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The 2010 JSM saw the presentation of the first
Statistical Computing and Graphics Award to Ross
Ihaka and Robert Gentleman in recognition for
their work in initiating the R Project for Statistical
Computing.

Fortunately both were able to receive their
awards in person in a very well attended session
and present their (very different!) view on future
directions for R.

Continued on page 2 . . .

The main purpose of statistical graphics is to
display data, models or properties in a way that
new insights can be obtained. It is very important
that graphics are guided by this principle which
is often forgotten in the race for the most fancy
or ‘cool’-looking displays especially outside of
statistical graphics.

Although we should keep our eyes open for
new approaches that allow us to display important

Continued on page 2 . . .
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Computing Chair
Continued from page 1.

This coming JSM will again have a Data Expo
competition. The topic is the Deep-Water Horizon
oil spill. For details visit http://stat-computing.
org/dataexpo/. Data sources are still being
collected on the competition web page, and diligent
searching may turn up many more, so it is a great
opportunity for you to show your skills as a data
sleuth.

Thanks to Thomas Lumley for a great program
at Vancouver. David Poole has put together a
strong invited program for the 2011 JSM at Miami
Beach. We also are hoping to offer several exciting
CE courses, so you may want to keep an eye out for
those. The contributed program of course depends
on you: I encourage you to submit contributions
and mark them for our section.

This is my final note to you as chair, so I
would like tho thank all current and retiring board
members for their hard work and welcome the new
members and our new chair, Rich Heiberger.

Luke Tierney
University of Iowa

Graphics Chair
Continued from page 1.

properties better or to handle large data, we should
always keep in mind that the goal is to represent
the underlying data is such a way that we can
understand what we see. Only then will graphics
serve an analytical purpose.

This may sound familiar to most of our
members, but we need to get this message
out to other visualization communities as well.
Interdisciplinary collaboration is very common and
we should take this opportunity to learn from
other fields but also share the knowledge we
have accumulated in our community over many
years. Better graphics even for very specialized
applications are high in demand. It is always
a pleasure to see excited domain experts when
discussing results in graphical form – on paper or
interactively.

Part of this sharing at least among statisticians
happens at the JSM and we had a very strong
program for which I would like to thank Heike
Hofmann. Webster West is preparing the next
year’s program, so please feel free to suggest topic
contributed sessions and do not forget to submit
abstracts - the JSM website is open for submissions.
Also I would like to encourage more graphics
contributions to the Student Paper Competition
which closes very soon (December 13). Our
bi-annual Data Expo 2011 competition is on again
- please see the website http://stat-computing.

org/dataexpo/ for details.
Finally, on behalf of the section I would like

to thank Rick Wicklin for his excellent service to
the section as Secretary/Treasurer and welcome Jay
Emerson in this function. I would also like to thank
everyone in the Statistical Graphics and Statistical
Computing sections as well as the section officers
for a great year. Juergen Symanzik will be taking
over as the chair of graphics in 2011.

Simon Urbanek
AT&T Research

Highlights from the Joint Statistical
Meetings
Stat Computing program

This JSM saw the inaugural Statistical Comput-
ing and Graphics award, given to Ross Ihaka and
Robert Gentleman for the creation of R. We had a
well-attended session including a fairly large con-

tingent from Auckland, where Ross and Robert
were working at the time. Among the other invited
sessions in Computing was the session on Network
models that started off the current SAMSI program
on complex networks. Our Topic Contributed ses-
sions included an interesting and diverse set of stu-
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dent paper award presentations, congratulations to
the students, and thanks to the reviewers. High-
lights of the contributed paper sessions included a
Tuesday morning session on software and user in-
terfaces. The Joint Computing and Graphics mixer
was well attended and we thank the all the com-
panies and individuals who provided door prizes.
Finally, the city of Vancouver was itself a highlight
of the JSM, a convention location that really is at its
best in August.

Thomas Lumley
University of Auckland

Graphical Highlights from JSM
2010

Vancouver was a gorgeous setting for the Joint Sta-
tistical Meetings with water and mountains in view
from the conference center. The Graphics section
had a good turnout of attendees and sessions.

We had two invited sessions this year - the
‘Quantified Self: Personal Data Collection, Analy-
sis, and Exploration’ had outside speakers, giving
us a perspective of collecting data on and around
themselves. Seth Roberts from Tsinghua Univer-
sity was sharing his views, his very personal data
and got a great discussion going. The other invited
session was one that is very close to my heart and
research. It introduced two new approaches of get-
ting highly interactive displays into R. Simon Ur-
banek showcased the iplots extreme package Aci-

nonyx, Hadley Wickham and Michael Lawrence
presented the Qt based packages qtbase and qt-

paint. A few months down the road and more de-
velopment on all these packages shows more and
more clearly that having highly interactive graph-
ics in R is shortly to become the rule rather than the
exception for everybody!

We had two topic contributed sessions this year.
Thanks to Charlotte Wickham and Dawn Wood-
berger for organizing them! One was looking at
last year’s data expo - we saw data on millions
of flights, and various approaches of how to think

about exploring this mass of data. It seemed to
be a good venue to have another look at what we
only saw briefly in poster form the year before. The
other topic contributed sessions linked Bayesian
and Graphical Statistics, and provided a theoretical
approach to implement user-feedback into a data
exploration.

One of the sessions that caused a lot of talk
right at the JSM and afterwards, was the ses-
sion on ‘Graphics in clinical trials’, which drew
so much interest, that people queued in the hall-
ways! In case you were unlucky or missed the
session: Jürgen Symanzik pulled all the slides to-
gether, and you will be able to find them and
session details at http://stat-computing.org/

events/2010-jsm/ .
Overall, one of the highlights of Vancouver’s

JSM was the session for the inaugural Computing-
Graphics Software Award, which went to R & R
– Robert Gentlemen and Ross Ihaka – for bring-
ing R to us. The award will be ongoing and is
used to ‘recognize an individual or team for in-
novation in computing, software, or graphics that
has had a great impact on statistical practice or re-
search’. A Revolution Analystics comment summa-
rizes it nicely: “It really can’t be overstated how
well-deserved this award is.".

Speaking of awards - the section will again
sponsor the ASA Data Expo in 2011. It is already
on the way, but there is still plenty of time to start
working on the data! This year’s topic is the effect
of the BP oil spill. More details and a sign-up for the
competition are available at http://streaming.

stat.iastate.edu/dataexpo/2011/ or just google
for ‘Data Expo’.

Don’t forget to make use of the opportunity to
put in topic contributed sessions; it is a great way
to get talks on a similar topic into the same ses-
sion, while at the same time helping to strengthen
the section allocating invited sessions in the fu-
ture. Deadlines for topic contributed sessions are
the same as for regular contributed talks.

See you all at Miami Beach next year,

Heike Hoffmann
Iowa State University
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JSM 2011 Announcements
Roundtable Discussion Leaders
Dear members of the sections on statistical com-
puting and graphics,

We are looking for people to lead roundtable dis-
cussions at JSM 2011 in Miami. Roundtable discus-
sions are small, informal discussions of 10 or fewer
people, led by an expert in a particular topic. These
roundtables are good ways to meet other folks in-
terested in specific topics in statistical computing,
engage in some good discussion, and get a free
meal!

Note that leading a roundtable does NOT count
towards your one allotted JSM event - i.e. you can
lead a roundtable and still be eligible to give an-
other presentation at JSM.
Roundtables in 2010 included:

• Behind the scenes at the Netflix prize

• Facilitating communication about analysis
data needs across functional areas

• Effective collaboration of statistical program-
mers and clinical statisticians

• R’s graphical user interface ’R commander’ in
the intro stats classroom

• R graphics with an Excel front end

• R graphics for EDA

Abstracts for roundtables need to be submitted
in January, so if you are interested please contact
Chris Volinsky (volinsky@research.att.com) and
Hadley Wickham (hadley@rice.edu).

Regards,
Chris Volinsky

Chris Volinsky
AT&T Labs

Data Expo 2011
The ASA Statistical Graphics and Computing sec-
tions are pleased to announce Data Expo 2011, a

poster competition at the Joint Statistical Meetings
in Miami Beach, Florida, Jul 30-Aug 4, 2011. Details
of the competition are at:

http://streaming.stat.iastate.edu/

dataexpo/2011/ (or web search "Data Expo 2011".)

http://groups.google.com/group/data-expo-2011

Explore  
how the 
Deepwater 
Horizon oil 
impacts the 
gulf. Visualize 
where the oil is 
and where it is 
going. Show 
us how the 
oil spill has 
affected 
you.

Entries will be judged during 
poster session at JSM 2011, 

Miami Beach Florida.

Cash prizes and winners 
invited to submit to 

Computational Statistics.  
Separate awards for college 

and high school students

Photo by http://www.flickr.com/photos/kk/4713571958

ASA 
Data 
Expo 
2011

This year’s data focuses on the government pub-
licly collected data monitoring the effects of the BP
oil spill related to April 20 2010 Deepwater Horizon
rig explosion.

Entry is open to all. Cash prizes will be
awarded. Please send an email expression of in-
terest to dicook@iastate.edu if you plan on par-
ticipating. The first deadline is to submit a poster
abstract to the meetings web site by Feb 1, 2011.

Please spread the word as widely as you are
willing. The more entrants, the better the compe-
tition!

Dianne Cook
Iowa State University
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barNest: Illustrating nested summary
measures
Jim Lemon and Ofir Levy

Abstract

The challenge of illustrating nested summary mea-
sures is introduced and methods for meeting these
challenges is outlined. The nested bar plot is sug-
gested as one method that finds support in studies
of perception and is similar to other common illus-
trations. Its major advantage is that most viewers
need little or no explanation to understand the re-
lationships illustrated.

Introduction

Descriptive studies of large samples often include a
number of categorical measures that define disjunct
subsamples, such as males and females or work-
ing and unemployed. Summaries of other mea-
sures are often of interest, for example the mean
ages of males and females or the median income
of those working and unemployed. The categories
may also be combined to discover whether a com-
parison within one category is different from that
within another. Illustrating such interactions, espe-
cially across the different levels of categories, may
not be easy.

An example of the problem:
women and children first

The classic survival data from the sinking of the Ti-
tanic provide a good example of this. The survival
rate broken down by accommodation class, sex and
age of the passengers and crew is often used to il-
lustrate the unequal outcomes that were once ac-
cepted as the normal course of events as well as the
gallantry of those who chose to sacrifice their lives
for others. Making the relationships between these
different effects apparent to the average audience is
the challenge that is attempted.

Perceptual considerations

The intended illustration must make both the hi-
erarchical grouping of the summary measures and
the comparisons between different levels of group-
ing obvious. The categories that are combined to
make the groups must also be clear to the viewer.
The bar plot was chosen as the plot style. One of
the principles of gestalt perception is that objects
in the visual field will be grouped by their similari-
ties and the groups will be separated by dissimilari-
ties or discontinuities. Thus bar plots in which bars
are grouped by their horizonal position provide an
easy cue to their relationship in the data set. While
it is possible to add an extra level of grouping by
stacking bars within a group defined by horizon-
tal position, this makes the relative heights of the
bars almost impossible to compare. Additionally,
it is difficult to see how this could be extended to
further levels of grouping.

A response to the problem: the
nested bar plot

The approach taken was to devise a function that
would display bars at each level of categorization,
making the hierarchical structure obvious by dis-
playing each group of categorized summary mea-
sures within the aggregated summary measure that
contained them. Thus Figure 1 begins with a bar
that is almost the full width of the plot, with each
successive set of summary measures plotted within
the bar that represents the superordinate category.
The three small plots above the main plot show
how it is built up. Each level of categorization has
a different set of colors, and while the colors are re-
peated within each level of categorization, it was
intended that both the separation between groups
and the underlying bars would help to avoid con-
fusion between the groups. The labels beneath the
plot were intended to reinforce these distinctions.

Proceeding from the overall proportion surviv-
ing, it is clear that the accommodation class had a
considerable effect. First class passengers were half
again as likely to survive as second class, second
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class half again as likely to survive as third class.
There was little difference in survival between the
third class passengers and the crew. Within the ac-
commodation classes, it is again obvious that chil-
dren were much more likely to survive than adults,
particularly in the first and second classes, in which
no children lost their lives. Finally, the innermost
sex breakdown shows that females were much
more likely to survive in every class and age divi-
sion apart from the universal survival of children
in first and second class mentioned above. Con-
jectures about the relative gallantry of the males in
each class might even be made.

What are the alternatives?
There is an unavoidable compromise in illustrat-
ing one summary measure at the expense of oth-
ers. The nested bar plot attempts to clearly display
one summary measure, in this case the proportion
of survivors, across the entire hierarchical break-
down. Another approach is to translate the num-
ber of survivors and non-survivors in each subset
into tiled rectangles, the area of which is propor-
tional to the frequency of each cell. This is known
as a mosaic plot, initially attributed to Hartigan and
Kleiner [2]. It is possible to construct a mosaic plot
with two dimensions of disaggregation on the two
axes of a plot and add more levels by nesting (Fig-
ure 3). While the mosaic plot accurately portrays
the quantitative relationships between the obser-
vations, a glance at such a plot of the Titanic data
shows the difficulty of visually comparing the pro-
portions across even one level, let alone three.

One commonly suggested alternative to the
nested bar plot is the "doubledecker" plot [1]. Fig-
ure 2 is an example using the same data with this
plot. As the number of children was small in each
class and non-existent in the crew, the identifying
labels become illegible, even with a wide graph-
ics device. As there is no nesting of the rectangles,
the intermediate levels of aggregation are not dis-
played. All variations on this technique known to
the authors suffer from the similar problems. The
superbarplot function in the ‘UsingR’ package uses
nested bars to display extreme values and variabil-
ity, but presents separate subsets of data, such as
daily temperature measures.

The nested bar plot departs from the conven-
tional stance that bar plots should be restricted to
displaying frequencies. However, the available al-

ternatives are much more difficult, and in some
cases impossible, to display in a visual hierarchy.

The programming of barNest
The R function that displays nested bar plots pro-
ceeded through a number of stages before produc-
ing satisfactory plots. The first consideration was to
define and calculate a data object that would con-
tain the summary measures to be plotted. Fortu-
nately, a list containing the summary measures for
each level of disaggregation is easy to produce in R.

Displaying the plot requires recursive calls, as
the number of category levels typically differ at dif-
ferent levels of categorization. The display is pro-
duced by a function that calls itself for each subcat-
egory until there are no further levels of categories
to illustrate.

Using the barNest function
Users of ‘barNest’ will typically have a data frame
containing a column of numeric values that are to
be grouped by two or more columns of categorical
values. The order of grouping is specified in the
formula that is the first argument of the function,
with the leftmost variable defining the first set of
categories. Most of the arguments such as ‘main’
and ‘ylab’ will be familiar to those who use other
plot functions. The ‘trueval’ argument is used
when the proportion of one value in a catgeorical
variable is to be plotted rather than a measure of
central tendency in a numeric variable.

The code used to produce Figure 1 is the first
example used in the ‘barNest’ help page in the
‘plotrix’ package, and recreates the Titanic data
set as a data frame. The formula and data set are
then passed directly to ‘barNest’.exit

In order to define the colors, it is necessary to
create a list with one element for each level of cat-
egorization. The number of colors in each level
should be at least as many as the number of cat-
egories. Choosing colors that are easily distin-
guished may require some thought. Apart from
the ‘errbars’ option, the user may also ask for only
the final set of categories to be displayed or not to
display the labels below the bars. These bar labels
can be passed as a list similar to the bar colors if
the labels of the category variables are not suitable.
There are a number of fine adjustments like the size
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Figure 1: Survival on the Titanic by accommodation class, age and sex (barNest).

7



● ● ● ●

● ●

Class
Sex
Age

1st
Male
ChildAdult

Female
ChildAdult

2nd
Male
ChildAdult

Female
ChildAdult

3rd
Male
ChildAdult

Female
ChildAdult

Crew
Male
ChildAdult

Female
ChildAdult

Yes

No

Survived

Figure 2: Survival on the Titanic by accommodation class, age and sex (doubledecker).

of the characters in the labels and the proportion
to shrink each succeeding set of bars. Detailed in-
structions for the use of ‘barNest’, as well as the
function itself, can be found in the ‘plotrix’ pack-
age.

As a final example of what ‘barNest’ can accom-
plish, we will turn to a lighter set of data concerned
with making holes in paper rather than ocean lin-
ers. The scores for a year in two matches for a small
pistol club will be used to demonstrate an interest-
ing, if sobering, effect of age. The club members
were categorized by age as being under 20 years,
20 to 40 years and over 40 years of age. Figure 4
shows the mean scores and 0.25 and 0.975 quan-
tiles broken down by match and age. Only the ulti-
mate breakdown is displayed, but the grouping la-
bels are retained. It is clear that the 20 to 40 year old
members have a considerable advantage in both
matches. Perhaps just as interesting is that they are

also much less variable in their scores. This is not
entirely due to the opposing influences of training
and age, but is in part a ceiling effect of the possible
score of 600 points. However, the ceiling effect is
clearly stronger in Open Sport Pistol than in Stan-
dard Pistol. Readers who are pistol shooters may
be interested in speculating upon this.

Limitations of barNest
Figure 1 displays four levels of summary measures.
Even this modest level of complexity may require a
wider than normal graphics device to avoid crowd-
ing of the labels, although it does not in this in-
stance. The visual complexity of the plot is ap-
parent, yet viewers typically understand the nested
structure and grasp the relationships between the
values.

The illustration of dispersion available in
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Figure 3: Survival on the Titanic by accommodation class, age and sex (mosaicplot).

‘barNest’ is easily misused. Setting the ‘errbars’
argument to TRUE causes the values calculated by
the second and possibly third summary functions
passed as arguments to be displayed as "error bars".
It is left to the user to decide whether these con-
vey valuable, or even correct, information to the
viewer. At best, the error bars can give a rough
visual indication of the significance of differences
in the summary measures, or as in Figure 3, differ-
ences in variability that may be of interest.

Summary

The nested bar plot offers the user a method to il-
lustrate summary values that are nested in increas-
ingly complex combinations of categorical vari-
ables. Its major advantage is the ease with which
an audience can grasp the relationships between
hierarchical summary measures with little or no
explanation of the illustration. We expect that re-
searchers wanting to illustrate such relationships to
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non-specialist audiences, particularly when there is
no opportunity to explain the illustration, will find
it useful.
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You say “graph invariant,” I say “test
statistic”
Carey E. Priebe, Glen A. Coppersmith and Andrey
Rukhin

Introduction: Statistical Inference
on Random Graphs
Hypothesis testing on graphs g 2 G has applica-
tion in areas as diverse as connectome inference
(wherein vertices are neurons or brain regions), so-
cial network analysis (wherein vertices represent
individual actors or organizations), and text pro-
cessing (wherein vertices represent authors or doc-
uments). Graph invariants – functions T : G ! R
that do not depend on the particular labeling of the
vertices – can be used as test statistics on a ran-
dom graph G ⇠ F for deciding H0 : F 2 F0 vs
HA : F 2 FA.

However, even for simple models the exact dis-
tribution is unavailable for most invariants. Fur-
thermore, comparative analyses of statistical power
at some given Type I error rate for competing in-
variants, via both Monte Carlo and large sample
approximation, demonstrate that simple settings
can yield interesting comparative power phenom-
ena.

In particular, two forthcoming articles inves-
tigating comparative power of simple invariants
in the independent edge setting show that for
small graphs (103 vertices) the comparative power
surface is complicated [1] and limiting behavior
may be misleading except for astronomically large
graphs [2].

Random Graphs: Simple Models
and Simple Invariants
We consider simple graphs (undirected, no
weights, no self-loops) on n vertices1. Perhaps
the simplest of all random graph models is H0:
ER(n, p), wherein all

�n
2

�
potential edges are inde-

pendent and identically distributed Bernoulli(p). A
simple but interesting and illustrative alternative
is given by HA: (n, p,m, q), wherein there exists a

subset of m vertices and all
�m
2

�
potential edges

amongst this subset are identically distributed
Bernoulli(q) while the remaining

�n
2

�
-
�m
2

�
poten-

tial edges are identically distributed Bernoulli(p)
with all

�n
2

�
potential edges independent. We con-

sider p known so that the null is simple; m (and
in particular, which m) and q are unknown so that
the alternative is composite. (These models consist
of independent coin flips . . . how can this yield
interesting (i.e., non-trivial) results? In response to
this question we quote Béla Bollobás’ comment [3]
that a particular J.E. Littlewood paper [4] “is highly
recommend to those who think that the binomial
distribution is too simple to deserve study.”)

Among the simplest of all graph invariants is
size, the total number of edges in the graph. Un-
der H0 size(G) is binomial(

�n
2

�
, p) while under HA

this invariant is the sum of independent binomials
with different success probabilities, limiting Gaus-
sian distributions are available in both cases. An-
other simple invariant is maxdegree, the maximum
over all vertices v of the degree d(v). The individual
degrees d(v) are binomial(n�1, p) under H0 and the
sum of independent binomials with different suc-
cess probabilities under HA; the collection {d(v)}
is not independent, but limiting Gumbel distribu-
tions are available in both cases.

Many more interesting random graph models –
in particular, latent position models – are available
for study (see for instance [5] Section 3), as are more
elaborate graph invariants – in particular, the num-
ber of triangles can dominate size and the graph
scan statistic can dominate maxdegree in terms of
statistical power on the inference task (see [1] Fig-
ures 13 and 11, respectively). There are significant
issues involved in actually computing many candi-
date invariants on large graphs and in estimation
of percentiles for testing, so the trade-offs between
better invariants for inference and computational
issues demand investigation. Nevertheless, even
our simple models and simple invariants yield in-
teresting and illustrative results.

1We assume familiarity with basic graph terminology, or see e.g. [1, 2, 3].

11



Figure 1: Our first comparative power plot, from 2006. This plot considers the maximum average degree
(mad) invariant against the graph scan statistic (scan) via Monte Carlo. H0: ER(n = 100, p = 0.1), HA:
(n = 100, p = 0.1,m, q), level ↵ = 0.05, �(�) ⌘ power(mad)-power(scan). We see the phenomenon of
interest: both invariants have power � ⇡ 1 for large m and q and power � ⇡ ↵ for small m and q, as
expected, while for moderate m and q, the comparative behavior of the invariants is quite complicated. In
particular, there is a ridge/trough phenomenon running (nonlinearly) from large q small m (where scan is
superior) to small q large m (where mad is superior) which differentiates the invariants. That is, the specific
alternative – how many anomalous vertices (m) and by how much are they anomalous (q) – determines the
most powerful statistic. This phenomenon is the impetus for on-going research.

Interesting and Illustrative Re-
sults

The first plot we made, years ago, which is the im-
petus for an on-going pursuit of understanding, is
shown and described in Figure 1. The ridge/trough
phenomenon apparent in the figure begs investiga-
tion!

Alas, the maximum average degree is a compli-
cated invariant, both computationally and from a
null and alternative distribution perspective, and
so we have reason to consider simpler invariants as
described above.

The forthcoming JCGS paper [1] presents results
of a thorough Monte Carlo investigation. For ex-

ample, Figure 2 is analogous to our original Fig-
ure 1 but compares size and maxdegree at n = 1000;
the left panel depicts Monte Carlo results, and the
right panel depicts the use of asymptotic results
to provide approximate distributions analytically.
In Figure 2 the Monte Carlo is accurate except
for variability due to a finite number of replicates,
while the accuracy of the large sample approxi-
mations must be verified. For the case depicted
(n = 1000) the two comparative power surfaces are
structurally similar although there are differences
beyond just Monte Carlo variation. For smaller
graphs (n = 100) the Monte Carlo is still accu-
rate but the asymptotic approximations are not; for
larger n the Monte Carlo is computationally pro-
hibitive but the asymptotics are accurate. Consider
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Figure 2: Comparative power plots for size vs. maxdegree via Monte Carlo (left) and large sample approx-
imation (right) for H0: ER(n = 1000, p = 0.1), HA: (n = 1000, p = 0.1,m, q), level ↵ = 0.05, �(�) ⌘
power(maxdegree)-power(size). The ridge/trough phenomenon is apparent. Note that both axes in this Fig-
ure have been flipped with respect to Figure 1; with this understanding, one can see that the orientation of
the ridge/trough is consistent.

a taxonomy of graph sizes wherein “small” means
vertices and edges all fit into memory, “moderate”
means vertices fit into memory but not edges, and
“large” means even the vertices do not all fit into
memory at once. In such a scenario we see that
Monte Carlo analysis does not scale well with the
number of vertices: for any “large” graph in this
taxonomy even the simplest tasks (e.g. performing
an edge-count) become computationally challeng-
ing.

The forthcoming JSPI paper [2] presents theo-
retical results comparing size and maxdegree, and
shows that when m = ⇥(

p
n) size dominates

asymptotically but that this domination does not
take effect until astronomically large n. This
demonstrates that a comparison of test statistics
based on limiting power can be misleading for
graph inference. Figure 3 illustrates this effect, with
m =

p
n.
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Figure 3: Comparative power plot demonstrat-
ing that size dominates maxdegree asymptotically
but that this domination does not take effect until
astronomically large n. H0: ER(n, p = 0.1), HA:
(n, p = 0.1,m =

p
n, q = 0.9), level ↵ = 0.05,

�(�) ⌘ power(maxdegree)-power(size).
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Conclusions

The conclusion of this short story is three-fold: (1)
even for simple models and simple invariants com-
plex and interesting behavior is evident; (2) much
work – theoretical, computational, and experimen-
tal – remains to provide results for realistic models
and methods; and (3) an interesting plot (such as
Figure 1) can provide years of enjoyment!
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Computation in Large-Scale Scientific
and Internet Data Applications is a Focus
of MMDS 2010
Michael W. Mahoney

The 2010 Workshop on Algorithms for Modern
Massive Data Sets (MMDS 2010) was held at Stan-
ford University, June 15–18. The goals of MMDS
2010 were (1) to explore novel techniques for mod-
eling and analyzing massive, high-dimensional,
and nonlinearly-structured scientific and Internet
data sets; and (2) to bring together computer
scientists, statisticians, applied mathematicians,
and data analysis practitioners to promote cross-
fertilization of ideas. MMDS 2010 followed on the
heels of two previous MMDS workshops. The first,
MMDS 2006, addressed the complementary per-
spectives brought by the numerical linear algebra
and theoretical computer science communities to
matrix algorithms in modern informatics applica-
tions [1]; and the second, MMDS 2008, explored
more generally fundamental algorithmic and sta-
tistical challenges in modern large-scale data anal-
ysis [2].

The MMDS 2010 program drew well over 200

participants, with 40 talks and 13 poster presenta-
tions from a wide spectrum of researchers in mod-
ern large-scale data analysis. This included both
academic researchers as well as a wide spectrum
of industrial practitioners. As with the previous
meetings, MMDS 2010 generated intense interdis-
ciplinary interest and was extremely successful,
clearly indicating the desire among many research
communities to begin to distill out and establish
the algorithmic and statistical basis for the analy-
sis of complex large-scale data sets, as well as the
desire to move increasingly-sophisticated theoreti-
cal ideas to the solution of practical problems.

Several Recurring Themes

Several themes—recurring melodies, as one par-
ticipant later blogged, that played as background
music throughout many of the presentations—
emerged over the course of the four days of the
meeting. One major theme was that many modern

data sets of practical interest are better-described
by (typically sparse and poorly-structured) graphs
or matrices than as dense flat tables. While this
may be obvious to some—after all, both graphs and
matrices are mathematical structures that provide
a “sweep spot” between more descriptive flexibil-
ity and better computational tractability—this also
poses considerable research and implementational
challenges, given the way that databases have his-
torically been constructed and the way that super-
computers have historically been designed. A sec-
ond major theme was that computations involving
massive data are closely tied to hardware consid-
erations in ways that are very different than have
been encountered historically in scientific comput-
ing and computer science—and this is true both for
computations involving a single machine (recall re-
cent developments in multicore computing) and for
computations run across many machines (such as
in large distributed data centers).

Given that these and other themes were
touched upon from many complementary perspec-
tives and that there was a wide range of back-
grounds among the participants, MMDS 2010 was
organized loosely around six hour-long tutorial
presentations.

Large-Scale Informatics: Prob-
lems, Methods, and Models
On the first day of the workshop, participants
heard two tutorials that addressed computational
issues in large-scale data analysis from two very
different perspectives. The first was by Peter
Norvig of Google, and the second was by John
Gilbert of the University of California at Santa Bar-
bara.

Norvig kicked-off the meeting with a tutorial
on “Internet-Scale Data Analysis,” during which
he described the practical problems of running, as
well as the enormous potential of having, a data
center so massive that “six-sigma” events, like cos-
mic rays, drunken hunters, blasphemous infidels,
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and shark attacks, are legitimate concerns. At
this size scale, the data can easily consist of bil-
lions to trillions of examples, each of which is de-
scribed by millions to billions of features. In most
data-intensive Internet applications, the peak per-
formance of a machine is less important than the
price-performance ratio. Thus, at this size scale,
computations are typically performed on clusters
of tens or hundreds of thousands of relatively-
inexpensive commodity-grade CPUs, carefully or-
ganized into hierarchies of servers, racks, and
warehouses, with high-speed connections between
different machines at different levels of the hierar-
chy. Given this cluster design, working within a
software framework like MapReduce that provides
stateless, distributed, and parallel computation has
benefits; developing methods to maximize energy
efficiency is increasingly-important; and develop-
ing software protocols to handle ever-present hard-
ware faults and failures is a must.

Given all of this infrastructure, one can then do
impressive things, as large Internet companies such
as Google have demonstrated. Norvig surveyed a
range of applications such as modelling flu trends
with search terms, image analysis for scene comple-
tion (removing undesirable parts of an image and
filling in the background with pixels taken from
a large corpus of other images), and using sim-
ple models of text to perform spelling correction.
In these and other Web-scale applications, simpler
models trained on more data can often beat more
complex models trained on less data. This can be
surprising for those with experience in small-scale
machine learning, where the curse of dimensional-
ity and overfitting the data are paramount issues.
In Internet-scale data analysis, though, more data
mean different data, and throwing away even rare
events can be a bad idea since much Web data con-
sists of individually rare but collectively frequent
events.

John Gilbert then provided a complementary
perspective in his tutorial “Combinatorial Scientific
Computing: Experience and Challenges.” Combi-
natorial Scientific Computing (CSC) is a research
area at the interface between scientific computing
and algorithmic computer science; and an impor-
tant goal of CSC is the development, application,
and analysis of combinatorial algorithms to en-
able scientific and engineering computations. As
an example, consider so-called fill-reducing matrix
factorizations that arise in the solution of sparse

linear systems, a workhorse for traditional high-
performance scientific computation. “Fill” refers to
the introduction of new non-zero entries into a fac-
tor, and an important component of sparse matrix
solvers is an algorithm that attempts to solve the
combinatorial problem of choosing an optimal or-
dering of the columns and rows of the initial ma-
trix in order to minimize the fill. Similar combi-
natorial problems arise in scientific problems as di-
verse as mesh generation, iterative methods, cli-
mate modeling, computational biology, and par-
allel computing. Throughout his tutorial, Gilbert
focused on two broad challenges—the challenge
of architecture and algorithms, and the challenge
of primitives—in applying CSC methods to large-
scale data analysis.

The “challenge of architecture and algorithms”
refers to the nuts and bolts of getting high-quality
implementations to run rapidly on machines, e.g.,
given architectural constraints imposed by commu-
nication and memory hierarchy issues or the exis-
tence of multiple processing units on a single chip.
As an example of the impact of architecture on
even simple computations, consider the ubiquitous
three-loop algorithm for multiplying two n⇥n ma-
trices, A and B: foreach i, j, k,

C(i, j) = A(i, k) ⇤B(k, j).

It seems obvious that this algorithm should run
in O(n3

) time (and it does in the Random Ac-
cess Model of computation); but empirical results
demonstrate that the actual scaling on real ma-
chines of this naïve algorithm for matrix multipli-
cation can be closer to O(n5

). Theoretical results in
the Uniform Memory Hierarchy model of compu-
tation explain this scaling behavior, and it is only
more sophisticated BLAS-3 GEMM and recursive
blocked algorithms that take into account memory
hierarchy issues that run in O(n3

) time.
The “challenge of primitives” refers to the need

to develop algorithmic tools that provide a frame-
work to express concisely a broad scope of com-
putations; that allow programming at the ap-
propriate level of abstraction; and that are ap-
plicable over a wide range of platforms, hiding
architecture-specific details from the users. His-
torically, linear algebra has served as the “middle-
ware” of scientific computing. That is, by provid-
ing mathematical tools, interactive environments,
and high-quality software libraries, it has pro-
vided an “impedance match” between the theory
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of continuous physical modeling and the practice
of high-performance hardware implementations.
Although there are deep theoretical connections
between linear algebra and graph theory, Gilbert
noted that it is not clear yet to what extent these
connections can be exploited practically to create
an analogous middleware for very large-scale ana-
lytics on graphs and other discrete data. Perhaps
some of the functionality that is currently being
added onto the basic MapReduce framework (and
that draws strength from experiences in relational
database management or high-performance paral-
lel scientific computing) will serve this role, but this
remains to be seen.

New Perspectives on Old Ap-
proaches to Networked Data

Although graphs and networks provide a popular
way to model large-scale data, their use in statisti-
cal data analysis has had a long history. Describing
recent developments in a broader historical context
was the subject of tutorials by Peter Bickel of the
University of California at Berkeley and Sebastiano
Vigna of the Università degli Studi di Milano.

In his tutorial on “Statistical Inference for Net-
works,” Bickel described a nonparametric statisti-
cal framework for the analysis of clustering struc-
ture in unlabeled networks, as well as for para-
metric network models more generally. As back-
ground, recall the basic Erdős-Rényi (ER) random
graph model: given n vertices, connect each pair of
vertices with probability p. If p � log(n)/n, such
graphs are “dense” and fairly regular—due to the
high-dimensional phenomenon of measure concen-
tration, such graphs are fully-connected; they are
expanders (i.e., there do not exist any good cuts, or
partitions, of them into two or more pieces); and the
empirically-observed degrees are very close to their
mean. On the other hand, for the much less well-
studied regime 1/n < p < log(n)/n, these graphs
are very sparse and very irregular—such graphs
are not even fully-connected; and when consider-
ing just the giant component, there are many small
but deep cuts, and empirically-observed degrees
can be much larger than their mean. This lack of
large-scale regularity is also seen in “power law”
generalizations of the basic ER model; it’s signa-
tures are seen empirically in a wide range of very
large social and information networks; and it ren-

ders traditional methods of statistical inference of
limited usefulness for these very large real-world
networks.

Bickel considered a class of models applica-
ble to both the dense/regular and sparse/irregu-
lar regimes, but for which the assumption of sta-
tistical exchangeability holds for the nodes. This
exchangeability assumption provides a regularity
such that any undirected random graph whose ver-
tices are exchangeable can be written as a mixture
of “simple” graphs that can be parametrized by a
function h(·, ·) of two arguments. Popular stochas-
tic blockmodels are examples of parametric mod-
els which approximate this class of nonparametric
models—the block model with K classes is a simple
exchangeable graph model, and block models can
be used to approximate a general function h. In this
framework, Bickel considered questions of identifi-
ability and consistency; and he showed that, un-
der assumptions such as that the expected degree
is sufficiently high, it is possible to recover “ground
truth” clusters in this model.

Sebastiano Vigna provided a tutorial on “Spec-
tral Ranking,” a general umbrella name for tech-
niques that apply the theory of linear functions,
e.g., eigenvalues and eigenvectors, to matrices that
do not represent geometric transformations, but in-
stead represent some other kind of relationship be-
tween entities. For example, the matrix M may be
the adjacency matrix of a graph or network, where
the entries of M represent some sort of binary re-
lations between entities. In this case, a common
goal is to use this information to obtain a meaning-
ful ranking of the entities; and a common difficulty
is that the matrix M may contain “contradictory”
information—e.g., i likes j, and j likes k, but i does
not like k; or i is better than j, j is better than k, but
i is not better than k.

A variant of this was considered by J.R. Seely
who, in an effort to rank children back in 1949, ar-
gued that the rank of a child should be defined re-
cursively as the sum of the ranks of the children
that like him. In modern terminology, this led to
the computation of a dominant left eigenvector of
M (normalized by row to get a stochastic matrix).
A dual variant was considered by T.H. Wei who, in
1952, wanted to rank sports teams and argued that
the score of a team should be related to the sum
of the scores of the teams it defeated. This led to
the computation of a dominant right eigenvector of
M (with no normalization). Since then, numerous
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domain-specific considerations led researchers to
propose methods that, in retrospect, are variants of
this basic framework. For example, in 1953, L. Katz
was interested in whether individual i endorses or
votes for individual j, and he argued that the im-
portance of i depends on not just the number of
voters, but on the number of the voters’ voters, etc.,
with a suitable attenuation ↵ at each step. Since,
if M is a zero/one matrix representing a directed
graph, the i, j entry of Mk contains the number of
directed paths from i to j, he was led to compute
1

P1
n=0 ↵

nMn
= 1(I � ↵M)

�1. Similarly, in 1965,
C.H. Hubbell was interested in a form of clustering
used by sociologists known as clique identification.
He argued that on can define a status index r by us-
ing the recursive equation r = v + rM , where v is
a “boundary condition” or “initial preference,” and
this led him to compute v

P1
n=0 M

n
= v(I �M)

�1.
From this broader perspective, the popular

PageRank is the damped spectral ranking of the
normalized adjacency matrix of the web graph; the
boundary condition is the so-called preference vec-
tor; and this vector can be used for various gen-
eralizations such as to bias PageRank with respect
to a topic or to generate trust scores. Remark-
ably, although PageRank is one of the most talked-
about algorithms ever, there is no reproducible sci-
entific proof that it works for the problem of rank-
ing web pages, there is a large body of empirical
evidence that it does not work, and it is likely to
be of miniscule importance in today’s ranking algo-
rithms. Nevertheless, partly because the basic ideas
underlying spectral ranking are so intuitive, there
are “gazillions” of small variants that could be (and
are still being) introduced regularly in many areas
of machine learning and data analysis. Unfortu-
nately, this is often without reproducible scientific
justification or careful evaluation of which variants
are meaningful or useful.

Matrix Computations—in Data
Applications

Challenges and tradeoffs in performing matrix
computations in MMDS applications were the sub-
ject of the final pair of tutorials—one by Piotr Indyk
of the Massachusetts Institute of Technology, and
one by Petros Drineas of Rensselaer Polytechnic In-
stitute.

Indyk discussed recent developments in

“Sparse Recovery Using Sparse Matrices.” This
problem arises when the data can be modeled by
a vector x that is sparse in some (often unknown)
basis; and it has received attention recently in ar-
eas such as compressive sensing, data stream com-
puting, and combinatorial group testing. Tradi-
tional approaches first capture the entire signal and
then process it for compression, transmission, or
storage. Alternatively, one can obtain a succinct
approximate representation by acquiring a small
number of linear measurements of the signal. That
is, if x is an n-vector, the representation is Ax, for
some m ⇥ n matrix A. Although typically m ⌧ n,
the matrix A can be constructed such that one can
use a recovery algorithm to obtain a sparse ap-
proximation to x. It is often useful (and sometimes
crucial) that the measurement matrix A be sparse,
in that it contains very few non-zero elements per
column. For example, sparsity can be exploited
computationally—one can compute the product
Ax very quickly if A is sparse. Similarly, in data
stream processing, the time needed to update the
sketch Ax under an update �i is proportional to the
number of non-zero elements in the i-th column of
A.

Indyk described tradeoffs that arise when de-
signing recovery schemes to satisfy the tricriterion
of short sketches, low algorithmic complexity, and
strong recovery guarantees. Randomization has
proved to be an important computational resource,
and thus a key issue has been to identify prop-
erties that hold for very sparse random matrices
and also are sufficient to support efficient and ac-
curate recovery algorithms. A key challenge is that,
whereas dense random matrices are fairly homoge-
neous (e.g., since measure concentrates their eigen-
values follow Wigner’s semicircle law), very sparse
random matrices are much less regular. One can
say that a matrix A satisfies the RIP (p, k, ✏) prop-
erty if

||x||p(1� ✏)  ||Ax||p  ||x||p

holds for any k-sparse vector x. (This generalizes
the well-known Restricted Isometry Property from
p = 2 to general p.) Although very sparse matri-
ces cannot satisfy the RIP (2, k, ✏) property, unless
k or ✏ is rather large, Indyk showed that the adja-
cency matrices of constant-degree expander graphs
do satisfy this property for p = 1 and that several
previous algorithms generalize to very sparse ma-
trices if this condition is satisfied.

In his tutorial on “Randomized Algorithms
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in Linear Algebra and Large Data Applications,”
Petros Drineas used his work on DNA single-
nucleotide polymorphisms (SNPs) to illustrate the
uses of randomized matrix algorithms in data anal-
ysis. SNPs are sites in the human genome where
a nonnegligible fraction of the population has one
allele and a nonnegligible fraction has a second al-
lele. Thus, they are of interest in population genet-
ics and personalized medicine. In addition, they
can be naturally represented as a {�1, 0,+1} matrix
A, where Aij represents whether the i-th individual
is homozygous for the major allele, heterozygous,
or homozygous for the minor allele.

While some SNP data sets are rather small,
data consisting of thousands or more of individ-
uals typed at hundreds of thousands of SNPs are
increasingly-common. Size is an issue since even
getting off-the-shelf SVD and QR decomposition
code to run on dense matrices of size, say, 5000 ⇥
500, 000 is nontrivial on commodity laptops. The
challenge is especially daunting if the computa-
tions need to be performed thousands of times in
the course of a cross-validation experiment. Per-
haps less obvious is the issue of interpretability—
even if the data clusters well in the span of the top k
“eigenSNPs,” these eigenSNPs cannot be assayed
in the lab and they cannot be easily thought about.
Thus, while eigenvector-based methods for dimen-
sionality reduction are popular among data ana-
lysts, the geneticists were more interested in the k
actual SNPs that were most important.

Drineas described how to address these two
challenges—the “challenge of size” and the “chal-
lenge of interpretability”—in a unified manner. He
described a randomized approximation algorithm
for choosing the best set of exactly k columns from
an arbitrary matrix. The key structural insight
was to choose columns according to an impor-
tance sampling distribution proportional to the di-
agonal elements of the projection matrix onto the
span of the top k right singular vectors. These
quantities can be computed exactly by comput-
ing a basis for that space, or they can be approxi-
mated more rapidly with more sophisticated meth-
ods. Importantly for interpretability, these quanti-
ties are the diagonal elements of the so-called “hat
matrix,” and thus they have a natural interpreta-
tion in terms of statistical leverage and diagnos-
tic regression analysis. Importantly for size and
speed, Hadamard-based random projections ap-
proximately uniformize these scores, washing out

interesting structure and providing a basis where
simple uniform sampling performs well. This has
led in recent years to fast high-quality numerical
implementations of these and related randomized
algorithms.

Conclusions and Future Direc-
tions

In addition to these tutorial presentations, MMDS
participants heard about and discussed a wide
range of theoretical and practical issues having to
do with algorithm development and the challenges
of working with modern massive data sets. As with
previous MMDS meetings, the presentations from
all speakers can be found at the conference web-
site, http://mmds.stanford.edu; and as with pre-
vious MMDS meetings, participant feedback made
it clear that there is a lot of interest in MMDS as a
developing research area at the interface between
computer science, statistics, applied mathematics,
and scientific and Internet data applications. So
keep an eye out for future MMDSs!
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