
A Penalty Search Algorithm for the Obstacle Neutralization Problem

Ali Fuat Alkayaa,∗, Vural Aksakallib, Carey E. Priebec

aComputer Engineering Department, Marmara University, Istanbul, 34722, TURKEY.

bIndustrial Engineering Department, Istanbul Sehir University, Istanbul, 34662, TURKEY.

cApplied Mathematics & Statistics Department, Johns Hopkins University, MD, 21218, USA.

Abstract

We consider a path planning problem wherein an agent needs to swiftly navigate from a source to a destination

through an arrangement of obstacles in the plane. We suppose the agent has a limited neutralization capability in

the sense that it can safely pass through an obstacle upon neutralization at a cost added to the traversal length.

The agent’s goal is to find the sequence of obstacles to be neutralized en route that minimizes the overall traversal

length subject to the neutralization limit. We call this problem the obstacle neutralization problem (ONP), which

is essentially a variant of the intractable weight-constrained shortest path problem in the literature. In this study,

we propose a simple, yet efficient and effective suboptimal algorithm for ONP based on the idea of penalty search

and we present special cases where our algorithm is provably optimal. Computational experiments involving both

real and synthetic naval minefield data are also presented.

Keywords: combinatorial optimization, path planning, weight-constrained shortest path, suboptimal algorithm.

1. Introduction

The problem of finding shortest paths in the presence of a resource constraint is observed in many real life

situations. Several such cases are described below:

• The problem of minimizing the time for data to reach destination subject to a given total delay limit in the

telecommunications industry [1],

• the problem of finding the path for a military aircraft with minimum probability of being detected by enemy

radar subject to fuel constraints [2], and

• the problem of approximating a curve with maximum number of breakpoints subject to storage constraints

in computer graphics [3].
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Problems such as above are known as the weight-constrained shortest path problem (WCSPP) in the literature,

which is NP-Hard except for some trivial cases [4]. In this work, we study a variant of this problem in a path

planning setting. Specifically, we consider a problem where the goal is to safely and swiftly navigate an agent

from a given source location to a destination through an arrangement of disk-shaped obstacles in the plane. We

assume the agent has a neutralization capability in the sense that it can safely pass through an obstacle upon

neutralization at a cost added to the traversal length. However, we make the restriction that the number of

allowed neutralizations is limited, perhaps due to payload capacity of the agent. The agent’s goal is to find the

optimal sequence of obstacles to be neutralized en route that minimizes the overall traversal length subject to the

number of neutralizations available. We call this problem the obstacle neutralization problem (ONP). It should be

noted if the number of allowed neutralizations is unlimited, then the problem reduces to the classical unconstrained

shortest path problem and can be solved in polynomial time. Hence, we limit our focus in this study to ONP

instances where the optimal solution requires utilization of the entire neutralization capability.

ONP can be defined formally as follows: Let

• the obstacle field Ω be a finite region in R2,

• the starting location s and the destination t be two points in Ω,

• the obstacle set D be a finite set of disks in Ω with radius r,

• the neutralization cost be denoted by C ≥ 0, and

• the neutralization limit be denoted by K ≤ |D|.

An agent needs to traverse from s to t along a continuous curve which is as short as possible in the sense of

arclength. The agent cannot enter the obstacle disks but, if and when the agent is located at the boundary of a

disk di ∈ D, the agent has the option to neutralize it and pass through at a cost C added to the traversal length.

The agent’s goal is to find a sequence of at most K obstacles to be neutralized en route that minimizes the overall

s− t traversal length. Throughout this study, we assume that all disks have the same neutralization cost and the

same radius. For simplicity and convenience, an instance of ONP will be denoted by the tuple (s, t, D, C, K).

ONP is a combinatorial optimization problem where among |D| disks, the agent must find the optimal permu-

tation of at most K of the disks for neutralization. Clearly, ONP is a variant of the WCSPP where the weight

constraint is the number of neutralizations available. On the other hand, to our knowledge, ONP as defined above

has not been studied before in the open literature except for a brief mention in [5].

An instance of ONP is shown in Figure 1 with s = (10, 20), t = (10, 1), and C = 0.8 with r = 3. In the figure,

the optimal paths for K = 0, 1, 2 and 3 are given in subfigures 1(a), 1(b), 1(c), and 1(d), respectively. Note that

for K = 1, only d6 is neutralized; for K = 2, both d5 and d6 are neutralized; and for K = 3, d5, d6, and d7 are

neutralized. Note also that it is not always the case that all K allowable neutralizations are used.

Our goal in this study is to present a simple, fast, efficient, and scalable algorithm for ONP which we call Penalty

Search Algorithm (PSA). This algorithm is especially suitable for online applications. State-of-the-art algorithms
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Figure 1: An instance of ONP and the associated optimal paths for K = 0, 1, 2, and 3 respectively.

proposed for problems closely related to ONP either require significant run times or show poor performance on

ONP instances whereas PSA finds optimal or near-optimal results in short execution times. In particular, we

present computational experiments comparing the performance of PSA to two other algorithms on both real and

synthetic naval minefield sample data: (1) adaptation of another popular suboptimal WCSPP algorithm to ONP,

called Delay-Constrained Unicast Routing (DCUR) Algorithm, and (2) an exact algorithm for ONP. Our results

suggest solutions found by PSA compare very favorably to those obtained by the exact algorithm while requiring

substantially less computational resources whereas DCUR exhibits relatively poor performance in general.

The remainder of this manuscript is organized as follows: Section 2 relates ONP to WCSPP and gives a

comprehensive overview of current state-of-the-art in WCSPP research. Section 3 provides details of PSA, discusses

its properties, and proves its optimality in certain cases. Section 4 presents our computational experiments, and

Section 5 summarizes and concludes our work.
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2. WCSPP and Previous Work

2.1. WCSPP and ONP

For a given graph G = (V,E), let τij and θij denote the cost and weight of the edge (i, j) ∈ E respectively. The

objective in WCSPP is to find a minimum cost path from a start node s to a destination node t in V such that the

sum of weights of the path edges is at most a given limit WL. WCSPP is an NP-hard problem but it is solvable

in polynomial time if all edge weights or edge costs are equal [4].

Let the binary variable xij = 1 if the edge (i, j) is part of the optimal path and 0 otherwise. The integer

programming formulation of the WCSPP is as follows:

min

|V |∑
i=1

|V |∑
j=1
j ̸=i

τijxij (1)

s.t.

|V |∑
j=1
j ̸=s

xsj −
|V |∑
i=1
i̸=s

xis = 1 (2)

|V |∑
i=1
i ̸=t

xit −
|V |∑
j=1
j ̸=t

xtj = 1 (3)

|V |∑
j=1
j ̸=k

xkj −
|V |∑
i=1
i ̸=k

xik = 0 ∀k ∈ V − {s, t} (4)

|V |∑
i=1

|V |∑
j=1
j ̸=i

θijxij ≤ WL (5)

xij ∈ {0, 1} ∀i, j ∈ {1, . . . , |V |} (6)

The first constraint imposes that the difference in the number of edges leaving s and entering into s is 1. The

second constraint states that the difference in the number of edges entering t and leaving t is 1. The third constraint

states that for all other nodes except s and t, the number of edges leaving them is equal to the number of edges

entering them. The fourth constraint enforces the total weight limit.

In our methodology, the obstacle field is represented by an integer lattice (that is, a grid map) with diagonal

edges for simplicity and convenience. We also assume that disk radius r is large enough so that a lattice edge

intersects an obstacle disk at most once. Thus, should the agent decide to neutralize a particular disk and pass

through that disk, then the agent will need to traverse exactly two edges intersecting that disk. This observation
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implies that ONP is in fact a WCSPP where WL = 2K. Observe, however, that ONP is in fact a special case of

WCSPP because only the edges intersecting obstacle disks shall have a non-zero weight.

A generalization of WCSPP is the resource-constrained shortest path problem (RCSPP) where each edge con-

sumes a number of different resources and there are limits corresponding to each resource type. Both WCSPP

and RCSPP are well-studied problems both in theoretical and applied contexts. In the following sections, we first

review solution methods for WCSPP and then discuss several areas of application.

2.2. Solving WCSPP

The WCSPP is a generalization of the classical (unconstrained) shortest path problem in the presence of a total

edge weight constraint. In WCSPP, a lower bound can be obtained by finding the shortest path using only edge

costs and ignoring edge weight constraints. Likewise, an upper bound can be determined by finding the shortest

path with respect to edge weights, again ignoring weight constraints. Lagrangian relaxation of the problem can

also be solved as an unconstrained shortest path problem for a lower bound. In the literature, methods developed

for WCSPP primarily make use of k-th shortest paths, Lagrangian relaxation, dynamic programming, labeling/

enumeration algorithms, or a combination of these; as discussed below.

Handler and Zang [6] use Lagrangian relaxation of the weight constraint and duality theory to solve WCSPP.

To close the duality gap, if there is one, they utilize the k-th shortest path algorithm with respect to the edge

lengths modified by the Lagrange multipliers. Carlyle and Wood [7] also use Lagrangian relaxation of the weight

constraint to obtain a lower bound for the problem. The authors then use an enumeration algorithm to close any

duality gaps. Another Lagrangian relaxation based approach using subgradient optimization is presented in [8].

Mehlhorn and Ziegelmann [9], Ziegelmann [10] obtain a linear programming (LP) formulation of the problem

by relaxing the integrality constraint of the integer programming formulation. The dual of this LP is then solved

and the underlying graph is reduced using the method presented in [8]. To close any duality gaps, a dynamic

programming approach or a k-th shortest path method is proposed.

Storandt [11] tackles the same problem when planning routes for bicycles. The problem is to find the route

from A to B with the least positive height difference summed over all edges which has length at most D. She

shows how speed-up techniques like contraction hierarchies can be adapted to solve this problem efficiently both

in run time and space complexity where her experimental setup is based on real-world street networks.

Even though the contraction hierarchies speed-up technique is more convenient for road networks, a recent study

[12] shows how to modify them to take car of the grid networks. Moreover, the author also focuses on how to

compute canonical optimal paths. With her experimental work, she shows that when contraction hierarchies are

applied an acceleration up to two orders of magnitude can be achieved.

Dumitrescu and Boland [13] present an exact method for WCSPP based on weight scaling in a label-setting

framework. The weight scaling factor is gradually reduced until lower and upper bounds are tight, or the scaling

factor has reached a critical size. The essential value of preprocessing techniques and integration of Lagrangian

relaxation within a label-setting framework are demonstrated in detail in [14].
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Xue [15] presents a simple primal dual algorithm for computing approximate solutions for the WCSPP. In his

algorithm he defines a shortest path problem with edge lengths given by a combination of cost and weight where

both of them are weighted by a multiplier in [0,1]. Then he applies a bisection method to find the best multiplier

for an approximate solution.

In a recent study [16], the authors combine and expand on the best practices in the literature for WCSPP for an

exact solution. Specifically, they fuse the preprocessing and Lagrangian dual solution stages and alternate between

preprocessing and solving the Lagrangian dual while aggressively updating upper bounds.

2.3. Applications of WCSPP

We now briefly discuss several applications of WCSPP including the following: (1) routing of signals in telecom-

munication networks with QoS guarantees, (2) minimum-risk routing of military aircraft, (3) curve approximation,

and (4) other optimization problems where WCSPP arises as a subproblem.

Jüttner et al. [17] study the WCSPP within the context of quality of service (QoS) routing under the name

Delay Constrained Least Cost Path (DCLC) problem, and they use Lagrangian relaxation techniques to solve

it. The algorithm, called Lagrange Relaxation Based Aggregated Cost (LARAC) Algorithm, uses the concept of

aggregated costs and provides an efficient method to find the optimal multiplier based on Lagrangian relaxation1.

Reeves and Salama [19] study the DCLC problem and propose a simple distributed heuristic method called the

Delay-Constrained Unicast Routing (DCUR) Algorithm. The DCUR Algorithm starts by building the least delay

(LD) and least cost (LC) paths from each node to destination t. The path is constructed one node at a time from

source to destination. While building the path, DCUR chooses edges on LC paths if traveling on that edge to

the destination guarantees a permissible amount of delay by taking into account the delay accumulated thus far.

Otherwise the algorithm chooses edges on the LD path. Guo and Matta [20] propose another method for the

DCLC problem, called the Delay Cost Constrained Routing (DCCR) Algorithm. In order to reduce the search

space exploited by DCCR, the authors use a variant of the Lagrangian relaxation method proposed in [6]. The

aforementioned heuristics along with six other ones for DCLC are compared in [1]. This study compares these

algorithms with respect to their path cost and computational complexity. Results of simulations on square lattices

suggest the DCUR Algorithm provides superior results in general.

Another application of WCSPP is minimum-risk routing of military aircraft in a threat environment where edge

costs represent probability of being detected by radar or surface-to-air missiles. The goal is to minimize the total

risk on the path taken from source to destination subject to fuel or flight time constraints. Lee [21] considers a

variant of the problem with a given fuel consumption limit. Similar to [6], the author makes use of the Lagrangian

dual of the problem for a solution. Latourell et al. [22] use genetic algorithms for risk minimization in routing of

military aircraft. The authors also consider a limitation on the sharpness of the turns that the aircraft can make.

Zabarankin et al. [2] consider both continuous and discrete versions of the minimum-risk aircraft routing problem.

The authors demonstrate how an optimal solution can be found in a continuous setting when there is only one

1They first prove that this Lagrangean relaxation is polynomial [17, 18] only dependent on |V | = n.
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radar. For multiple radars, they utilize the algorithm proposed in [13] in a discrete setting. A three-dimensional

treatment of the problem is presented in [23]. Royset et al. [24], on the other hand, apply the algorithm in [25] for

routing of various types of military aircraft. A general scheme for convergence of network discretizations in such

settings is given in [26].

One other application of WCSPP arises in curve approximation. Piecewise linear functions are often used to

approximate complex curves in a number of domains including computer aided design, computer graphics, image

processing, and mathematical programming [3]. Such an approximation often needs to be made in the presence of

transmission rate or storage constraints. There are two variants of this problem: (1) minimizing the approximation

error subject to breakpoint constraints, and (2) minimizing the number of breakpoints given an approximation

error bound. In both cases, the problem may be formulated as a WCSPP. Dahl and Realfsen [27] present four

different algorithms for the curve approximation problem: a combinatorial algorithm, a Lagrangian relaxation

based algorithm, a dynamic programming algorithm, and a linear programming algorithm.

WCSPP also appears as a column generation subproblem in many optimization problems. For example, the

duty scheduling problem in public transportation systems constructs daily shifts of driving tasks. Borndörfer

et al. [28] discuss how WCSPP arises during the column generation phase in duty scheduling. Another example is

due to [29] where the authors tackle the aircraft routing problem and solve a pricing subproblem in their column

generation method by casting it as a WCSPP.

Lastly, Bekker and Schmid [30] consider a WCSPP problem similar to ONP and propose a genetic algorithm for

the problem where they use a fitness function favoring shorter paths with fewer number of resource utilizations. Li

[31], on the other hand, studies identification of minimum-risk routes for a ship navigating in a mapped minefield;

the author proposes a greedy heuristic for the problem which calls for formation of a prioritized list of mines to be

neutralized in order to quickly reduce the risk of minimum-risk paths.

3. The Penalty Search Algorithm (PSA)

This section introduces the Penalty Search Algorithm (PSA) for ONP. First, recall we assume a lattice edge

intersects a given obstacle disk at most once. Thus, half of the neutralization cost is incurred upon entering the disk

and the other half is incurred upon exiting. PSA is based on the following simple idea: find the largest penalty

term α∗ ≥ 1 such that the unconstrained shortest path (i.e., the path without any neutralization limits) with

Euclidean length of disk-intersecting edges augmented by (α∗C)/2 requires the highest number of neutralizations

without exceeding K, hence the name “penalty search”. This is the path returned by PSA and it clearly satisfies

the neutralization limit constraint. The search for the penalty term is found by a straightforward bisection method.

We formally show below that when PSA dictates exactly K neutralizations, then the path returned by PSA

is indeed optimal. However, PSA cannot always find a path with exactly K neutralizations, and thus sometimes

returns a path with fewer than the maximum allowable number of neutralizations. Nevertheless, this path turns

out to be either optimal or very close to optimal in general as illustrated in our computational experiments.
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3.1. PSA and Optimality

Before we show our main result, that a PSA path with K neutralizations is optimal, we show that as α is

increased, the number of neutralizations dictated by PSA decreases and the total cost increases monotonically.

This fact allows us to develop an efficient mechanism for finding α∗ using a bisection approach. But first we

present the notation that characterizes our model.

• As before, G = (V,E) denotes the lattice discretization of the obstacle field and the tuple (s, t, D, C, K)

represents an ONP instance.

• p∗ denotes the optimal path for the ONP instance (s, t, D, C, K).

• p̂∗ denote the best path found by PSA.

• For e ∈ E, ℓ(e) denotes its Euclidean length, which is assumed to be 1 for straight edges and
√
2 for diagonal

edges.

• For e ∈ E, θ(e) is half the number of disks that edge e intersects. That is, θ(e) := (1/2) ×
∑

d∈D Ie∩d ̸=∅

where I is the indicator function.

• For e ∈ E, its associated neutralization cost is defined as c(e) := C × θ(e) = (C/2)×
∑

d∈D Ie∩d ̸=∅.

• For e ∈ E, its total cost associated with α is denoted by τ(e, α) := ℓ(e) + α× c(e).

For a path p in G :

• ℓ(p) :=
∑

e∈p ℓ(e), θ(p) :=
∑

e∈p θ(e), and c(p) :=
∑

e∈p c(e). Observe that θ(p) is the number of disks p

intersects. Thus, an agent following path p would neutralize exactly θ(p) obstacle disks.

• τ(p, α) :=
∑

e∈p τ(e, α) =
∑

e∈p ℓ(e) + α × c(e) = ℓ(p) + α × c(p). Note that c(p) = C × θ(p) and τ(p, α) =

ℓ(p) + α× C × θ(p).

• α1 = 1 < α2 < . . . < αn denotes a sequence of real-valued choices for α.

• p∗α denotes the optimal unconstrained path found by, say, A* Algorithm on G using τ(e, α) as the edge costs.

Proposition 1. τ(p∗αk
, αj) ≥ τ(p∗αj

, αj) for j ̸= k.

Proof. By definition, p∗αj
is the shortest path in total cost for the α = αj setting. Therefore p∗αk

has a total cost

equal to or greater than that of p∗αj
under the α = αj setting.

Corollary 2. τ(p∗αj
, αj) ≥ τ(p∗αk

, αk) for j > k.

Proof. Clearly, τ(p∗αj
, αj) ≥ τ(p∗αj

, αk) because αj > αk. By Proposition 1, τ(p∗αj
, αk) ≥ τ(p∗αk

, αk). Hence,

τ(p∗αj
, αj) ≥ τ(p∗αk

, αk).
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Proposition 3. θ(p∗αk
) ≥ θ(p∗αj

) for j > k.

Proof. For a contradiction, assume θ(p∗αj
) > θ(p∗αk

). By Proposition 1, τ(p∗αk
, αj) ≥ τ(p∗αj

, αj). That is, ℓ(p∗αj
) +

αk × c × θ(p∗αj
) ≥ ℓ(p∗αk

) + αk × c × θ(p∗αk
). Then, ℓ(p∗αj

) + αj × c × θ(p∗αj
) > ℓ(p∗αk

) + αj × c × θ(p∗αk
) because

θ(p∗αj
) > θ(p∗αk

) and αj > αk. This means that τ(p∗αj
, αj) > τ(p∗αk

, αj). But this contradicts the fact that p∗αj
is

optimum for αj . Therefore θ(p∗αk
) ≥ θ(p∗αj

).

Proposition 4. ℓ(p∗αj
) ≥ ℓ(p∗αk

) for j > k.

Proof. By definition, ℓ(p∗αk
) = τ(p∗αk

, αk) − αk × c × θ(p∗αk
) and ℓ(p∗αj

) = τ(p∗αj
, αk) − αk × c × θ(p∗αj

). Then,

ℓ(p∗αk
)−ℓ(p∗αj

) = τ(p∗αk
, αk)−τ(p∗αj

, αk)+αk×c×θ(p∗αj
)−αk×c×θ(p∗αk

). Observe that τ(p∗αk
, αk)−τ(p∗αj

, αk) ≤ 0

by Proposition 1 and θ(p∗αj
)− θ(p∗αk

) ≤ 0 by Proposition 3. Thus, ℓ(p∗αj
) ≥ ℓ(p∗αk

).

Theorem 5. τ(p∗αj
, α1) ≥ τ(p∗αk

, α1) for j > k.

Proof. For a contradiction, assume that τ(p∗αj
, α1) < τ(p∗αk

, α1) for j > k. Then,

ℓ(p∗αj
) + α1 × c× θ(p∗αj

) < ℓ(p∗αk
) + α1 × c× θ(p∗αk

). (7)

On the other hand,

(αk − α1)× c× θ(p∗αj
) < (αk − α1)× c× θ(p∗αk

) (8)

because θ(p∗αj
) ≤ θ(p∗αk

) for j > k by Proposition 3. Adding (7) and (8) yields ℓ(p∗αj
) + αk × c × θ(p∗αj

) <

ℓ(p∗αk
) + αk × c × θ(p∗αk

). But this means that τ(p∗αj
, αk) < τ(p∗αk

, αk), which contradicts the fact that p∗αk
is

optimum for αk. Hence, τ(p
∗
αj
, α1) ≥ τ(p∗αk

, α1) for j > k.

Propositions 3 and 4 and Theorem 5 show monotonicity of ℓ, θ, and τ in α. PSA makes use of this result and

searches for the largest value of α that yields the best path p̂∗, which we denote by α∗. In this context, the best

path refers to the shortest unconstrained path with the largest number of neutralizations, that is, θ(p), such that

θ(p) ≤ K. Pseudo-code of PSA is presented in Figure 2. In the figure, A*(α) denotes execution of the A* Algorithm

for finding the unconstrained optimal s − t path using τ(e, α) as the edge costs. PSA starts by setting α = 1. If

A*(α = 1) returns a path with number of neutralizations less than or equal to K, then PSA terminates with the

current path. Otherwise, the first while loop finds a coarse interval [αmin, αmax] such that αmin ≤ α∗ ≤ αmax.

The second while loop takes a bisection approach to fine-tune αmin and αmax until (αmax − αmin) ≤ ε where ε

is a pre-specified tolerance parameter. Observe that run time of PSA is dominated by the number of A* calls,

which depends on ε. In the worst case, run time is O(log(ℓ(p̄)/ε)) where p̄ is shortest s − t path without any

neutralizations.

The following theorem shows that if θ(p̂∗) = K, that is, if the best path found by PSA requires exactly K

neutralizations, then p̂∗ is indeed the optimum path for the ONP instance (s, t, D, C, K).
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Input: ONP instance (s, t, D, C, K)

Output: The shortest path p with the largest θ(p) such that θ(p) ≤ K

1. α = 1

2. p = A*(α)

3. if (θ(p) ≤ K) return p end if

4. while (θ(p) > K)

5. αmin = α

6. α = α× 10

7. p = A*(α)

8. if (θ(p) == K) return p end if

9. end while

10. αmax = α

11. while ((αmax − αmin) > ε)

12. α = (αmax − αmin)/2

13. p = A*(α)

14. if (θ(p) ≤ K)

15. αmax = α

16. p̂∗ = p

17. α∗ = αmax

18. else

19. αmin = α

20. end if

21. if (θ(p) == K) return p end if

22. end while

23. return p̂∗

Figure 2: PSA Pseudocode

Theorem 6. Suppose that for αx, p
∗
αx

is the shortest path having K neutralizations. Then, p∗αx
is the optimum

path for the (s, t, D, C, K) problem. That is, τ(p∗αx
, α1) = τ(p∗, α1).

Proof. For a contradiction assume that τ(p∗αx
, α1) > τ(p∗, α1). Then τ(p∗αx

, αx) > τ(p∗, αx) because both p∗αx

and p∗ require the same number of neutralizations. But, this contradicts the fact that p∗αx
is the optimum path

associated with αx.

As an example, Figure 3 illustrates paths found by PSA with C = 1 on a discretized actual naval minefield

data set with 39 disks, called the COBRA data (this data set is explained in more detail in Section 4). Fig-

ures 3(a), 3(b), 3(c), and 3(d) show the paths found by PSA for K = 3, 2, 1, and 0 respectively. Note that K,

the number of neutralizations in ONP, corresponds to the number of resources in WSCPP. In this particular case,

when C = 1, it turns out PSA finds the optimal path regardless of K.
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(a) K = 3 (α∗ = 1) (b) K = 2 (α∗ = 3)

(c) K = 1 (α∗ = 4) (d) K = 0 (α∗ = 29)

Figure 3: Paths found by PSA on a discretized naval minefield data set for 4 different neutralization limits. For each one of these

paths, the number of neutralizations required is the same as the neutralization limit, and therefore they are optimal.

There is a drawback of PSA that requires attention. Specifically, in some cases, PSA cannot find a path with

exactly K neutralizations regardless of how fine α is tuned. As an illustration, a simple discretized ONP instance

with 8 disks is depicted in Figure 4 along with the optimum paths for K ranging from 0 to 3, with C = 0.8.

Fine-tuning of the α values is shown in Table 1 for K = 1. As the table illustrates, no matter how fine α is tuned,

PSA cannot find a path with exactly one neutralization.

We now offer some intuition why as to this is the case. In Figure 4, let PK denote the optimal path that

requires exactly K neuralizations. Lengths of these paths are ℓ(P3) = 19.0, ℓ(P2) = 19.8284, ℓ(P1) = 23.1421 and

ℓ(P0) = 26.2132 respectively. Observe that PSA returns P2 as the best path for α satisfying ℓ(P3)+α×C×θ(P3) =

ℓ(P2)+α×C×θ(P2). Solving that equation yields α = 1.0355. Thus, for α > 1.0355, P2 is the best path. Similarly,

to find the α value that gives P1 as the best path, we solve ℓ(P2)+α×C× θ(P2) = ℓ(P1)+αk ×C× θ(P1). So, P1
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(a) Path P3 (b) Path P2

(c) Path P1 (d) Path P0

Figure 4: A simple discretized ONP instance with 8 disks and the optimal paths for 4 different neutralization limits. PK denotes the

optimal path for K neutralizations. PSA cannot find a path with exactly one neutralization for this case. See Table 1.

is expected to become the best path for α > 4.1421. However, observe that τ(P1, 4.1421) = 26.4558 > 26.2132 =

τ(P0, 4.1421) which means that P0 is the best (for α > 3.9905). Hence, there are no intervals that manifests P1 as

the best path.

4. Computational Experiments

This section presents comprehensive computational experiments comparing the performance of PSA to two other

algorithms on both real and synthetic data: (1) adaptation of another popular suboptimal WCSPP algorithm to

ONP, called Delay-Constrained Unicast Routing (DCUR) Algorithm [19], and (2) an exact algorithm for ONP.

Our choice of the DCUR Algorithm is due to its proven success in similar problem environments [1]. The exact

WCSPP algorithm we utilize is the one proposed in [16].
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Table 1: Fine-tuning α for the ONP instance depicted in Figure 4 with K = 1. No matter how fine α is tuned, PSA cannot find a

path with exactly one neutralization.

α τ(p, α) θ(p, α)

1 21.8284 2
10 26.2132 0
6 26.2132 0
4 26.2132 0
3 21.8284 2
3.5 26.2132 0
3.25 26.2132 0
3.125 21.8284 2
3.1875 21.8284 2
3.21875 26.2132 0
3.203125 26.2132 0
3.1953125 26.2132 0
3.19140625 21.8284 2
3.193359375 26.2132 0
3.1923828125 21.8284 2
3.19287109375 26.2132 0
3.192626953125 26.2132 0
3.1925048828125 26.2132 0
3.19244384765625 26.2132 0
3.19241333007812 26.2132 0
3.19239807128906 26.2132 0
3.19239044189453 26.2132 0
3.19238662719726 21.8284 2
3.19238853454589 26.2132 0

The specific application domain we consider in our experiments is naval minefield navigation. A particular

instance we make use of is a U.S. Navy minefield data set (called the COBRA data) with 39 obstacle disks that

first appeared in Witherspoon et al. [32] and was later referred to in [33, 34, 35, 36, 37, 38, 39, 40]. The COBRA

data is illustrated in Figure 5 and tabulated in Table 2. For simplicity, original data coordinates were scaled and

shifted so that disk centers are inside the region [10, 90] × [10, 90]. The starting point is s = (54, 80) and the

destination point is t = (54, 10) with disk radius taken as r = 5. Throughout our experiments, we work with an

8-regular lattice discretization of the obstacle field for convenience where straight edge lengths are taken as 1 and

diagonal edge lengths are taken as
√
2.

4.1. Outline of Experiments and Performance Metrics

An outline of our computational experiments is presented below.

• Section 4.2 compares the three algorithms on the COBRA data set for various C and K combinations.

• Section 4.3 compares the algorithms on simulated COBRA-like instances, again for different C and K com-

binations. In these instances, there are 100 disks with r = 5 on a [0,100]×[0,100] obstacle field where

s = (50, 100) and t = (50, 1).
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Figure 5: An actual naval minefield data set, called the COBRA data.

Table 2: Scaled and shifted center coordinates of COBRA disks.

X-coordinate Y-coordinate X-coordinate Y-coordinate X-coordinate Y-coordinate

46.13 39.61 50.49 24.26 83.62 16.33

30.21 54.62 56.83 20.50 44.87 66.45
47.88 34.51 40.55 76.93 43.43 26.22
21.93 53.22 69.82 51.65 65.64 11.08
37.36 29.94 29.47 37.21 59.42 20.11

38.90 57.22 32.07 31.37 45.71 24.83
86.12 15.83 52.01 56.80 41.14 27.41
8.43 74.26 37.00 43.89 72.53 18.22
22.98 40.29 70.33 18.61 29.78 32.15

63.54 24.81 64.04 37.65 27.00 37.97
46.07 71.00 65.16 64.01 37.36 18.03
39.43 70.31 75.51 42.83 76.11 55.73

38.29 44.20 28.16 64.10 64.55 50.98

• Section 4.4 gives a comparison on three different simulated instance types: (1) 200 disks with r = 7 on

[0,200]×[0,200] where s = (100, 200) and t = (100, 1), (2) 400 disks with r = 10 on [0,400]×[0,400] where

s = (200, 400) and t = (200, 1), and (3) 1000 disks with r = 16 on [0,1000]×[0,1000] where s = (500, 1000)

and t = (500, 1).

• Section 4.5 compares the algorithms on simulated instances with 100, 200, 400, and 1000 disks respectively

with r = 5 on a [0,100]×[0,100] obstacle field where s = (50, 100) and t = (50, 1).

The performance metrics we report are as follows:

• Total Path Cost (TotCost): The total cost of the optimal s − t path found by the exact algorithm. It is

comprised of the sum of Euclidean lengths of all the edges on the path and the total cost of neutralizations.
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• Lower Bound and Upper Bound (%DualDev and %PriDev): Percent deviation of the lower and upper bound

of the LP relaxation obtained by an LP solver.

• Number of Neutralizations (#Neut): This value is reported for all three algorithms.

• Deviation From the Optimal Path Cost (%Dev): Percent deviation from the optimal path total cost value.

This value is reported for PSA and the DCUR Algorithm.

• Number of A* Calls (#A*): This value is reported only for PSA.

• Run Time (RT): Execution time of the algorithms in seconds (RT of the exact algorithm corresponds to the

one in [16]).

In each section and in each comparison, each reported performance metric is the average over 100 random

instances. After a set of preliminary tests we observed that using 0.5 for ε is best. The tests were per-

formed on a personal computer with an Intel Xeon E5 Processor running at 3.1 GHz clock speed and with

128 GB memory. The MATLAB codes of the algorithm as well as the tested examples can be accessed from

http://mimoza.marmara.edu.tr/∼falkaya/research.htm.

4.2. Comparison on the COBRA Data

In this section we compare the performance of the algorithms on COBRA data. The results for various C values

are given in Table 3. The number of neutralizations (#Neut) for both PSA and DCUR is K = 1. Observe that for

C = 0.2, 0.5, 1 and 2, even though DCUR makes only 1 neutralization, its path is far from optimal which means

that it does not neutralize the correct disc. However for C = 5, it chooses the correct disc for neutralization and

uses a path very close to optimal. On the other hand, PSA neutralizes the correct disc for all values of C and finds

the optimum path in less time than DCUR and exact algorithm.

Table 3: Comparison of algorithms for various C on COBRA data for K=1. TotCost denotes total path cost, #Neut denotes number

of neutralizations, %Dev denotes deviation from the optimal, #A* denotes number of A* calls, and RT denotes run time in seconds.

C Exact PSA DCUR
TotCost #Neut RT %Dev #A* RT %Dev RT

0.2 75.999 1 2.61 0.00% 3 0.090 58.48% 0.095
0.5 76.299 1 2.55 0.00% 2 0.071 58.51% 0.090
1 76.799 1 2.52 0.00% 2 0.070 57.48% 0.089
2 77.799 1 2.51 0.00% 2 0.069 56.74% 0.090
5 80.799 1 2.40 0.00% 1 0.039 1.03% 0.090

Results for various values of K are given in Table 4. The results indicate that PSA finds the optimum easily

whereas DCUR is far away from the optimum for K = 0 and K = 1. Overall, poor performance of DCUR can

perhaps be attributed to its inherent greedy design of choosing least cost paths over least weight ones.
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Table 4: Comparison of algorithms for various K on COBRA data for C=1.

K Exact PSA DCUR
TotCost #Neut RT %Dev #Neut #A* RT %Dev #Neut RT

0 104.3259 0 2.45 0.00% 0 3 0.089 18.14% 0 0.080
1 76.7990 1 2.52 0.00% 1 2 0.070 57.48% 1 0.080
2 74.4853 2 2.55 0.00% 2 5 0.130 0.00% 2 0.081
3 73.0 3 2.57 0.00% 3 1 0.036 0.00% 3 0.081

4.3. Comparison with Different C and K Values on COBRA-Like Data

This section compares the algorithms with respect to various C and K combinations on COBRA-like instances

with 100 disks. In particular, s = (50, 100), t = (50, 1), r = 5, and 100 disk centers were generated randomly from

the uniform distribution on [5,95]×[5,95]. The average results for 100 random instances are given in Table 5 for

K = 52. We observe that PSA outperforms DCUR and runs in much less time than the exact algorithm. Another

observation is the decrease in number of neutralizations on the paths for increasing neutralization cost values.

This is reasonable since for higher neutralization costs, paths with fewer number of neutralizations are preferred.

Similarly, for both algorithms’ total cost increases as neutralization cost increases.

In our computational results, we provide the percent deviation of the lower and upper bounds of the LP-

relaxation using the well-known SCIP solver [41]. In Table 5 and subsequent tables, it can be seen that the percent

deviation of the lower and upper bounds from the optimal are significantly greater than that of PSA. Furthermore,

the required run time for obtaining these bounds are drastically greater than PSA run time, which are 5, 213,

5038, 115223 seconds on the average for [0,100]×[0,100], [0,200]×[0,200], [0,400]×[0,400], [0,1000]×[0,1000] sized

obstacle fields, respectively. As can be seen in the same tables, %PriDev is greater that %DualDev in general. An

intuition behind this difference is that the primal integer programs (IPs) have fewer variables and more constraints

compared to their duals. Consequently, linear programming (LP) relaxations of the primal IPs tend to deviate

more from the optimal when compared to the corresponding duals.

Table 5: Comparison of algorithms for various C on COBRA-like instances with 100 disks for K=5.

C Exact PSA DCUR
TotCost %DualDev %PriDev #Neut RT %Dev #Neut #A* RT %Dev #Neut RT

0.1 105.08 6.16% 40.76% 4.86 3.13 1.09 3.89 7.16 0.12 54.57 4.93 0.065
0.2 105.57 5.12% 51.90% 4.86 3.17 1.00 3.89 5.37 0.11 55.34 4.87 0.064
0.5 107.01 4.74% 54.13% 4.76 3.03 0.75 3.81 5.36 0.12 47.93 4.84 0.061
1 109.29 2.64% 62.55% 4.19 2.78 0.43 3.73 4.31 0.11 22.44 4.43 0.062
2 113.13 2.50% 63.28% 3.45 2.48 0.15 3.31 1.93 0.08 6.58 3.53 0.064
5 120.89 2.02% 63.43% 2.08 2.41 0.04 2.04 1.06 0.07 0.29 2.08 0.064

Mean 110.16 3.86% 56.01% 4.03 2.83 0.56 3.45 4.2 0.10 30.16 4.11 0.063

In Table 6 results regarding the performance of the algorithms with respect to various K are given where C = 1.

The total cost performance of all algorithms get better with increasing K values and when K = 10 all of the

2For a relatively low K value, the optimum path mostly walks around the disks. For a relatively high K value, on the other hand,

the optimum path turns out to be almost a straight line. We observed that K = 5 stands as the most challenging value for the

algorithms to show their performance.
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algorithms find the optimal path for all of the 100 minefield instances. This is because of the fact that when it

is allowed to make 10 neutralizations the shortest path from s to t has fewer neutralizations and hence it is the

optimal path. On the average, PSA outperforms DCUR and runs in much less time than the exact algorithm. In

addition, it can be observed in Tables 5 through 8 that the solutions obtained by PSA are very close to the optimal

in general, if not optimal.

Table 6: Comparison of algorithms for different K values on COBRA-like instances with 100 disks for C = 1.

K Exact PSA DCUR
TotCost %DualDev %PriDev #Neut RT %Dev #Neut #A* RT %Dev #Neut RT

1 126.46 7.10% 26.58% 0.99 2.79 1.77% 0.72 5.04 0.14 60.31% 1 0.077
2 117.52 6.06% 36.57% 1.88 2.83 2.19% 1.48 4.93 0.14 56.13% 1.91 0.076
3 112.33 5.03% 46.65% 2.74 2.86 0.65% 2.38 4.47 0.12 52.38% 2.82 0.076
4 110.07 3.94% 58.19% 3.56 2.87 0.45% 3.15 4.37 0.12 38.94% 3.69 0.077
5 109.29 2.64% 62.55% 4.19 2.78 0.43% 3.73 4.31 0.11 22.44% 4.43 0.078
6 108.71 2.36% 65.94% 4.82 2.80 0.27% 4.4 3.21 0.09 10.68% 5.03 0.078
7 108.36 1.94% 67.42% 5.24 2.67 0.20% 4.91 2.33 0.08 6.68% 5.42 0.079
8 108.19 0.66% 68.09% 5.53 2.56 0.08% 5.4 1.48 0.06 1.35% 5.64 0.079
9 108.16 0.50% 69.08% 5.64 2.51 0% 5.61 1.12 0.06 0.03% 5.73 0.080
10 108.15 0.43% 69.41% 5.75 2.50 0% 5.75 1.00 0.05 0% 5.75 0.080

Mean 111.72 3.06% 57.05% 4.03 2.73 0.64% 3.75 3.23 0.10 25.85% 4.14 0.078

Figure 6 shows the outputs of the algorithms on one of the random instances. Observe that PSA finds a path

with four neutralizations (Figure 6(b)) whose total cost is only 0.60% away from optimum (Figure 6(a)). On the

other hand, DCUR finds a path with five neutralizations, yet 10% away from optimal total cost (Figure 6(c)).

4.4. Comparison with Different Obstacle Field Sizes

The third performance comparison is with respect to three different instance types: (1) 200 disks with r = 7 on

[0,200]×[0,200], (2) 400 disks with r = 10 on [0,400]×[0,400], and (3) 1000 disks with r = 16 on [0,1000]×[0,1000].

100 random instances are generated for each combination of instance type and values of C. Comparison results

are given in Table 7. Observe that the results are similar to the those with 100 disks. However an important

observation here is the scalability of PSA when compared with DCUR and exact algorithm. Execution time of

DCUR and exact algorithm increases faster than PSA for larger graphs as seen in the table.

4.5. Comparison with Different Disk Quantities

The last comparison of the algorithms is with respect to different number of disks on a [0,100]×[0,100] obstacle

field with r = 5, C = 1, and K = 5. We generate 100 random instances with 200, 300, 400, and 1000 disks

respectively. The results are presented in Table 8. In the table, mean deviation from optimal for PSA is 2.87%,

mean deviation for DCUR is 28.46%. Notice that average total path cost for all algorithms increase as disk quantity

increases. For instances with 1000 disks, the paths have a total cost close to 200 because with such a high obstacle

quantity, the optimal path tends to be the one with no neutralizations at all. That is, the optimal path tends to

be the one that traverses along the outer boundaries of the obstacle field without any neutralizations.
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(a) Optimal path (b) PSA path

(c) DCUR path

Figure 6: Paths found by the algorithms on a COBRA-like instance with 100 disks.

Table 7: Comparison of algorithms with 200, 400, and 1000 disks on [0,200] × [0, 200], [0, 400] × [0, 400] and [0, 1000] × [0, 1000]

obstacle fields respectively with K = 5.

Size C Exact PSA DCUR
TotCost %DualDev %PriDev #Neut RT %Dev #Neut RT %Dev #Neut RT

[2
0
0
]×

[2
0
0
] 0.2 212.86 4.02% 7.41% 4.99 12.9 0.87% 4.14 0.27 58.48% 4.93 0.156

0.5 214.36 3.99% 8.54% 4.97 13.0 0.7% 4.16 0.24 57.38% 4.93 0.156
1 216.81 3.96% 9.13% 4.85 13.1 0.61% 4.08 0.28 39.23% 4.94 0.156
2 221.5 3.15% 10.12% 4.43 11.6 0.41% 3.85 0.24 18.57% 4.61 0.156
5 232.04 3.13% 13.44% 2.7 9.6 0.08% 2.62 0.13 1.76% 2.71 0.156

Mean 219.51 3.65% 9.73% 4.39 12.0 0.52% 3.77 0.23 34.42% 4.42 0.156

[4
0
0
]×

[4
0
0
] 0.5 430.09 5.22% 5.20% 4.99 56.4 0.52% 4.24 0.76 68.72% 4.92 0.857

1 432.58 4.87% 6.39% 4.96 57.2 0.5% 4.15 0.77 61.1% 4.96 0.865
2 437.49 4.50% 7.03% 4.83 57.6 0.36% 4.09 0.95 43.65% 4.89 0.879
5 450.86 3.56% 7.87% 3.84 46.9 0.08% 3.56 0.45 6.85% 3.9 0.890
10 465.91 2.02% 9.21% 2.51 43.0 0% 2.51 0.21 0% 2.51 0.877

Mean 443.39 4.03% 7.14% 4.23 52.2 0.29% 3.71 0.63 35.26% 4.24 0.874

[1
0
0
0
]×

[1
0
0
0
]

1 1089.12 5.13% 4.13% 5 411.7 0.46% 4.5 5.75 65.91% 5 9.731
2 1094.12 5.01% 4.57% 5 415.3 0.41% 4.5 5.20 60.37% 5 9.797
5 1109.12 4.74% 6.60% 5 432.3 0.29% 4.4 6.54 29.56% 5 9.915
10 1133.1 4.68% 7.77% 4.6 372.3 0.14% 4 4.64 11.86% 4.6 9.943

Mean 1106.36 4.89% 5.77% 4.9 407.9 0.32% 4.35 5.53 41.59% 4.9 9.846
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Table 8: Comparison of algorithms with respect to disk quantities of 200, 300, 400, and 1000 on a [0,100]×[0,100] obstacle field with

r = 5, C = 1, and K = 5.

No. Exact PSA DCUR
TotCost %DualDev %PriDev #Neut RT %Dev #Neut #A* RT %Dev #Neut RT

100 109.29 2.64% 62.55% 4.19 2.78 0.43% 3.73 4.31 0.11 22.44% 4.43 0.068
200 153.43 11.14% 16.64% 4.92 4.61 8.90% 1.36 6.04 0.20 57.51% 4.54 0.091
300 176.97 10.60% 9.16% 4.62 3.55 3.23% 0.51 6.01 0.22 35.32% 4.40 0.105
400 182.32 5.72% 5.06% 3.90 2.99 1.75% 0.40 6.52 0.29 25.11% 4.25 0.131
1000 188.74 0.62% 0.72% 2.05 2.67 0.04% 1.69 2.62 0.18 1.93% 2.52 0.185

5. Summary and Conclusions

We study the obstacle neutralization problem (ONP) where the goal is to safely and swiftly navigate an agent

from a given source location s to a given destination t through an arrangement of disk-shaped obstacles in the

plane. The agent is capable of neutralizing a limited number of disks en route at a cost. The main issue is how

to optimally utilize this neutralization capability for the shortest s− t traversal. We show that ONP is a variant

of the intractable weight constrained shortest path problem (WCSPP) and we provide a detailed literature review

on solutions and applications of WCSPP. Then we propose the Penalty Search Algorithm (PSA) for ONP which

is a simple, effective, and scalable suboptimal algorithm for ONP. PSA is guaranteed to give the optimal path in

case it manages to fully utilize the neutralization capability. Performance of PSA is compared to ONP adaptation

of another high-performing heuristic for WCSPP as well as an exact method on real and synthetic ONP instances

from a naval minefield application domain. We present comprehensive computational experiments which suggest

that PSA finds solutions that compare very favorably to the optimal paths with minimal computational resources,

whereas the other heuristic method struggles to find good solutions in general. An attractive feature of PSA is

that it lends itself to easy adaptation to general instances of WCSPP. Thus, as future work, we intend to adapt

PSA to other variants of WCSPP and benchmark against competing methods.
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