold.

The gap between the second and the third eigenvalues is fairly significant and it is not difficult to

determine the intrinsic dimensionality as two for this data set. Figure 3.3 shows several snapshots

of the algorithm3. The black dots (x̃
(n)
i ) and the red circles (x

(n)
i ) correspond to the co-ordinates

estimated by the incremental and the batch version of ISOMAP, respectively. The red circles and the

black dots match very well, indicating that the co-ordinates updated by the incremental ISOMAP

follow closely with the co-ordinates estimated by the batch version. This closeness can be quantified

by an error measure defined as the square root of the mean square error between x̂
(n)
i and x

(n)
i ,

normalized by the total sample variance:

En =

√√√√√
1
n
∑n
i=1 ||x(n)

i − x̂
(n)
i ||2

1
n
∑n
i=1 ||x(n)

i ||2
. (3.7)

3The avi files can be found at http://www.cse.msu.edu/prip/ResearchProjects/iisomap/.
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Table 3.1: Run time (seconds) for batch and incremental ISOMAP. For batch ISOMAP, computation of xn+1 and updating of xi are performed
together. Hence there is only one combined run time.

Swiss roll S-curve Rendered face MNIST 2 ethn

Batch Incr. Batch Incr. Batch Incr. Batch Incr. Batch Incr.
Neighborhood graph 230.0 1.4 229.9 1.2 20.8 0.4 239.7 1.8 239.3 1.5
Geodesic distance 1618.5 53.2 1632.8 56.2 157.8 5.8 1683.9 41.0 1752.9 39.6
Computing xn+1 804.6

0.9
760.0

0.8
85.1

0.3
671.3

0.8
645.2

1.0
Updating xi 49.5 49.4 5.5 51.5 48.9

Table 3.2: Run time (seconds) for executing batch and incremental ISOMAP once for different number of points (n). “Dist” corresponds to the time
for distance computation for all the n points.

Swiss roll S-curve Rendered face MNIST 2 ethn

n Dist. Batch Incr. Dist. Batch Incr. Dist. Batch Incr. Dist. Batch Incr. Dist. Batch Incr.
500 0.09 0.66 0.04 0.09 0.64 0.04 0.16 0.60 0.05 0.28 0.62 0.04 1.19 0.61 0.04
1000 0.38 2.62 0.14 0.38 2.47 0.11 N/A N/A N/A 1.09 2.34 0.07 4.52 2.45 0.08
1500 0.84 5.72 0.17 0.84 5.65 0.25 N/A N/A N/A 2.42 5.41 0.18 10.06 5.65 0.15

5
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(a) Initial, n = 100 (b) Initial, n = 100 (c) Initial, n = 100
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(d) n = 500 (e) n = 500 (f) n = 500

Figure 3.3: Snapshots of “Swiss Roll” for incremental ISOMAP. In the first column, the circles and dots in the figures represent the co-ordinates
estimated by the batch and the incremental version, respectively. The square and asterisk denote the co-ordinates of the newly added point, estimated
by the batch and the incremental algorithm, respectively. The second column contains scatter plots, where the color of a point corresponds to the value
of the most dominant co-ordinate estimated by ISOMAP. The third column illustrates the neighborhood graphs, from which the geodesic distances
are estimated.
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Figure 3.3 (continued)
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Figure 3.4: Approximation error (En) between the co-ordinates estimated by the basic incremental
ISOMAP and the basic batch ISOMAP for different numbers of data points (n) for the five data
sets.
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Figure 3.4(a) displays En against the number of data points n for Swiss roll. We can see that the

proposed updating method is fairly accurate, with an average error of 0.05%. The “spikes” in the

graph correspond to the instances where many geodesic distances change dramatically because of

the creation or deletion of “short-cuts” in the neighborhood graph. These large errors fade very

quickly, however, as evident from the graph.

Table 3.1 shows the computation time decomposed into different tasks. Our incremental approach

has significant savings in all three aspects of ISOMAP: graph update, geodesic distance update, and

co-ordinate update. The computation time for the distances is not included in the table, because both

batch and incremental versions perform the same number of distance computations. Empirically,

we observed that for moderate number of data points, the time to update the geodesic distances is

longer than the time to update the co-ordinates, whereas the opposite is true when a large number

of points have been collected. This is probably due to the fact that the geodesic distances change

more rapidly when only a moderate amount of data are collected, whereas the time for matrix

multiplication becomes more significant with a larger number of co-ordinates. We have also run

the batch algorithm once for different numbers of data points (n). Table 3.2 shows the measured

time averaged over 5 identical trials, after excluding the time for distance computation. The time for

computing the distances for all the n points, together with the time to run the incremental algorithm

once to update when the n-th point arrives, is also included in the table. See Section 3.4 for further

discussion of the result.

The co-ordinates estimated with different number of data points are also compared with the

co-ordinates estimated with all the available data points. This can give us an additional insight

on how the estimated co-ordinates evolve to their final values as new data points gradually arrive.

Some snapshots are shown in Figure 3.5.

A similar experimental procedure was applied to other data sets. The “S-curve” data set, another

benchmark for manifold learning, contains points in a 3D space lying on a “S”-shaped surface, with

an effective dimensionality of two. The “rendered face” data set4 contains 698 face images with

size 64 by 64 rendered at different illumination and pose conditions. Some examples are shown in

Figure 3.6. The “MNIST digit 2” data set is derived from the digit images “2” from MNIST5, and

contains 28 by 28 digit images. Several typical images are shown in Figure 3.7. The rendered face

data set and the MNIST digit 2 data sets were used in the original ISOMAP paper [248]. Our last

data set, ethn, contains the face images used in [175]. The task of this data set is to classify a 64 by

64 face image as Asian or non-Asian. This database contains 1320 images for Asian class and 1310

images for non-Asian class, and is composed of several face image databases, including the PF01

database6, the Yale database7 the AR database [181], as well as the non-public NLPR database8.

Some example face images are shown in Figure 3.8. For all these images, the high dimensional

feature vectors were created by concatenating the image pixels. The neighborhood size for MNIST

digit 2 and ethn was set to 10 in order to demonstrate that the proposed approach is efficient and

accurate irrespective of the neighborhood used. The approximation error and the computation time

for these data sets are shown in Figure 3.4 and Table 3.1. We can see that the incremental ISOMAP

is accurate and efficient for updating the co-ordinates for all these data sets.

Since the ethn data set is from a supervised classification problem with two classes, we also

want to investigate the quality of the ISOMAP mapping with respect to classification. This is

4http://isomap.stanford.edu
5http://yann.lecun.com/exdb/mnist/.
6http://nova.postech.ac.kr/archives/imdb.html.
7http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
8Provided by Dr. Yunhong Wang, National Laboratory for Pattern Recognition, Beijing.
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(f) Final, n = 1500

Figure 3.5: Evolution of the estimated co-ordinates for Swiss roll to their final values. The black
dots denote the co-ordinates estimated with different number of samples, whereas red circles show
the co-ordinates estimated with all the 1500 points. The co-ordinates have been re-scaled to better
observe the trend.

Figure 3.6: Example images from the rendered face image data set. This data set can be found at
the ISOMAP web-site.

Figure 3.7: Example “2” digits from the MNIST database. The MNIST database can be found at
http://yann.lecun.com/exdb/mnist/.
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(a) Asians

(b) Non-Asians

Figure 3.8: Example face images from ethn database.
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Figure 3.9: Classification performance on ethn database for basic ISOMAP.
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done quantitatively by computing the leave-one-out nearest neighbor (with respect to L2 distance)

error rate using different dimensions of the co-ordinates estimated by incremental ISOMAP with

1500 points. For comparison, we project the data linearly to the best hyperplane by PCA and also

evaluate the corresponding leave-one-out error rate. Figure 3.9 shows the result. The representation

recovered by ISOMAP leads to a smaller error rate than PCA. Note that the performance of PCA

can be improved by rescaling each feature so that all of them have equal variance, though the

rescaling is essentially a post-processing step, not required by ISOMAP.

3.3.2 Experiments on Landmark ISOMAP

A similar experimental procedure was applied to the incremental landmark ISOMAP described in

section 3.2.2 for Swiss roll, S-curve, rendered face, MNIST digit 2, and ethn data sets. Starting

with 200 randomly selected points from the data set, random points were added until a total of

5000 points9 accumulated. Forty points from the initial 200 points were chosen randomly to be

the landmark points. Snapshots comparing the co-ordinates estimated by the batch version and

the incremental version for Swiss roll are shown in Figure 3.10. The approximation error and the

computation time are shown in Figure 3.11 and Table 3.3, respectively. The time to run the batch

version only once is listed in Table 3.4. Once again, the co-ordinates estimated by the incremental

version are accurate with respect to the batch version, and the computation time is much less. We

also consider the classification accuracy using landmark ISOMAP on all the 2630 images in the ethn

data set. The result is shown in Figure 3.12. The co-ordinates estimated by landmark ISOMAP

again lead to a smaller error rate than those based on PCA. The difference is more pronounced when

the number of dimensions is small (less than five).

3.3.3 Vertex Contraction

The utility of vertex contraction is illustrated in the following experiment. Consider a manifold of a

3-dimensional unit hemisphere embedded in a 10-dimensional space. The geodesic on this manifold

is simply the great circle, and the geodesic distance between x1 and x2 on the manifold is given

by cos−1(xT1 x2). Data points lying on this manifold are randomly generated. With K = 6, 40

landmark points and 1000 points in memory, vertex contraction is executed until 10000 points are

examined. The geodesic distances between the landmark points XL and the points in memory XM
are compared with the ground-truth, and the discrepancy is shown by the solid line in Figure 3.13. As

more points are encountered, the error decreases, indicating that vertex contraction indeed improves

the geodesic distance estimate. There is, however, a lower limit (around 0.03) on the achievable

accuracy, because of the finite size of samples retained in the memory. When additional points are

kept in the memory instead of being contracted, the improvement of geodesic distance estimate is

significantly slower (the dash-dot line in Figure 3.13). We can see that vertex contraction indeed

improves the geodesic distance estimate, partly because it spreads the data points more evenly, and

partly because more points are included in the neighborhood effectively.

3.3.4 Incorporating Variance By Incremental Learning

One interesting use of incremental learning is to incorporate invariance by “hallucinating” training

data. Given a training sample yi, additional training data y
(1)
i ,y

(2)
i , . . . can be created by applying

different invariance transformations on yi. The amount of training data can be unbounded, because

9When the data set has less than 5000 points, the experiment stopped after all the points have been used.
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Table 3.3: Run time (seconds) for batch and incremental landmark ISOMAP. For batch ISOMAP, computation of xn+1 and updating of xi are
performed together. Hence there is only one combined run time.

Swiss roll S-curve Rendered face MNIST 2 ethn

Batch Incr. Batch Incr. Batch Incr. Batch Incr. Batch Incr.
Neighborhood graph 8745.7 6.6 8692.7 7.1 20.2 0.5 8742.9 7.6 1296.0 3.3
Geodesic distance 824.3 38.9 879.9 39.2 6.5 0.5 913.3 16.9 217.3 6.0
Computing xn+1 199.1

0.5
200.8

0.9
6.6

0.1
210.2

0.9
69.5

0.5
Updating xi 61.4 62.5 1.2 43.0 17.1

Table 3.4: Run time (seconds) for executing batch and incremental landmark ISOMAP once for different number of points (n). “Dist” corresponds
to the time for distance computation for all the n points.

Swiss roll S-curve Rendered face MNIST 2 ethn

Dist. Batch Incr. Dist. Batch Incr. Dist. Batch Incr. Dist. Batch Incr. Dist. Batch Incr.
500 0.09 0.14 0.01 0.09 0.21 0.03 0.16 0.22 0.02 0.28 0.15 0.02 1.19 0.16 0.02
2000 1.53 1.56 0.02 1.50 1.54 0.03 N/A N/A N/A 4.25 1.55 0.01 17.70 1.57 0.02
3500 4.61 11.90 0.03 4.64 12.91 0.06 N/A N/A N/A 21.72 7.77 0.04 N/A N/A N/A
5000 208.52 168.01 0.05 338.12 174.63 0.06 N/A N/A N/A 501.81 226.25 0.05 N/A N/A N/A
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Figure 3.10: Snapshots of “Swiss roll” for incremental landmark ISOMAP. In the first column, the circles and dots in the figures represent the
co-ordinates estimated by the batch and the incremental version, respectively. The square and asterisk denote the co-ordinates of the newly added
point, estimated by the batch and the incremental algorithm, respectively. The second column contains scatter plots, where the color of a point
corresponds to the value of the most dominant co-ordinate estimated by ISOMAP. The third column illustrates the neighborhood graphs, from which
the geodesic distances are estimated. It is similar to Figure 3.3, except that the landmark version of ISOMAP is used instead.
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Figure 3.10 (continued)
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Figure 3.11: Approximation error (En) between the co-ordinates estimated by the incremental land-
mark ISOMAP and the batch landmark ISOMAP for different numbers of data points (n). It
is similar to Figure 3.4, except that incremental landmark ISOMAP is used instead of the basic
ISOMAP.
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Figure 3.12: Classification performance on ethn database, landmark ISOMAP.

the number of possible invariance transformations is infinite. This unboundedness calls for an

incremental algorithm, which can accumulate the effect of the data generated. This idea has been

exploited in [235] for improving the accuracy in digit classification. Given a digit image, simple

distortions like translation, rotation, and skewing are applied to create additional training data for

improving the invariance property of a neural network.

We tested a similar idea using the proposed incremental ISOMAP. The training data were gen-

erated by first randomly selecting an image from 500 digit “2” images in the MNIST training set.

The image was then rotated randomly by θ degree, where θ was uniformly distributed in [−30, 30].

The image was used as the input for the incremental landmark ISOMAP with 40 landmarks and

a memory size of 10000, with vertex contraction enabled. The training was stopped when 60000

training images were generated. We wanted to investigate how well the rotation angle is recovered

by the nonlinear mapping. This was done by using an independent set of digit “2” images from

the MNIST testing set, which was of size 1032. For each image ỹ(i), it was rotated by 15 different

angles: 30j/7 for j = −7, . . . , 7. The mappings of these 15 images, x̃
(i)
−7, . . . , x̃

(i)
7 , were found using

the out-of-sample extension of ISOMAP. If ISOMAP can discover the rotation angle, there should

exist a linear projection direction h such that hT x̃
(i)
l

≈ ci + l for all i and l, where ci is a constant

specific to ỹ(i). This is equivalent to

hT
(
x̃
(i)
l

− x̃
(i)
0

)
≈ l, (3.8)

which is an over-determined linear system. The goodness of the mapping x̃
(i)
l

in terms of how

well the rotation angle is recovered can thus be quantified by the residue of the above equation.

For comparison, a similar procedure was applied for PCA using the first 10000 generated images.

Figure 3.14 shows the result. We can see that the residue for ISOMAP is smaller than PCA,

indicating that ISOMAP recovers the rotation angle better. The residue is even smaller when

additional images are generated to improve the mapping.
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Figure 3.13: Utility of vertex contraction. Solid line: the root-mean-square error (when compared
with the ground truth) of the geodesic distance estimate for points currently held in memory when
vertex contraction is used. Dash-dot line: the corresponding root-mean-square error when the new
points are stored in the memory instead of being contracted.

3.4 Discussion

We have presented algorithms to incrementally update the co-ordinates produced by ISOMAP.

Our approach can be extended to other manifold learning algorithms; for example, creating an

incremental version of Laplacian eigenmap requires the update of the neighborhood graph and the

leading eigenvectors of a matrix (graph Laplacian) derived from the neighborhood graph.

The convergence of geodesic distance is guaranteed since the geodesic distances are maintained

exactly. Subspace iteration used in co-ordinate update is provably convergent if a sufficient number

of iterations is used, assuming all eigenvalues are simple, which is generally the case. The fact that

we only run subspace iteration once can be interpreted as trading off guaranteed convergence with

empirical efficiency. Since the change in target inner product matrix is often small, the eigenvector

improvement due to subspace iterations with different number of points is aggregated, leading to

the low approximation error as shown in Figures 3.4 and 3.11.

While running the proposed incremental ISOMAP is much faster than running the batch version

repeatedly, it is more efficient to run the batch version once using all the data points if only the

final solution is desired (compare Tables 3.1 and 3.2, as well as Tables 3.3 and 3.4). It is because

maintaining intermediate geodesic distances and co-ordinates accurately requires extra computation.

The incremental algorithm can be made faster if the geodesic distances are updated upon seeing p

subsequent points, p > 1. We first embed yn+1, . . . ,yn+p independently by the method in section

3.2.1.3. The geodesic distances among the existing points are not updated, and the same set of

xi is used to find xn+1, . . . ,xn+p. After that, all the geodesic distances are updated, followed by

the update of x1, . . . ,xn+p by subspace iteration. This strategy makes the incremental algorithm

almost p-times faster, because the time to embed the new points is very small (see the time for

“computing xn+1” in Tables 3.1 and 3.3). On the other hand, the quality of the embedding will

deteriorate because the embedding of the existing points cannot benefit from the new points. This
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Figure 3.14: Sum of residue square for 1032 images in 15 rotation angles. The larger the residue, the
worse the representation. “PCA” and “ISOMAP” correspond to the nonlinear mapping obtained
by PCA and ISOMAP when 10000 generated images are used for training, respectively. “ISOMAP
II”/“PCA II” and “ISOMAP III”/“PCA III” correspond to the result when the learning stops after
20000 and 50000 images are generated, respectively.

strategy is particularly attractive with large n, because the effect of yn+1, . . . ,yn+p on yn+p+1
is small.

Also, for a fixed amount of memory, the solution obtained by the incremental version can be

superior to that of the batch version. This is because the incremental version can perform vertex

contraction, thereby obtaining a better geodesic distance estimate. The incremental version can be

easily adopted to an unbounded data stream when training data are generated by applying invariance

transformation, too.

3.4.1 Variants of the Main Algorithms

Our incremental algorithm can be modified to cope with variable neighborhood definition, if the

user is willing to do some tedious book-keeping. We can, for example, use ε-neighborhood with

the value of ε re-adjusted whenever, say, 200 data points have arrived. This can be easily achieved

by first calculating the edges that need to be deleted or added because of the new neighborhood

definition. The algorithms in sections 3.2.1 and 3.2.2 are then used to update the geodesic distances.

The embedded co-ordinates can then be updated accordingly.

The supervised ISOMAP algorithm in [276], which utilizes a criterion similar to the Fisher

discriminant for embedding, can also be converted to become incremental. The only change is

that the subspace iteration method for solving a generalized eigenvalue problem is used instead.

The proposed incremental ISOMAP can be easily converted to incremental conformal ISOMAP

[55]. In conformal ISOMAP, the edge weight wij is ∆ij/
√
M(i)M(j), where M(i) denotes the

distance of yi from its k nearest neighbors. The computation of the shortest path distances and

eigen-decomposition remains the same. To convert this to its incremental counterpart, we need to

maintain the sum of the weights of the k nearest neighbors of different vertices. The change in

the edge weights due to the insertion and deletion of edges as a new point comes can be easily

tracked. The target inner product matrix is updated, and subspace iteration can be used to update

the embedding.
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3.4.2 Comparison With Out-of-sample Extension

One problem closely related to incremental nonlinear mapping is the “out-of-sample extension”

[17]: given the embedding x1, . . . ,xn for a “training set” y1, . . . ,yn, what is the embedding result

(xn+1) for a “testing” point yn+1? This is effectively the problem considered in section 3.2.1.3. In

incremental learning, however, we go beyond obtaining xn+1: the co-ordinate estimates x1, . . . ,xn
of the existing points are also improved by yn+1. In the case of incremental ISOMAP, this amounts

to updating the geodesic distances and then applying subspace iteration.

The out-of-sample extension is faster because it skips the improvement step. However, it is less

accurate, and cannot provide intermediate embedding with good quality as points are accumulated.

Incremental ISOMAP, on the other hand, utilizes the new samples to continuously improve the

co-ordinate estimates. Out-of-sample extension may be more appealing when a large number of

samples have been accumulated and the geodesic distances and x1, . . . ,xn are reasonably accurate.

Even in this case, though, the strategy of updating x1, . . . ,xn after p new points (with p > 1) have

been embedded works equally as well. The updating of geodesic distances and co-ordinates occurs

infrequently in this case, and its amortized computational cost is very low.

Incremental ISOMAP is also preferable to out-of-sample extension when there is a drifting of data

characteristics. In out-of-sample extension, the n points collected are assumed to be representative

of all future data points that are likely to be observed. There is no way to capture the change of

data characteristics. In incremental ISOMAP, however, we can easily maintain an embedding using

a window of the points recently encountered. Changes in data characteristics are captured as the

geodesic distances and co-ordinate estimates are updated. Vertex contraction should be turned off

if incremental ISOMAP is run in this mode, to ensure that the effect of old data points is erased.

3.4.3 Implementation Details

The subspace iteration in section 3.2.1.4 requires that the eigenvalues corresponding to the leading

eigenvectors have the largest absolute values. This can be violated if the target inner product matrix

has a large negative eigenvalue. To tackle this, we shift the spectrum and find the eigenvectors of

(B+αI) instead of B. Subspace iteration on (B+αI) can proceed in almost the same manner, because

(B+αI)v = B+αv. While a large value of α guarantees that all shifted eigenvalues are positive, this

has the adverse effect of reducing the rate of convergence of the eigenvectors, because the shift reduces

the ratio between adjacent eigenvalues. We empirically set α = max(−0.7λmin(B)−0.3λd-th(B), 0),

where λmin(B) and λd-th(B) denote the smallest (most negative) and the d-th largest eigenvalues,

respectively. The later is being maintained by the incremental algorithm, while the former can be

found by, say, residual norm bounds or Gerschgoren disk bounds. In practice, λmin(B) is found

at the initialization stage. This estimate is updated only when a large number of data points have

been accumulated.

During the incremental learning, the neighborhood graph may be temporarily disconnected. A

simple solution is to embed only the largest graph component. The excluded vertices are added

back for embedding again when they become reconnected as additional data points are encountered.

Alternatively, an edge can be added between the two nearest vertices to connect the two disconnected

components in the neighborhood graph.

3.5 Summary

Nonlinear dimensionality reduction is an important problem with applications in pattern recogni-

tion, computer vision, and machine learning. We have developed an algorithm for the incremental
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nonlinear mapping problem by modifying the well-known ISOMAP algorithm. The core idea is to

efficiently update the geodesic distances (a graph theoretic problem) and re-estimate the eigenvec-

tors (a numerical analysis problem), using the previous computation results. Our experiments on

synthetic data as well as real world images validate that the proposed method is almost as accurate

as running the batch version, while saving significant computation time. Our algorithm can also be

easily adopted to other manifold learning methods to produce their incremental versions.
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Chapter 4

Simultaneous Feature Selection

and Clustering

Hundreds of clustering algorithms have been proposed in the literature for clustering in different

applications. In this chapter, we examine a different aspect of clustering that is often neglected:

the issue of feature selection. Our focus will be on partitional clustering by a mixture of Gaussians,

though the method presented here can be easily generalized to other types of mixtures. We are

interested in mixture-based clustering because its statistical nature gives us a solid foundation for

analyzing its behavior. Also, it leads to good results in many cases. We propose the concept of feature

saliency and introduce an expectation-maximization (EM) algorithm to estimate it, in the context of

mixture-based clustering. We adopt the minimum message length (MML) model selection criterion,

so the saliency of irrelevant features is driven towards zero, which corresponds to performing feature

selection. The MML criterion and the EM algorithm are then extended to simultaneously estimate

the feature saliencies and the number of clusters.

The remainder of this chapter is organized as follows. We discuss the challenge of feature selection

in unsupervised domain in Section 4.1. In Section 4.2, we review previous attempts to solve the

feature selection problem in unsupervised learning. The details of our approach are presented in

Section 4.3. Experimental results are reported in Section 4.4, followed by comments on the proposed

algorithm in Section 4.5. Finally, we conclude in Section 4.6.

4.1 Clustering and Feature Selection

Clustering, similar to supervised classification and regression, can be benefited by using a good

subset of the available features. One simple example illustrating the corrupting influence of irrelevant

features can be seen in Figure 4.1, where the irrelevant feature makes it hard for the algorithm in [81]

to discover the two underlying clusters. Feature selection has been widely studied in the context of

supervised learning (see [101, 26, 122, 151, 153] and references therein, and also section 1.2.3.1), where

the ultimate goal is to select features that can achieve the highest accuracy on unseen data. Feature

selection has received comparatively very little attention in unsupervised learning or clustering. One

important reason is that it is not at all clear how to assess the relevance of a subset of features without

resorting to class labels. The problem is made even more challenging when the number of clusters is

unknown, since the optimal number of clusters and the optimal feature subset are inter-related, as

illustrated in Figure 4.2 (taken from [69]). Note that methods based on variance (such as principal

components analysis) need not select good features for clustering, as features with large variance can
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Figure 4.1: An irrelevant feature (x2) makes it difficult for the Gaussian mixture learning algorithm
in [81] to recover the two underlying clusters. Gaussian mixture fitting finds seven clusters when
both the features are used, but identifies only two clusters when the feature x1 is used. The curves
along the horizontal and vertical axes of the figure indicate the marginal distribution of x1 and x2,
respectively.

be independent of the intrinsic grouping of the data (see Figure 4.3). Another important problem

in clustering is the determination of the number of clusters, which clearly impacts and is influenced

by the feature selection issue. Most feature selection algorithms (such as [36, 151, 209]) involve a

combinatorial search through the space of all feature subsets. Usually, heuristic (non-exhaustive)

methods have to be adopted, because the size of this space is exponential in the number of features.

In this case, one generally loses any guarantee of optimality of the selected feature subset.

We propose a solution to the feature selection problem in unsupervised learning by casting it

as an estimation problem, thus avoiding any combinatorial search. Instead of selecting a subset of

features, we estimate a set of real-valued (actually in [0, 1]) quantities (one for each feature), which

we call the feature saliencies. This estimation is carried out by an EM algorithm derived for the

task. Since we are in the presence of a model-selection-type problem, it is necessary to avoid the

situation where all the features are completely salient. This is achieved by adopting a minimum

message length (MML, [264, 265]) penalty, as was done in [81] to select the number of clusters. The

MML criterion encourages the saliencies of the irrelevant features to go to zero, allowing us to prune

the feature set. Finally, we integrate the process of feature saliency estimation into the mixture

fitting algorithm proposed in [81], thus obtaining a method that is able to simultaneously perform

feature selection and determine the number of clusters.

This chapter is based on our journal publication in [163].

4.2 Related Work

Most of the literature on feature selection pertains to supervised learning (see Section 1.2.3.1).

Comparatively, not much work has been done for feature selection in unsupervised learning. Of

course, any method conceived for supervised learning that does not use the class labels could be
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Figure 4.2: The number of clusters is inter-related with the feature subset used. The optimal feature
subsets for identifying 3, 2, and 1 clusters in this data set are {x1, x2}, {x1}, and {x2}, respectively.
On the other hand, the optimal number of clusters for feature subsets {x1, x2}, {x1}, and {x2} are
also 3, 2, and 1, respectively.

used for unsupervised learning; this is the case for methods that measure feature similarity to detect

redundant features, using, e.g., mutual information [221] or a maximum information compression

index [188]. In [70, 71], the normalized log-likelihood and cluster separability are used to evaluate

the quality of clusters obtained with different feature subsets. Different feature subsets and different

numbers of clusters, for multinomial model-based clustering, are evaluated using marginal likelihood

and cross-validated likelihood in [254]. The algorithm described in [218] uses a LASSO-based idea

to select the appropriate features. In [51], the clustering tendency of each feature is assessed by

an entropy index. A genetic algorithm is used in [146] for feature selection in k-means clustering.

In [246], feature selection for symbolic data is addressed by assuming that irrelevant features are

uncorrelated with the relevant features. Reference [60] describes the notion of “category utility” for

feature selection in a conceptual clustering task. The CLIQUE algorithm [2] is popular in the data

mining community, and it finds hyper-rectangular shaped clusters using a subset of attributes for a

large database. The wrapper approach can also be adopted to select features for clustering; this has

been explored in our earlier work [82, 165].

All the methods referred to above perform “hard” feature selection (a feature is either selected or

not). There are also algorithms that assign weights to different features to indicate their significance.

In [190], weights are assigned to different groups of features for k-means clustering based on a score

related to the Fisher discriminant. Feature weighting for k-means clustering is also considered in

[187], but the goal there is to find the best description of the clusters, after they are identified.

The method described in [204] can be classified as learning feature weights for conditional Gaussian

networks. An EM algorithm based on Bayesian shrinking is proposed in [100] for unsupervised

learning.
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Figure 4.3: Deficiency of variance-based method for feature selection. Feature x1, although it
explains more data variance than feature x2, is spurious for the identification of the two clusters in
this data set.

4.3 EM Algorithm for Feature Saliency

In this section, we propose an EM algorithm for performing mixture-based (or model-based) clus-

tering with feature selection. In mixture-based clustering, each data point is modelled as having

been generated by one of a set of probabilistic models [125, 183]. Clustering is then done by learning

the parameters of these models and the associated probabilities. Each pattern is assigned to the

mixture component that most likely generated it. Although the derivations below refer to Gaussian

mixtures, they can be generalized to other types of mixtures.

4.3.1 Mixture Densities

A finite mixture density with k components is defined by

p(y) =
k∑

j=1

αj p(y|θj), (4.1)

where ∀j , αj ≥ 0;
∑
j αj = 1; each θj is the set of parameters of the j-th component (all components

are assumed to have the same form, e.g., Gaussian); and θ ≡ {θ1, ...,θk, α1, ..., αk} will denote

the full parameter set. The goal of mixture estimation is to infer θ from a set of n data points

Y = {y1, ...,yn}, assumed to be samples of a distribution with density given by (4.1). Each yi is a

d-dimensional feature vector [yi1, ..., yid]
T . In the sequel, we will use the indices i, j and l to run

through data points (1 to n), mixture components (1 to k), and features (1 to d), respectively.

As is well known, neither the maximum likelihood (ML) estimate,

θ̂ML = arg max
θ

{log p(Y|θ)} ,
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nor the maximum a posteriori (MAP) estimate (given some prior p(θ))

θ̂MAP = arg max
θ

{log p(Y|θ) + log p(θ)} ,

can be found analytically. The usual choice is the EM algorithm, which finds local maxima of these

criteria [183]. This algorithm is based on a set Z = {z1, ..., zn} of n missing (latent) labels, where

zi = [zi1, ..., zik], with zij = 1 and zip = 0, for p 6= j, meaning that yi is a sample of p(·|θj). For

brevity of notation, sometimes we write zi = j for such zi. The complete data log-likelihood, i.e.,

the log-likelihood if Z were observed, is

log p(Y ,Z|θ) =

n∑

i=1

k∑

j=1

zij log
[
αjp(yi|θj)

]
. (4.2)

The EM algorithm produces a sequence of estimates {θ̂(t), t = 0, 1, 2, ...} using two alternating

steps:

• E-step: Compute W = E[Z|Y , θ̂(t)], the expected value of the missing data given the current

parameter estimate, and plug it into log p(Y ,Z|θ), yielding the so-called Q-function Q(θ, θ̂(t)) =

log p (Y ,W|θ). Since the elements of Z are binary, we have

wi,j ≡ E
[
zij | Y , θ̂(t)

]
= Pr

[
zij = 1|yi, θ̂(t)

]
=

α̂j (t) p(yi|θ̂j(t))
k∑

j=1

α̂j (t) p(yi|θ̂k(t))

. (4.3)

Notice that αj is the a priori probability that zij = 1 (i.e., that yi belongs to cluster j), while wij
is the corresponding a posteriori probability, after observing yi.

• M-step: Update the parameter estimates,

θ̂(t+ 1) = arg max
θ

{Q(θ, θ̂(t)) + log p(θ)},

in the case of MAP estimation, or without log p(θ) in the ML case.

4.3.2 Feature Saliency

In this section we define the concept of feature saliency and derive an EM algorithm to estimate

its value. We assume that the features are conditionally independent given the (hidden) component

label, that is,

p(y|θ) =
k∑

j=1

αj p(y|θj ) =
k∑

j=1

αj

d∏

l=1

p(yl|θjl), (4.4)

where p(·|θjl) is the pdf of the l-th feature in the j-th component. This assumption enables us to

utilize the power of the EM algorithm. In the particular case of Gaussian mixtures, the conditional

independence assumption is equivalent to adopting diagonal covariance matrices, which is a common

choice for high-dimensional data, such as in näıve Bayes classifiers and latent class models, as well

as in the emission densities of continuous hidden Markov models.

Among different definitions of feature irrelevancy (proposed for supervised learning), we adopt

the one suggested in [210, 254], which is suitable for unsupervised learning: the l-th feature is

irrelevant if its distribution is independent of the class labels, i.e., if it follows a common density,
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Figure 4.4: An example graphical model for the probability model in Equation (4.5) for the case of
four features (d = 4) with different indicator variables. φl = 1 corresponds to the existence of an
arc from z to yl, and φl = 0 corresponds to its absence.

denoted by q(yl|λl). Let Φ = (φ1, ..., φd) be a set of d binary parameters, such that φl = 1 if feature

l is relevant and φl = 0, otherwise. The mixture density in (4.4) can then be re-written as

p(y|Φ, {αj}, {θjl}, {λl}) =

k∑

j=1

αj

d∏

l=1

[p(yl|θjl)]
φl [q(yl|λl)]

1−φl . (4.5)

A related model for feature selection in supervised learning has been considered in [197, 210]. Intu-

itively, Φ determines which edges exist between the hidden label z and the individual features yl in

the graphical model illustrated in Figure 4.4, for the case d = 4.

Our notion of feature saliency is summarized in the following steps: (i) we treat the φl’s as

missing variables; (ii) we define the feature saliency as ρl = p(φl = 1), the probability that the l-th

feature is relevant. This definition makes sense, as it is difficult to know for sure that a certain

feature is irrelevant in unsupervised learning. The resulting model (likelihood function) is written

as

p(y|θ) =

k∑

j=1

αj

d∏

l=1

(
ρlp(yl|θjl) + (1 − ρl)q(yl|λl)

)
, (4.6)

where θ = {{αj}, {θjl}, {λl}, {ρl}} is the set of all the parameters of the model.

Equation (4.6) can be derived as follows. We treat ρl = p(φl = 1) as a set of parameters

to be estimated (the feature saliencies). We assume the φl’s are mutually independent and also

independent of the hidden component label z for any pattern y. Thus,

p(y,Φ) = p(y|Φ)p(Φ)

=
( k∑

j=1

αj

d∏

l=1

(p(yl|θj l))
φl (q(yl|λl))

1−φl
) d∏

l=1

ρ
φl
l

(1 − ρl)
1−φl

=
k∑

j=1

αj

d∏

l=1

(ρlp(yl|θj l))
φl ((1 − ρl)q(yl|λl))

1−φl .

(4.7)
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Figure 4.5: An example graphical model showing the mixture density in Equation (4.6). The
variables z, φ1, φ2, φ3, φ4 are “hidden” and only y1, y2, y3, y4 are observed.

The marginal density for y is

p(y) =
∑

Φ

p(y,Φ) =

d∑

j=1

αj

∑

Φ

d∏

l=1

(ρlp(yl|θj l))
φl ((1 − ρl)q(yl|λl))

1−φl

=
k∑

j=1

αj

d∏

l=1

1∑

φl=0

(ρlp(yl|θj l))
φl ((1 − ρl)q(yl|λl))

1−φl

=

k∑

j=1

αj

d∏

l=1

(
p(yl|θj l)ρl + q(yl|λl)(1 − ρl)

)
,

(4.8)

which is just Equation (4.6). Another way to see how Equation (4.6) is obtained is to notice that

the conditional density of yl given z = j and φl, [p(yl|θjl)]
φl [q(yl|λl)]

1−φl , can be written as

φl p(yl|θjl) + (1 − φl) q(yl|λl), because φl is binary. Taking the expectation with respect to φl and

z leads to Equation (4.6).

The form of q(.|.) reflects our prior knowledge about the distribution of the non-salient features.

In principle, it can be any 1-D distribution (e.g., a Gaussian, a student-t, or even a mixture). We

shall limit q(.|.) to be a Gaussian, since this leads to reasonable results in practice.

Equation (4.6) has a generative interpretation. As in a standard finite mixture, we first select

the component label j by sampling from a multinomial distribution with parameters (α1, . . . , αk).

Then, for each feature l = 1, ..., d, we flip a biased coin whose probability of getting a head is ρl; if

we get a head, we use the mixture component p(.|θjl) to generate the l-th feature; otherwise, the

common component q(.|λl) is used. A graphical model representation of Equation (4.6) is shown in

Figure 4.5 for the case d = 4.

4.3.2.1 EM Algorithm

By treating Z (the hidden class labels) and Φ (the feature indicators) as hidden variables, one can

derive an EM algorithm for parameter estimation. The complete-data log-likelihood for the model

in Equation (4.6) is

P (yi, zi = j,Φ) = αj

d∏

l=1

(ρlp(yi l|θj l))
φl ((1 − ρl)q(yi l|λl))

1−φl . (4.9)
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Define the following quantities:

wij = p(zi = j|yi), uij l = p(zi = j, φl = 1|yi), vij l = p(zi = j, φl = 0|yi).

They are calculated using the current parameter estimate θnow. Note that (uij l+ vij l) = wij and
∑n
i=1

∑k
j=1wij = n. The expected complete data log-likelihood based on θnow is

Eθnow[log p(Y , z,Φ)]

=
∑

i,j,Φ

p(zi = j,Φ|yi)
(
logαj +

∑

l

(
φl(log p(yil|θj l) + log ρl)

+ (1 − φl)(log q(yil|λl) + log(1 − ρl))
))

=
∑

i,j

p(zi = j|yi) logαj +
∑

i,j

∑

l

1∑

φl=0

p(zi = j, φl |yi)
(
φl(log p(yil|θj l) + log ρl)

+ (1 − φl)(log q(yil|λl) + log(1 − ρl))
)

=
∑

j

(
∑

i

wij) logαj

︸ ︷︷ ︸
part 1

+
∑

j,l

∑

i

uij l log p(yil|θj l)
︸ ︷︷ ︸

part 2

+
∑

l

∑

i,j

vij l log q(yil|λl)

︸ ︷︷ ︸
part 3

+
∑

l

(
log ρl

∑

i,j

uij l + log(1 − ρl)
∑

i,j

vij l

︸ ︷︷ ︸
part 4

)
.

(4.10)

The four parts in the equation above can be maximized separately. Recall that the densities p(.)

and q(.) are univariate Gaussian and are characterized by their means and variances. As a result,

maximizing the expected complete data log-likelihood leads to the M-step in Equations (4.18)–(4.23).

For the E-step, observe that

p(φl = 1|zi = j,yi) =
p(φl = 1,yi|zi = j)

p(yi|zi = j)

=
ρlp(yl|θj l)

∏
l′6=l

(
ρl′p(yl′ |θj l′) + (1 − ρl′)q(yl′ |λl′)

)
∏
l′
(
ρ
l′p(yl′ |θj l′) + (1 − ρ

l′)q(yl′ |λl′)
)

=
ρlp(yl|θj l)

ρlp(yl|θj l) + (1 − ρl)q(yl|λl)
=
aij l

cij l
.

Therefore, equation (4.16) follows because

uij,l = p(φl = 1|zi = j,yi)p(zi = j|yi) =
aij l

cij l
wij . (4.11)

So, the EM algorithm is
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• E-step: Compute the following quantities:

aij l = p(φl = 1, yi l|zi = j) = ρl p(yi l|θj l) (4.12)

bij l = p(φl = 0, yi l|zi = j) = (1 − ρl) q(yi l|λl) (4.13)

cij l = p(yil|zi = j) = aijl + bijl (4.14)

wij = p(zi = j|yi) =
αj
∏
l cij l∑

j αj
∏
l cij l

(4.15)

uij l = p(φl = 1, zi = j|yi) =
aij l

cij l
wij (4.16)

vij l = p(φl = 0, zi = j|yi) = wij − uij l (4.17)

• M-step: Re-estimate the parameters according to following expressions:

α̂j =

∑
i wij∑
ij wij

=

∑
i wij

n
(4.18)

̂Mean in θj l =

∑
i uij l yi l∑
i uijl

(4.19)

̂Var in θj l =

∑
i uij l (yi l − ( ̂Mean in θj l))

2
∑
i uij l

(4.20)

̂Mean in λl =

∑
i(
∑
j vij l) yi l∑
ij vij l

(4.21)

̂Var in λl =

∑
i(
∑
j vij l)(yil − ( ̂Mean in λl))

2
∑
ij vij l

(4.22)

ρ̂l =

∑
i,j uij l∑

i,j uij l +
∑
i,j vij l

=

∑
i,j uij l

n
. (4.23)

In these equations, the variable uij l measures how important the i-th pattern is to the j-th

component, when the l-th feature is used. It is thus natural that the estimates of the mean and the

variance in θjl are weighted sums with weight uij l. A similar relationship exists between
∑
j vij l

and λl. The term
∑
ij uij l can be interpreted as how likely it is that φl equals one, explaining why

the estimate of ρl is proportional to
∑
ij uij l.

4.3.3 Model Selection

Standard EM for mixtures exhibits some weaknesses, which also affect the EM algorithm introduced

above: it requires knowledge of k (the number of mixture components), and a good initialization

is essential for reaching a good local optimum (not to mention the global optimum). To overcome

these difficulties, we adopt the approach in [81], which is based on the minimum message length

(MML) criterion [265, 264].

The MML criterion for our model consists of minimizing, with respect to θ, the following cost

function (after discarding the order one term)

− log p(Y|θ) +
k + d

2
logn+

r

2

d∑

l=1

k∑

j=1

log(nαjρl) +
s

2

d∑

l=1

log(n(1 − ρl)), (4.24)
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where r and s are the number of parameters in θj l and λl, respectively. If p(.|.) and q(.|.) are

univariate Gaussians (arbitrary mean and variance), r = s = 2. Equation (4.24) is derived by

considering the minimum message length (MML) criterion (see [81] for details and references)

θ̂ = arg min
θ

{
− log p(θ) − log p(Y|θ) +

1

2
log |I(θ)| + c

2
(1 + log

1

12
)
}
, (4.25)

where θ is the set of parameter of the model, c is the dimension of θ, I(θ) = −E[D2
θ

log p(Y|θ)]
is the (expected) Fisher information matrix (the negative expected value of the Hessian of the log-

likelihood), and |I(θ)| is the determinant of I(θ). The information matrix for the model (4.6) is very

difficult to obtain analytically. Therefore, as in [81], we approximate it by the information matrix of

the complete data log-likelihood, Ic(θ). By differentiating the logarithm of equation (4.9), we can

show that

Ic(θ) = block-diag
[
M,

1

ρ1(1−ρ1)
, . . . ,

1

ρd(1−ρd)
, α1ρ1I(θ11), . . . , α1ρdI(θ1d),

α2ρ1I(θ21), . . . , α2ρdI(θ2d), . . . , αkρ1I(θ21), . . . , αkρdI(θ2d),

(1−ρ1)I(λ1), . . . , (1−ρd)I(λd)
]
,

(4.26)

where M is the information matrix of the multinominal distribution with parameters (α1, . . . , αk).

The size of I(θ) is (k + d + kdr + ds), where r and s are the number of parameters in θj l and λl,

respectively. Note that (ρl(1 − ρl))
−1 is the Fisher information of a Bernoulli distribution with

parameter ρl. Thus we can write

log |Ic(θ)| = log I({αj}) +

d∑

l=1

log I(ρl) + r

k∑

j=1

d∑

l=1

log(αjρl)

+

k∑

j=1

d∑

l=1

log I(θj l) + s

d∑

l=1

log(1 − ρl) +

d∑

l=1

log I(λl).

(4.27)

For the prior densities of the parameters, we assume that different groups of parameters are inde-

pendent. Specifically, {αj}, ρl (for different values of l), θj l (for different values of j and l) and

λl (for different values of l) are independent. Furthermore, since we have no knowledge about the

parameters, we adopt non-informative Jeffrey’s priors (see [81] for details and references), which are

proportional to the square root of the determinant of the corresponding information matrices. When

we substitute p(θ) and |I(θ)| into equation (4.25), and drop the order-one term, we obtain our final

criterion, which is equation (4.24).

From a parameter estimation viewpoint, Equation (4.24) is equivalent to a maximum a posteriori

(MAP) estimate,

θ̂ = arg max
θ

{
log p(Y|θ) − rd

2

k∑

l=1

logαj −
s

2

d∑

l=1

log(1 − ρl) −
rk

2

d∑

l=1

log ρl

}
, (4.28)
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with the following (Dirichlet-type, but improper) priors on the αj ’s and ρl’s:

p(α1, . . . , αk) ∝
k∏

j=1

α
−rd/2
j ,

p(ρ1, . . . , ρd) ∝
d∏

l=1

ρ
−rk/2
l

(1 − ρl)
−s/2.

Since these priors are conjugate with respect to the complete data likelihood, the EM algorithm

undergoes a minor modification: the M-step Equations (4.18) and (4.23) are replaced by

α̂j =
max(

∑
i wij − rd

2 , 0)
∑
j max(

∑
i wij − rd

2 , 0)
(4.29)

ρ̂l =
max(

∑
i,j uijl − kr

2 , 0)

max(
∑
i,j uijl − kr

2 , 0) + max(
∑
i,j vijl − s

2 , 0)
. (4.30)

In addition to the log-likelihood, the other terms in Equation (4.24) have simple interpretations.

The term k+d
2 logn is a standard MDL-type [215] parameter code-length corresponding to k αj

values and d ρl values. For the l-th feature in the j-th component, the “effective” number of data

points for estimating θj l is nαjρl. Since there are r parameters in each θj l, the corresponding

code-length is r2 log(nρlαj ). Similarly, for the l-th feature in the common component, the number

of effective data points for estimation is n(1 − ρl). Thus, there is a term s
2 log(n(1 − ρl)) in (4.24)

for each feature.

One key property of Equations (4.29) and (4.30) is their pruning behavior, forcing some of the

αj to go to zero and some of the ρl to go to zero or one. This pruning behavior also has the indirect

benefit of protecting us from almost singular covariance matrix in a mixture component: the weight

of such a component is usually very small, and the component is likely to be pruned in the next few

iterations. Concerns that the message length in (4.24) may become invalid at these boundary values

can be circumvented by the arguments in [81]: when ρl goes to zero, the l-th feature is no longer

salient and ρl and θ1l, . . . , θKl are removed; when ρl goes to 1, λl and ρl are dropped.

Finally, since the model selection algorithm determines the number of components, it can be

initialized with a large value of k, thus alleviating the need for a good initialization, as shown in

[81]. Because of this, a component-wise version of EM can be adopted [37, 81]. The algorithm is

summarized in Algorithm 4.1.

4.3.4 Post-processing of Feature Saliency

The feature saliencies generated by Algorithm 4.1 attempt to find the best way to model the data,

using different component densities. Alternatively, we can consider feature saliencies that best

discriminate between different components. This can be more appropriate if the ultimate goal is to

discover well-separated clusters. If the components are well-separated, each pattern is likely to be

generated by one component only. Therefore, one quantitative measure of the separability of the

clusters is

J =

n∑

i=1

log p(zi = ti|yi), (4.31)
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Input: Training data Y = {y1, . . . ,yn}, minimum number of components kmin
Output: Number of components k, mixture parameters {θjl}, {αj}, parameters of common distri-

bution {λl} and feature saliencies {ρl}
{Initialization}
Set the parameters of a large number of mixture components randomly
Set the common distribution to cover all data
Set the feature saliency of all features to 0.5
{Initialization ends; main loop begins}
while k > kmin do

while not reach local minimum do
Perform E-step according to Equations (4.12) to (4.17)
Perform M-step according to Equations (4.19) to (4.22), (4.29) and (4.30)
If αj becomes zero, the j-th component is pruned.

If ρl becomes 1, q(yl|λl) is pruned.
If ρl becomes 0, p(yl|θjl) are pruned for all j

end while
Record the current model parameters and its message length
Remove the component with the smallest weight

end while
Return the model parameters that yield the smallest message length

Algorithm 4.1: The unsupervised feature saliency algorithm.

where ti = arg maxj p(zi = j|yi). Intuitively, J is the sum of the logarithms of the posterior

probabilities of the data, assuming that each data point was indeed generated by the component

with maximum posterior probability (an implicit assumption in mixture-based clustering). J can

then be maximized by varying ρl while keeping the other parameters fixed.

Unlike the MML criterion, J cannot be optimized by an EM algorithm. However, by defining

hi lj =
p(yil|θj l) − q(yl|λl)

ρlp(yil|θj l) + (1 − ρl)q(yil|λl)
,

gi l =
k∑

j=1

wijhi lj,

we can show that

∂

∂ρl
logwij = hi lj − gi l,

∂2

∂ρl∂ρm
logwij =

n∑

i=1

(
gi lgim −

k∑

j=1

wijhi ljhimj

)
, for l 6= m,

∂2

∂ρ2
l

logwij =
n∑

i=1

(
g2i l − h2

i lj

)
.

The gradient and Hessian of J can then be calculated accordingly, if we ignore the dependence of

ti on ρl. We can then use any constrained non-linear optimization software to find the optimal

values of ρl in [0, 1]. We have used the MATLAB optimization toolbox in our experiments. After

obtaining the set of optimized ρl, we fix them and estimate the remaining parameters using the EM
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algorithm.

4.4 Experimental Results

4.4.1 Synthetic Data

The first synthetic data set consisted of 800 data points from a mixture of four equiprobable Gaus-

sians N (mi, I), i = {1, 2, 3, 4}, where m1 =
[
0
3

]
, m2 =

[
1
9

]
, m3 =

[
6
4

]
, m4 =

[
7
10

]
(Fig-

ure 4.6(a)). Eight “noisy” features (sampled from a N (0, 1) density) were then appended to this

data, yielding a set of 800 10-dimensional patterns. We ran the proposed algorithm 10 times, each

initialized with k = 30; the common component was initialized to cover the entire set of data, and

the feature saliency values were initialized at 0.5. A local minimum was reached if the change in

description length between two iterations was less than 10−7. A typical run of the algorithm is

shown in Figure 4.6. In all the ten random runs with this mixture, the four components were always

correctly identified. The saliencies of all the ten features, together with their standard deviations (er-

ror bars), are shown in Figure 4.7(a). We can conclude that, in this case, the algorithm successfully

locates the true clusters and correctly assigns the feature saliencies.

In the second experiment, we considered the Trunk data [122, 252], consisting of two 20-

dimensional Gaussians N (m1, I) and N (m2, I), where m1 = (1, 1√
2
, . . . , 1√

20
), m2 = −m1. Data

were obtained by sampling 5000 points from each of these two Gaussians. Note that the features are

arranged in descending order of relevance. As above, the stopping threshold was set to 10−7 and

the initial value of k was set to 30. In all the 10 runs performed, the two components were always

detected. The feature saliencies are shown in Figure 4.7(b). The lower the rank number, the more

important was the feature. We can see the general trend that as the feature number increases, the

saliency decreases, in accordance with the true characteristics of the data.

4.4.2 Real data

We tested our algorithm on several data sets with different characteristics (Table 4.1). The wine

recognition data set (wine) contains results of chemical analysis of wines grown in different cultivars.

The goal is to predict the type of a wine based on its chemical composition; it has 178 data points, 13

features, and 3 classes. The Wisconsin diagnostic breast cancer data set (wdbc) was used to obtain

a binary diagnosis (benign or malignant) based on 30 features extracted from cell nuclei presented

in an image; it has 576 data points. The image segmentation data set (image) contains 2320 data

points with 19 features from seven classes; each pattern consists of features extracted from a 3 × 3

region taken from 7 types of outdoor images: brickface, sky, foliage, cement, window, path, and

grass. The texture data set (texture) consists of 4000 19-dimensional Gabor filter features from a

collage of four Brodatz textures [127]. A data set (zernike) of 47 Zernike moments extracted from

images of handwriting numerals (as in [126]) is also used; there are 200 images for each digit, totaling

2000 patterns. The data sets wine, wdbc, image, and zernike are from the UCI machine learn-

ing repository (http://www.ics.uci.edu/~mlearn/MLSummary.html). This repository has been

extensively used in pattern recognition and machine learning studies. Normalization to zero mean

and unit variance is performed for all but the texture data set, so as to make the contribution of

different features roughly equal a priori. We do not normalize the texture data set because it is

already approximately normalized. Since these data sets were collected for supervised classification,

the class labels are not involved in our experiment, except for the evaluation of clustering results.

Each data set was first randomly divided into two halves: one for training, another for testing.
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Table 4.1: Real world data sets used in the experiment. Each data set has n data points with d
features from c classes. One feature with a constant value in image is discarded. Normalization is
not needed for texture because the features have comparable variances.

Abbr. Full name n d c Normalized?
wine wine recognition 178 13 3 yes
wdbc Wisconsin diagnostic breast cancer 569 30 2 yes
image image segmentation 2320 18 7 yes
texture Texture data set 4000 19 4 no
zernike Zernike moments of digit images 2000 47 10 yes

Table 4.2: Results of the algorithm over 20 random data splits and algorithm initializations. “Error”
corresponds to the mean of the error rates on the testing set when the clustering results are compared
with the ground truth labels. c denotes the number of Gaussian components estimated. Note that the
post-processing does not change the number of Gaussian components. The numbers in parenthesis
are the standard deviation of the corresponding quantities.

Algorithm 4.1 With post-processing Using all the features
error (in %) ĉ error (in %) error (in %) ĉ

wine 6.61 (3.91) 3.1 (0.31) 6.61 (3.23) 8.06 (3.73) 3 (0)
wdbc 9.55 (1.99) 5.65 (0.75) 9.35 (2.07) 10.09 (2.00) 2.70 (0.57)
image 20.19 (1.54) 23.1 (1.74) 20.28 (1.60) 32.84 (5.1) 13.8 (1.94)
texture 4.04 (0.76) 36.17 (1.19) 4.02 (0.74) 4.85 (0.98) 31.42 (2.81)
zernike 52.09 (2.52) 11.3 (0.98) 51.99 (2.32) 56.42 (3.62) 10 (0)

Algorithm 4.1 was run on the training set. The feature saliency values can be refined as described in

Section 4.3.4. We evaluated the results by interpreting the fitted Gaussian components as clusters

and compared them with the ground truth labels. Each data point in the test set was assigned to

the component that most likely generated it, and the pattern was classified to the class represented

by the component. We then computed the error rates on the test data. For comparison, we also ran

the mixture of Gaussian algorithm in [81] using all the features, with the number of classes of the

data set as a lower bound on the number of components. This gives us a fair ground for comparing

Gaussian mixtures with and without feature saliency. In order to ensure that we had enough data

with respect to the number of features for the algorithm in [81], the covariance matrices of the

mixture components were restricted to be diagonal, but were different for different components.

The entire procedure was repeated 20 times with different splits of data and initializations of the

algorithm. The results are shown in Table 4.2. We also show the feature saliency values of different

features in different runs as gray-level image maps in Figure 4.9. For illustrative purpose, we contrast

the clusters obtained for the image data set with the true class labels in Figure 4.8, after using PCA

to project the data into 3D.

From Table 4.2, we can see that the proposed algorithm reduces the error rates when compared

with using all the features for all five data sets. The improvement is more significant for the image

data set, but this may be due to the increased number of components estimated. The high error

rate for zernike is due to the fact that digit images are inherently more difficult to cluster: for

example, “4” can be written in a manner very similar to “9”, and it is difficult for any unsupervised

learning algorithm to distinguish among them. The post-processing can increase the “contrast” of

the feature saliencies, as the image maps in Figure 4.9 show, without deteriorating the accuracy. It

is easier to perform “hard” feature selection using these post-processed feature saliencies, if this is

required for the application.
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4.5 Discussion

4.5.1 Complexity

The major computational load in the proposed algorithm is in the E-step and the M-step. Each

E-step iteration computes O(ndk) quantities. As each quantity can be computed in constant time,

the time complexity for E-step is also O(ndk). Similarly, the M-step takes O(ndk) time. The total

amount of computation depends on the number of iterations required for convergence.

At a first sight, the amount of computation seems to be demanding. However, a close examination

reveals that each iteration (E-step and M-step) of the standard EM algorithm also takes O(ndk)

time. The value of k in the standard EM, though, is usually smaller, because the proposed algorithm

starts with a larger number of components. The number of iterations required for our algorithm

is also in general larger because of the increase in the number of parameters. Therefore, it is true

that the proposed algorithm takes more time than the standard EM algorithm with one parameter

setting. However, the proposed algorithm can determine the number of clusters as well as the feature

subset. If we want to achieve the same goal with the standard EM algorithm using a wrapper

approach, we need to re-run EM multiple times with a different number of components and different

feature subsets. The computational demand is much heavier than the proposed algorithm, even

with a heuristic search to guide the selection of feature subsets. Another strength of the proposed

algorithm is that by initialization with a large number of Gaussian components, the algorithm is less

sensitive to the local minimum problem than the standard EM algorithm. We can further reduce the

complexity by adopting optimization techniques applicable to standard EM for Gaussian mixture,

such as sampling the data, compressing the data [28], or using efficient data structures [203, 224].

For the post-processing step in Section 4.3.4, each computation of the quantity J and its gradient

and Hessian takes O(ndk) time. The number of iterations is difficult to predict, as it depends on

the optimization routine. However, we can always put an upper bound on the number of iterations

and trade speed for the optimality of the results.

4.5.2 Relation to Shrinkage Estimate

One interpretation of Equation (4.6) is that we “regularize” the distribution of each feature in

different components by the common distribution. This is analogous to the shrinkage estimator for

covariance matrices of class-conditional densities [68], which is a weighted sum of an estimate of the

class-specific covariance matrix, and the “global” covariance matrix estimate. In Equation (4.6), the

pdf of the l-th feature is also a weighted sum of a component-specific pdf and a common density. An

important difference here is that the weight ρl is estimated from the data, using the MML principle,

instead of being set heuristically, as is commonly done. As shrinkage estimators have found empirical

success to combat data scarcity, this “regularization” viewpoint is an alternative explanation for the

usefulness of the proposed algorithm.

4.5.3 Limitation of the Proposed Algorithm

A limitation of the proposed algorithm is the feature independence assumption (conditioned on

the mixture component). While, empirically, the violation of the independence assumption usually

does not affect the accuracy of a classifier (as in supervised learning) or the quality of clusters

(as in unsupervised learning), this has some negative influence on the feature selection problem.

Specifically, a feature that is redundant because its distribution is independent of the component

label given another feature cannot be modelled under the feature independence assumption. As a
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result, both features are kept. This explains why, in general, the feature saliencies are somewhat

high. The post-processing in Section 4.3.4 can cope with this problem because it considers the

posterior distribution and therefore can discard features that do not help in identifying the clusters

directly.

4.5.4 Extension to Semi-supervised Learning

Sometimes, we may have some knowledge of the class labels of different Gaussian components. This

can happen when, say, we adopt a procedure to combine different Gaussian components to form

a cluster (e.g., as in [216]), or in a semi-supervised learning scenario, where we can use a small

amount of labelled data to help us identify which Gaussian component belongs to which class. This

additional information can suggest combination of several Gaussian components to form a single

class/cluster, thereby allowing the identification of non-Gaussian clusters. The post-processing step

can take advantage of this information.

Suppose we know there are C classes and the posterior probability that pattern yi belongs to the

c-th class, denoted ric, can be computed as ric =
∑k
j=1 βcjP (zi = j|yi). For example, if we know

that the components 4, 6, and 10 are from class 2, we can set β2,4 = β2,6 = β2,10 = 1/3 and the

other β2,j to be zero. The post-processing is modified accordingly: redefine ti in Equation (4.31)

to ti = arg maxc ric, i.e., it becomes the class label for yi in view of the extra information; replace

logP (zi = ti|yi) in Equation (4.31) by log ri,ti
. The gradient and Hessian can still be computed

easily after noting that

∂wij

∂ρl
= wij

∂

∂ρl
logwij = wij(hilj − gil)

∂

∂ρl
log ric =

1

ric

k∑

j=1

βcj
∂

∂ρl
wij =

k∑

j=1

βcjwij

ric
hilj − gil.

(4.32)

We can then optimize the modified J in Equation (4.31) to carry out the post-processing.

4.5.5 A Note on Maximizing the Posterior Probability

The sum of the logarithm of the maximum posterior probability considered in the post-processing

in Section 4.3.4 can be regarded as the sample estimate of an unorthodox type of entropy (see [141])

for the posterior distribution. It can be regarded as the limit of Renyi’s entropy Rα(P ) when α

tends to infinity, where

Rα(P ) =
1

1 − α
log

k∑

j=1

pαi . (4.33)

When this entropy is used for parameter estimation under the maximum entropy framework, the

corresponding procedure is closely related to minimax inference. Other functions on the posterior

probabilities can also be used, such as the Shannon entropy of the posterior distribution. Preliminary

study shows that the use of different types of entropy does not affect the results significantly.

4.6 Summary

Given n points in d dimension, we have presented an EM algorithm to estimate the saliencies

of individual features and the best number of components for Gaussian-mixture clustering. The
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proposed algorithm can avoid running EM many times with different numbers of components and

different feature subsets, and can achieve better performance than using all the available features

for clustering. By initializing with a large number of mixture components, our EM algorithm is less

prone to the problem of poor local minima. The usefulness of the algorithm was demonstrated on

both synthetic and benchmark real data sets.
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Figure 4.6: An example execution of the proposed algorithm. The solid ellipses represent the
Gaussian mixture components; the dotted ellipse represents the common density. The number in
parenthesis along the axis label is the feature saliency; when it reaches 1, the common component
is no longer applicable to that feature. Thus, in (d), the common component degenerates to a line;
when the feature saliency for feature 1 also becomes 1, as in Figure 4.6(f), the common density
degenerates to a point at (0, 0).
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(b) Features saliencies: Trunk

Figure 4.7: Feature saliencies for (a) the 10-D 4 Gaussian data set used in Figure 4.6(a), and (b) the
Trunk data set. The mean values plus and minus one standard deviation over ten runs are shown.
Recall that features 3 to 10 for the 4 Gaussian data set are the noisy features.
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(b) Result of using all the features

−6 −5 −4 −3 −2 −1 0 1 2 3 4−50
0

50
−3

−2

−1

0

1

2

3

4

5

(c) The true class labels

Figure 4.8: A figure showing the clustering result on the image data set. Only the labels for the
testing data are shown. (a) The true class labels. (b) The clustering results by Algorithm 4.1. (c)
The clustering result using all the features. The data points are reduced to 3D by PCA. A cluster
is matched to its majority class before plotting. The error rates for the proposed algorithm and the
algorithm using all the features in this particular run are 22% and 30%, respectively.
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Figure 4.9: Image maps of feature saliency for different data sets with and without the post-
processing procedure. Feature saliency of 1 (0) is shown as a pixel of gray level 255 (0). The
vertical and horizontal axes correspond to the feature number and the trial number, respectively.
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Chapter 5

Clustering With Constraints

In Section 1.4, we introduced instance-level constraints as a type of side-information for clustering. In

this chapter, we shall examine the drawbacks of the existing clustering under constraints algorithms,

and propose a new algorithm that can remedy the defects.

Recall that there are two types of instance-level constraints: a must-link/positive constraint re-

quires two or more objects to be put in the same cluster, whereas a must-not-link/negative constraint

requires two or more objects to be placed in different clusters. Often, the constraints are pairwise,

though one can extend them to multiple objects [231, 167]. Constraints are particularly appropriate

in a clustering scenario, because there is no clear notion of the target classes. On the other hand,

the user can suggest if two or more objects should be included in the same cluster or not. This

can be done in an interactive manner, if desired. Side-information can improve the robustness of a

clustering algorithm towards model mismatch, because it provides additional clues for the desirable

clusters other than the shape of the clusters, as suggested by the parametric model. Side-information

has also been found to alleviate the problem of local minima of the clustering objective function.

Clustering with instance-level constraints is different from learning with partially-labeled data,

also known as transductive learning or semi-supervised learning [136, 288, 157, 169, 289, 287, 98, 195],

where the class labels of some of the objects are provided. Constraints only reveal the relationship

among the labels, not the labels themselves. Indeed, if the “absolute” labels can be specified, the

user is no longer facing a clustering task, and a supervised method should be adopted instead.

We contrast different learning settings according to the type of information available in Figure 5.1.

At one end of the spectrum, we have supervised learning (Figure 5.1(a)), where the labels of all the

objects are known. At the other end of the spectrum, we have unsupervised learning (Figure 5.1(d)),

where the label information is absent. In between, we can have partially labeled data (Figure 5.1(b)),

where the true class labels of some of the objects are known. The main scenario considered in this

paper is depicted in Figure 5.1(c): there is no label information, but must-link and must-not-link

constraints (represented by solid and dashed lines, respectively) are provided. Note that the settings

exemplified in Figures 5.1(a) and 5.1(b) are classification-oriented because there is a clear definition

of different classes. On the other hand, the setups in Figures 5.1(c) and 5.1(d) are clustering-oriented,

because no precise definitions of classes are given. The clustering algorithm needs to discover the

classes.

5.0.1 Related Work

Different algorithms have been proposed for clustering under instance-level constraints. In [262],

the four primary operators in COBWEB were modified in view of the constraints. The k-means
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(a) Supervised (b) Partially labeled

(c) Partially constrained (d) Unsupervised

Figure 5.1: Supervised, unsupervised, and intermediate. In this figure, dots correspond to points
without any labels. Points with labels are denoted by circles, asterisks and crosses. In (c), the
must-link and must-not-link constraints are denoted by solid and dashed lines, respectively.

algorithm was modified in [263] to avoid violating the constraints when different objects are assigned

to different clusters. However, the algorithm can fail even when a solution exists. Positive constraints

served as “short-cuts” in [148] to modify the dissimilarity measure for complete-link clustering. There

can be catastrophic consequences if a single constraint is incorrect, because the dissimilarity matrix

can be greatly distorted by a wrong constraint. Spectral clustering was modified in [138] to work

with constraints, which augmented the affinity matrix. Constraints were incorporated into image

segmentation algorithms by solving the constrained version of the corresponding normalized cut

problem, with smoothness of cluster labels explicitly incorporated in the formulation [279]. Hidden

Markov random field was used in [14] for k-means clustering with constraints. Constraints have also

been used for metric-learning [274]; in fact, the problems of metric-learning and k-means clustering

with constraints were considered simultaneously in [21]. Because the problem of k-means with

metric-learning is related to EM clustering with a common covariance matrix, the work in [21] may

be viewed as related to EM clustering with constraints. The work in [158] extended the work in [21]
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Summary Key ideas Examples

Distance edit-
ing

Modify the distance/proximity matrix due to the constraints [148, 138]

Constraints on
labels

The cluster labels are inferred under the restriction that the con-
straints are always satisfied

[262, 263,
279]

Hidden
Markov
random field

Cluster labels constitute a hidden Markov random field; feature
vectors are assumed to be independent of each other given cluster
labels

[14, 21, 12,
158, 176,
161, 286]

Modify genera-
tion model

Generation process of data points that participate in constraints
is modified

[231, 166,
167]

Constraints
resolution

Clustering solution is obtained by resolving constraints only [10]

Table 5.1: Different algorithms for clustering with constraints.

by studying the relationship between constraints and the kernel k-means algorithms. Ideas based

on hidden Markov random field have also been used for model-based clustering with constraints

[14, 176, 161]; the difference between these three methods lies in how the inference is conducted.

In particular, the method in [14] used iterative conditional mode (ICM), the method in [176] used

Gibbs sampling, and the method in [161] used a mean-field approximation. The approach in [286]

is similar to [161], since both used mean-field approximation. However, the authors of [286] also

considered the case when each class is modeled by more than one component. A related idea was

presented in [231], which uses a graphical model for generating the data with constraints. A fairly

different route to clustering under constraints was taken by the authors in [10] under the name

“correlation clustering”, which used only the positive and negative constraints (and no information

on the objects) for clustering. The number of clusters can be determined by the constraints.

Table 5.1 provides a summary of these algorithms for clustering under constraints. In most of

these approaches, clustering with constraints has been shown to improve the quality of clustering in

different domains. Example applications include text classification [14], image segmentation [161],

and video retrieval [231].

5.0.2 The Hypothesis Space

An important issue in parametric clustering under constraints, namely the hypothesis space, has

virtually been ignored in the current literature. Here, we adopt the terminology from inductive

learning and regard “hypothesis space” as the space of all possible solutions to the clustering task.

Since partitional clustering can be viewed as the construction of a mapping from a set of objects to

a set of cluster labels, its hypothesis space is the set of all possible mappings between the objects

(or their representations) and the cluster labels. In a non-parametric clustering algorithm such

as pairwise clustering [114] and methods based on graph-cut [234, 272], there is no restriction on

this hypothesis space. A particular non-parametric clustering algorithm selects the best clustering

solution in the space according to some criterion function. In other words, if a poor criterion function

is used (perhaps due to the influence of constraints), one can obtain a counter-intuitive clustering

solution such as the one in Figure 5.3(c), where very similar objects can be assigned different cluster

labels. Note that objects in non-parametric clustering, unlike in parametric clustering, may not

have a feature vector representation. They can be represented, for example, by pairwise affinity or

dissimilarity measure with higher order [1].

The hypothesis space in parametric clustering is typically much smaller, because the parametric

assumption imposes restrictions on the cluster boundaries. While these restrictions are generally

96



(a) (b) (c)

(d) (e) (f)

Figure 5.2: An example contrasting parametric and non-parametric clustering. The particular
parametric family considered here is a mixture of Gaussian with a common covariance matrix. This
is reflected by the linear cluster boundary. The clustering solutions in (a) to (c) are in the hypothesis
space induced by this model assumption, and the clustering solutions in (d) to (f) are outside the
hypothesis space, and thus can never be obtained, no matter which objective function is used. On
the other hand, all of these six solutions are within the hypothesis space of non-parametric clustering.
It is possible that the clustering solutions depicted in (d), (e), and (f) may be obtained if a poor
clustering objective function is used.

perceived as a drawback, they become advantageous when they prevent counter-intuitive clustering

solutions such as the one in Figure 5.3(c) from appearing. These clustering solutions are simply

outside the hypothesis space of parametric clustering, and are never attainable irrespective of how

the constraints modify the clustering objective function.

An example contrasting parametric and non-parametric clustering is shown in Figure 5.2. The

particular parametric family considered in this example is a Gaussian distribution with common

covariance matrix, resulting in linear cluster boundaries.

5.0.2.1 Inconsistent Hypothesis Space in Existing Approaches

The basic idea of most of the existing parametric clustering with instance-level constraints algorithms

[263, 14, 21, 12, 158, 176, 161, 286] is to use some variants of hidden Markov random fields to model

the cluster labels and the feature vectors. Given the cluster label of the object, its feature vector is

assumed to be independent of the feature vectors and the cluster labels of all the other objects. The

cluster labels, which are hidden (unknown), form a Markov random field, with the potential function

in this random field related to the satisfiability of the constraints based on the cluster labels.

There is an unfortunate consequence of adopting the hidden Markov random field, however. For

objects participating in the constraints, their cluster labels are determined by the cluster param-
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eters, associated feature vectors and the constraints. On the other hand, for data points without

constraints, the cluster labels are determined by only the cluster parameters and associated feature

vectors. We can thus see that there is an inconsistency in how the objects obtain their cluster labels.

In other words, two identical objects, one with a constraint and one without, can be assigned differ-

ent cluster labels! This is the underlying reason for the problem illustrated in Figure 5.3(d), where

two objects with almost identical feature vectors are assigned different labels due to the constraints.

From a generative viewpoint, the above inconsistency is caused by the difference in how data

points with and without constraints are generated. For the data points without constraint, each of

them is generated in an identical and independent manner according to the current cluster param-

eter value. On the other, all the data points with constraints are generated simultaneously by first

choosing the cluster labels according to the hidden Markov random field, followed by the generation

of the feature vectors based on the cluster labels. It is a dubious modeling assumption that “poste-

rior” knowledge such as the set of instance-level constraints, which are solicited from the user after

observing the data, should control how the data are generated in the first place.

Note that this inconsistency does not exist if all the objects to be clustered are involved in some

constraints determined by the properties of the objects. This is commonly encountered in image

segmentation [128], where pixel attributes (e.g. intensities or filter responses) and spatial coherency

based on the locations of the pixels are considered simultaneously to decide the segment label. In

this case, the cluster labels of all the objects are determined by both the constraints and the feature

vectors.

5.0.2.2 Proposed Solution

We propose to eliminate the problem of inconsistent hypothesis space by enforcing a uniform way to

determine the cluster label of an object. We use the same hypothesis space of standard parametric

clustering for parametric clustering under constraints. The constraints are only used to bias the

search of a clustering solution within this hypothesis space. Since each clustering solution in this

hypothesis space can be represented by the cluster parameters, the constraints play no role in

determining the cluster labels, given the cluster parameters. The quality of the cluster parameters

with respect to the constraints is computed by examining how well the cluster labels (determined by

the cluster parameters) satisfy the constraints. However, cluster parameters that fit the constraints

well may not fit the data well. We need a tradeoff between these two goals. This can be done by

maximizing a weighted sum of the data log-likelihood and a constraint fit term. The details will be

presented in Section 5.3.

5.1 Preliminaries

Given a set of n objects Y = {y1, . . . ,yn}, (probabilistic) parametric partitional clustering discovers

the cluster structure of the data under the assumption that data in a cluster are generated according

to a certain probabilistic model p(y|θj), with θj representing the parameter vector for the j-th

cluster. For simplicity, the number of clusters, k, is assumed to be specified by the user, though

model selection strategy (such as minimum description length [81] and stability [162]) can be applied

to determine k, if desired. The distribution of the data can be written as a finite mixture distribution,

i.e.,

p(y) =
∑

z
p(y|z)p(z) =

k∑

j=1

αjp(y|θj ). (5.1)
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Here, z denotes the cluster label, αj denotes p(z = j) (the prior probability of cluster j), and p(y|θj )
corresponds to p(y|z = j). Clustering is performed by estimating the model parameter θ, defined

by θ = (α1, . . . , αk, θ1, . . . , θk). By applying the maximum likelihood principle, θ can be estimated

as θ = argmaxθ′ L(θ′;Y), where the log-likelihood L(θ;Y) is defined as

L(θ;Y) =

n∑

i=1

log p(yi) =

n∑

i=1

log

k∑

j=1

αjp(y|θj ). (5.2)

This maximization is often done by the EM algorithm [58] by regarding zi (the cluster label of yi)

as the missing data. The posterior probability p(z = j|y) represents how likely it is that y belongs

to the j-th cluster. If a hard cluster assignment is desired, the MAP (maximum a posteriori) rule

can be applied based on the model in Equation (5.1), i.e., the object y is assigned to the j-th cluster

(z = j) if

j = arg max
l

αlp(y|θl)∑
l′ αlp(y|θl)

. (5.3)

5.1.1 Exponential Family

While there are many possibilities for the form of the probability distribution p(y|θj), it is very

common to assume that p(y|θj) belongs to the exponential family. The distribution p(y|θj ) is in

the exponential family if it satisfies the following two criteria: the support of p(y|θj ) (the set of y

with non-zero probability) is independent of the value of θj , and that p(y|θj ) can be written in the

form

p(y|θj ) = exp
(
φ(y)T ψ(θj) −A(θj )

)
. (5.4)

Here, φ(y) transforms the data y to become the “sufficient statistics”, meaning that φ(y) encom-

passes all the relevant information of y in the computation of p(y|θj ). The function A(θj ), also

known as the log-partition function, normalizes the density so that it integrates to one over all y.

The function ψ(θj) transforms the parameter and enables us to adopt different parameterizations

of the same density. When ψ(.) is the identity mapping, the density is said to be in natural param-

eterization, and θj is known as the natural parameter of the distribution. The function A(θj ) then

becomes the cumulant generating function, and the derivative of A(θj ) generates the cumulant of

the sufficient statistics. For example, the gradient and Hessian of A(θj ) (with respect to θj) lead

to the expected value and the covariance matrix for the sufficient statistics, respectively. Note that

A(θj ) is a convex function, and the domain of θj where the density is well-defined under natural

parameterization is also convex.

As an example, consider a multivariate Gaussian density with mean vector µ and covariance

matrix Σ. Its pdf is given by

p(y) = exp

(
−d

2
log(2π) +

1

2
log detΣ−1 − 1

2
(y − µ)TΣ−1(y − µ)

)
, (5.5)

where d is the dimension of the feature vector y. If we define Υ = Σ−1 and ν = Σ−1µ, the above

can be rewritten as

p(y) = exp

(
trace

(
−1

2
yyTΥ

)
+ yT ν − d

2
log(2π) +

1

2
log detΥ− 1

2
νTΥ−1ν

)
. (5.6)

From this, we can see that the sufficient statistics consist of −1
2yyT and y. The set of natural
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parameter is given by (Υ,ν). The parameter ν can take any value in Rd, whereas Υ can only

assume values in the positive-definite cone of d by d symmetric matrices. Both these two sets are

convex, as expected. The log-cumulant function is given by

A(θ) =
d

2
log(2π) − 1

2
log detΥ +

1

2
νΥ−1ν, (5.7)

which can be shown to be convex within the domain of Υ and ν, where the density is well-defined.

It is interesting to note that the exponential family is closely related to Bregman divergence [27].

For any Bregman divergence Dρ(., .) derived from a strictly convex function ρ(.), one can construct

a function fρ such that

p(y) = exp
(
−Dρ(y,µ)

)
fρ(y)

is a member of the exponential family. Here, µ is the moment parameter, meaning that it is the

expected value of the sufficient statistics1. The cumulant generating function of the density is given

by the Legendre dual of ρ(.). One important consequence of this relationship is that soft-clustering

(clustering where an object can be partially assigned to a cluster) based on any Bregman divergence

can be done by fitting a mixture of the corresponding distribution in the exponential family, as

argued in [9]. Since Bregman divergence includes many useful distance measures2 as special cases

(such as Euclidean distance and Kullback-Leibler divergence, and see [9] for more), a mixture density,

with each component density in the exponential family, covers many interesting clustering scenarios.

5.1.2 Instance-level Constraints

We assume that the user has provided side-information in the form of a set of instance-level con-

straints (denoted by C). The set of must-link constraints, denoted by C+, is represented by the

indicator variables ãhi, such that ãhi = 1 iff yi participates in the h-th must-link constraint. For

example, if the user wants to state that the pair (y2,y8) participates in the fifth must-link con-

straint, the user sets ã5,2 = 1, ã5,8 = 1, and ã5,i = 0 for all other i. This formulation, while

less explicit than the formulation in [161], which specifies the pairs of points participating in the

constraints directly, allows easy generalization to group constraints [166]: we simply set ãhi to one

for all yi that are involved in the h-th group constraint. We also define ahi = ãhi/
∑
i ãhi, where

ahi can be perceived as the “normalized” indicator matrix, in the sense that
∑
i ahi = 1. The set

of must-not-link constraints, denoted by C−, is represented similarly by the variables b̃hi and bhi.

Specifically, b̃hi = 1 if yi participates in the h-th must-not-link constraint, and bhi = b̃hi/
∑
i b̃hi.

Note that {ahi} and {bhi} are highly sparse, because each constraint provided by the user involves

only a small number of points (two if all the constraints are pairwise).

5.2 An Illustrative Example

In this section, we describe a simple example to illustrate an important shortcoming of parametric

clustering under constraints methods based on hidden Markov random field – the approach common

in the literature [263, 14, 21, 12, 158, 176, 161, 286]. In Figure 5.3, there are altogether 400 data

points generated by four different Gaussian distributions. The task is to split this data into two

clusters.

1The strict convexity of A(.) implies that there is an one-to-one correspondence between moment parameter and
natural parameter. While the existence of such a mapping is easy to show, constructing such a mapping can be
difficult in general.

2Strictly speaking, Bregman divergence can be asymmetric and hence is not really a distance function.
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Suppose the user, perhaps due to domain knowledge, prefers a “left” and a “right” cluster (as

shown in Figure 5.3(c)) to the more natural solution of a “top” and a “bottom” cluster (as shown in

Figure 5.3(b)). This preference can be expressed via the introduction of two must-link constraints,

represented by the solid lines in Figure 5.3(a). When we apply an algorithm based on hidden

Markov random field to discover the two clusters in this example, we can get a solution shown in

Figure 5.3(c). While cluster labels of the points involved in the constraints are modified by the

constraints, there is virtually no difference in the resulting cluster structure when compared with

the natural solution in Figure 5.3(b). This is because the change in the cluster labels of the small

number of points in constraints does not significantly affect the cluster parameters. Not only are

the clusters not what the user seeks, but also the clustering solution is counter-intuitive: the cluster

labels of points involved in the constraints are different from their neighbors (see the big cross and

plus in Figure 5.3(c); the symbols are enlarged for clarity).

Similar phenomena of “non-smooth” clustering solution have been observed in [279] in the context

of normalized cut clustering with constraints. A variation of the same problem has been used as

a motivation for the “space-level” instead of “instance-level” constraints in [148]. One way to

understand the cause of this problem is that the use of hidden Markov random field effectively puts

an upper bound on the maximum influence of a constraint, irrespective of how large the penalty

for constraint violation is. So, the adjustment of the tradeoff parameters cannot circumvent this

problem. Since this problem is not caused by the violation of any constraints, the inclusion of

negative constraints cannot help.

5.2.1 An Explanation of The Anomaly

In order to have a better understanding of why an “unnatural” solution depicted in Figure 5.3(d) is

obtained, let us examine the hidden Markov random field approach for clustering under constraints

in more detail. In this approach, the distribution of the cluster labels (represented by zi) and the

feature vectors (represented by yi) can be written as

p(y1, . . . ,yn|z1, . . . , zn, θ) =
∏

i=1

p(yi|zi)

p(z1, . . . , zn) ∝ exp
(
−H(z1, . . . , zn, C+, C−)

)
.

One typical choice of the potential function H(z1, . . . , zn, C+, C−) of the cluster labels is to count

the number of constraint violations:

H(z1, . . . , zn, C+, C−) = λ+
∑

(i,j)∈C+

I(zi 6= zj) + λ−
∑

(i,j)∈C−
I(zi = zj), (5.8)

where λ+ and λ− are the penalty parameters for the violation of the must-link and must-not-link

constraints, respectively. This potential function can be derived [161] by the maximum entropy

principle, with constraints (as in constrained optimization) on the number of violations of the two

types of instance-level constraints. The assignment of points to different clusters is determined by

the posterior probability p(z1, . . . , zn|y1, . . . ,yn, θ). Clustering is performed by searching for the
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(d) Solution by HMRF

Figure 5.3: A simple example of clustering under constraints that illustrates the limitation of hidden
Markov random field (HMRF) based approaches.

parameters that maximize the log-likelihood p(y1, . . . ,yn|θ). Because

p(y1, . . . ,yn|θ) =
∑

z1,...,zn

p(y1, . . . ,yn|z1, . . . , zn, θ)p(z1, . . . , zn|θ)

≈ arg max
z1,...,zn

p(y1, . . . ,yn|z1, . . . , zn, θ)p(z1, . . . , zn|θ),
(5.9)

the result of maximizing p(y1, . . . ,yn|θ) is often similar to the result of maximizing the “hard

assignment log-likelihood”, defined by arg max
z1,...,zn

p(y1, . . . ,yn|z1, . . . , zn, θ)p(z1, . . . , zn|θ). This

illustrates the relationship between “hard” clustering under constraints approaches (such as in [263])

and the “soft” approaches (such as in [161] and [14]).

For ease of illustration, assume that p(y|z = j) is a Gaussian with mean vector µj and identity

covariance matrix. The maximization of p(y1, . . . ,yn|z1, . . . , zn, θ)p(z1, . . . , zn|θ) for the clustering

under constraints example in Figure 5.3 is equivalent to the minimization of

n∑

i=1

2∑

j=1

I(zi = j)||yi − µj ||2 + λ+
∑

(i,j)∈C+

I(zi 6= zj),
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where the potential function of the Markov random field is as defined in Equation (5.8), and C+

contains the two must-link constraints. Note that the first term, the sum of square Euclidean

distances between data points and the corresponding cluster centers, is the cost function for standard

k-means clustering.

We are going to compare two cluster configurations. The configuration “LR”, which consists of

a “left” and a “right” cluster, can be represented by µLR
1 = (−2, 0) and µLR

2 = (2, 0), and this

corresponds to the partition sought by the user in Figure 5.3(c). The configuration “TB”, which

consists of a “top” and a “bottom” cluster, can be represented by µTB
1 = (0,−8) and µTB

2 = (0, 8),

and this corresponds to the “natural” solution shown in Figure 5.3(b). When λ+ is very small, the

natural solution “TB” is preferable to “LR”, because the points, on average, are closer to the cluster

centers in “TB”, and the penalty for constraint violation is negligible. As λ+ increases, the cost

for selecting “TB” increases. When (λ+ + ||yi − µTB
2 ||2) > ||yi − µTB

1 ||2, (yi is the point under

constraint in the upper left point clouds), switching the cluster label of yi from “x” to “+” leads to

a lower cost for the “TB” configuration. This switching of cluster label affects the cluster centers

in the “TB” configuration. However, its influence is minimal because there is only one such point,

and the sum of the square error term in the objective function is dominated by the remaining points

that are not involved in constraints. As a result, the sum of square term is minimized when the

cluster centers are effectively unmodified from the “TB” configuration. This leads to the counter-

intuitive clustering solution in Figure 5.3(c), where the constraints are satisfied, but the cluster

labels are “discontinuous” in the sense that the cluster label of an object in the middle of a dense

point cloud can assume a cluster label different from those of its neighbors. A related argument

has been used to motivate “space-level” constraints in preference to “instance-level” constraints in

[148]: the influence of instance-level constraints may fail to propagate to the surrounding points.

This problem may also be attributed to the problem of the inconsistent hypothesis space discussed

in Section 5.0.2.1, because the cluster labels of points under constraints are determined in a way

that is different from the points without constraints. When λ+ increases further, the cost for this

counter-intuitive configuration remains the same, because no constraints are violated. Let C denote

the cost of this counter-intuitive configuration.

We are now in a position to understand why it is not possible to attain the desirable configuration

“LR”. By pushing the vertical and horizontal point clouds away from each other, we can arbitrarily

increase the cost of the “LR” configuration, while keeping the cost of the “TB” configuration the

same. While the cost for the counter-intuitive configuration also increases when the two point clouds

are pushed apart, such an increase is very slow because only the distance of one point (as in the term

||yi−µTB
1 ||2) is affected. Consequently, the cost of “LR” configuration can be made larger than C,

which is indeed the case for the example in Figure 5.3. Therefore, assuming that the clustering under

constraints algorithm finds the clustering solution that minimizes the cost function, the desired “LR”

configuration can never be recovered.

Note that specifying additional constraints (either must-link or must-not-link) on points already

participating in the constraints cannot solve the problem, because none of the constraints are violated

in the counter-intuitive configuration. This problem remained unnoticed in previous studies, because

it is a consequence of a small number of constraints. When there are a large number of data points

involved in constraints, the sum of the square error is no longer dominated by data points not involved

in constraints. The enforcement of constraints changes the cluster labels, which in turn modifies

the cluster centers significantly during the minimization of the sum of error. The counter-intuitive

configuration is no longer optimal, and the “LR” configuration will be generated because of its

smaller cost. Note that this problem is independent of the probabilistic model chosen to represent

each cluster: the same problem can arise if there is no restriction on the covariance matrix, for
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example.

There are several ways to circumvent this problem. One possibility is to increase the number of

constraints so that the constraints involve a large number of data points. However, clustering under

constraints is most useful when there are few constraints, because the creation of constraints often

requires a significant effort on the part of the user. Instead of soliciting additional constraints from

the user, the system should provide the user an option to increase arbitrarily the influence of the

existing constraints – something the hidden Markov random field approach fails to do. One may also

try to initialize the cluster parameters intelligently [13] so that a desired local minimum (the “LR”

configuration in Figure 5.3(c)) is obtained, instead of the global minimum (the counter-intuitive

configuration in Figure 5.3(d) or the “TB” configuration in Figure 5.3(b), depending on the value

of λ+). However, this approach is heuristic. Indeed, the discussion above reveals a problem in the

objective function itself, and we should specify a more appropriate objective function to reflect what

the user really desires. The solution in [161] is to introduce a parameter (in addition to λ+ and λ−)

that can increase the influence of data points in constraints. However, this approach introduces an

additional parameter, and it is also heuristic. An alternative potential function for use in the hidden

Markov random field has been proposed in [14] to try to circumvent the problem.

Because the main problem lies in the objective function itself, we propose a principled solution

to this problem by specifying an alternative objective function for clustering under constraints.

5.3 Proposed Approach

Our approach begins by requiring the hypothesis space (see Section 5.0.2) used by parametric cluster-

ing under constraints to be the same as the hypothesis space used by parametric clustering without

constraints. This means that the cluster label of an object should be determined by its feature vector

and the cluster parameters according to the MAP rule in Equation (5.3) based on the standard finite

mixture model in Equation (5.1). The constraints should play no role in deciding the cluster labels.

This contrasts with the hidden Markov random field approaches (see Section 5.2), where both the

cluster labels and the cluster parameters can freely vary to minimize the cost function.

The desirable cluster parameters should (i) result in cluster labels that satisfy the constraints,

and (ii) explain the data well. These two goals, however, may conflict with each other, and a

compromise is made by the use of tradeoff parameters. Formally, we seek the parameter vector θ

that maximizes an objective function J (θ;Y , C), defined by

J (θ;Y , C) = L(θ;Y) + F(θ; C), (5.10)

F(θ; C) = −
m+∑

h=1

λ+
h
f+(θ; C+

h
) −

m−∑

h=1

λ−
h
f−(θ; C−

h
), (5.11)

where F(θ; C) denotes how well the clusters specified in θ satisfy the constraints in C. It consists of

two terms: f+(θ; C+
h

) and f−(θ; C−
h

). The loss functions f+(θ; C+
h

) and f−(θ; C−
h

) correspond to

the violation of the h-th must-link constraint (denoted by C+
h

) and the h-th must-not-link constraint

(denoted by C−
h

), respectively. There are altogetherm+ must-link constraints andm− must-not-link

constraints, i.e., |C+
h
| = m+ and |C−

h
| = m−. The log-likelihood term L(θ;Y), which corresponds to

the fit of the data Y by the model parameter θ, is the same as the log-likelihood of the finite mixture

model used in standard parametric clustering (Equation (5.2)). The parameters λ+
i and λ−i give us

flexibility to assign different weights on the constraints. In practice, they are set to a common value

λ. The value of λ can either be specified by the user, or it can be estimated by a cross-validation

104



type of procedure. For brevity, sometimes we drop the dependence of J on θ, Y and C and write J
as the objective function.

How can this approach be superior to the HMRF approaches? A counter-intuitive clustering

solution such as the one depicted in Figure 5.3(d) is no longer attainable. The cluster boundaries

are determined solely by the cluster parameters. So, in the example in Figure 5.3(d), the top-left

“big plus” point will assume the cluster label of “x”, whereas the bottom-right “big cross” point

will assume the cluster label of “+”, based on the value of the cluster parameters as shown in the

figure. The second benefit is that the effect of the instance-level constraints is propagated to the

surrounding points automatically, thereby achieving the effect of the desirable space-level constraints.

This is because parametric cluster boundaries divide the data space into different contiguous regions.

Another advantage of the proposed approach is that it can obtain clustering solutions unattainable

by HMRF approaches. For example, the “TB” configuration in Figure 5.3(b) can be made to have

an arbitrarily high cost by increasing the value of the constraint penalty parameter λ+. Since the

cost of the “LR” configuration is not affected by λ+, the “LR” configuration will have a smaller

cost than the “TB” configuration with a large λ+. When the cost function is minimized, the “LR”

configuration sought by the user will be returned.

5.3.1 Loss Function for Constraint Violation

What should be the form of the loss functions f+(θ; C+
h

) and f−(θ; C+
h

)? Suppose the points yi and

yj participate in a must-link constraint. This must-link constraint is violated if the cluster labels

zi (for yi) and zj (for yj ), determined by the MAP rule, are different. Define zi to be a vector

of length k, such that its l-th entry is one if zi = l, and zero otherwise. The number of constraint

violations can be represented by d(zi, zj) if d is a distance measure such that d(zi, zj ) = 1 if zi 6= zj
and zero, otherwise. Similarly, the violation of a must-not-link constraint between yi∗ and yj∗ can

be represented by 1 − d(zi∗ , zj∗), where yi∗ and yj∗ are involved in a must-not-link constraint.

Adopting such a distance function d(., .) as the loss functions f+(.) and f−(.) is, however, not

a good idea because d(zi, zj) is a discontinuous function of θ, due to the presence of arg max in

Equation (5.3). In order to construct an easier optimization problem, we “soften” zi and define a

new vector si by

sil =

(
αlp(yi|θl)

)τ
∑
l′
(
αl′p(yi|θl′)

)τ =
qτil∑
l′ q

τ
il′
, (5.12)

where qil = αlp(yi|θl), and τ is the smoothness parameter. When τ goes to infinity, si approaches

zi, whereas a small value of τ leads to a smooth loss function, which, in general, has a less severe

local optima problem.

Another issue is the choice of the distance function d(si, sj). Since sil ≥ 0 and
∑
l sil = 1, sil has

a probabilistic interpretation. A divergence is therefore more appropriate than a common distance

measure such as the Minkowski distance for comparing si and sj . We adopt the Jensen-Shannon
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divergence DJS(si, sj) [173] with a uniform class prior as the distance measure:

DJS(si, sj) =
1

2




k∑

l=1

sil log
sil
tl

+
k∑

l=1

sjl log
sjl

tl




=
1

2




k∑

l=1

sil log sil +
k∑

l=1

sjl log sjl


−

k∑

l=1

tl log tl,

(5.13)

where tl =
1

2
(sil + sjl).

There are several desirable properties of Jensen-Shannon divergence. It is symmetric, well-defined

for all si and sj , and its square root can be shown to be a metric [76, 199]. The minimum value

of 0 for DJS(., .) is attained only when si = sj . It is upper-bounded by a constant (log 2), and

this happens only when si and sj are farthest apart, i.e., when sil = 1 and sjh = 1 with l 6= h.

Because 1
log 2

DJS(zi, zj) = 1 if zi 6= zj and 0 otherwise, the Jensen-Shannon divergence satisfies

(up to a multiplicative constant) the desirable property of a distance measure as described earlier

in this section. Note that Kullback-Leibler divergence can become unbounded when si and sj have

different supports, and thus it is not an appropriate choice.

Jensen-Shannon divergence has an additional appealing property: it can be generalized to mea-

sure the difference between more than two distributions. This gives a very natural extension to

constraints at the group level [231, 166]. Suppose e objects participate in the h-th group-level must-

link constraint. This is denoted by the variables ahi introduced in Section 5.1.2, where ahi = 1/e if

yi participates in this constraint, and zero otherwise. The Jensen-Shannon divergence for the h-th

must-link constraint D+
JS

(h) is defined as

D+
JS

(h) =

n∑

i=1

ahi

k∑

l=1

sil log
sil

t+
hl

=

n∑

i=1

ahi

k∑

l=1

sil log sil −
k∑

l=1

t+
hl

log t+
hl
, (5.14)

where t+
hl

=

n∑

i=1

ahisil.

Similarly, the Jensen-Shannon divergence for the h-th must-not-link constraint D−
JS(h) is defined

as

D−
JS(h) =

n∑

i=1

bhi

k∑

l=1

sil log
sil

t−
hl

=

n∑

i=1

bhi

k∑

l=1

sil log sil −
k∑

l=1

t−
hl

log t−
hl
, (5.15)

where t−
hl

=

n∑

i=1

bhisil.

Here, bhi denotes the must-not-link constraint as discussed in Section 5.1.2. The proposed objective

function in Equation (5.10) can be rewritten as

J = L(θ;Y) + F(θ; C)

= Lannealed(θ;Y , γ) −
m+∑

h=1

λ+
h
D+
JS(h) +

m−∑

h=1

λ−
h
D−
JS(h),

(5.16)
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where the annealed log-likelihood Lannealed(θ;Y , γ), defined in Equation (B.2), is a generalization

of the log-likelihood intended for deterministic annealing. When γ = 1, Lannealed(θ;Y , γ) equals

L(θ;Y). Note that both D+
JS(h) and D−

JS(h) are functions of θ.

5.4 Optimizing the Objective Function

The proposed objective function (Equation (5.16)) is more difficult to optimize than the log-

likelihood (Equation (5.2)) used in standard parametric clustering. We cannot derive any efficient

convex relaxation for J , meaning that a bound-optimization procedure such as the EM algorithm

cannot be applied. We resort to general nonlinear optimization algorithms to optimize the objective

function. In Section 5.4.1, we shall present the general idea of these algorithms. After describing

some details of the algorithms in Section 5.4.2, we present the specific equations used for a mixture

of Gaussians in Section 5.4.3. Note that these algorithms are often presented in the literature as

minimization algorithms. Therefore, we minimize −J rather than maximizing J in practice.

5.4.1 Unconstrained Optimization Algorithms

Different algorithms have been attempted to optimize the proposed objective function J . They in-

clude conjugate gradient, quasi-Newton, preconditioned conjugate gradient, and line-search Newton.

Because these algorithms are fairly well-documented in the literature [87, 23], we shall only describe

their general ideas here. All of these algorithms are iterative and require an initial parameter vector

θ(0).

5.4.1.1 Nonlinear Conjugate Gradient

The key idea of nonlinear conjugate gradient is to maintain the descent directions d(t) in different

iterations, so that different d(t) are orthogonal (conjugate) to each other with respect to some

approximation of the Hessian matrix. This can prevent the inefficient “zig-zag” behavior encountered

in steepest descent, which always uses the negative gradient for descent. Initially, d(0) equals the

negative gradient of the function to be minimized. At iteration t, a line-search is performed along

d(t), i.e., we seek η such that the objective function evaluated at θ(t)+ηd(t) is minimized, where θ(t)

is the current parameter estimate. The parameter is then updated by θ(t+1) = θ(t) + ηd(t). The

next direction of descent d(t+1) is found by computing a vector that is (approximately) conjugate

to previous descent directions. Many different schemes have been proposed for this, and we follow

the suggestion given in the tutorial [232] and adopt the Polak-Ribiére method with restarting to

update d(t+1):

ζ(t+1) = max

(
(r(t+1))T (r(t+1) − r(t))

(r(t))T r(t)
, 0

)

d(t+1) = r(t+1) + ζ(t+1)d(t).

Note that line-search in conjugate gradient should be reasonably accurate, in order to ensure that

the search directions d(t) are indeed approximately conjugate (see the discussion in Chapter 7 in

[23]).

The main strength of conjugate gradient is that its memory usage is only linear with respect to

the number of variables, thereby making it attractive for large scale problems. Conjugate gradient
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has also found empirical success in fitting a mixture of Gaussians [222], and is shown to be more

efficient than the EM algorithm when the clusters are highly overlapping.

5.4.1.2 Quasi-Newton

Consider the second-order Taylor expansion for a real-valued function f(x), which is

f(θ) ≈ f(θ(t)) + (θ − θ(t))T g(θ(t)) +
1

2
(θ − θ(t))TH(θ(t))(θ − θ(t)), (5.17)

where g(x) and H(x0) denote the gradient and the Hessian of the function f(.) evaluated with

x = x0. For brevity, we shall drop the reference to θ(t) for both g and H. Assuming that H is positive

definite, the right-hand-side of the above approximation can be minimized by θ = θ(t) −H−1g.

The quasi-Newton algorithm does not require explicit knowledge of the Hessian H, which can

sometimes be tricky to obtain. Instead, it maintains an approximate Hessian H̃, which should satisfy

the quasi-Newton condition:

θ(t+1) − θ(t) = H̃−1(g(t+1) − g(t)).

Since the inversion of the Hessian can be computationally expensive, G(t), the inverse of the Hessian

is approximated instead. While different schemes to update G(t) are possible, the de facto standard

is the BFGS (Broyden-Fletcher-Goldfarb-Shanno) procedure. Below is its description taken from

[23]:

p = θ(t+1) − θ(t)

v = −(g(t+1) − g(t))

u =
1

pT v
− 1

vTG(t)v
G(t)v

G(t+1) = G(t) +
1

pT v
ppT − 1

vTG(t)v
G(t)vvTG(t) + (vTG(t)v)uuT .

Given that G(t) is positive-definite and the round-off error is negligible, the above update guarantees

that G(t+1) is positive-definite. The initial value of the approximated inverse Hessian G(0) is often

set to the identity matrix. Note that an alternative approach to implement quasi-Newton is to

maintain the Cholesky decomposition of the approximated Hessian instead. This has the advantage

that the approximated Hessian is guaranteed to be positive definite even when the round-off error

cannot be ignored.

In practice, the quasi-Newton algorithm is accompanied with a line-search procedure to cope

with the error in the Taylor approximation in Equation (5.17) when θ is far away from θ(t). The

descent direction used is −H̃−1g(t). Note that if H̃ is positive definite, −g(t)H̃−1g(t) will be

always negative and −H̃−1g(t) will be a valid descent direction.

The main drawback of the quasi-Newton method is its memory requirement. The approximate

inverse Hessian requires O(|θ|2) memory, where |θ| is the number of variables in θ. This can be slow

for high-dimensional θ, which is the case when the data yi is of high dimensionality.

5.4.1.3 Preconditioned Conjugate Gradient

Both conjugate gradients and quasi-Newton require only the gradient information of the function

to be minimized. Faster convergence is possible if we incorporate the analytic form of the Hessian
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matrix into the optimization procedure. However, what really can help is not the Hessian, but the

inverse of the Hessian. Since the inversion of the Hessian can be slow, it is common to adopt some

approximation of the Hessian matrix so that its inversion can be done quickly.

Preconditioned conjugate gradient (PCG) uses an approximation to the inverse Hessian to speed

up conjugate gradient. The approximation, also known as the preconditioner, is denoted by M.

PCG essentially creates an optimization problem that has M−1/2HM−1/2 as the “effective” Hes-

sian matrix and applies conjugate gradient to it, where H is the Hessian matrix of the original

optimization problem. If the “effective” Hessian matrix is close to the identity, conjugate gradient

can converge very fast.

We refer the reader to the appendix in [232] for the exact algorithm for PCG. Practical imple-

mentation of PCG does not require the computation of M−1/2. Only the multiplication by M−1 is

needed. Note that the preconditioner should be positive definite, or the descent direction computed

may not decrease the objective function. We can see that there are three requirements for a good

conditioner: positive definite, efficient inversion, and good approximation of the Hessian. The first

and the third requirements can contradict with each other, because the true Hessian is often not

positive-definite unless the objective function is convex. Finding a good preconditioner is an art,

and often requires insights into the problem at hand. However, general procedures for creating a

preconditioner also exist, which can be based on incomplete Cholesky factorization, for example.

5.4.1.4 Line-search Newton

Line-search Newton is almost the same as the quasi-Newton algorithm, except that the Hessian is

provided by the user instead of being approximated by the gradients. There is, however, a catch

here. The true Hessian may not be positive-definite, meaning that the minimization problem on

the right-hand-side of Equation (5.17) does not have a solution. Therefore, it is common to replace

the true Hessian with some approximated version that is positive-definite. Since H−1g is to be

computed, such an approximation should admit efficient inversion, or at least multiplication by its

inverse should be fast. There are two possible ways to obtain such an approximation. We can either

add ξI to the true Hessian, where ξ is some positive number determined empirically, or we can

“repair” H by adding some terms to it to convert it to a positive-definite matrix.

Note that for both line-search Newton and PCG, the approximated inverse of the Hessian, which

takes O(|θ|2) memory, need not be formed explicitly. The only thing needed is the ability to be

multiplied by the approximated inverse.

5.4.2 Algorithm Details

There are several issues that are common to all these optimization algorithms.

5.4.2.1 Constraints on the Parameters

The algorithms described in Section 5.4.1 are all unconstrained optimization algorithms, meaning

that there are no restrictions on the values of θ. However, our optimization problem contains the

constraint that the mixture weights αj are positive and sum to one, and the fact that the precision

matrix Υj is symmetric and positive definite. For {αj}, we re-parameterize by introducing a set of

variables {βj} and set

αj =
exp(βj)∑
l exp(βl)

. (5.18)
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For Υj , we can either re-parameterize by introducing Fj such that Υj = FjF
T
j , or we can modify

our optimization algorithm to cope with the constraints. The positive-definite constraint is enforced

by modifying the line-search routine so that the parameters are always feasible. This is a feasible

approach because the precision matrices in a reasonable clustering solution should not become near

singular. For the symmetric constraint, it is enforced by requiring that the descent direction in

line-search always has symmetric precision matrices.

5.4.2.2 Common Precision Matrix

A common practice of fitting a mixture of Gaussian is to assume a common precision matrix,

i.e., the precision matrices of all the k Gaussian components are restricted to be the same, i.e.,

Υ1 = · · · = Υk = Υ. Instead of the gradient with respect to different Υj , we need the gradient of

J with respect to Υ. This can be done easily because

∂J
∂Υ

=

k∑

j=1

∂J
∂Υj

∂Υj

∂Υ
=

k∑

j=1

∂J
∂Υj

.

Consequently, Equation (B.12) should be modified to

∂

∂Υ
J = −1

2

∑

ij

cijyiy
T
i +

∑

j

(
1

2
µjµ

T
j +

1

2
Υ−1

)∑

i

cij (5.19)

whereas Equation (B.20) should be modified to

∂

∂Υ
J =

1

2
Υ−1

∑

ij

cij −
1

2

∑

ij

cij(yi − µj)(yi − µj)T . (5.20)

The case for Cholesky parameterization is similar. We set F1 = · · · = Fk = F, and Equation (B.15)

should be modified to

∂

∂F
J = −

∑

ij

cijyiy
T
i F +

∑

j

(
µjµ

T
j + Υ−1

)
F
∑

i

cij , (5.21)

and Equation (B.21) should be modified to

∂

∂F
J = Υ−1F

∑

ij

cij −
∑

ij

cij(yi − µj)(yi − µj)TF. (5.22)

5.4.2.3 Line Search Algorithm

The line-search algorithm we used is based on the implementation in Matlab, which is in turn based

on section 2.6 in [86]. Its basic idea is to perform a cubic interpolation based on the value of the

function and the gradient evaluated at two parameter values. The line search terminates when the

Wolfe’s condition is satisfied. Following the advice in Chapter 7 of [23], the line-search is stricter for

both conjugate gradient and preconditioned conjugate gradient in order to ensure conjugacy. Note

that when the Gaussians are parameterized by their precision matrices, the line search procedure

disallows any parameter vector that has non-positive definite precision matrices.
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5.4.2.4 Annealing the Objective Function

The algorithms described in Section 5.4.1 find only the local minima of J based on the initial

parameter estimate θ(0). One strategy to alleviate this problem is to adopt a deterministic-annealing

type of procedure and use a “smoother” version of the objective function. The solution of this

“smoother” optimization problem is used as the initial guess for the actual objective function to

be optimized. Specifically, we adjust the two temperature-like parameters γ and τ in J defined in

Equation (5.16). When γ and τ are small, J is smooth and is almost convex, therefore it is easy

to optimize. The annealing stops when γ reaches one and τ reaches a pre-specified value τfinal,

which is set to four in our experiment. This is, however, a fairly insensitive parameter. Any number

between one and sixteen leads to similar clustering results.

5.4.3 Specifics for a Mixture of Gaussians

All the algorithms described in Section 5.4.1 require the gradient information of the objective func-

tion. In Appendix B.1, we have derived the gradient information with the assumption that each

mixture component is a Gaussian distribution. Recall that qij = log p(yi|θj ), and sij has been

defined in Equation (5.12). Define the following:

r̃ij =
q
γ
ij∑
j′ q

γ
ij′

wij =



m+∑

h=1

λ+
h
ahi −

m−∑

h=1

λ−
h
bhi


 sij log sij

− sij



m+∑

h=1

λ+
h
ahi log t+

hj
−
m−∑

h=1

λ−
h
bhi log t−

hj




cij = r̃ij − τ

(
wij − sij

k∑

l=1

wil

)
.

The partial derivative of J with respect to βj is

∂J
∂βl

=
∑

i

cil − αl

∑

ij

cij. (5.23)

Under the natural parameterization νl and Υl for the parameters of the l-th cluster, we have

∂J
∂νl

=
∑

i

cilyi − µl
∑

i

cil (5.24)

∂J
∂Υl

= −1

2

∑

i

cilyiy
T
i +

1

2

(
µlµ

T
l + Σl

)∑

i

cil. (5.25)

If the Cholesky parameterization Fl is used instead of Υl, we have

∂J
∂Fl

= −
∑

i

cilyiy
T
i Fl +

(
µlµ

T
l + Σl

)
Fl

∑

i

cil. (5.26)
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If the moment parameterization µl and Υl are used instead, we have

∂J
∂µl

= Υl

∑

i

cil(yi − µl) (5.27)

∂J
∂Υl

=
1

2
Σl

∑

i

cil −
1

2

∑

i

cil(yi − µl)T (yi − µl) (5.28)

and the corresponding partial derivative if Cholesky parameterization is used is

∂J
∂Υl

=


Σl

∑

i

cil −
∑

i

cil(yi − µl)T (yi − µl)


Fl. (5.29)

The Hessian of J is clumsier to present, and the reader can refer to Appendix B.2 for its exact form

under various parameterizations.

5.5 Feature Extraction and Clustering with Constraints

It turns out that the objective function introduced in Section 5.3 can be modified to simultaneously

perform feature extraction and clustering with constraints. There are three reasons why we are

interested in performing these two tasks together.

First, the proposed algorithm does not perform well for small data sets with a large number

of features (denoted by d), because the d by d covariance matrix is estimated from the available

data. In other words, we are suffering from the curse of dimensionality. The standard solution

is to preprocess the data by reducing the dimensionality using methods like principal component

analysis. However, the resulting low-dimensional representation may not be optimal for clustering

with the given set of constraints. It is desirable to incorporate the constraints in seeking a good

low-dimensional representation.

The second reason is from a modeling perspective. One can argue that it is inappropriate to model

the two desired clusters shown in Figure 5.3(d) by two Gaussians, because the distribution of the data

points are very “non-Gaussian”: there are no data points in the central regions of the two Gaussians,

which are supposed to have the highest data densities! If the data points are projected to the one-

dimensional subspace of the x-axis, the resulting two clusters follow the Gaussian assumption well

while satisfying the constraints. Note that PCA selects a projection direction that is predominantly

based on the y-axis because the data variance in that direction is large. However, the clusters formed

after such a projection will violate the constraints. In general, it is quite possible that given a high

dimensional data set, there exists a low-dimensional subspace such that the clusters after projection

are Gaussian-like, and the constraints are satisfied by those clusters.

The third reason is that the projection can be combined with the kernel trick to achieve clusters

with arbitrary shapes. A nonlinear transformation is applied to the data set to embed the data in a

high-dimensional feature space. A linear subspace of the given feature space is sought such that the

Gaussian clusters formed in that subspace are consistent with the given set of constraints. Because

of the non-linear transformation, linear cluster boundaries in that subspace correspond to nonlinear

boundaries in the original input space. The exact form of the nonlinear boundaries is controlled

by the type of the nonlinear transformation applied. Note that such transformation need not be

performed explicitly because of the kernel trick (see Section 2.5.1). In practice, kernel PCA is first

performed on the data in order to extract the main structure in the high dimensional feature space.

The number of features returned by kernel PCA should be large. The feature extraction algorithm
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in this section is then applied to the result of kernel PCA.

5.5.1 The Algorithm

Let xi be the result of projecting the data point yi into a d′-dimensional space, where d′ is small and

d′ < d, and d is the dimension of yi. Let PT be the d′ by d projection matrix, i.e., xi = PT yi, and

PTP = I. Let PTµj and Υ be the cluster center of the j-th Gaussian component and the common

covariance matrix, respectively. Let R be the Cholesky decomposition of Υ, i.e., Υ = RRT . We

have

p(xi|zi = j) = (2π)−d′/2(det Υ)1/2 exp

(
−1

2
(xi − PTµj)

TΥ(xi −PTµj)

)
. (5.30)

Because Υ = RTPTPR, we can rewrite the above as

log p(xi|zi = j)

= −d
′

2
log(2π) +

1

2
log detΥ − 1

2
(yi − µj)TPΥPT (yi − µj ),

= −d
′

2
log(2π) +

1

2
log detFTF− 1

2
(yi − µj)TFFT (yi − µj),

(5.31)

where F = PR. Note the similarity between this expression and that of log p(yi|zi = j) if we adopt

the parameterization Υ = FFT as discussed in Section 5.4.2.1. We have

∂

∂µl
log p(xi|zi = j) = FFT (yi − µj ), (5.32)

∂

∂F
log p(xi|zi = j) = F(FTF)−1 − (yi − µj)(yi − µj)TF. (5.33)

While P has an orthogonality constraint, there is no constraint on F, and thus we cast our opti-

mization problem in terms of F. The parameters F, µj and βj can be found by optimizing J ,

after substituting Equation (5.31) as log qij into Equation (5.16). In practice, the quasi-Newton

algorithm is used to find the parameters that minimize the objective function, because it is difficult

to inverse the Hessian efficiently.

It is interesting to point out that this subspace learning procedure is related to linear discriminant

analysis if the data points yi are standardized to have equal variance. If we fix Υ to be the identity

matrix, maximizing the log-likelihood is the same as minimizing (yi −µj)TPTP(yi −µj). This is

the within-class scatter of the j-th cluster. Since the sum of between-class scatter and the within-

class scatter is the total data scatter, which is constant because of the standardization, maximization

of the within-class scatter is the same as maximizing the ratio of between-class scatter to the within-

class scatter. This is what linear discriminant analysis does.

5.6 Experiments

To verify the effectiveness of the proposed approach, we have applied our algorithm to both synthetic

and real world data sets. We compare the proposed algorithm with two state-of-the-art algorithms

for clustering under constraints. The first one, denoted by Shental, is the algorithm proposed by

Shental et al. in [231]. It uses “chunklets” to represent the cluster labels of the objects involved in

must-link constraints, and a Markov network to represent the cluster labels of objects participating
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in must-not-link constraints. The EM algorithm is used for parameter estimation, and the E-step

is done by computations within the Markov network. It is not clear from the paper the precise

algorithm used for the inference in the E-step, though the Matlab implementation3 provided by

the authors seems to use the junction tree algorithm. This can take exponential time when the

constraints are highly coupled. This potential high time complexity is the motivation for the mean-

field approximation used in the E-step of [161]. The second algorithm, denoted by Basu, is the

constrained k-means algorithm with metric learning4 described in [21]. It is based on the idea of

hidden Markov random field, and it uses the constraints to adjust the metrics between different data

points. A parameter is needed for the strength of the constraints. Note that we do not compare our

approach with the algorithm in [161], because its implementation is no longer available.

5.6.1 Experimental Result on Synthetic Data

Our first experiment is based on the example in Figure 5.3(a), which contains 400 points generated

by four Gaussians centered at
[
2
8

]
,
[

2
−8

]
,
[−2
−8

]
and

[−2
8

]
, each with identity covariance matrix.

Recall that the goal is to group this data set into two clusters – a “left” and a “right” cluster –

based on the two must-link constraints. Specifically, points with negative and positive horizontal

co-ordinates are intended to be in two different clusters. Note that this synthetic example differs

from the similar one in [161] in that the vertical separation between the top and bottom point clouds

is larger. This increases the difference between the goodness of the “left/right” and “top/bottom”

clustering solutions, so that a small number of constraints is no longer powerful enough to bias

one clustering solution over the other as in [161]. The results of running the algorithms Shental

and Basu are shown in Figures 5.4(a) and 5.4(b), respectively. For Shental the two Gaussians

estimated are also shown. Not only did both algorithms fail to recover the desired cluster structure,

but also the cluster assignments found were counter-intuitive. This failure is due to the fact that

these two approaches represent the constraints by imposing prior distributions on the cluster labels,

as explained earlier in Section 5.2.

The result of applying the proposed algorithm to this data set with λ = 250 is shown in Fig-

ure 5.4(c). The two desired clusters have been almost perfectly recovered, when we compare the

solution visually with the desired cluster structure in Figure 5.3(c). A more careful comparison is

done in Figure 5.4(d), where the cluster boundaries obtained by the proposed algorithm (the gray

dotted line) is compared with the ground-truth (the solid green line). We can see that these two

boundaries are very close to each other, indicating that the proposed algorithm discovered a good

cluster boundary. This compares with the similar example in [167], where the cluster boundary

there (as inferred from the Gaussians shown) is quite different5 from the desired cluster boundary.

An additional cluster boundary obtained by the proposed algorithm when τ took the intermediate

value of 1 is also shown (the magenta dashed line). (The final cluster boundary was produced with

τ = 4.) This boundary is significantly different from the ground-truth boundary. So, a large value

of τ improves the clustering result in this case. This improvement is the consequence of the fact

that a large τ focuses on the cluster assignments of the objects and reduces the spurious influence

of the exact locations of the points. The Jensen-Shannon divergence measures the constraint vio-

lation/satisfaction more accurately. Note that a larger value of τ does not have any further visible

effect on the cluster boundary.

3The url is http://www.cs.huji.ac.il/~tomboy/code/ConstrainedEM_plusBNT.zip.
4Its implementation is available at http://www.cs.utexas.edu/users/ml/risc/code/.
5Note that the synthetic data example in [167] is fitted with a mixture model with different covariance matrices

per class. Therefore, comparing it with the proposed algorithm may not be the most fair.
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The Gaussian distributions contributing to these cluster boundaries are shown in Figure 5.4(e).

We observe that the Gaussians recovered by the proposed algorithm (dotted gray lines) are slightly

“fatter” than those obtained with the ground-truth labels (solid green lines). This is because data

points not in a particular cluster can still contribute, though to a smaller extent, to the covariance

of the Gaussian distributions due to the soft-assignment implied in the mixture model. This is not

the case when the covariance matrix is estimated based on the ground-truth labels.

While the proposed algorithm is the only clustering under constraints algorithm we know that

can return the two desired clusters, we want to note that a sufficiently large λ is needed for its

success. If λ = 50, for example, the result of the proposed algorithm is shown in Figure 5.4(f). This

is virtually identical to the clustering solution without any constraints (Figure 5.3(b)). While the

constraints are violated, the clustering solution is more “reasonable” than the solutions shown in

Figures 5.4(a) and 5.4(b). Note that it is easy to detect that λ is too small in this example, because

the constraints are violated. We should increase λ until this is no longer the case. The resulting

clustering solution will effectively be identical to the desired solution shown in Figure 5.4(c).

5.6.2 Experimental Results on Real World Data

We have also compared the proposed algorithm with the algorithms Shental and Basu based on real

world data sets obtained from different domains. The label information in these data sets is used

only for the creation of the constraints and for performance evaluation. In particular, the labels are

not used by the clustering algorithms.

5.6.2.1 Data Sets Used

Table 5.2 summarizes the characteristics of the data sets used. The following preprocessing has

been applied to the data whenever necessary. If a data set has a nominal feature that can assume

c possible values with c > 2, that feature is converted into c continuous features. The i-th such

feature is set to one when the nominal feature assumes the i-th possible value, and the remaining

c − 1 continuous features are set to zero. If the variances of the features of a data set are very

different, standardization is applied to all the features, so that the variances or the ranges of the

preprocessed features become the same. If the number of features is too large when compared

with the number of data points n, principal component analysis (PCA) is applied to reduce the

dimensionality. The number of reduced dimension d is determined by finding the largest d that

satisfies n > 3d2, while the principal components with negligible eigenvalues are also discarded. The

difficulty of the classification tasks associated with these data sets can be seen by the values of the

F-score and the normalized mutual information (to be defined in Section 5.6.2.3) computed using

the ground-truth labels, under the assumption that the class conditional densities are Gaussian with

common covariance matrices.

Data Sets from UCI The following data sets are obtained from the UCI machine learning

repository6. The list below includes most of the data sets in the repository that have mostly

continuous features and have relatively balanced class sizes.

The dermatology database (derm) contains 366 cases with 34 features. The goal is to determine

the type of Erythemato-Squamous disease based on the features extracted. The age attribute, which

has missing values, is removed. PCA is performed to reduce the resulting 33 dimensional data to 11

features. The sizes of the six classes are 112, 61, 72, 49, 52 and 20.

6The url is http://www.ics.uci.edu/~mlearn/MLRepository.html
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The optical recognition of handwritten digits data set (digits) is based on normalized bitmaps

of handwritten digits extracted from a preprinted form. The 32x32 bitmaps are divided into non-

overlapping blocks of 4x4 and the number of pixels are counted in each block. Thus 64 features are

obtained for each digit. The training and testing sets are combined, leading to 5620 patterns. PCA

is applied to reduce the dimensionality to 42 to preserve 99% of the total variance. The sizes of the

ten classes are 554, 571, 557, 572, 568, 558, 558, 566, 554, and 562.

The ionosphere data set (ion) consists of 351 radar readings returned from the ionosphere.

seventeen pulse numbers are extracted from each reading. The real part and the imaginary part of

the complex pulse numbers constitute the 34 features per pattern. There are two classes: “good”

radar returns (225 patterns) are those showing evidence of some type of structure in the ionosphere,

and “bad” returns (126 patterns) are those that do not; their signals pass through the ionosphere.

PCA is applied to reduce the dimensionality to 10.

The multi-feature digit data set consists of features of handwritten numerals extracted from a

collection of Dutch utility maps. Multiple types of features have been extracted. We have only

used the features based on the 76 Fourier coefficients of the character shapes. The resulting data

set is denoted by mfeat-fou. There are 200 patterns per digit class. PCA is applied to reduce the

dimensionality to 16, which preserves 95% of the total energy.

The Wisconsin breast cancer diagnostic data set (wdbc) has two classes: benign (357 cases) and

malignant (212 cases). The 30 features are computed from a digitized image of the breast tissue,

which describes the characteristics of the cell nuclei present in the image. All the features are

standardized to have mean zero and variance one. PCA is applied to reduce the dimensionality of

the data to 14.

The UCI image segmentation data set (UCI-seg) contains 19 continuous attributes extracted

from random 3x3 regions of seven outdoor images. One of the features has zero variation and is

discarded. The training and testing sets are combined to form a data set with 2310 patterns. After

standardizing each feature to have variance one, PCA is applied to reduce the dimensionality of

the data to 10. The seven classes correspond to brick-face, sky, foliage, cement, window, path, and

grass. Each of the classes has 330 patterns.

Data Sets from Statlog in UCI The following five data sets are taken from the Statlog section7

in the UCI machine learning repository.

The Australian credit approval data set (austra) has 690 instances with 14 attributes. The

two classes are of size 383 and 307. The continuous features are standardized to have standard

deviation 0.5. Four of the features are non-binary nominal features, and they are converted to

multiple continuous features. PCA is then applied to reduce the dimensionality of the concatenated

feature vector to 15.

The German credit data (german) contains 1000 records with 24 features. The version with

numerical attributes is used in our experiments. PCA is used to reduce the dimensionality of the

data to 18, after standardizing the features so that all of them lie between zero and one. The two

classes have 700 and 300 records.

The heart data set (heart) has 270 observations with 13 raw features in two classes with 150 and

120 data points. The three nominal features are converted into continuous features. The continuous

features are standardized to have standard deviation 0.5, before applying PCA to reduce the data

set to 9 features.

7The url is http://www.ics.uci.edu/~mlearn/databases/statlog/
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The satellite image data set (sat) consists of the multi-spectral values of pixels in 3x3 neighbor-

hoods in a satellite image. The aim is to classify the class associated with the central pixel, which

can be “red soil”, “cotton crop”, “grey soil”, “damp grey soil”, “soil with vegetation stubble” or

“very damp grey soil”. The training and the testing sets are combined to yield a data set of size

6435. There are 36 features altogether. The classes are of size 1533, 703, 1358, 626, 707 and 1508.

The vehicle silhouettes data set (vehicle) contains a set of features extracted from the silhouette

of a vehicle. The goal is to classify a vehicle as one of the four types (Opel, Saab, bus, or van) based

on the silhouette. There are altogether 846 patterns in the four classes with sizes of the four classes

as 212, 217, 218, and 199. The features are first standardized to have standard deviation one, before

applying PCA to reduce the dimensionality to 16.

Other Data Sets We have also experimented the proposed algorithm with data sets from other

sources.

The texture classification data set (texture) is taken from [127]. It consists of 4000 patterns

with four different types of textures. The 19 features are based on Gabor filter responses. The four

classes are of sizes 987, 999, 1027, and 987.

The online handwritten script data set (script), taken from [192], is about a problem that

classifies words and lines in an online handwritten document into one of the six major scripts:

Arabic, Cyrillic, Devnagari, Han, Hebrew, and Roman. Eleven spatial and temporal features are

extracted from the strokes of the words. There are altogether 12938 patterns, and the sizes of the

six classes are 1190, 3173, 1773, 3539, 1002, and 2261.

The ethnicity recognition data set (ethn) was originally used in [175]. The goal is to classify

a 64x64 face image into two classes: “Asian” (1320 images) and “non-Asian” (1310 images). It

includes the PF01 database8, the Yale database9, the AR database [181], and the non-public NLPR

database10. Some example images are shown in Figure 5.5. 30 eigenface coefficients are extracted

to represent the images.

The clustering under constraints algorithm is also tested on an image segmentation task based on

the Mondrian image shown in Figure 5.6, which has five distinct segments. The image is divided into

101 by 101 sites. Twelve histogram features and twelve Gabor filter responses of four orientations

at three different scales are extracted. Because the histogram features always sum to one, PCA is

performed to reduce the dimension from 24 to 23. The resulting data set Mondrian contains 10201

patterns with 23 features in 5 classes. The sizes of the classes are 2181, 2284, 2145, 2323, and 1268.

The 3-newsgroup database11 is about the classification of Usenet articles from different news-

groups. It has been used previously to demonstrate the effectiveness of clustering under constraints

in [14]. It consists of three classification tasks (diff-300, sim-300, same-300), each of which con-

tains roughly 300 documents from three different topics. The topics are regarded as the classes to

be discovered. The three classification tasks are of different difficulties: the sets of three topics in

diff-300, sim-300, and same-300 respectively have increasing similarities. Latent semantic index-

ing is applied to the tf-idf normalized word features to convert each newsgroup article into a feature

vector of dimension 10. The three classes in diff-300 are all of sizes 100, whereas the number of

patterns in the three classes in sim-300 is 96, 97, and 98. The sizes of the classes in same-300 are

99, 98, and 100.

8http://nova.postech.ac.kr/archives/imdb.html.
9http://cvc.yale.edu/projects/yalefaces/yalefaces.html.

10Provided by Dr. Yunhong Wang, National Laboratory for Pattern Recognition, Beijing.
11It can be downloaded at http://www.cs.utexas.edu/users/ml/risc/.
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Notice that the data sets ethn, Mondrian, diff-300, sim-300, and same-300 have been used in

the previous work [161]. The same preprocessing is applied for both ethn and Mondrianas in [161],

though we reduce the dimensionality of the data set from 20 to 10 for the diff-300, sim-300, and

same-300 data sets based on our “n > 3d2” rule.

5.6.2.2 Experimental Procedure

For each data set listed in Table 5.2, a constraint was specified by first generating a random point

pair (yi,yj). If the ground-truth class labels of yi and yj were the same, a must-link constraint was

created between yi and yj . Otherwise, a must-not-link constraint was created. Different numbers

of constraints were created as a percentage of the number of points in the data set: 1%, 2%, 3%,

5%, 10%, and 15%. Note that the constraints were generated in a “cumulative” manner: the set of

“1%” constraints was included in the set of “2%” constraints, and so on.

The line-search Newton algorithm was used to optimize the objective function J in the proposed

approach. The Gaussians were represented by the natural parameters νj and Υ, with a common

precision matrix among different Gaussian components. This particular choice of optimization al-

gorithm was made based on a preliminary efficiency study, where this approach was found to be the

most efficient among all the algorithms described in Section 5.4.1. Because the gradient is avail-

able in line-search Newton, convergence was decided when the norm of the gradient was less than

a threshold of the norm of the initial gradient. Note that this is a stricter and more reasonable

convergence criteria than the one typically used in the EM algorithm, which is based on the relative

change of log-likelihood. However, in order to safeguard against round-off error, we also declare

convergence when the relative change of the objective function is very small: 10−10, to be precise.

Starting with a random initialization, line-search Newton was run with γ = 1 and τ = 0.25, with

the convergence threshold set to 10−2. Line-search Newton was run again after increasing τ to 1,

with the convergence threshold tightened to 10−3. Finally, τ and the convergence threshold were

set to 4 and 10−4, respectively. The optimization algorithm was also stopped if convergence was

not achieved within 5000 Newton iterations. Fifteen random initializations were attempted. The

solution with the best objective function value was regarded as the solution found by the proposed

algorithm.

The above procedure, however, assumes the constraint strength λ is known. The value of λ was

determined using a set of validation constraints. The constraints for training set and the constraints

for validation set were obtained using the following rules. Given a data set, if the number of

constraints was less than 3k, k being the number of clusters, all the available constraints were used

for training and validation. This procedure, while risking overfitting, is necessary because a too small

set of constraints is poor for training the clusters as well as the estimation of λ. When the number

of constraints was between 3k and 6k, the number of training constraints and validation constraints

were both set to 3k. So, the training constraints overlapped with the validation constraints. When

the number of constraints was larger than 6k, half the constraints were used for training and the

other half were used for validation. Starting with λ = 0.1, we increased λ by multiplying it by
√

10.

For each λ, the proposed algorithm was executed. A better value of λ was encountered if the number

of violations of the validation constraints was smaller than the current best. If there was a tie, the

decision was made on the number of violations of the training constraints. If the best value of λ did

not change for four iterations, we assumed that the optimal value of λ was found. The proposed

algorithm was executed again using all the available constraints and λ value just determined. The

resulting solution was compared with the solution obtained using only the training constraints, and

the one with the smaller total number of constraint violations was regarded as our final clustering
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Full name Source n d k F NMI

derm dermatology UCI 366 11 6 0.9648 0.9258

digits optical recognition of handwritten digits UCI 5620 42 10 0.9516 0.8915

ion ionosphere UCI 351 10 2 0.8519 0.4003

mfeat-fou multi-feature digit, Fourier coefficients UCI 2000 16 10 0.7999 0.7369

UCI-seg UCI Image segmentation UCI 2310 10 7 0.8445 0.7769

wdbc Wisconsin breast cancer diagnostic UCI 569 14 2 0.9645 0.8047

austra Australian credit approval Statlog in UCI 690 15 2 0.8613 0.4384

german German credit Statlog in UCI 1000 18 2 0.7627 0.1475

heart heart Statlog in UCI 270 9 2 0.8550 0.4010

sat satellite image Statlog in UCI 6435 36 6 0.8382 0.7176

vehicle vehicle silhouettes Statlog in UCI 846 16 4 0.7869 0.5850

script online handwritten script [192] 12938 11 6 0.7673 0.5812

texture texture [127] 4000 19 4 0.9820 0.9274

ethn ethnicity [175] 2630 30 2 0.9627 0.7704

Mondrian Mondrian image segmentation [161] 10201 23 5 0.9696 0.9042

diff-300 Usenet newsgroup (highly different) [14] 300 10 3 0.9432 0.7895

sim-300 Usenet newsgroup (somewhat similar) [14] 291 10 3 0.6996 0.3290

same-300 Usenet newsgroup (highly similar) [14] 297 10 3 0.7825 0.4071

Table 5.2: Summary of the real world data sets used in the experiments. The number of data points and the number of actual features used are
represented by n and d, respectively. The difficulty of the classification task associated with a data set can be seen by the F-score (denoted by F) and
the normalized mutual information (denoted by NMI). These two criteria are defined in Section 5.6.2.3. Higher values of F and NMI indicate that
the associated classification task is relatively easier, 0 < F ≤ 1 and 0 ≤ NMI ≤ 1.
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(f) Result of proposed algorithm, λ = 50

Figure 5.4: The result of running different clustering under constraints algorithms for the synthetic
data set shown in Figure 5.3(a). While the algorithms Shental and Basu failed to discover the
desired clusters ((a) and (b)), the proposed algorithm succeeded with λ = 250 (c). The resulting
cluster boundaries and Gaussians are compared with those estimated with the ground-truth labels
((d) and (e)). When λ = 50, the proposed algorithm returned the natural clustering solution (f).
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(a) Asians (b) Non-Asians

Figure 5.5: Example face images in the ethnicity classification problem for the data set ethn.

Figure 5.6: The Mondrian image used for the data set Mondrian. It contains 5 segments. Three of
the segments are best distinguished by Gabor filter responses, whereas the remaining two are best
distinguished by their gray-level histograms.
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solution. If there was a tie, the solution obtained with training constraints only was selected.

The algorithms Shental and Basu were run using the same set of data and constraints as input.

For Shental, we modified the initialization strategy in their software, which involved a two step

process. First, five random parameter vectors were generated, and the one with the highest log-

likelihood was selected as the initial value of the EM algorithm. Convergence was achieved if

the relative change in the log-likelihood was less than a threshold, which is 10−6 by default. This

process was repeated 15 times, and the parameter vector with the highest log-likelihood was regarded

as the solution. For easier comparison, we also assumed a common covariance matrix among the

different Gaussian components. For the algorithm Basu, the authors provided their own initialization

strategy, which was based on the set of constraints provided. The algorithm was run 15 times, and

the solution with the best objective function was picked. The algorithm Basu requires a constraint

penalty parameter. In our experiment, a wide range of values were tried: 1, 2, 4, 8, 16, 32, 64, 128,

256, 500, 1000, 2000, 4000, 8000, 16000. We only report their results with the best possible penalty

values. As a result, the performance of Basu reported here might be inflated.

5.6.2.3 Performance criteria

A clustering under constraints algorithm is said to perform well on a data set if the clusters obtained

are similar to the ground-truth classes. Consider the k by k “contingency matrix” {c̃ij}, where c̃ij
denotes the number of data points that are originally from the i-th class and are assigned to the

j-th cluster. If the clusters match the true classes perfectly, there should only be one non-zero entry

in each row and each column of the contingency matrix.

Following the common practice in the literature, we summarize the contingency matrix by the

F-score and the normalized mutual information (NMI). Consider the “recall matrix” {r̃ij} in which

the entries are defined by r̃ij = c̃ij/
∑
j′ c̃ij′ . Intuitively, r̃ij denotes the proportion of the i-th class

that is “recalled” by the j-th cluster. The “precision matrix” {p̃ij}, on the other hand, is defined

by p̃ij = c̃ij/
∑
i′ c̃i′j . It represents how “pure” the j-th cluster is with respect to the i-th class.

Entries in the F-score matrix {f̃ij} are simply the harmonic mean of the corresponding entries in

the precision and recall matrices, i.e., f̃ij = 2r̃ij p̃ij/(r̃ij + p̃ij). The F-score of the i-th class, F̃i, is

obtained by assuming that the i-th class matches12 with the best cluster, i.e., F̃i = maxj f̃ij . The

overall F-score is computed as the weighted sum of the individual F̃i according to the sizes of the

true classes, i.e.,

F-score =

k∑

i=1

∑k
j=1 c̃ij

n
F̃i (5.34)

Note that the precision of an empty cluster is undefined. This problem can be circumvented if we

restrict that empty clusters, if any, should not contribute to the overall F-score.

The computation of normalized mutual information interprets the true class label and the cluster

label as two random variables U and V . The contingency table, after dividing by n (the number of

objects), forms the joint distribution of U and V . The mutual information (MI) between U and V

can be computed based on the joint distribution. Since the range of the mutual information depends

on the sizes of the true classes and the sizes of the clusters, we normalize the MI by the average of

the entropies of U and V (denoted by H(U) and H(V )) so that the resulting value lies between zero

12Here, we do not require that one cluster can only match to one class. If this one-to-one correspondence is desired,
the Hungarian algorithm should be used to perform the matching instead of the max operation to compute F̃i.
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and one. Formally, we have

H(U) = −
k∑

i=1

∑k
j=1 c̃ij

n
log

∑k
j=1 c̃ij

n

H(V ) = −
k∑

j=1

∑k
i=1 c̃ij

n
log

∑k
i=1 c̃ij

n

H(U, V ) = −
k∑

i=1

k∑

j=1

c̃ij

n
log

c̃ij

n

MI = H(U) +H(V ) −H(U, V )

NMI =
MI

(H(U) +H(V ))/2
.

(5.35)

For both F-score and NMI, the higher the value, the better the match between the clusters

and the true classes. For a perfect match, both NMI and F-score take the value of 1. When the

cluster labels are completely independent of the class labels, NMI takes its smallest value of 0. The

minimum value of F-score depends on the sizes of the true classes. If all the classes are of equal

sizes, the lower bound of F-score is 1/k. In general, the lower bound of F-score is higher, and it can

be more than 0.5 if there is a dominant class.

5.6.2.4 Results

The results of clustering the data sets mentioned in Section 5.6.2.1 when there are no constraints

are shown in Table 5.3. In the absence of constraints, both the proposed algorithm and Shental

effectively find the cluster parameter vector that maximizes the log-likelihood, whereas Basu is the

same as the k-means algorithm. One may be surprised to discover from Table 5.3 that even though

the proposed algorithm and Shental optimize the same objective function, their results are different.

This is understandable when we notice that the line-search Newton algorithm used by the proposed

approach and the EM algorithm used by Shental can locate different local optima. It is sometimes

argued that maximizing the mixture log-likelihood globally is inappropriate as it can go to infinity

when one of the Gaussian components has an almost singular covariance matrix. However, this is not

the case here, because the covariance matrices all have small condition numbers as seen in Table 5.3.

Therefore, among the two solutions produced by the proposed approach and by Shental, we take

the one with the larger log-likelihood. In the remaining experiments, the no-constraint solutions

found by the proposed algorithm were also used as the initial value for Shental. It is because we

are interested in locating the best possible local optima for the objective functions.

The results of running our proposed algorithm, Shental, and Basu, with 1% constraint level, 2%

constraint level, 3% constraint level, 5% constraint level, 10% constraint level, and 15% constraint

level are shown in Tables 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9, respectively. In these tables, the

columns under “Proposed” correspond to the performance of the proposed algorithm. The heading

λ denotes the value of the constraint strength as determined by the validation procedure. The

heading “Shental, default init” corresponds to the performance when the algorithm Shental is

initialized by its default strategy, whereas “Shental, special init” corresponds to the result when

Shental is initialized by the no-constraint solution found by the proposed approach. The heading

“log-lik” shows the log-likelihood of the resulting parameter vector. Among these two solutions of

Shental, the one with a higher log-likelihood is selected, and its performance is shown under the
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Proposed Shental Basu

n F NMI log-lik K F NMI log-lik K F NMI

derm 366 0.817 0.868 −4.608× 103 9.4 × 100 0.813 0.868 −4.608× 103 9.5 × 100 0.836 0.880

digits 5620 0.755 0.745 −6.153× 105 3.9 × 101 0.756 0.745 −6.153× 105 3.9 × 101 0.825 0.771

ion 351 0.652 0.066 −3.579× 103 1.5 × 101 0.652 0.066 −3.579× 103 1.5 × 101 0.718 0.135

mfeat-fou 2000 0.721 0.697 3.062× 104 8.9 × 100 0.698 0.675 3.059× 104 8.2 × 100 0.745 0.688

UCI-seg 2310 0.581 0.523 −2.504× 104 7.7 × 102 0.716 0.690 −2.598× 104 3.1 × 101 0.704 0.688

wdbc 569 0.685 0.005 −1.044× 104 8.9 × 101 0.677 0.001 −1.053× 104 8.8 × 101 0.916 0.583

austra 690 0.523 0.001 −5.506× 103 6.8 × 102 0.523 0.001 −5.147× 103 1.9 × 103 0.520 0.000

german 1000 0.649 0.008 −2.492× 103 3.9 × 103 0.567 0.001 −2.438× 103 4.0 × 103 0.639 0.015

heart 270 0.590 0.024 −1.674× 103 1.5 × 102 0.590 0.024 −1.674× 103 1.5 × 102 0.586 0.022

sat 6435 0.715 0.628 −6.627× 105 8.4 × 102 0.717 0.632 −6.627× 105 8.4 × 102 0.716 0.616

vehicle 846 0.510 0.250 −7.012× 103 3.9 × 102 0.475 0.217 −7.078× 103 3.9 × 102 0.413 0.111

script 12938 0.630 0.490 −1.610× 105 1.5 × 101 0.552 0.352 −1.606× 105 1.3 × 101 0.717 0.553

texture 4000 0.977 0.913 −6.484× 104 9.5 × 101 0.977 0.913 −6.484× 104 9.5 × 101 0.956 0.861

ethn 2630 0.652 0.008 1.503× 105 5.5 × 101 0.652 0.008 1.503× 105 5.5 × 101 0.759 0.203

Mondrian 10201 0.810 0.801 4.169× 104 1.6 × 104 0.810 0.801 4.169× 104 1.6 × 104 0.766 0.793

diff-300 300 0.496 0.058 3.365× 103 1.1 × 101 0.499 0.131 3.278× 103 9.3 × 100 0.707 0.454

sim-300 291 0.495 0.029 3.468× 103 5.8 × 101 0.495 0.029 3.468× 103 5.8 × 101 0.474 0.033

same-300 297 0.492 0.042 3.225× 103 6.5 × 100 0.493 0.051 3.307× 103 7.8 × 100 0.478 0.076

Table 5.3: Performance of different clustering algorithms in the absence of constraints. Both the proposed algorithm and Shental maximize the
log-likelihood in this case, though the former uses the line-search Newton whereas the latter uses the EM algorithm. The headings n, F, NMI, log-lik
and K denote the number of data points, the F-score, the normalized mutual information, the log-likelihood, and the condition number of the common
covariance matrix, respectively.
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heading “Shental, combine”.

From these tables, we can see that Shental with default initialization often yields a higher

performance than Shental with the special initialization. However, the log-likelihood of Shental

with default initialization is sometimes smaller. By the principle of maximum likelihood, such a

solution, though it has a higher F-score and/or NMI, should not be accepted. This observation has

the implication that the good performance of Shental as reported in comparative work such as in

[161] might be due to the initialization strategy instead of the model used. The fact that we are more

interested in comparing the model used in Shental with that used in the proposed approach, instead

of the strategy for initialization, is the reason why we run Shental with the special initialization.

We have also tried to do something similar with Basu, but its initialization routine is integrated

with the main clustering routine so that it is non-trivial to modify the initialization strategy.

The numbers listed in Tables 5.3 to 5.9 are visualized in Figures 5.7 to 5.13. For each data

set, we draw the F-score and the NMI with an increasing number of constraints. The horizontal

axis corresponds to different constraint levels in terms of the percentages of the number of data

points, whereas the vertical axis corresponds to the F-score or the NMI. The results of the proposed

algorithm, Shental, and Basu are shown by the (red) solid lines, (blue) dotted lines, and (black)

dashed lines, respectively. For comparison, the (gray) dashdot lines in the figures show the F-score

and the NMI due to a classifier trained using the labels of all the objects in the data set under

the assumption that the class conditional densities are Gaussian with a common covariance matrix.

The data sets are grouped according to the performance of the proposed algorithms. The proposed

algorithm outperformed both Shental and Basu for the data sets shown in Figures 5.7 to 5.9. The

performance of the proposed algorithm is comparable to its competitors for the data sets shown in

Figures 5.10 to 5.12. For the data sets shown in Figures 5.13, the proposed algorithm is slightly

inferior to one of its competitors. We shall examine the performance on individual data sets later.

Perhaps the first observation from these figures is that the performance is not monotonic, i.e., the

F-score and the NMI can actually decrease when there are additional constraints. This is counter-

intuitive, because one expects improved results when more information (in the form of constraints)

is fed as the input to the algorithms. Note that this lack of monotonicity is observed for all the

three algorithms. There are three reasons for this. First, the additional constraints can be based

on data points that are erroneously labeled (errors in the ground truth), or they are “outlier” in

the sense that they would be mis-classified by most reasonable supervised classifiers trained with

all the labels known. The additional constraints in this case serve as “mis-information”, and it can

hurt the performance of the clustering under constraints algorithms. This effect is more severe for

the proposed approach when there are only a small number of constraints, because the influence

of each of the constraints may be magnified by a large value of λ. The second reason is that an

algorithm may locate a poor local optima. In general, the larger the number of constraints, the

greater the number of local optima in the energy landscape. So, the proposed algorithm as well as

Shentaland Basu is more likely to get trapped in poor local optima. This trend is the most obvious

for Basu, as the performance at 10% and 15% constraint levels dropped for more than half of the

data sets. This is not surprising, because the iterative conditional mode used by Basu is greedy and

it is likely to get trapped in local optima. The third reason is specific to the proposed approach. It

is due to the random nature of the partitioning of the constraints into training set and validation

set. If we have an unfavorable split, the value of λ found by minimizing the number of violations

on the set of validation constraints can be suboptimal. In fact, we observe that whenever there is a

significant drop in the F-score and NMI, there often exists a better value of λ than the one found

by the validation procedure.
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Performance on Individual Data Sets The result on the ethn data set can be seen in Fig-

ures 5.7(a) and 5.7(b). The performance of the proposed algorithm improves with additional con-

straints, and it outperforms Shental and Basu at all constraint levels. A similar phenomenon occurs

for the Mondrian data set (Figures 5.7(c) and 5.7(d)) and the ion data set (Figures 5.7(e) and 5.7(f)).

For Mondrian, note that 1% constraint level is already sufficient to bias the cluster parameter to

match the result using the ground-truth labels. Additional constraints only help marginally. The

performance of the proposed algorithm for the script data set (Figures 5.8(a) and 5.8(b)) is better

than Shental and Basu for all constraint levels except 1%, where the proposed algorithm is inferior

to the result of Basu. However, given how much better the k-means algorithm is when compared

with the EM algorithm in the absence of constraints, it is fair to say that the proposed algorithm is

doing a decent job. For the data set derm, the clustering solution without any constraints is pretty

good: that solution, in fact, satisfies all the constraints when the constraint levels are 1% and 2%.

Therefore, it is natural that the performance does not improve with the provision of the constraints.

However, when the constraint level is higher than 2%, the proposed algorithm again outperforms

Shental and Basu (Figures 5.8(c) and 5.8(d)). The performance of the proposed algorithm on the

vehicle data set is superior to Shental and Basu for all constraint levels except 5%, where the

performance of Shental is slightly superior. For the data set wdbc, the performance of the proposed

algorithm (Figures 5.9(a) and 5.9(b)) is better than Shental at all constraint levels except 5%. The

proposed algorithm outperforms Basu when the constraint level is higher than 1%.

The F-score of the proposed algorithm on the UCI-seg data (Figures 5.10(a)) is superior to

Shental at three constraint levels and is superior to Basu at all but 1% constraint level. On the

other hand, if NMI is used (Figure 5.10(b)), the proposed algorithm does not do as well as the

others. For the heart data set, the proposed algorithm is superior to Shental at all constraint

levels, but it is superior to Basu at only 3% constraint level (Figures 5.10(c) and 5.10(d)). Note

that the performance of Basu might be inflated because we only report its best results among all

possible values of constraint penalty in this algorithm. We can regard the performance of the

proposed algorithm on the austra data set (Figures 5.10(e) and 5.10(f)) as a tie with Shental and

Basu, because the proposed algorithm outperforms Shental and Basuat three out of six possible

constraint levels. For the german data set, the proposed algorithm performs the best in terms of NMI

(Figure 5.11(b)), though the performances of all three algorithms are not that good. Apparently,

this is a difficult data set. The performance of the proposed algorithm is less impressive when F-score

is used, however (Figure 5.11(a)). The proposed algorithm is superior to Shental in performance

for the sim-300 data set (Figures 5.11(c) and 5.11(d)). While the proposed algorithm has a tie

in performance when compared with Basu based on the F-score, Basu outperforms the proposed

algorithm on this data set when NMI is used. The result of the diff-300 data set (Figures 5.11(e)

and 5.11(f)) is somewhat similar: the proposed algorithm outperforms Shental at all constraint

levels, but it is inferior to Basu. Given the fact that the k-means algorithm is much better than

EM in the absence of constraints for this data set, the proposed algorithm is not as bad as it first

seems. For the sat data set (Figures 5.12(a) and 5.12(b)), the proposed algorithm outperforms

Shental and Basu significantly in terms of F-score when the constraint levels are 10% and 15%.

The improvement in NMI is less significant, though the proposed method is still the best at three

constraint levels. The result of the digits data set (Figures 5.12(c) and 5.12(d)) is similar: the

proposed method is superior to its competitors at three and four constraint levels if F-score and

NMI are used as the evaluation criteria, respectively.

It is difficult to draw any conclusion on the performance of the three algorithms on the mfeat-fou

data set (Figures 5.13(a) and 5.13(b)). The performances of all three algorithms go up and down

with an increasing number of constraints. Apparently this data set is fairly noisy, and clustering with
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constraints is not appropriate for this data set. For the data set same-300, the proposed algorithm

does not perform well: it has a tie with Shental, but it is inferior to Basu at all constraint levels,

as seen in Figures 5.13(c) and 5.13(d). The performance of the proposed algorithm is better than

Shental only at the 15% constraint level for the data set texture (Figures 5.13(e) and 5.13(f)).

The proposed algorithm is superior to Basu for this data set, though this is probably due to the

better performance of the EM algorithm in the absence of constraints. Note that this data set is

a relatively easy data set for model-based clustering: both k-means and EM have a F-score higher

than 0.95 when no constraints are used.

5.6.3 Experiments on Feature Extraction

We have also tested the idea of learning the low-dimensional subspace and the clusters simulta-

neously in the presence of constraints. Our first experiment in this regard is based on the data

set shown in Figure 5.3. The two features were standardized to variance one before applying the

algorithm described in Section 5.5 with the two must-link constraints. Based on the result shown in

Figure 5.14(a), we can see that a good projection direction was found by the proposed algorithm.

The projected data follow the Gaussian distribution well, as evident from Figure 5.14(b).

Our second experiment is about the combination of feature extraction and the kernel trick to

detect clusters with general shapes. The two-ring data set (Figure 5.15(a)) considered in [158], which

used a hidden Markov random field approach for clustering with constraints in kernel k-means, was

used. As in [158], we applied the RBF kernel to transform this data set of 200 points nonlinearly.

The kernel width was set to 0.2, which was the 20-percentile of all the pairwise distances. Unlike

[158], we applied kernel PCA to this data set and extracted 20 features. The algorithm described in

Section 5.5 was used to learn a good projection of these 20 features into a 2D space while clustering

the data into two groups simultaneously in the presence of 60 randomly generated constraints. The

result shown in Figure 5.15(b) indicates that the algorithm successfully found a 2D subspace such

that the two clusters were Gaussian-like, and all the constraints were satisfied. When we plot the

cluster labels of the original two-ring data set, we can see that the desired clusters (the “inner”

and the “outer” rings) were recovered perfectly (Figure 5.15(c)). Note that the algorithm described

in [158] required at least 450 constraints to identify the two clusters perfectly, whereas we have

only used 60 constraints. For comparison, the spectral clustering algorithm in [194] was applied to

this data set using the same kernel matrix as the similarity. The two desired clusters could not be

recovered (Figure 5.15(d)). In fact, the two desired clusters were never recovered even when we tried

other values of kernel widths.

5.7 Discussion

5.7.1 Time Complexity

The computation of the objective function and its gradient requires the calculation of r̃ij , sij , wij ,

and the weighted sum of different sufficient statistics with rij and wij as weights. When compared

with the EM algorithm for standard model-based clustering, the extra computation by the proposed

algorithm is due to sij , wij , and the accumulation of the corresponding sufficient statistics. These

take O(kd(m+ + m− + n∗)) time, where k, d, m+, m−, n∗ denote the number of clusters, the

dimension of the feature vector, the number of must-link constraints, the number of must-not-link

constraints, and the number of data points involved in any constraint, respectively. This is smaller

than the O(kdn) time required for one iteration of the EM algorithm, with n indicating the total

127



Proposed Shental, default init. Shental, special init. Shental, combined Basu

n m F NMI λ F NMI log-lik F NMI log-lik F NMI F NMI

derm 366 4 0.817 0.868 0 0.813 0.868 −4.607× 103 0.817 0.868 −4.607× 103 0.817 0.868 0.838 0.880

digits 5620 56 0.790 0.743 1.0× 103 0.781 0.779 −6.157× 105 0.848 0.818 −6.164× 105 0.781 0.779 0.814 0.757

ion 351 4 0.812 0.285 3.2× 102 0.651 0.046 −3.579× 103 0.651 0.046 −3.579× 103 0.651 0.046 0.720 0.138

mfeat-fou 2000 20 0.678 0.664 3.2× 102 0.761 0.701 3.055× 104 0.676 0.661 3.052× 104 0.761 0.701 0.749 0.694

UCI-seg 2310 23 0.714 0.672 1.0× 102 0.707 0.662 −2.643× 104 0.712 0.685 −2.552× 104 0.712 0.685 0.711 0.704

wdbc 569 6 0.677 0.175 1.0× 102 0.782 0.354 −1.058× 104 0.672 0.141 −1.056× 104 0.672 0.141 0.907 0.551

austra 690 7 0.546 0.000 3.2× 104 0.854 0.421 −6.217× 103 0.601 0.025 −6.086× 103 0.601 0.025 0.537 0.003

german 1000 10 0.649 0.008 0 0.567 0.001 −4.033× 103 0.648 0.008 −4.232× 103 0.567 0.001 0.653 0.000

heart 270 3 0.762 0.205 3.2× 102 0.590 0.024 −1.674× 103 0.590 0.024 −1.674× 103 0.590 0.024 0.830 0.339

sat 6435 64 0.711 0.605 3.2× 102 0.716 0.632 −6.628× 105 0.716 0.632 −6.628× 105 0.716 0.632 0.714 0.614

vehicle 846 8 0.506 0.218 1.0× 103 0.484 0.223 −7.674× 103 0.487 0.185 −7.099× 103 0.487 0.185 0.420 0.115

script 12938 129 0.618 0.503 1.0× 103 0.670 0.518 −1.617× 105 0.503 0.321 −1.616× 105 0.503 0.321 0.659 0.535

texture 4000 40 0.977 0.913 0 0.977 0.915 −6.483× 104 0.977 0.913 −6.483× 104 0.977 0.913 0.959 0.866

ethn 2630 26 0.831 0.435 1.0× 103 0.651 0.008 1.502× 105 0.651 0.008 1.502× 105 0.651 0.008 0.571 0.000

Mondrian 10201 102 0.966 0.897 3.2× 102 0.809 0.798 4.146× 104 0.799 0.793 4.131× 104 0.809 0.798 0.766 0.787

diff-300 300 3 0.566 0.295 3.2× 102 0.494 0.144 3.244× 103 0.489 0.040 3.253× 103 0.489 0.040 0.731 0.483

sim-300 291 3 0.562 0.109 3.2× 102 0.496 0.042 3.301× 103 0.493 0.023 3.462× 103 0.493 0.023 0.507 0.108

same-300 297 3 0.580 0.164 3.2× 102 0.585 0.179 3.135× 103 0.489 0.052 3.151× 103 0.489 0.052 0.594 0.183

Table 5.4: Performance of clustering under constraints algorithms when the constraint level is 1%. The headings n, m, F, NMI, λ, and log-lik denote
the number of data points, the number of constraints, the F-score, the normalized mutual information, the optimal λ for the proposed algorithm
found by the validation procedure, and the log-likelihood, respectively.

1
2
8



Proposed Shental, default init. Shental, special init. Shental, combined Basu

n m F NMI λ F NMI log-lik F NMI log-lik F NMI F NMI

derm 366 7 0.817 0.868 0 0.817 0.868 −4.605× 103 0.817 0.868 −4.605× 103 0.817 0.868 0.838 0.880

digits 5620 112 0.747 0.710 1.0× 106 0.756 0.745 −6.153× 105 0.747 0.721 −6.155× 105 0.756 0.745 0.815 0.760

ion 351 7 0.755 0.175 3.2× 102 0.651 0.046 −3.579× 103 0.651 0.046 −3.579× 103 0.651 0.046 0.721 0.140

mfeat-fou 2000 40 0.737 0.678 3.2× 102 0.701 0.676 3.059× 104 0.756 0.705 3.059× 104 0.701 0.676 0.752 0.700

UCI-seg 2310 46 0.721 0.709 1.0× 104 0.702 0.667 −2.645× 104 0.711 0.683 −2.577× 104 0.711 0.683 0.623 0.577

wdbc 569 11 0.913 0.636 3.2× 102 0.671 0.151 −1.056× 104 0.681 0.002 −1.058× 104 0.671 0.151 0.909 0.556

austra 690 14 0.616 0.058 3.2× 102 0.523 0.001 −6.113× 103 0.601 0.025 −6.285× 103 0.523 0.001 0.586 0.021

german 1000 20 0.631 0.011 1.0× 104 0.651 0.001 −4.395× 103 0.648 0.008 −4.368× 103 0.648 0.008 0.579 0.005

heart 270 5 0.762 0.205 1.0× 102 0.594 0.026 −1.772× 103 0.594 0.026 −1.772× 103 0.594 0.026 0.830 0.339

sat 6435 129 0.719 0.637 3.2× 101 0.717 0.634 −6.627× 105 0.715 0.630 −6.627× 105 0.715 0.630 0.713 0.613

vehicle 846 17 0.737 0.562 1.0× 103 0.485 0.183 −7.137× 103 0.517 0.261 −7.079× 103 0.517 0.261 0.418 0.114

script 12938 259 0.735 0.576 1.0× 103 0.671 0.518 −1.617× 105 0.670 0.518 −1.617× 105 0.670 0.518 0.654 0.536

texture 4000 80 0.976 0.913 3.2× 101 0.978 0.918 −6.482× 104 0.978 0.918 −6.482× 104 0.978 0.918 0.958 0.865

ethn 2630 53 0.924 0.613 3.2× 102 0.645 0.000 1.498× 105 0.648 0.006 1.500× 105 0.648 0.006 0.572 0.001

Mondrian 10201 204 0.966 0.898 3.2× 102 0.809 0.797 4.135× 104 0.809 0.797 4.135× 104 0.809 0.797 0.766 0.785

diff-300 300 6 0.616 0.199 3.2× 102 0.480 0.091 3.157× 103 0.492 0.070 3.177× 103 0.492 0.070 0.741 0.494

sim-300 291 6 0.532 0.071 3.2× 102 0.495 0.029 3.468× 103 0.493 0.017 3.137× 103 0.495 0.029 0.515 0.137

same-300 297 6 0.446 0.025 1.0× 102 0.586 0.182 3.091× 103 0.493 0.026 3.109× 103 0.493 0.026 0.598 0.188

Table 5.5: Performance of clustering under constraints algorithms when the constraint level is 2%. The headings n, m, F, NMI, λ, and log-lik denote
the number of data points, the number of constraints, the F-score, the normalized mutual information, the optimal λ for the proposed algorithm
found by the validation procedure, and the log-likelihood, respectively.

1
2
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Proposed Shental, default init. Shental, special init. Shental, combined Basu

n m F NMI λ F NMI log-lik F NMI log-lik F NMI F NMI

derm 366 11 0.951 0.914 3.2× 102 0.813 0.868 −4.605× 103 0.817 0.868 −4.605× 103 0.817 0.868 0.837 0.874

digits 5620 169 0.827 0.790 1.0× 103 0.758 0.746 −6.153× 105 0.754 0.744 −6.153× 105 0.754 0.744 0.815 0.755

ion 351 11 0.724 0.130 3.2× 103 0.651 0.032 −3.578× 103 0.651 0.068 −3.608× 103 0.651 0.032 0.715 0.132

mfeat-fou 2000 60 0.721 0.697 0 0.717 0.677 3.052× 104 0.720 0.697 3.061× 104 0.720 0.697 0.684 0.657

UCI-seg 2310 69 0.695 0.621 3.2× 105 0.688 0.644 −2.668× 104 0.715 0.689 −2.617× 104 0.715 0.689 0.648 0.638

wdbc 569 17 0.924 0.668 3.2× 101 0.907 0.609 −1.059× 104 0.678 0.002 −1.058× 104 0.678 0.002 0.909 0.556

austra 690 21 0.640 0.069 3.2× 102 0.855 0.428 −6.306× 103 0.523 0.001 −6.262× 103 0.523 0.001 0.571 0.013

german 1000 30 0.591 0.012 3.2× 103 0.566 0.001 −4.620× 103 0.602 0.001 −4.521× 103 0.602 0.001 0.578 0.005

heart 270 8 0.762 0.205 1.0× 102 0.594 0.027 −1.827× 103 0.592 0.067 −1.838× 103 0.594 0.027 0.549 0.012

sat 6435 193 0.712 0.585 1.0× 103 0.715 0.630 −6.627× 105 0.715 0.630 −6.627× 105 0.715 0.630 0.716 0.614

vehicle 846 25 0.523 0.257 3.2× 103 0.448 0.200 −7.835× 103 0.383 0.070 −7.156× 103 0.383 0.070 0.419 0.113

script 12938 388 0.746 0.563 3.2× 103 0.671 0.517 −1.617× 105 0.670 0.517 −1.617× 105 0.670 0.517 0.654 0.535

texture 4000 120 0.978 0.918 1.0× 102 0.978 0.918 −6.481× 104 0.978 0.917 −6.481× 104 0.978 0.918 0.960 0.867

ethn 2630 79 0.956 0.739 1.0× 102 0.645 0.000 1.498× 105 0.650 0.008 1.499× 105 0.650 0.008 0.646 0.068

Mondrian 10201 306 0.967 0.900 3.2× 102 0.809 0.796 4.122× 104 0.809 0.796 4.122× 104 0.809 0.796 0.774 0.753

diff-300 300 9 0.643 0.254 3.2× 102 0.481 0.074 3.174× 103 0.512 0.175 3.268× 103 0.512 0.175 0.629 0.382

sim-300 291 9 0.473 0.039 3.2× 102 0.488 0.112 3.250× 103 0.485 0.046 3.035× 103 0.488 0.112 0.574 0.180

same-300 297 9 0.527 0.080 1.0× 102 0.477 0.027 3.097× 103 0.489 0.039 3.129× 103 0.489 0.039 0.618 0.222

Table 5.6: Performance of clustering under constraints algorithms when the constraint level is 3%. The headings n, m, F, NMI, λ, and log-lik denote
the number of data points, the number of constraints, the F-score, the normalized mutual information, the optimal λ for the proposed algorithm
found by the validation procedure, and the log-likelihood, respectively.

1
3
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Proposed Shental, default init. Shental, special init. Shental, combined Basu

n m F NMI λ F NMI log-lik F NMI log-lik F NMI F NMI

derm 366 18 0.954 0.918 1.0× 102 0.946 0.912 −4.669× 103 0.817 0.868 −4.604× 103 0.817 0.868 0.838 0.874

digits 5620 281 0.731 0.707 3.2× 101 0.779 0.765 −6.154× 105 0.712 0.717 −6.162× 105 0.779 0.765 0.725 0.711

ion 351 18 0.823 0.367 3.2× 101 0.650 0.034 −3.594× 103 0.650 0.034 −3.594× 103 0.650 0.034 0.710 0.126

mfeat-fou 2000 100 0.729 0.681 1.0× 103 0.757 0.706 3.059× 104 0.768 0.722 3.059× 104 0.757 0.706 0.746 0.671

UCI-seg 2310 116 0.772 0.721 1.0× 103 0.714 0.688 −2.617× 104 0.713 0.689 −2.553× 104 0.713 0.689 0.645 0.628

wdbc 569 28 0.879 0.509 3.2× 101 0.894 0.574 −1.059× 104 0.892 0.570 −1.059× 104 0.894 0.574 0.875 0.444

austra 690 35 0.796 0.269 1.0× 103 0.613 0.000 −6.226× 103 0.855 0.428 −6.303× 103 0.613 0.000 0.848 0.409

german 1000 50 0.573 0.000 3.2× 103 0.566 0.001 −4.788× 103 0.665 0.000 −4.963× 103 0.566 0.001 0.586 0.000

heart 270 14 0.838 0.366 3.2× 102 0.594 0.027 −1.894× 103 0.594 0.027 −1.894× 103 0.594 0.027 0.838 0.364

sat 6435 322 0.733 0.624 3.2× 102 0.719 0.638 −6.627× 105 0.717 0.631 −6.627× 105 0.719 0.638 0.715 0.611

vehicle 846 42 0.443 0.132 3.2× 101 0.490 0.251 −7.794× 103 0.475 0.214 −7.188× 103 0.475 0.214 0.420 0.113

script 12938 647 0.733 0.552 1.0× 104 0.672 0.518 −1.618× 105 0.629 0.485 −1.612× 105 0.629 0.485 0.720 0.551

texture 4000 200 0.977 0.914 3.2× 102 0.978 0.918 −6.480× 104 0.978 0.918 −6.480× 104 0.978 0.918 0.959 0.866

ethn 2630 132 0.958 0.749 3.2× 102 0.851 0.408 1.496× 105 0.646 0.007 1.497× 105 0.646 0.007 0.738 0.234

Mondrian 10201 510 0.969 0.904 3.2× 103 0.808 0.794 4.101× 104 0.808 0.794 4.101× 104 0.808 0.794 0.782 0.751

diff-300 300 15 0.664 0.381 1.0× 104 0.476 0.112 3.119× 103 0.493 0.048 3.179× 103 0.493 0.048 0.850 0.623

sim-300 291 15 0.526 0.086 3.2× 104 0.482 0.015 3.246× 103 0.494 0.034 3.280× 103 0.494 0.034 0.606 0.253

same-300 297 15 0.413 0.033 1.0× 102 0.477 0.079 3.129× 103 0.486 0.047 3.103× 103 0.477 0.079 0.573 0.166

Table 5.7: Performance of clustering under constraints algorithms when the constraint level is 5%. The headings n, m, F, NMI, λ, and log-lik denote
the number of data points, the number of constraints, the F-score, the normalized mutual information, the optimal λ for the proposed algorithm
found by the validation procedure, and the log-likelihood, respectively.

1
3
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Proposed Shental, default init. Shental, special init. Shental, combined Basu

n m F NMI λ F NMI log-lik F NMI log-lik F NMI F NMI

derm 366 37 0.951 0.914 3.2× 102 0.821 0.869 −4.611× 103 0.819 0.869 −4.612× 103 0.821 0.869 0.843 0.890

digits 5620 562 0.875 0.813 1.0× 103 0.780 0.765 −6.155× 105 0.794 0.751 −6.164× 105 0.780 0.765 0.737 0.715

ion 351 35 0.821 0.354 3.2× 101 0.647 0.027 −3.637× 103 0.647 0.027 −3.637× 103 0.647 0.027 0.696 0.111

mfeat-fou 2000 200 0.685 0.658 1.0× 103 0.761 0.686 3.043× 104 0.754 0.705 3.058× 104 0.754 0.705 0.687 0.662

UCI-seg 2310 231 0.667 0.571 1.0× 105 0.692 0.640 −2.661× 104 0.707 0.683 −2.669× 104 0.692 0.640 0.638 0.613

wdbc 569 57 0.939 0.688 1.0× 102 0.795 0.376 −1.058× 104 0.913 0.624 −1.060× 104 0.795 0.376 0.851 0.383

austra 690 69 0.840 0.363 1.0× 102 0.855 0.426 −6.397× 103 0.857 0.431 −6.397× 103 0.855 0.426 0.855 0.430

german 1000 100 0.656 0.026 1.0× 103 0.646 0.008 −5.124× 103 0.646 0.008 −5.124× 103 0.646 0.008 0.582 0.006

heart 270 27 0.713 0.132 1.0× 102 0.612 0.037 −1.969× 103 0.612 0.037 −1.969× 103 0.612 0.037 0.834 0.359

sat 6435 644 0.795 0.658 3.2× 102 0.718 0.637 −6.627× 105 0.717 0.631 −6.627× 105 0.718 0.637 0.719 0.612

vehicle 846 85 0.473 0.164 1.0× 105 0.453 0.212 −7.924× 103 0.378 0.069 −7.258× 103 0.378 0.069 0.433 0.117

script 12938 1294 0.696 0.518 1.0× 105 0.673 0.516 −1.620× 105 0.672 0.515 −1.620× 105 0.672 0.515 0.687 0.506

texture 4000 400 0.973 0.903 3.2 × 10−1 0.978 0.919 −6.475× 104 0.976 0.909 −6.475× 104 0.978 0.919 0.952 0.850

ethn 2630 263 0.963 0.772 3.2× 102 0.891 0.541 1.497× 105 0.933 0.653 1.495× 105 0.891 0.541 0.870 0.488

Mondrian 10201 1020 0.970 0.906 3.2× 102 0.808 0.789 4.070× 104 0.808 0.789 4.070× 104 0.808 0.789 0.773 0.757

diff-300 300 30 0.740 0.409 3.2× 102 0.607 0.276 3.089× 103 0.508 0.157 3.065× 103 0.607 0.276 0.898 0.684

sim-300 291 29 0.615 0.201 1.0× 104 0.569 0.164 3.133× 103 0.493 0.012 3.145× 103 0.493 0.012 0.594 0.265

same-300 297 30 0.607 0.229 1.0× 104 0.519 0.112 3.106× 103 0.545 0.164 3.068× 103 0.519 0.112 0.641 0.275

Table 5.8: Performance of clustering under constraints algorithms when the constraint level is 10%. The headings n, m, F, NMI, λ, and log-lik denote
the number of data points, the number of constraints, the F-score, the normalized mutual information, the optimal λ for the proposed algorithm
found by the validation procedure, and the log-likelihood, respectively.

1
3
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Proposed Shental, default init. Shental, special init. Shental, combined Basu

n m F NMI λ F NMI log-lik F NMI log-lik F NMI F NMI

derm 366 55 0.954 0.918 1.0× 102 0.806 0.861 −4.643× 103 0.819 0.862 −4.634× 103 0.819 0.862 0.682 0.718

digits 5620 843 0.874 0.790 1.0× 103 0.760 0.746 −6.156× 105 0.894 0.824 −6.164× 105 0.760 0.746 0.803 0.749

ion 351 53 0.841 0.388 3.2× 101 0.643 0.032 −3.672× 103 0.643 0.032 −3.672× 103 0.643 0.032 0.676 0.094

mfeat-fou 2000 300 0.708 0.679 3.2× 101 0.763 0.705 3.056× 104 0.709 0.679 3.058× 104 0.709 0.679 0.673 0.653

UCI-seg 2310 347 0.739 0.692 3.2× 104 0.706 0.661 −2.646× 104 0.717 0.689 −2.554× 104 0.717 0.689 0.467 0.395

wdbc 569 85 0.972 0.825 3.2× 101 0.930 0.685 −1.061× 104 0.930 0.685 −1.061× 104 0.930 0.685 0.913 0.560

austra 690 104 0.851 0.395 3.2× 103 0.861 0.440 −6.506× 103 0.861 0.440 −6.506× 103 0.861 0.440 0.848 0.407

german 1000 150 0.649 0.008 0 0.646 0.001 −5.372× 103 0.648 0.010 −5.283× 103 0.648 0.010 0.653 0.010

heart 270 41 0.819 0.327 1.0× 103 0.760 0.206 −1.984× 103 0.609 0.034 −1.977× 103 0.609 0.034 0.830 0.342

sat 6435 965 0.796 0.658 1.0× 104 0.719 0.638 −6.628× 105 0.717 0.634 −6.628× 105 0.719 0.638 0.703 0.610

vehicle 846 127 0.562 0.237 3.2× 103 0.457 0.217 −7.996× 103 0.392 0.064 −7.399× 103 0.392 0.064 0.425 0.114

script 12938 1941 0.809 0.620 1.0× 103 0.679 0.517 −1.623× 105 0.678 0.517 −1.623× 105 0.679 0.517 0.686 0.501

texture 4000 600 0.982 0.927 3.2× 102 0.979 0.920 −6.470× 104 0.979 0.920 −6.470× 104 0.979 0.920 0.957 0.860

ethn 2630 395 0.957 0.746 1.0× 102 0.897 0.558 1.497× 105 0.957 0.743 1.495× 105 0.897 0.558 0.865 0.487

Mondrian 10201 1530 0.970 0.905 3.2× 102 0.967 0.900 4.033× 104 0.967 0.900 4.033× 104 0.967 0.900 0.786 0.753

diff-300 300 45 0.807 0.518 1.0× 105 0.477 0.065 3.082× 103 0.480 0.081 3.164× 103 0.480 0.081 0.937 0.770

sim-300 291 44 0.479 0.090 1.0× 104 0.484 0.075 3.142× 103 0.490 0.015 3.180× 103 0.490 0.015 0.602 0.271

same-300 297 45 0.436 0.046 1.0× 104 0.455 0.041 3.078× 103 0.540 0.113 3.108× 103 0.540 0.113 0.663 0.340

Table 5.9: Performance of clustering under constraints algorithms when the constraint level is 15%. The headings n, m, F, NMI, λ, and log-lik denote
the number of data points, the number of constraints, the F-score, the normalized mutual information, the optimal λ for the proposed algorithm
found by the validation procedure, and the log-likelihood, respectively.

1
3
3
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Figure 5.7: F-score and NMI for different algorithms for clustering under constraints for the data sets
ethn, Mondrian, and ion. The results of the proposed algorithm, Shental, and Basu are represented
by the red solid line, blue dotted lines and the black dashed line, respectively. The performance of
a classifier trained using all the labels is shown by the gray dashdot line. The horizontal axis shows
the number of constraints as the percentage of the number of data points.
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Figure 5.8: F-score and NMI for different algorithms for clustering under constraints for the data
sets script, derm, and vehicle. The results of the proposed algorithm, Shental, and Basu are
represented by the red solid line, blue dotted lines and the black dashed line, respectively. The
performance of a classifier trained using all the labels is shown by the gray dashdot line. The
horizontal axis shows the number of constraints as the percentage of the number of data points.
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Figure 5.9: F-score and NMI for different algorithms for clustering under constraints for the data
sets wdbc. The results of the proposed algorithm, Shental, and Basu are represented by the red
solid line, blue dotted lines and the black dashed line, respectively. The performance of a classifier
trained using all the labels is shown by the gray dashdot line. The horizontal axis shows the number
of constraints as the percentage of the number of data points.
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Figure 5.10: F-score and NMI for different algorithms for clustering under constraints for the data
sets UCI-seg, heart and austra. The results of the proposed algorithm, Shental, and Basu are
represented by the red solid line, blue dotted lines and the black dashed line, respectively. The
performance of a classifier trained using all the labels is shown by the gray dashdot line. The
horizontal axis shows the number of constraints as the percentage of the number of data points.
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Figure 5.11: F-score and NMI for different algorithms for clustering under constraints for the data
sets german, sim-300 and diff-300. The results of the proposed algorithm, Shental, and Basu

are represented by the red solid line, blue dotted lines and the black dashed line, respectively. The
performance of a classifier trained using all the labels is shown by the gray dashdot line. The
horizontal axis shows the number of constraints as the percentage of the number of data points.
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Figure 5.12: F-score and NMI for different algorithms for clustering under constraints for the data
sets sat and digits. The results of the proposed algorithm, Shental, and Basu are represented by
the red solid line, blue dotted lines and the black dashed line, respectively. The performance of a
classifier trained using all the labels is shown by the gray dashdot line. The horizontal axis shows
the number of constraints as the percentage of the number of data points.
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Figure 5.13: F-score and NMI for different algorithms for clustering under constraints for the data
sets mfeat-fou, same-300 and texture. The results of the proposed algorithm, Shental, and Basu

are represented by the red solid line, blue dotted lines and the black dashed line, respectively. The
performance of a classifier trained using all the labels is shown by the gray dashdot line. The
horizontal axis shows the number of constraints as the percentage of the number of data points.
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Figure 5.14: The result of simultaneously performing feature extraction and clustering with con-
straints simultaneously on the data set in Figure 5.3(a). The blue line in (a) corresponds to the
projection direction found by the algorithm. The projected data points (which is 1D), together with
the cluster labels and the two Gaussians, are shown in (b).
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Figure 5.15: An example of learning the subspace and the clusters simultaneously. (a): the original
data and the constraints, where solid (dotted) lines correspond to must-link (must-not-link) con-
straints. (b) Clustering result of projecting 20 features extracted by kernel PCA to a 2D space. (c)
Clustering solution (d) Result of applying spectral clustering [194] to this data set with two clusters,
using the same kernel used for kernel PCA.
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number of data points. Multiplication by the inverse of the Hessian in the line-search Newton

algorithm can be performed in O(d3) time, because the structure of the O(d2) by O(d2) Hessian

matrix is utilized for the inversion, and the matrix need not be formed explicitly. Unless the data

set is very small, the time cost of inverting the Hessian is insignificant when compared with the

calculation of the objective function J and its gradient. Therefore, one function evaluation of the

proposed algorithm is only marginally slower than one iteration of the EM algorithm for the mixture

model. Note that one Newton iteration can involve more than one function evaluation because of

the line-search.

Each iteration in the algorithm Shental is similar to that in the standard EM algorithm. The

difference is in the E-step, in which Shental involves an inference for a Markov network. This can

take exponential time with respect to the number of constraints in the worst case. The per-iteration

computation cost in Basu is in general smaller than both Shental and the proposed algorithm,

because it is fundamentally the k-means algorithm. However, the use of iterative conditional mode

to solve the cluster labels in the hidden Markov random fields, as well as the metric learning based

on the constraints, becomes the overhead due to the constraints.

In practice, the proposed algorithm is slower than the other two because of the cross-validation

procedure to determine the optimal λ. Even when λ is fixed, however, the proposed algorithm is still

slower because (i) the optimization problem considered by the proposed algorithm is more difficult

than those considered by Shental and Basu, and (ii) the convergence criteria based on the relative

norm of gradient is stricter.

5.7.2 Discriminative versus Generative

One way to view the difference between the proposed algorithm and the algorithms Shental and

Basu is that both Shental and Basu are generative, whereas the proposed approach is a combination

of generative and discriminative. In supervised learning, a classifier is “generative” if it assumes a

certain model on how the data from different classes are generated via the specification of the class

conditional densities, whereas a “discriminative” classifier is built by optimizing some error measure,

without any regard to the class conditional densities. Discriminative approaches are often superior

to generative approaches when the actual class conditional densities differ from their assumed forms.

On the other hand, incorporation of prior knowledge is easier for generative approaches because one

can construct a generative model based on the domain knowledge. Discriminative approaches are

also more prone to overfitting.

In the context of clustering under constraints, Shental and Basu can be regarded as generative

because they specify a hidden Markov random field to describe how the data are generated. The

constraint violation term F(θ; C) used by the proposed algorithm is discriminative, because it effec-

tively counts the number of violated constraints, which are analogous to the number of misclassified

samples. The log-likelihood term L(θ;Y) in the proposed objective function is generative because it

is based on how the data are generated by a finite mixture model. Therefore, the proposed approach

is both generative and discriminative, with the tradeoff parameter λ controlling the relative impor-

tance of these two properties. One can think that the discriminative component enables the proposed

algorithm to have a higher performance, whereas the generative component acts as a regularization

term to prevent overfitting in the discriminative component.

This discussion provides a new perspective in viewing the example in Figure 5.3. Shental and

Basu, being generative, failed to recover the two desired clusters because their forms differ signifi-

cantly from what Shental and Basu assume about a cluster. On the other hand, the discriminative

property of the proposed algorithm can locate the desired vertical cluster boundary, which can satisfy
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the constraints.

The discriminative nature of the proposed algorithm is also the reason why the proposed algo-

rithm, using constraints only, can outperform the generative classifier using all the labels. This is

surprising at first, because, after all, constraints carry less information than labels. Incorporating the

constraints on only some of the objects therefore should not outperform the case when the labels of

all objects are available. However, this is only true when all possible classifiers are considered. When

we restrict ourself to the generative classifier that assumes a Gaussian distribution with common

covariance matrix as the class conditional density, it is possible for a discriminative algorithm to

outperform the generative classifier if the class conditional densities are non-Gaussians. In fact, for

the data sets ethn, Mondrian, script, wdbc, and texture, we observed that the proposed algorithm

can have a higher F-score or NMI than that estimated using all the class labels. The difference is

more noticeable for script and wdbc. Note that for the data set austra, the generative algorithm

Shental can also out-perform the classifier trained using all the labels, though the difference is very

small and it may be due to the noisy nature of this data set.

5.7.3 Drawback of the Proposed Approach

There are two main drawbacks of the proposed approach. The optimization problem considered,

while accurately representing the goal of clustering with constraints, is more difficult. This has

several consequences. First, a more sophisticated algorithm (line-search Newton) is needed instead

of the simpler EM algorithm. The landscape of the proposed objective function is more “rugged”.

So, it it is more likely to get trapped in poor local optima. It also takes more iterations to reach a

local optimum. Because we are initializing randomly, this also means that the proposed algorithm

is not very stable if we have an insufficient number of random initializations.

The second difficulty is the determination of λ. (Note that the algorithm Basu has a similar

parameter.) In our experiments, we adopted a cross-validation procedure to determine λ, which is

computationally expensive. Cross-validation may yield a suboptimal λ when the number of infor-

mative constraints in the validation set is too small, or when too many constraints are erroneous

due to the noise in the data. Here, a constraint is informative if it provides “useful” information to

the clustering process. So, a must-link constraint between two points close to each other is not very

informative because they are likely to be in the same cluster anyway.

Another problem is that we may encounter an unfavorable split of the training and validation

constraints when the set of available constraints is too small. When this happens, the number of

violations for the validation constraints is significantly larger than that of the training constraints.

Increasing the value of λ cannot reduce the violation of the validation constraints, leading to an

optimal constraint strength of zero. When this happens, we should try a different split of the

constraints for training and validation.

5.7.4 Some Implementation Details

We have incorporated some heuristics in our optimization algorithm. During the optimization pro-

cess, a cluster may become almost empty. This is detected when
∑
i r̃ij/n falls below a threshold,

which is set to 4× 10−3/k. The empty cluster is removed, and the largest cluster that can result in

the increase in the J value is split to maintain the same number of clusters. If no such cluster exists,

the one that can lead to the smallest decrease in J is split. Another heuristic is that we lower-bound

αj by 10−8, no matter what the values of {βj} are. This is used to improve the numerical stability

of the proposed algorithm. The αj are then renormalized to ensure that they sum to one.
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5.8 Summary

We have presented an algorithm that handles instance-level constraints for model-based clustering.

The key assumption in our approach is that the cluster labels are determined based on the feature

vectors and the cluster parameters; the set of constraints has no influence here.. This contrasts

with previous approaches like [231] and [21] which impose prior distribution on the cluster labels

directly to reflect the constraints. This is the fundamental reason for the anomaly described in

Section 5.2. The actual clustering is performed by the line-search Newton algorithm under the

natural parameterization of the Gaussian distributions. The strength of the constraints is determined

by a hold-out set of validation constraints. The proposed approach can be extended to handle

simultaneously feature extraction and clustering under constraints. The effectiveness of the proposed

approach has been demonstrated on both synthetic data sets and real-world data sets from different

domain. In particular, we notice that the discriminative nature of the proposed algorithm can lead

to superior performance when compared with a generative classifier trained using the labels of all

the objects.
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Chapter 6

Summary

The primary objective of the work presented in this dissertation is to advance the state-of-the-art in

unsupervised learning. Unsupervised learning is challenging because its objective is often ill-defined.

Instead of providing yet another new unsupervised learning algorithm, we are more interested in

studying issues that are generic to different unsupervised learning tasks. This is the motivation

behind the study of various topics in this dissertation, including the modification of the batch

version of an algorithm to become incremental, the selection of the appropriate data representation

(feature selection), and the incorporation of side-information in an unsupervised learning task.

6.1 Contributions

The results in this thesis have contributed to the field of unsupervised learning in several ways, and

has led to the publication of two journal articles [163, 164]. Several conference papers [168, 161, 167,

165, 82] have also been published at different stages of the research conducted in this thesis.

The incremental ISOMAP algorithm described in Chapter 3 has made the following contributions:

• Framework for incremental manifold learning: The proposed incremental ISOMAP algorithm

can serve as a general framework for converting a manifold learning algorithm to become

incremental: the neighborhood graph is first updated, followed by the update of the low-

dimensional representation, which is often an incremental eigenvalue problem similar to our

case.

• Solution of the all-pairs shortest path problems: One component in the incremental algorithm

is to update the all-pairs shortest path distances in view of the change in the neighborhood

graph due to the new data points. We have developed a new algorithm that performs such

an update efficiently. Our algorithm updates the shortest path distances from multiple source

vertices simultaneously. This contrasts with previous work like [193], where different shortest

path trees are updated independently.

• Improved embedding for new data points: We have derived an improved estimate of the inner

product between the low-dimensional representation of the new point and the low-dimensional

representations of the existing points. This leads to an improved embedding for the new point.

• Algorithm for incremental eigen-decomposition with increasing matrix size: The problem of

updating the low-dimensional representation of the data points is essentially an incremental
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eigen-decomposition problem. Unlike the previous work [270], however, the size of the matrix

we considered is increasing.

• Vertex contraction to memorize the effect of data points: A vertex contraction procedure that

improves the geodesic distance estimate without additional memory is proposed.

Our work on estimating the feature saliency and the number of clusters simultaneously in Chap-

ter 4 has made the following contributions:

• Feature Saliency in unsupervised learning: The problem of feature selection/feature saliency

estimation is rarely studied for unsupervised learning. We tackle this problem by introducing a

notion of feature saliency, which is able to describe the difference between the distributions of

a feature among different clusters. The saliency is estimated efficiently by the EM algorithm.

• Automatic Feature Saliency and Determination of the Number of Clusters: The algorithm in

[81], which utilizes the minimum message length to select the number of clusters automatically,

is extended to estimate the feature saliency.

The clustering under constraints algorithm proposed in Chapter 5 has made the following con-

tributions:

• New objective function for clustering under constraints: We have proposed a new objective

function for clustering under constraints under the assumption that the constraints do not

have any direct influence on the cluster labels. Extensive experimental evaluations reveal that

this objective function is superior to the other state-of-the-art algorithms in most cases. It is

also easy to extend the proposed objective function to handle group constraints that involve

more than two data points.

• Avoidance of Counter-intuitive Clustering Result:

The proposed objective function can avoid the pitfall of previous clustering under constraints

algorithms like [231] and [21], which are based on hidden Markov random field. Specifically,

clustering solutions that assign the cluster label to a data point that is different from all its

neighbors is possible for previous algorithms, a situation avoided by the proposed algorithm.

• Robustness to model-mismatch:

The proposed objective function for clustering under constraints is a combination of generative

and discriminative terms. The discriminative term, which is based on the satisfaction of

the constraints, improves the robustness of the proposed algorithm towards mismatch in the

cluster shape. This leads to an improvement in the overall performance. The improvement can

sometimes be so significant that the proposed algorithm, using constraints only, outperforms

a generative supervised classifier trained using all the labels.

• Feature extraction and clustering with constraints: The proposed algorithm has been extended

to perform feature extraction and clustering with constraints simultaneously by locating the

best low-dimensional subspace, such that the Gaussian clusters formed will satisfy the given

set of constraints as well as they can. This allows the proposed algorithm to handle data

sets with higher dimensionality. The combination of this notion of feature extraction and the

kernel trick allows us to extract clusters with general shapes.

• Efficient implementation of the Line-search Newton Algorithm:

146



The proposed objective function is optimized by the line-search Newton algorithm. The multi-

plication by the inverse of the Hessian for the case of a Gaussian mixture can be done efficiently

with time complexity O(d3) without forming the O(d2) by O(d2) Hessian matrix explicitly.

Here, d denotes the number of features. A naive approach of inverting the Hessian would

require O(d6) time.

6.2 Future work

The study conducted in this dissertation leads to several interesting new research possibilities.

• Improvement in the efficiency of the incremental ISOMAP algorithm

There are several possibilities for improving the efficiency of the proposed incremental ISOMAP

algorithm. Data structures such as kd-tree, ball-tree, and cover-tree [19] can be used to speed

up the search of the k nearest neighbors. The update strategy for geodesic distance and

co-ordinates can be more aggressive; we can sacrifice the theoretical convergence property in

favor of empirical efficiency. For example, the geodesic distance can be updated approximately

using a scheme analogous to the distance vector protocol in the network routing literature.

Co-ordinate update can be made faster if only a subset of the co-ordinates (such as those close

to the new point) are updated at each iteration. The co-ordinates of every point would be

finally updated if the new points came from different regions of the manifold.

• Incrementalization of other manifold learning algorithms

The algorithm in Chapter 3 modifies the ISOMAP algorithm to become incremental. We can

also modify similar algorithms, such as locally linear embedding or Laplacian eigenmap to

become incremental.

• Features dependency in dimensionality reduction and unsupervised learning: The algorithm

in Chapter 4 assumes that the features are conditionally independent of each other when the

cluster labels are known. This assumption, however, is generally not true in practice. A new

algorithm needs to be designed to cope with the situation when features are highly correlated

in this setting.

• Feature selection and constraints:

The main difficulty of feature selection in clustering is the ill-posed nature of the problem. A

possible way to make the problem more well-defined is to introduce instance-level constraints.

In Section 5.5, we described an algorithm for performing feature extraction and clustering

under constraints simultaneously. One can apply a similar idea and use the constraints to

assist in feature selection for clustering.

• More efficient algorithms for clustering with constraints

The use of line-search Newton algorithm for optimizing the objective function in Chapter 5 is

relatively efficient when compared with alternative approaches. Unfortunately, the objective

function, which effectively uses Jensen-Shannon divergence to count the number of violated

constraints, is difficult to optimize. It is similar to the minimization of the number of classi-

fication errors directly in supervised learning, which is generally perceived as difficult. Often,

the number of errors is approximated by some quantities that are easier to optimize, such as

the distances of mis-classified points from the separating hyperplane in the case of support

vector machines. In the current context, we may want to approximate the number of violated
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constraints by some quantities that are easier to optimize. A difficulty can arise, however,

when both must-link and must-not-link constraints are considered. If the violation of a must-

link constraint is approximated by a convex function g(.), the violation of a must-not-link

constraint is naturally approximated by −g(.), which is concave. Their combination leads to a

function that is neither concave nor convex, which is difficult to optimize. Techniques like DC

(difference of convex functions) programming [117] can be adopted for global optimization.

• Number of clusters for clustering with constraints

The algorithm described in Chapter 5 assumes that the number of clusters is known. It is

desirable if the number of clusters can be estimated automatically from the data. The presence

of constraints should be helpful in this process. In fact, correlation clustering [10] considers

must-link and must-not-link constraints only, without any regard to the feature vectors, and

it can infer the optimal number of clusters by minimizing the number of constraint violations.

148



Appendices

149



Appendix A

Details of Incremental ISOMAP

In this appendix, we present the proof for the correctness of the algorithms in chapter 3 as well as

analyzing their time complexity.

A.1 Update of Neighborhood Graph

The procedure to update the neighborhood graph has been described in section 3.2.1.1, where A,

the set of edges to be added, and D, the set of edges to be deleted, are constructed upon insertion

of vn+1 to the neighborhood graph.

Time Complexity For time complexity, note that for each i, the conditions in Equations (3.1)

and (3.2) can be checked in constant time. So, the construction of A and D takes O(n) time. The

calculation of ιi for all i can be done in O(
∑n
i=1 deg(vi)+ |A|) or O(|E|+ |A|) time by examining the

neighbors of different vertices. Here, deg(vi) denotes the degree of vi. The complexity of the update

of neighborhood graph can be bounded by O(nq), where q is the maximum degree of the vertices in

the graph after inserting vn+1. Note that ιi becomes the τi for the updated neighborhood graph.

A.2 Update of Geodesic Distances: Edge Deletion

A.2.1 Finding Vertex Pairs For Update

In this section, we examine how the geodesic distances should be updated upon edge deletion.

Consider an edge e(a, b) ∈ D that is to be deleted. If πab 6= a, the shortest path between va and vb
does not contain e(a, b). Deletion of e(a, b) does not affect sp(a, b) and hence none of the existing

shortest paths are affected. Therefore, we have

Lemma A.1. If πab 6= a, deletion of e(a, b) does not affect any of the existing shortest paths and

therefore no geodesic distance gij needs to be updated.

We now consider the case πab = a. This implies πba = b because the graph is undirected. The

next lemma is an easy consequence of this assumption.

Lemma A.2. For any vertex vi, sp(i, b) passes through va iff sp(i, b) contains e(a, b) iff πib = a.

Before we proceed further, recall the definitions of T (b) and T (b; a) in section 3.1: T (b) is the

shortest path tree of vb, where the root node is vb and sp(b, j) consists of the tree edges from vb to

vj , and T (b; a) is the subtree of T (b) rooted at va.
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Let Rab ≡ {i : πib = a}. Intuitively, Rab contains vertices whose shortest paths to vb include

e(a, b). We shall first construct Rab, and then “propagate” from Rab to get the geodesic distances

that require update.

Because sp(t, b) passes through the vertices that are the ancestor of vt in T (b), plus vt, we have

Lemma A.3. Rab = { vertices in T (b; a) }.

Proof.

vt ∈ T (b; a)

⇔ va is an ancestor of vt in T (b), or va = vt

⇔ sp(t, b) passes through va

⇔ πtb = a (lemma A.2)

⇔ t ∈ Rab

If vt is a child of vu in T (b), vu is the vertex in sp(b, t) just before vt. Thus, we have the lemma

below.

Lemma A.4. The set of children of vu in T (b) = {vt : vt is a neighbor of vu and πbt = u}.

Consequently, we can examine all the neighbors of vu to find the node’s children in T (b) based

on the predecessor matrix. Note that the shortest path trees are not stored explicitly; only the

predecessor matrix is maintained. The first nine lines in Algorithm 3.1 perform a tree traversal that

extracts all the vertices in T (b; a) to form Rab, using Lemma A.4 to find all the children of a node

in the tree.

Time Complexity At any time, the queue Q contains vertices in the subtree T (b; a) that have

been examined. The while-loop is executed |Rab| times because a new vertex is added to Rab in

each iteration. The inner for-loop is executed a total of
∑
vt∈Rab deg(vt), which can be bounded

loosely by q|Rab|. Therefore, a loose bound for the first nine lines in Algorithm 3.1 is O(q|Rab|).

A.2.2 Propagation Step

Define F(a,b) ≡ {(i, j) : sp(i, j) contains e(a, b)}. Here, (a, b) denotes the unordered pair a and

b. So, F(a,b) is indexed by the unordered pair (a, b), and its elements are also unordered pairs.

Intuitively, F(a,b) contains the vertex pairs whose geodesic distances need to be recomputed when

the edge e(a, b) is deleted. Starting from vb for each of the vertex in Rab, we construct F(a,b) by a

search.

Lemma A.5. If (i, j) ∈ F(a,b), either i or j is in Rab.

Proof. (i, j) ∈ F(a,b) is equivalent to sp(i, j) contains e(a, b). The shortest path sp(i, j) can be

written either as sp(i, j) = vi  va → vb  vj , or sp(i, j) = vi  vb → va  vj , where  denotes

a path between the two vertices. Because the subpath of a shortest path is also a shortest path,

either sp(i, b) or sp(j, b) passes through va. By lemma A.2, either πib = a or πjb = a. Hence either

i or j is in Rab.

Lemma A.6. F(a,b) =
⋃

u∈Rab
{(u, t) : vt is in T (u; b)}.
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Figure A.1: Example of T (u; b) and T (a; b). All the nodes and the edges shown constitute T (a; b),
whereas only the part of the subtree above the line constitutes T (u; b). This example illustrates the
relationship of T (u; b) and T (a; b) as proved in Lemma A.7.

Proof. By lemma A.5, (u, t) ∈ F(a,b) implies either u or t is in Rab. Without loss of generality,

suppose u ∈ Rab. So, sp(u, t) can be written as vu  va → vb  vt. Thus vt must be in T (u; b).

On the other hand, for any vertex vt in the subtree of T (u; b), sp(u, t) goes through vb. Since sp(u, b)

goes through va (because u ∈ Rab), sp(u, t) must also go through va and hence use e(a, b).

Direct application of the above lemma to compute F(a,b) requires the construction of T (u; b) for

different u. This is not necessary, however, because for all u ∈ Rab, T (u; b) must be a part of T (a; b)

in the sense that is exemplified in Figure A.1. This relationship aids the construction of T (u; b) in

Algorithm 3.1 (the variable T ′) because we only need to expand the vertices in T (a; b) that are also

in T (u; b).

Lemma A.7. Consider u ∈ Rab. The subtree T (u; b) is non-empty, and let vt be any vertex in this

subtree. Let vs be a child of vt in T (u; b), if any. We have the following:

1. vt is in the subtree of T (a; b).

2. vs is a child of vt in the subtree of T (a; b).

3. πus = πas = t

Proof. The subtree T (u; b) is not empty because vb is in this subtree. For any vt in this subtree,

sp(u, t) passes through vb. Hence sp(u, b) is a subpath of sp(u, t). Because u ∈ Rab, sp(u, b) passes

through va. So, we can write sp(u, t) as vu  va → vb  vt. So, sp(a, t) contains vb, and this

implies that vt is in T (a; b).

Now, if vs is a child of vt in T (u; b), sp(u, s) can be written as vu  va → vb  vt → vs.

So, πus = t. Because any subpath of a shortest path is also a shortest path, sp(a, s) is simply

va → vb  vt → vs, which implies that vs is also a child of vt in T (a; b), and πas = t. Therefore,

we have πus = πas = t.
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Let F be the set of unordered pair (i, j) such that a new shortest path from vi to vj is needed when

edges in D are removed. So, F =
⋃
e(a,b)∈D F(a,b). For each (a, b) ∈ D, Rab constructed in the first

nine lines in Algorithm 3.1 is used to construct F(a,b) from line 11 until the end of Algorithm 3.1.

At each iteration of the while-loop starting at line 15, the subtree T (a; b) is traversed, using the

condition πus = πas to check if vs is in T (u; b) or not. The part of the subtree T (a; b) is expanded

only when necessary, using the variable T ′.

Time Complexity If we ignore the time to construct T ′, the complexity of the construction of

F is proportional to the number of vertices examined. If the maximum degree of T ′ is q′, this is

bounded by O(q′|F |). Note that q′ ≤ q, where q is the maximum degree of the vertices in the

neighborhood graph. The time to expand T ′ is proportional to the number of vertices actually

expanded plus the number of edges incident on those vertices. This is bounded by q times the size

of the tree, and the size of the tree is at most O(|F(a,b)|). Usually, the time is much less, because

different u in Rab can reuse the same T ′. The time complexity to construct F(a,b) can be bounded

by O(q|F(a,b)|) in the worst case. The overall time complexity to construct F , which is the union of

F(a,b) for all (a, b) ∈ D, is O(q|F |), assuming the number of duplicate pairs in F(a,b) for different

(a, b) is O(1). Empirically, there are at most several such pairs. Most of the time, there is no

duplicate pair at all.

A.2.3 Performing The Update

Let G′ = (V,E/D), the graph after deleting the edges in D. Let B be an auxiliary undirected graph

with the same vertices as G, but its edges are based on F . In other words, there is an edge between

vi and vj in the graph B if and only if (i, j) is in F . Because F contains all the vertex pairs whose

geodesic distances need to be updated, an edge in B corresponds to a geodesic distance value that

needs to be revised.

To update the geodesic distances, we first pick a vu in B with at least one edge incident on it.

Define C(u) = {i : e(u, i) is an edge of B}. So, the geodesic distance gu,i needs to be updated if

and only if i ∈ C(u). These geodesic distances are updated by the modified Dijkstra’s algorithm

(Algorithm 3.2), with vu as the source vertex and C(u) as the set of “unprocess vertices”, i.e., the

set of vertices such that their shortest paths from vu are invalid. Recall the basic idea of Dijkstra’s

algorithm is that, starting with an empty set of “processed vertices” (vertices whose shortest paths

have been found), different vertices are added one by one to this set in an ascending order of

estimated shortest path distances. The ascending order guarantees the optimality of the shortest

paths. Algorithm 3.2 does something similar, except that the set of “processed vertices” begins

with V/C(u) instead of an empty set. The first for-loop estimates the shortest path distances for

j ∈ C(u) if sp(u, j) is “one edge away” from the processed vertices, i.e., sp(u, j) can be written as

vu  va → vj with a ∈ V/C(u). In the while loop, the vertex vk (k ∈ C(u)) with the smallest

estimated shortest path distance is examined and transferred into the set of processed vertices.

The estimates of the shortest path distances between vu and the adjacent vertices of vk are relaxed

(updated) accordingly. This repeats until C(u) becomes empty, i.e., all vertices have been processed.

When the modified Dijkstra’s algorithm with vu as the source vertex finishes, all geodesic dis-

tances involving vu have been updated. Since an edge in B corresponds to a geodesic distance

estimate requiring update, we should remove all edges incident on vu in B. We then select another

vertex v
u′ with at least one edge incident on it in B, and call the modified Dijkstra’s algorithm again

but with v
u′ as the source vertex. This repeats until B becomes an empty graph.
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Time Complexity The for-loop in Algorithm 3.2 takes at most O(q|C(u)|) time. In the while-

loop, there are |C(u)| ExtractMin operations, and the number of DecreaseKey operations depends

on how many edges are there within the vertices in C(u). A upper bound for this is q|C(u)|. By using

Fibonacci’s heap, ExtractMin can be done in O(log |C(u)|) time while DecreaseKey can be done in

O(1) time, on average. Thus the complexity of algorithm 3.2 is O(|C(u)| log |C(u)| + q|C(u)|). If

binary heap is used instead, the complexity is O(q|C(u)| log |C(u)|).

A.2.4 Order for Performing Update

How do we select vu in B to be eliminated and to act as the source vertex for the modified Dijkstra’s

Algorithm (Algorithm 3.2)? We seek an elimination order that minimizes the time complexity of all

the updates. Let fi be the degree of vκi , the i-th vertex removed from B. So, fi = |C(κi)|. The

overall time complexity T for running the modified Dijkstra’s algorithm (with Fibonacci’s heap) for

all the vertices in B with at least an incident edge is O(T ), with

T =
∑

i

(fi log fi + qfi). (A.1)

Because
∑n
i=1 fi is a constant (twice the number of edges in B) with respect to different elimination

order, the vertices should be eliminated in an order that minimizes
∑
i fi log fi. If binary heap is

used, the time complexity is O(T ∗), with

T∗ = q
∑

i

fi log fi. (A.2)

In both cases, we should minimize
∑
i fi log fi. Finding an order that minimizes this is difficult,

unfortunately. Since this sum is dominated by the largest fi, we instead minimize maxi fi. This

minimization is achieved by a greedy algorithm that removes the vertex in B with the smallest

degree. The correctness of this greedy approach can be seen from the following argument. Suppose

the greedy algorithm is wrong. So, at some point the algorithm makes a mistake, i.e., the removal

of vt instead of vu leads to an increase of maxi fi. This can only happen when deg(vt) > deg(vu).

We get a contradiction, since the algorithm always removes the vertex with the smallest degree.

Because the degree of each vertex is an integer, an array of linked lists can be used to implement

the greedy search (Algorithm 3.3) efficiently without an explicit search. At any time of the instance,

the linked list l[i] is empty for i < pos. So, the vertex in l[i] has the smallest degree in B. The

for-loop in lines 10 to 18 removes all the edges incident on vj in B by reducing the degree of all

vertices adjacent to vj by one, and moving pos back by one if necessary.

Time Complexity The first for-loop in Algorithm 3.3 takes O(|F |) time, because |F | is the

number of edges in B. In the second for-loop, pos is incremented at most 2n times, because it can

move backwards at most n steps. The inner for-loop is executed altogether O(|F |) time. Therefore,

the overall time complexity for algorithm 3.3 (excluding the time for executing the modified Dijkstra’s

algorithm) is O(|F |).

A.3 Update of Geodesic Distances: Edge Insertion

In Equation (3.3), we describe how the geodesic distance between the new vertex vn+1 and vi is

computed, after updating the geodesic distance in view of the edge deletion. Since all the edges in
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A, the set of edges inserted into the neighborhood graph, are incident on vn+1, any improvement in

an existing shortest path must involve vn+1. Let L = {(i, j) : wi,n+1 +wn+1,j < gij}. Intuitively,

L is the set of unordered pairs adjacent to vn+1 with improved shortest paths due to the insertion

of vn+1.

For different (a, b) ∈ L, Algorithm 3.4 is used to propagate the effect of the improvement in

sp(a, b) to the vertices near va and vb. First, lines 1 to 9 construct a set Sab that is similar to Rab
in Algorithm 3.1, and it consists of vertices whose shortest paths to vb have been improved. For

each vertex vi in Sab, lines 11 to 22 search for other shortest paths starting from vi that can be

improved, and update the geodesic distance according to the improved shortest path just discovered.

Its idea is analogous to the construction of F(a,b) in Algorithm 3.1, but now sp(a, b) is improved

instead of destroyed as in the case of F(a,b).

The correctness of Algorithm 3.1 can be seen by the following argument. Without loss of gen-

erality, the improved shortest path between vi and vj can be written as vi va→vn+1→ vb vj .

So, vi is a vertex in T (n + 1; a), and vj must be in both T (i; b) and T (n+ 1; b). If vl is a child of

vj in T (i; b), vl is also a child of vj in T (n+ 1; b), and (gi,n+1 + gn+1,l) < gil should be satisfied.

In other words, the relationship between T (i; b) and T (n + 1; b) here is similar to the relationship

between T (u; b) and T (a; b) depicted in Figure A.1. The proof of these properties is similar to the

proof given for the relationship between F(a,b) and Rab, and hence is not repeated.

Time Complexity The set L can be constructed in O(|A|2) time. Let H = {(i, j) : A better

shortest path appears between vi and vj because of vn+1 }. By an argument similar to the complex-

ity of constructing F , the complexity of finding H and revising the corresponding geodesic distances

in Algorithm 3.4 is O(q|H | + |A|2).

A.4 Geodesic Distance Update: Overall Time Complexity

Updating the neighborhood graph takes O(nq) time. The construction of Rab and Fab (Algo-

rithm 3.1) takes O(q|Rab|) and O(q|Fab|) time, respectively. Since |Fab| ≥ |Rab|, these steps take

O(q|Fab|) time together. As a result, F can be constructed in O(q|F |) time. The time to run

the modified Dijkstra’s algorithm (Algorithm 3.2) is difficult to estimate. Let µ be the number of

vertices in B with at least one edge incident on it, and let ν ≡ maxi fi with fi defined in Appendix

A.2.4. In the highly unlikely worst case, ν can be as large as µ. The time of running Algorithm 3.2

can be rewritten as O(µν log ν+ q|F |). The typical value of ν can be estimated using concepts from

random graph theory. It is easy to see that

ν = max
l

{B has a l-regular sub-graph}, (A.3)

where a l-regular sub-graph is defined as a subgraph with the degree of all vertices as l. Unfortunately,

we fail to locate the exact result on the behavior of the largest l-regular sub-graph in random graph

theory. On the other hand, the largest l-complete sub-graph, i.e., a clique of size l, of a random

graph has been well studied. The clique number (the size of the largest clique in a graph) of almost

every graph is “close” to O(log µ) [200], assuming the average degree of vertices is a constant and

µ is the number of vertices in the graph. Based on our empirical observations in the experiments,

we conjecture that, on average, ν is also of the order O(log µ). With this conjecture, the total

time to run the Dijkstra’s algorithm can be bounded by O(µ log µ log logµ + q|F |). Finally, the

time complexity of algorithm 3.4 is O(q|H | + |A|2). So, the overall time complexity can be written
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as O(q|F | + q|H | + µ logµ log log µ + |A|2). Note that µ ≤ 2|F |. In practice, the first two terms

dominate, and the complexity can be written as O(q(|F | + |H |)).
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Appendix B

Calculations for Clustering with

Constraints

The purpose of this appendix is to derive the results in Chapter 5, some of which are relatively

involved.

B.1 First Order Information

In this appendix, we shall derive the gradient of the objective function J . The differential of

a variable or a function x will be denoted by “d x”. We shall first compute the differential of

J , followed by the conversion of the differentials into the derivatives with respect to the cluster

parameters.

B.1.1 Computing the Differential

The differential of the log-likelihood can be derived as follows:

d L(θ;Y) =

n∑

i=1

d

(
log

k∑

j=1

exp(log qij)

)
=

n∑

i=1

k∑

j=1

exp(log qij)
(
d log qij

)

∑
j′ exp(log q

ij′)

=

n∑

i=1

k∑

j=1

rij

(
d log qij

)
.

(B.1)

Here, rij = exp(log qij)/
∑
j∗ exp(log qij∗) = qij/

∑
j∗ qij∗ is the usual posterior probability for

the j-th cluster given the point yi. The annealing version of the log-likelihood, which is needed if we

want to apply a deterministic-annealing type of procedure to optimize the log-likelihood, is defined

by

Lannealed(θ;Y , γ) =

n∑

i=1

k∑

j=1

r̃ij log qij −
1

γ

n∑

i=1

k∑

j=1

r̃ij log r̃ij , (B.2)

where γ is the inverse temperature parameter. Note that Lannealed(θ;Y , γ) becomes the log-

likelihood L(θ;Y) when γ is one. The temperature invtemp is different from the smoothness pa-

rameter τ : γ is related to all the data points, whereas τ is only concerned with objects involved in
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the constraints. The “fuzzy” cluster assignment r̃ij is defined as

r̃ij =
q
γ
ij∑
j′ q

γ
ij′

. (B.3)

A small value of γ corresponds to a state of high temperature, in which the cluster assignments are

highly uncertain. The first term in Equation (B.2) can also be understood as a weighted sum of

distortion in coding theory, with r̃ij as the weights and log qij as the distortion. The second term

in Equation (B.2) is proportional to the sum of the entropy of r̃ij . Because

Lannealed(θ;Y , γ) =
∑

ij

r̃ij log qij −
1

γ

∑

ij

r̃ij log q
γ
ij +

1

γ

∑

ij

r̃ij log
∑

l

q
γ
il

=
1

γ

∑

i

log
∑

l

exp
(
γ log qil

)
,

the differential of the annealed log-likelihood is similar to that of the log-likelihood, which is

d Lannealed(θ;Y , γ) =
∑

ij

r̃ij

(
d log qij

)
(B.4)

Our next step is to derive the differential for the constraint satisfaction function F(θ; C). Based on

the definition of sij in Equation (5.12), we can obtain its differential as

d log sij = d
(
τ log qij

)
− d log

∑

l

exp
(
τ log qil

)

= τ
(
d log qij

)
− τ

∑

l

sil
(
d log qil

)

d sij = τsij

(
d log qij −

∑

j

sij

(
d log qij

))

d t+
hj

=
∑

i

ahi

(
d sij

)

d t−
hj

=
∑

i

bhi

(
d sij

)

Note that
∑k
j=1 d sij =

∑k
j=1 d t+

hj
=
∑k
j=1 d t−

hj
= 0 because

∑
j sij =

∑k
j=1 t

+
hj

=
∑k
j=1 t

−
hj

= 1. The differential for the negative entropy of sij , t
+
hj

and t−
hj

can be derived by
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considering

d
∑

j

sij log sij =
∑

j

(log sij + 1)(d sij) =
∑

j

log sij(d sij)

= τ
∑

j

sij log sij


d log qij −

∑

l

sil
(
d log qil

)



= τ
∑

j


sij log sij − sij

∑

l

sil log sil


 (d log qij)

d
∑

j

t+
hj

log t+
hj

=
∑

j

log t+
hj

(d t+
hj

)

= τ
∑

j

log t+
hj

∑

i

ahisij


d log qij −

∑

l

sil
(
d log qil

)



= τ
∑

ij

ahisij


log t+

hj
−
∑

l

sil log t+
hl



(
d log qij

)

d
∑

j

t−
hj

log t−
hj

= τ
∑

ij

bhisij


log t−

hj
−
∑

l

sil log t−
hl



(
d log qij

)

The differential for the Jensen-Shannon divergence term is then given by

d D+
JS(h) = d


∑

i

ahi

∑

j

sij log sij −
∑

j

t+
hj

log t+
hj




= τ
∑

ij

ahisij


log sij −

∑

l

sil log sil



(
d log qij

)

− τ
∑

ij

ahisij


log t+

hj
−
∑

l

sil log t+
hl



(
d log qij

)

= τ
∑

ij

ahisij


log

sij

t+
hj

−
∑

l

sil log
sil

t+
hl



(
d log qij

)

d D−
JS

(h) = τ
∑

ij

bhisij


log

sij

t−
hj

−
∑

l

sil log
sil

t−
hl



(
d log qij

)
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The differential of the loss functions of constraint violation can thus be written as

d F(θ; C) = d

(
−
m+∑

h=1

λ+
h
D+
JS

(h) +
m−∑

h=1

λ−
h
D−
JS

(h)

)

= −τ
∑

ij

(m+∑

h=1

λ+
h
ahisij

(
log

sij

t+
hj

−
∑

l

sil log
sil

t+
hl

)

−
m−∑

h=1

λ−
h
bhisij

(
log

sij

t−
hj

−
∑

l

sil log
sil

t−
hl

))(
d log qij

)

= −τ
∑

ij

(m+∑

h=1

λ+
h
ahisij log

sij

t+
hj

−
m−∑

h=1

λ−
h
bhisij log

sij

t−
hj

− sij

∑

l

m+∑

h=1

λ+
h
ahisil log

sil

t+
hl

+ sij

∑

l

m−∑

h=1

λ−
h
bhisil log

sil

t−
hl

)(
d log qij

)

= −τ
∑

ij


wij − sij

∑

l

wil



(
d log qij

)

(B.5)

where we define

wij =



m+∑

h=1

λ+
h
ahi


 sij log sij − sij

m+∑

h=1

λ+
h
ahi log t+

hj

−



m−∑

h=1

λ−
h
bhi


 sij log sij + sij

m−∑

h=1

λ−
h
bhi log t−

hj

=



m+∑

h=1

λ+
h
ahi −

m−∑

h=1

λ−
h
bhi


 sij log sij

− sij



m+∑

h=1

λ+
h
ahi log t+

hj
−
m−∑

h=1

λ−
h
bhi log t−

hj




(B.6)
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It is interesting to note that

n∑

i=1

k∑

j=1

wij

=

n∑

i=1

k∑

j=1

(m+∑

h=1

λ+
h
ahisij log sij −

m−∑

h=1

λ−
h
bhisij log sij

−
m+∑

h=1

λ+
h
ahisij log t+

hj
+

m−∑

h=1

λ−
h
bhisij log t−

hj

)

=

m+∑

h=1

λ+
h

n∑

i=1

k∑

j=1

ahisij log
sij

t+
hj

−
m−∑

h=1

λ−
h

n∑

i=1

k∑

j=1

bhisij log
sij

t−
hj

=

m+∑

h=1

λ+
h
D+
JS(h) −

m−∑

h=1

λ−
h
D−
JS(h) = F(θ; C)

(B.7)

Therefore, summing all wij provides a way to compute the loss function for constraint violation.

We are now ready to write down the differential of J :

d J =

n∑

i=1

k∑

j=1

(
r̃ij − τ

(
wij − sij

k∑

l=1

wil

))(
d log qij

)
(B.8)

B.1.2 Gradient Computation

Since the only differentials in Equation (B.8) are (d log qij), the gradient of J can be obtained by

converting these differentials into derivatives. Recall that qij = αjp(yi|θ). So,

∂

∂ logαj
log qil = I(j = l),

where I(.) is the indicator function, and is one if the argument is true and zero otherwise. To enforce

the restriction that αj > 0 and
∑
j αj = 1, we introduce new variables βj and express αj in terms

of {βj}:

αj =
exp(βj)

∑k
j′=1

exp(β
j′)

. (B.9)
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We then have

∂

∂βl
logαj =

∂

∂βl


βj − log

∑

j′
exp(βj′)


 = I(j = l) − exp(βl)∑

j′ exp(βj′)

= I(j = l) − αl

∂

∂βj
log qil =

k∑

m=1

∂ log qil
∂ logαm

∂ logαm
∂βj

=
∑

m
I(l = m)

(
I(m = j) − αj

)

= I(j = l) − αj

If p(yi|θj) falls into the exponential family (Section 5.1.1), and θj is the natural parameter, the

derivative of log qij with respect to θl can be written as

∂

∂θj
log qil = I(j = l)

(
φ(yi) −

∂

∂θl
A(θl)

)
. (B.10)

Note that φ(yi) − ∂
∂θl

A(θl) is zero when the sufficient statistics of the observed data (represented

by φ(yi)) equal to its expected value (represented by ∂
∂θl

A(θl)). In this case, the convexity of A(θl)

guarantees that the log-likelihood is maximized.

Before going into the special case of the Gaussian distribution, we want to note that for any

number cij , we have

∑

ij

cij
∂

∂βl
log qij =

∑

ij

cij
(
I(l = j) − αl

)
=
∑

i

cil − αl

∑

ij

cij

∑

ij

cij
∂

∂θl
log qij =

∑

i

cil
∂

∂θl
log qil =

∑

i

cil

(
φ(yi) −

∂

∂θl
A(θl)

)

=
∑

i

cilφ(yi) −
∂

∂θl
A(θl)

∑

i

cil

The gradient of J can be computed by substituting cij = r̃ij − τ(wij − sij
∑k
l=1wil).

B.1.3 Derivative for Gaussian distribution

Consider the special case that p(yi|θl) is a Gaussian distribution. Based on Equation (5.6), we can

see that the natural parameters are Υl and νl, the sufficient statistics consist of yi and −1
2yiy

T
i ,

and the log-cumulant function A(θl) is given by Equation (5.7). In this case, we have

∂

∂νl
J =

∑

i

cilyi − µl
∑

i

cil (B.11)

∂

∂Υl
J = −1

2

∑

i

cilyiy
T
i +

(
1

2
µlµ

T
l +

1

2
Σl

)∑

i

cil (B.12)

Note that the above computation implicitly assumes that Υl is symmetric. To explicitly enforce

the constraints that Υl is symmetric and positive definite, we can re-parameterize by its Cholesky
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decomposition:

Υl = FlF
T
l , (B.13)

Note, however, with this set of parameters, the density is no longer in its natural form. The gradient

with respect to νl remains unchanged, and it is not hard to show that

∂

∂Fl
log qij = I(j = l)

(
−yiy

T
i + µlµ

T
l + Σl

)
Fl. (B.14)

∂

∂Fl
J = −

∑

i

cilyiy
T
i Fl +

(
µlµ

T
l + Σl

)
Fl

∑

i

cil (B.15)

Alternatively, the Gaussian distribution can be parameterized by the mean µj and the precision

matrix Υj as in Equation (5.5). Because

∂

∂µl
log qij = I(j = l)Υl(yi − µl) (B.16)

∂

∂Υl
log qij = I(j = l)

(
1

2
Σl −

1

2
(yi − µl)(yi − µl)T

)
(B.17)

∂

∂Fl
log qij = I(j = l)

(
Σl − (yi − µl)(yi − µl)T

)
Fl, (B.18)

the corresponding gradient of J is

∂

∂µl
J = Υl

∑

i

cil(yi − µl) (B.19)

∂

∂Υl
J =

1

2
Σl

∑

i

cil −
1

2

∑

i

cil(yi − µl)(yi − µl)T (B.20)

∂

∂Fl
J =


Σl

∑

i

cil −
∑

i

cil(yi − µl)(yi − µl)T

Fl (B.21)

B.2 Second Order Information

The second-order information (Hessian) of the proposed objective function J can be derived in a

manner similar to the first order information. We shall first compute the second-order differentials

and then convert them to the Hessian matrix. Let d2 x denote the second-order differential of the

variable x.

B.2.1 Second-order Differential

By taking the differential on both sides of Equation (B.4), we have

d2 Lannealed(θ;Y , γ) =
∑

ij

(d r̃ij)
(
d log qij

)
+
∑

ij

r̃ij

(
d2 log qij

)
. (B.22)
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To compute d r̃ij , we take the differentials of the logarithm of both sides of Equation (B.3):

d log r̃ij = d


log q

γ
ij − log

k∑

l=1

q
γ
il




= γ d log qij −
1

∑k
l′=1

q
γ
il′

k∑

l=1

q
γ
il
d log q

γ
il

= γ


d log qij −

k∑

l=1

r̃il d log qil


 .

(B.23)

Because of the identity that d x = x d logx for x > 0, we have

d r̃ij = r̃ij d log r̃ij (B.24)

Substituting Equation (B.24) into Equation (B.22), we have

d2 Lannealed(θ;Y , γ)

=
∑

ij

r̃ij

(
d2 log qij

)
+ γ

∑

ij

r̃ij(d log qij)(d log qij)

− γ
∑

i

∑

l

r̃il d log qil

∑

j

r̃ijd log qij

=
∑

ij

r̃ij

(
d2 log qij

)
+ γ

∑

ijl

(δjl − r̃il)r̃ij (d log qij)(d log qil).

(B.25)

Here, δjl is the delta function, and it is one if j = l and zero otherwise. The definition of sij in

Equation (5.12) implies the following:

d sij = sij d log sij (B.26)

d log sij = τ


d log qij −

k∑

l=1

sil d log qil


 (B.27)

Note the similarity between the definitions of sij and r̃ij . Because for any i,
∑
j (wij−sij

∑
l wil) =

0 and
∑
j d sij = d

∑
j sij = 0, Equation (B.5) can be rewritten as

d F(θ, C) = −τ
∑

i

∑

j

(
wij − sij

∑

l

wil
)
(d log qij)

= −τ
∑

i

(∑

j

(
wij − sij

∑

l

wil
)(
d log qij −

∑

l

sil d log qil
)
)

= −
∑

i

(∑

j

(
wij − sij

∑

l

wil
)
d log sij

)

= −
∑

i

∑

j

wij d log sij +
∑

i

∑

j

d sij

∑

l

wil = −
∑

i

∑

j

wij d log sij
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The differential of this expression yields d2 F(θ; C). So, we need to find d wij and d2 log sij . The

definition of wij in Equation (B.6) means that its differential is

d wij =



m+∑

h=1

λ+
h
ahi −

m−∑

h=1

λ−
h
bhi


 (log sij + 1)sij d log sij

− sij



m+∑

h=1

λ+
h
ahi

t+
hj

d t+
hj

−
m−∑

h=1

λ−
h
bhi

t−
hj

d t−
hj




− sij



m+∑

h=1

λ+
h
ahi log t+

hj
−
m−∑

h=1

λ−
h
bhi log t−

hj


 d log sij

= w∗ijd log sij −
m+∑

h=1

λ+
h

t+
hj

ahisij
(
d t+
hj

)
+

m−∑

h=1

λ−
h

t−
hj

bhisij
(
d t−
hj

)
,

where we define w∗ij = wij +

(∑m+
h=1 λ

+
h
ahi −

∑m−
h=1 λ

−
h
bhi

)
sij . Taking the differentials of both

sides of Equation (B.27), we have

d2 log sij = τ

(
d2 log qij −

k∑

l=1

sil d
2 log qil −

k∑

l=1

sil(d log sil)(d log qil)

)

= τ

(
d2 log qij −

k∑

l=1

sil d
2 log qil

)

−
k∑

l=1

sil(d log sil)
(
d log sil + τ

k∑

l′=1

sil′ d log qil′
)

= τ

(
d2 log qij −

k∑

l=1

sil d
2 log qil

)
−

k∑

l=1

sil(d log sil)(d log sil)

Note that we have used the fact
∑k
l=1 sil(d log sil) = 0. If we define w̃ij = wij − sij

∑k
l=1wil,

we can write

∑

ij

wij d
2 log sij

= τ
∑

ij

w̃ijd
2 log qij −

∑

i

k∑

j=1

wij

k∑

l=1

sil(d log sil)(d log sil),

(B.28)
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Putting them together, we have

d2 F(θ; C) =
∑

ij

wij d
2 log sij +

∑

ij

d wij d log sij

=
∑

ij

wij d
2 log sij +

∑

ij

w∗ij(d log sij)(d log sij)

−
∑

j

m+∑

h=1

∑

i

λ+
h

t+
hj

(
d t+
hj

)(
ahisij d log sij

)

+
∑

j

m−∑

h=1

∑

i

λ−
h

t−
hj

(
d t−
hj

)(
bhisij d log sij

)

= τ
∑

ij

w̃ij d
2 log qij +

∑

ij

(
w∗ij − sij

k∑

l=1

wil
)
(d log sij)(d log sij)

−
m+∑

h=1

∑

j

λ+
h

t+
hj

(d t+
hj

)(d t+
hj

) +

m−∑

h=1

∑

j

λ−
h

t−
hj

(d t−
hj

)(d t−
hj

)

(B.29)

Note that w∗ij − sij
∑k
l=1wil = w̃ij +

(∑m+
h=1 λ

+
h
ahi −

∑m−
h=1 λ

−
h
bhi

)
sij .

B.2.2 Obtaining the Hessian matrix

Our goal in this section is to obtain the Hessian matrix of J with respect to the parameters ordered

by β1, . . . , βk, . . . θ1, . . . , θk . Let ψiu denote the column vector
∂ log qij
∂θu

, and define Ψu to be the

|θu| by n matrix [ψ1u, . . . ,ψnu], where |θu| is the number of parameters in θu. Let Duv be a n by

n diagonal matrix such that its (i, i)-th entry is γ(δuv − r̃iv)r̃iu. Let 11,n denote a 1 by n matrix

with all its entries equal to one. Let Hβ be the Hessian matrix of (log qij) with respect to the βus,

i.e., the (u, v)-th entry of Hβ is given by

∂2

∂βu∂βv
log qij =

∂2

∂βu∂βv
logαj =

∂

∂βv

(
δju − αu

)
= −αu (δuv − αv) .

Here, δuv is the Kronecker delta, which is 1 if u = v and 0 otherwise. Note that Hβ does not depend

on the value of i and j in log qij . Let Hij denote the Hessian of log p(yi|θj) with respect to θj . Its

exact form for the case of Gaussian distributions will be derived in the next section.
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B.2.2.1 Hessian of the Log-likelihood

Based on Equation (B.25), we have

∂2

∂θu∂θv
Lannealed(θ;Y , γ)

=
∑

ij

r̃ij
∂2 log qij

∂θu∂θv
+ γ

∑

ijl

(δjl − r̃il)r̃ij

(
∂ log qij

∂θu

)(
∂ log qil
∂θv

)T

= δuv
∑

i

r̃iu
∂2 log qiu

∂θ2u
+ γ

∑

i

(δuv − r̃iv)r̃iuψiuψ
T
iv

= δuv
∑

i

r̃iuHiu + ΨuDuvΨ
T
v

∂2

∂βu∂θv
Lannealed(θ;Y , γ)

= γ
∑

ijl

(δjl − r̃il)r̃ij

(
δuj − αu

)
δlv

(
∂ log qil
∂θv

)T
= γ

∑

i

(δuv − r̃iv)r̃iuψ
T
iv

= 11,nDuvΨ
T
v

∂2

∂βu∂βv
Lannealed(θ;Y , γ)

=
∑

ij

r̃ijαu(αv − δuv) + γ
∑

ijl

(δjl − r̃il)r̃ij (δuj − αu)(δvl − αv)

= nαu(αv − δuv) + γ
∑

i

(δuv − r̃iv)r̃iu = nαu(αv − δuv) + 11,nDuv1
T
1,n

Define H̃L, the “expected Hessian” of the annealed log-likelihood, by

H̃L = blk-diag(nHβ,
∑

i

r̃i1Hi1, . . . ,
∑

i

r̃ikHik). (B.30)

It can be viewed as the expected value of the Hessian matrix of the complete-data log-likelihood.

Define a k(1 + |θ1|) by nk matrix Λ and partition it into 2k by k blocks, so that the (j, j)-th block

is 11,n, and the (j + k, j)-th block is Ψj , where 1 ≤ i ≤ k. All other entries in Λ are zero. In other

words,

Λ =




11,n
. . .

11,n
Ψ1

. . .

Ψk




=




11,n
. . .

11,n
[ψ11 . . .ψn1]

. . .

[ψ1k . . .ψnk]




(B.31)

Let D be a nk by nk matrix and we partition it into k by k blocks, so that the (u, v)-th block is

Duv . With these notation, the Hessian of the annealed log-likelihood is

∂2

∂θ2
Lannealed(θ;Y , γ) = H̃L + ΛDΛT (B.32)
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D is symmetric because the (i, i)-th element of both Duv and Dvu are γ(δuv − r̃iu)r̃iv . Also, the

sum of each of the column of D is 0 because
∑
u γ(δuv − r̃iu)r̃iv = 0.

B.2.2.2 Hessian of the Constraint Violation Term

By converting the differentials in Equation (B.27) into derivatives, we have

∂ log sij

∂θu
= τ

(
δjuψiu −

k∑

l=1

silδluψiu

)
= τ(δju − siu)ψiu

∂ log sij

∂βu
= τ

(
δju − αu −

k∑

l=1

sil(δlu − αu)

)
= τ(δju − siu)

This implies

∑

ij

(
w∗ij − sij

k∑

l=1

wil
)(∂ log sij

∂βu

)(
∂ log sij

∂βv

)T

= τ2
∑

i


∑

j

(
w∗ij − sij

k∑

l=1

wil
)
(δju − siu)(δjv − siv)


 = 11,nEuv1

T
1,n

Similarly, we have

∑

ij

(
w∗ij − sij

k∑

l=1

wil
)(∂ log sij

∂βu

)(
∂ log sij

∂θv

)T
= 11,nEuvΨ

T
v

∑

ij

(
w∗ij − sij

k∑

l=1

wil
)(∂ log sij

∂θu

)(
∂ log sij

∂θv

)T
= ΨuEuvΨ

T
v

Here, τ2
(∑

j
(
w∗ij − sij

∑k
l=1wil

)
(δju − siu)(δjv − siv)

)
is the (i, i)-th element of the n by n

diagonal matrix Euv. Let ahju denote a vector of length n such that its i-th entry is given by

τahisij(δju − siu). Because d t+
hj

=
∑
i ahi d sij =

∑
i ahisij d log sij , we have

∂t+
hj

∂θu
=
∑

i

ahisij
∂ log sij

∂θu
= τ

∑

i

ahisij(δju − siu)ψiu = Ψuahju

∂t+
hj

∂βu
= τ

∑

i

ahisij(δju − siu) = 11,nahju

This means that

m+∑

h=1

k∑

j=1

λ+
h

t+
hj



∂t+
hj

∂θu





∂t+
hj

∂θv



T

= Ψu



m+∑

h=1

k∑

j=1

λ+
h

t+
hj

ahjua
T
hjv


ΨTv

= ΨuAuL
+ATv ΨTv ,
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where we concatenate different ahju to form a n by km+ matrix Au, defined by

Au = [a1,1,u, a2,1,u, . . . , am+,1,u
, a1,2,u, . . . , am+,2,u

, . . . , a1,k,u, . . . , am+,k,u
].

Note that Au has similar sparsity pattern as the matrix {ahi}. The diagonal matrix L+ is of size

km+ by km+. Its diagonal entries are given by
λ+
h
t+
hj

, and the ordering of these diagonal entries

matches the ordering of ahju in Au. By similar reasoning, we have

m+∑

h=1

k∑

j=1

λ+
h

t+
hj



∂t+
hj

∂βu





∂t+
hj

∂θv



T

= 11,nAuL
+ATv ΨTv

m+∑

h=1

k∑

j=1

λ+
h

t+
hj



∂t+
hj

∂βu





∂t+
hj

∂βv


 = 11,nAuL

+ATv 1T1,n

The case for t−
hj

, which corresponds to to must-not-link constraints, is similar. So, we define bhju

to consist of τbhisij(δju− siu) for different i, and concatenate bhju to form Bu. L− is a diagonal

matrix with entries
λ−
h
t−
hj

. Substituting all these into the result derived in Equation (B.29), we have

∂

∂θu

∑

ij

wij
∂

∂θv
log sij

= τ
∑

ij

w̃ij
∂2

∂θu∂θv
log qij +

∑

ij

(
w∗ij − sij

k∑

l=1

wil
)( ∂

∂θu
log sij

)( ∂

∂θv
log sij

)T

−
m+∑

h=1

∑

j

λ+
h

t+
hj

( ∂

∂θu
t+
hj

)( ∂

∂θv
t+
hj

)T +

m−∑

h=1

∑

j

λ−
h

t−
hj

( ∂

∂θu
t−
hj

)( ∂

∂θv
t−
hj

)T

= τδuv
∑

i

w̃iu
∂2 log qiu

∂θ2u
+ ΨuEuvΨ

T
v −ΨuAuL

+ATv ΨTv + ΨuBuL
−BTv ΨTv

= τδuv
∑

i

w̃iu
∂2 log qiu

∂θ2u
+ Ψu

(
Euv −AuL

+ATv + BuL
−BTv

)
ΨTv

Similarly, we have

∂

∂βu

∑

ij

wij
∂

∂θv
log sij = 11,n

(
Euv −AuL

+ATv + BuL
−BTv

)
ΨTv

∂

∂βu

∑

ij

wij
∂

∂βv
log sij = τ

∑

ij

w̃ij
∂2 log qij

∂βu∂βv
+

11,n

(
Euv −AuL

+ATv + BuL
−BTv

)
1T1,n

169



Let HC denote the “expected” hessian of the complete data log-likelihood due to the constraints,

i.e.,

H̃C = blk-diag(0, τ
∑

i

w̃i1Hi1, . . . , τ
∑

i

w̃ikHik). (B.33)

Note that there are no Hessian terms corresponding to the βj because
∑
j w̃ij = 0. Let E be a nk

by nk matrix. We partition it into k by k blocks, such that the (u, v)-th block is Euv . Let A be a

nk by km+ matrix and B be a nk by km− matrix, such that

A =




A1
...

Ak


 B =




B1
...

Bk




We are now ready to state the Hessian term corresponding to the constraints:

∂2

∂θ2


−

m+∑

h=1

λ+
h
D+
JS

(h) +
m−∑

h=1

λ−
h
D−
JS

(h)




= −H̃C −ΛEΛT + ΛAL+ATΛT −ΛBL−BTΛT (B.34)

Note that the sum of each of the columns of A is 0, because
∑
iu τahisij(δju − siu) =∑

i τahisij
∑
u(δju − siu) = 0. Combine Equation (B.34) with Equation (B.32), we have the

Hessian of the objective function J in matrix form:

∂2

∂θ2
J = H̃L − H̃C + ΛDΛT −ΛEΛT + ΛAL+ATΛT −ΛBL−BTΛT

= H̃LC + Λ
(
D −E + AL+AT −BL−BT

)
ΛT .

(B.35)

Here, H̃LC = H̃L − H̃C is the combined expected Hessian.

B.2.3 Hessian of the Gaussian Probability Density Function

Computation of H̃LC requires Hij , which is the result of differentiating log p(yi|θj) with respect to

the parameter θj twice. We shall derive the explicit form of Hij when log p(yi|θj) is the Gaussian

pdf. For simplicity, we shall omit the reference to the object index i and the cluster index j in our

derivation.

We shall need some notations in matrix calculus [179] in our derivation. Let vecX denote a

vector of length pq formed by stacking the columns of a p by q matrix X. Let Y be a r by s matrix.

The Kronecker product X ⊗Y is a pr by qs matrix defined by

X ⊗Y =




x11Y x12Y . . . x1qY

x21Y x22Y . . . x2qY
...

...

xp1Y . . . xpqY



. (B.36)

The precedence of the operator ⊗ is defined to be lower than matrix multiplication, i.e., XY ⊗Z is
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the same as (XY) ⊗ Z. The following identity is used frequently in this section:

vec(XYZ) = (ZT ⊗X) vecY. (B.37)

Let Kd denote a permutation matrix of size d2 by d2, such that

Kd vecZ = vecZT , (B.38)

where Z is a d by d matrix. Note that KT
d = K−1

d
= Kd.

B.2.3.1 Natural Parameter

When the density is parameterized by its natural parameter as in Equation (5.6), we have

∂

∂ν
log p(y) = y − 1

2

(
Υ−1 + Υ−T )ν

∂

∂Υ
log p(y) = −1

2
yyT +

1

2
Υ−T +

1

2
Υ−T ννTΥ−T

∂

∂F
log p(y) = −yyTF + F−T + Υ−T ννTΥ−TF,

where Υ−T denotes the transpose of Υ−1. Therefore,

∂2

∂ν2
log p(y) = −1

2

(
Υ−1 + Υ−T )

∂2

∂ vecΥ ∂ν
log p(y) =

1

2

(
Υ−1 ⊗Υ−T ν + Υ−1ν ⊗Υ−T )

=
1

2

(
Υ−1 ⊗Υ−T )(Id ⊗ ν + ν ⊗ Id

)

∂2

∂ vecF ∂ν
log p(y) = FTΥ−1 ⊗Υ−Tν + FTΥ−1ν ⊗Υ−T

=
(
F−1 ⊗Σ

) (
Id ⊗ ν + ν ⊗ Id

)

The last term in the Hessian matrix requires more work. We first take the differential with respect

to Υ:

d
∂

∂Υ
log p(y) = −1

2
Υ−T (d ΥT )Υ−T

− 1

2
Υ−T ννTΥ−T (d ΥT )Υ−T − 1

2
Υ−T (d ΥT )Υ−TννTΥ−T .

By using the identity in Equation (B.37), the Hessian term can be obtained as

∂2

∂(vecΥ)2
log p(y) = −1

2

(
Υ−1 ⊗Υ−T)Kd

− 1

2

(
Υ−1 ⊗Υ−T ννTΥ−T)Kd − 1

2

(
Υ−1ννTΥ−1 ⊗Υ−T)Kd
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Similarly, the Hessian term corresponding to F can be obtained if we note that

d
∂

∂F
log p(y) = −yyT (d F) − F−T (d FT )F−T −Υ−TννTF−T (d FT )F−T

−Υ−T (F(d FT ) + (d F)FT )Υ−T ννTF−T

∂2

∂(vecF)2
log p(y) = −Id ⊗ yyT −

(
F−1 ⊗ F−T )Kd −

(
F−1 ⊗ µµTF

)
Kd

−
(
FTµµT ⊗ F−T )Kd − FTµµTF ⊗Σ

In the special case that Υ is always symmetric, we can have a simpler Hessian term. This amounts

to assuming that ΥT = Υ and (dΥ)T = (dΥ). We have

∂2

∂(vecΥ)2
log p(y) = −1

2
Σ ⊗Σ− 1

2
Σ⊗ µµT − 1

2
µµT ⊗Σ

= −1

2

(
(Σ + µµT ) ⊗ (Σ + µµT ) − (µ⊗ µ)(µT ⊗ µT )

)

B.2.3.2 Moment Parameter

When moment parameter is used as in Equation (5.6) for the density, we have

∂

∂µ
log p(y) =

1

2

(
Υ + ΥT

)
(y − µ)

∂

∂Υ
log p(y) = −1

2
(y − µ)(y − µ)T +

1

2
Υ−T

∂

∂F
log p(y) = −(y − µ)(y − µ)TF + F−T

The second-order terms include

∂2

∂µ2
log p(y) = −1

2

(
Υ + ΥT

)

∂2

∂ vecΥ ∂µ
log p(y) =

1

2

(
Id ⊗ (y − µ) + (y − µ) ⊗ Id

)

=
1

2
(I
d2

+ Kd)
(
Id ⊗ (y − µ)

)

∂2

∂ vecF ∂µ
log p(y) = FT (y − µ) ⊗ Id + FT ⊗ (y − µ)

= (FT ⊗ Id)(Id2
+ Kd)

(
Id ⊗ (y − µ)

)

As in the case of natural parameter, we have

d
∂

∂Υ
log p(y) = −1

2
Υ−T (d ΥT )Υ−T

∂2

∂(vecΥ)2
log p(y) = −1

2

(
Υ−1 ⊗Υ−T )Kd

d
∂

∂F
log p(y) = −(y − µ)(y − µ)T (d F) − F−T (d FT )F−T

∂2

∂(vecF)2
log p(y) = −Id ⊗ (y − µ)(y − µ)T − (F−1 ⊗ F−T )Kd
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If we assume both Υ and d Υ are always symmetric, we have

∂2

∂(vecΥ)2
log p(y) = −1

2
Σ ⊗Σ
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[143] B. Kégl. Intrinsic dimension estimation using packing numbers. In Advances in Neural Infor-
mation Processing Systems 15, pages 681–688. MIT Press, 2003.
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