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Abstract— Generative statistical models with a very large
number of parameters are frequently used in real-world data ap-
plications, such as large-vocabulary speech recognition (LVCSR).
Complex models are needed in order to capture the ubiquitous
variability in the observed signal, but data sparsity causes
significant problems in their training. One way of dealing with
data sparsity is to perform dimensionality reduction of the
observed features, with the goal of reducing the model param-
eter space without sacrificing performance. When the data are
Gaussian distributed, the dimensionality reduction can be done
efficiently using the maximum likelihood criterion; this leads to
the Heteroscedastic Linear Discriminant Analysis (HLDA), which
is a natural extension of Linear Discriminant Analysis (LDA)
to the case where the class-conditional Gaussians have unequal
covariance matrices. A further extension of HLDA to multiple
transforms (MLDA) can also be tackled efficiently. This paper
presents the theory behind HLDA and MLDA, and demonstrates
their performance with synthetic data.

I. GENERATIVE MODELS IN SPEECH RECOGNITION

Speech recognition is a complex classification task. The
observed signal vector A, which represents the acoustics,
is the result of a cascade of signal processing operations,
and is parameterized in a way that preserves information
about the words uttered, while being invariant to certain
kinds of irrelevant variations (e.g., microphone). Modeling
the observations is usually done in a generative way, which
assumes that A is the realization of a random process, whose
parameters depend on the true “labels” (e.g., word identities)
of the observations. Inference is usually done in a maximum-
aposteriori fashion,

Ŵ = arg max
W

P (A|W)P (W),

where P (A|W) is the generative model of the acoustics given
the word sequence W (acoustic model), and P (W) is the
language model [1].

A number of reasonable independence assumptions allow
to factor P (A|W) into a number of components, each of
which corresponds to a conditional distribution that models
some aspect of the speech production. The (usually very
large) collection of conditional distributions is assumed to
belong to a parameterized model family, and training acoustic

This work was supported by National Science Foundation grant No CCF-
0728931.

models amounts to estimating the parameters of these models.
Mixtures of Gaussian distributions with diagonal covariance
matrices are very frequently used as the underlying models,
because of their expressiveness and efficiency in their training.
(See [1], [2] for details about how acoustic models are trained.)
Thus, expressing the acoustic vector A as a sequence of
observations {ai}, each ai is generated (given label w) by
an underlying process

p(a|w) = pw(a) =
M∑

m=1

λmφ(a;µm(w),Σm(w))

where M is the number of Gaussian components in the
mixture, and {µ1, . . . ,µM}, {Σ1, . . . ,ΣM} are the means
and covariance matrices of these components. These can be
estimated with the EM algorithm [3], with the objective of
maximizing the likelihood of the training data.

Estimation of covariance matrices suffers from high vari-
ance and is computationally intensive when the dimension-
ality of the Gaussian vectors is large (e.g., of the order
of thousands). For this reason, projection into a space of
lower dimensionality is performed before training complex
acoustic models with many mixture components. The high
dimensionality arises in speech recognition from concatenating
together many features, e.g., PLP/MFCC features, PLP/MFCC
features from neighboring speech frames, articulatory features,
etc. Since many of these features are highly correlated, the
lower-dimensional projection can be used to decorrelate them
as well, keeping only those features which carry information
for discrimination between the classes and discarding the
rest. This paper is mainly a presentation of the mathematics
behind two popular methods used for projecting data: Linear
Discriminant Analysis (LDA) [4], [5] and Heteroscedastic
Linear Discriminant Analysis (HLDA) [6] as well as its
variant, Multiple LDA (MLDA) [7]. HLDA uses maximization
of likelihood of the non-projected data as the criterion for
estimating the transform, and it has been used with success in
speech recognition. In fact, as is shown in [8] and reviewed
here, LDA can also be derived as a maximum-likelihood
solution, under a constraint of equal covariance matrices.

A number of experiments with synthetic Gaussian data
demonstrate the performance of the above schemes, under
a variety of conditions (amount of training data, amount of



“overlap” of the classes). It is observed that HLDA always out-
performs LDA when the class-conditional distributions have
unequal covariance matrices, and MLDA always outperforms
HLDA.

II. MATHEMATICAL PRELIMINARIES

It is assumed that a training corpus exists, consisting of N
observations (column vectors) x1, . . . ,xN , each belonging to
IRn. There are C labels (classes) {1, . . . , C}, and the label of
observation xj is denoted by cj . The number of observations
of class c is Nc, and hence N1 + · · ·+NC = N . The sample
mean of class c is denoted by µc, while the sample covariance
of class c (the “within-class” covariance) is denoted by Σc.
Specifically,

µc ,
1
Nc

∑
j:cj=c

xj , Σc ,
1
Nc

∑
j:cj=c

(xj − µc)(xj − µc)T,

where aT is the transpose of matrix (or vector) a. The global
mean and variance are denoted by µ and Σ, respectively. The
k-dimensional Gaussian density with mean µ and covariance
matrix Σ is denoted by φ(k)(·;µ,Σ), or just φ(·;µ,Σ) when
the dimensionality is clear from the context.

Projecting a vector x into IRp is done by multiplying it with
a p× n matrix Θ (p < n). Thus,

yj = Θxj , j = 1, . . . , N

is the projection of the j-th observation.

III. LINEAR PROJECTIONS FOR CLASSIFICATION

Two projection methods are especially popular in speech
recognition: (i) Linear Discriminant Analysis (LDA), and (ii)
Heteroscedastic Linear Discriminant Analysis (HLDA) [6]. In
addition, a natural extension of HLDA is presented in [7] as
(iii) Multiple LDA. These techniques are reviewed in the rest
of this section.

A. Classical LDA

For the 2-class problem, Linear Discriminant Analysis was
introduced by Fisher [4] and Rao [5] as a method for finding
the “most discriminant” projection direction which maximizes
the ratio between the average between-class squared Euclidean
distance and the average within-class squared Euclidean dis-
tance. That is, the goal is to estimate an 1 × n matrix Θ(1)

LDA,
which represents the projection direction, such that the ratio

J(Θ(1)
LDA) ,

∑
cNc

(
Θ(1)

LDA(µc − µ)
)2

∑
c

(∑
j:cj=c

(
Θ(1)

LDA(xj − µc)
)2
)

is maximized. More generally, the matrix Θ(p)
LDA that gives

the projection to the p most discriminant directions can be
determined by first projecting the data to the p − 1 most
discriminant directions, and then finding the next most dis-
criminant direction of the difference between the original and

the projected data. Then, the LDA objective function becomes

J(Θ) =
|ΘBΘT|
|ΘWΘT|

, (1)

where

B ,
∑

c

Nc

N
(µc − µ)(µc − µ)T and W ,

∑
c

Nc

N
Σc

are the average “between-class” and “within-class” covariance
matrices, respectively. The solution of the maximization of (1)
is a matrix ΘLDA which is computed by post-multiplying W−1/2

with a matrix, whose rows are the eigenvectors corresponding
to the p largest eigenvalues of

M = W−1/2BW−1/2,

provided that W is non-singular. (If it is singular, a lower-
dimensional subspace can be identified using Principal Com-
ponents Analysis.)

B. Maximum-Likelihood Projection of Gaussian Data: Het-
eroscedastic Linear Discriminant Analysis

Projection of the data in IRp can be viewed as the process of
(i) first transforming the data into IRn, and (ii) keeping only
p dimensions in the transformed space. The transformation
plays the role of making the classes as separable as possible
through p dimensions only, allowing the “safe” removal of
the remaining n − p dimensions; under a Gaussian class-
conditional distribution assumption, this amounts to giving the
same class-conditional mean and covariance matrices to these
n − p dimensions. Moreover, the projection is computed so
that the likelihood of the original data is as high as possible.

A summary of the maximum-likelihood approach appears
below.
• Each class-conditional distribution in the original space is

assumed to be Gaussian.
• The data are transformed as yj = Θxj , j = 1, . . . , N ,

where Θ is an n× n invertible matrix.
• The class-conditional distributions in the transformed space

are Gaussians with parameters

µ̃c = (µ̃(p)
c , µ̃(n−p)) , (µ̃c,1, . . . , µ̃c,p, µ̃p+1, . . . , µ̃n)T,

Σ̃c =

(
Σ̃(p)

c 0
0 Σ̃(n−p)

)
.

Note that only the first p dimensions are useful in discrim-
inating between the classes.
• The objective in the estimation of Θ is the maximization

of the log-likelihood of the original data:

L({(x1, c1), . . . , (xN , cN )}) =
∑

c

∑
j:cj=c

log φ(xj ;µc,Σc).

Conditioned on class c, the relationship between the pdfs
of x and y = Θx can be easily established

φ(x;µc,Σc) = |Θ|φ(Θx; µ̃c, Σ̃c)

= |Θ|(φ(p)(Θ(p)x; µ̃(p)
c , Σ̃(p)

c )×
φ(n−p)(Θ(n−p)x; µ̃(n−p), Σ̃(n−p)))



where

Θ =
(

Θ(p)

Θ(n−p)

)
.

Thus, the log-likelihood of the training data is given by

N log |Θ| − N

2
log(2π)n −

∑
c

[
Nc

2
log |Σ̃(p)

c |

+
1
2

∑
j:cj=c

(Θ(p)xj − µ̃(p)
c )T(Σ̃(p)

c )−1(Θ(p)xj − µ̃(p)
c )]

−N
2

log |Σ̃(n−p)|

−1
2

N∑
j=1

(Θ(n−p)xj−µ̃(n−p))T(Σ̃(n−p))−1(Θ(n−p)xj−µ̃c
(n−p))

which is maximized when

µ̃(p)
c =

1
Nc

∑
j:cj=c

Θ(p)xj = Θ(p)µc (2)

Σ̃(p)
c =

1
Nc

∑
j:cj=c

(Θ(p)xj − µ̃(p)
c )(Θ(p)xj − µ̃(p)

c )T

= Θ(p)Σc(Θ(p))T (3)

µ̃(n−p) =
1
N

N∑
j=1

Θ(n−p)xj = Θ(n−p)µ (4)

Σ̃(n−p) =
1
N

N∑
j=1

(Θ(n−p)xj − µ̃(n−p))(Θ(n−p)xj − µ̃(n−p))T

= Θ(n−p)Σ(Θ(n−p))T, (5)

where µ,Σ are the global mean and covariance of the data,
respectively. Substituting these values in the expression for
the log-likelihood of the training data, it becomes

L∗({(x1, c1), . . . , (xN , cN )}) = N log |Θ| − N

2
log(2π)n

−
∑

c

Nc

2
log |Θ(p)Σc(Θ(p))T|

−
∑

c

pNc

2
− N

2
log |Θ(n−p)Σ(Θ(n−p))| − (n− p)N

2

= N log |Θ| −
∑

c

Nc

2
log |Θ(p)Σc(Θ(p))T|

−N
2

log |Θ(n−p)Σ(Θ(n−p))| − nN

2
log(2πe) (6)

Expression (6) is the objective function of Heteroscedastic
Linear Discriminant Analysis (HLDA), introduced by Ku-
mar and Andreou [6]. The maximizing Θ cannot be given
in closed form, and a steepest-descent algorithm is needed
for its computation. However, as Gales points out in [9],
in the special case where the projected per-class Gaussians
are constrained to have diagonal covariance matrices, there
is a very efficient algorithm for the maximization of (6).
Furthermore, as is shown in the next subsection, when
the per-class Gaussian distributions are constrained to have

equal covariance matrices, maximization of (6) is equivalent
to maximization of (1).

C. Interpretation of LDA as Maximum-Likelihood Projection
under a Constraint of Equal Per-class Covariances

Under a constraint of equal per-class covariances, Σ̃(p)
c

is constant (equal, say, to Σ̃(p)
1 ). The log-likelihood of the

training data then becomes

N log |Θ| − N

2
log(2π)n − N

2
log |Σ̃(p)

1 |

−
∑

c

1
2

∑
j:cj=c

(Θ(p)xj − µ̃(p)
c )T(Σ̃(p)

1 )−1(Θ(p)xj − µ̃(p)
c )

−N
2

log |Σ̃(n−p)|

−1
2

N∑
j=1

(Θ(n−p)xj−µ̃(n−p))T(Σ̃(n−p))−1(Θ(n−p)xj−µ̃(n−p)
c )

which is maximized by the same expressions (2), (4) and (5),
but with (3) replaced by

Σ̃(p)
1 =

1
N

∑
c

∑
j:cj=c

(Θ(p)xj − µ̃(p)
c )(Θ(p)xj − µ̃(p)

c )T

= Θ(p)W(Θ(p))T (7)

instead of (3), where W is the average “within-class” covari-
ance, defined earlier. Then, the log-likelihood becomes

L∗({(x1, c1), . . . , (xN , cN )}) = N log |Θ| − nN

2
log(2πe)

−N
2

log |Θ(p)W(Θ(p))T| − N

2
log |Θ(n−p)Σ(Θ(n−p)) (8)

Differentiating (8) with respect to Θ (e.g., using formulas
found in [10] for computing derivatives with respect to ma-
trices) and setting the (matrix) result to zero, it turns out that
the Θ which maximizes (8) satisfies the conditions

Θ(p)W(Θ(n−p))T = 0 and Θ(n−p)Σ(Θ(p))T = 0 (9)

Assuming that W is non-singular, and setting Θ = ΨW−1/2,
it can be proved that conditions (9) are equivalent to the
following two conditions

Ψ(p) and Ψ(n−p) are orthogonal (10)

Ψ(n−p)W−1/2ΣW−1/2(Ψ(p))T = 0, (11)

which are simultaneously satisfied when the rows of Ψ consist
of the orthogonal eigenvectors of W−1/2ΣW−1/2 (or, equiv-
alently, the orthogonal eigenvectors of W−1/2BW−1/2, by
virtue of the fact that Σ = W + B). Substituting this value
of Ψ into (8), the log-likelihood becomes

−N
2

log(2πe)n|W| − N

2

n∑
i=p+1

log(1 + νi) (12)

where νi is the i-th eigenvalue of W−1/2BW−1/2. Thus, to
maximize the likelihood, it suffices to choose as the p rows of
Ψ the eigenvectors corresponding to the maximum eigenvalues
of W−1/2BW−1/2, and then multiply by W−1/2 to obtain Θ.
It is now obvious that the maximum likelihood estimate of
Θ(p) is equal to the LDA solution ΘLDA given earlier.



D. Multiple LDA

A natural extension to the HLDA projection method is
to generate multiple transforms instead of a single global
transform. This section describes one way of doing that, called
Multiple LDA (MLDA) [7].

To motivate the need for such an extension, consider the
case where some of the class-conditional Gaussians have
means which are arbitrarily far from each other, while some
“confusable” classes are sufficiently close to each other. In the
simpler case where the covariance matrices are all the same,
it is easy to construct an example such that the closed-form
solution of LDA yields a projection to a lower-dimensional
space which does not offer any discriminability between the
confusable classes; the “between” matrix is just dominated by
the statistics of the well-separated classes. On the other hand,
having multiple transforms, each computed from a group of
classes, can mitigate this problem.

In MLDA, a class grouping has to be specified first: C
classes are divided into S groups (S ≤ C), with each class
being assigned a group label s ∈ {1, ..., S}. Next, the objective
is to estimate a transformation Θs for each group s in such a
way that all the discrimination information is kept in the first
p dimensions. Using the notation introduced earlier, we have

Θs =
(

Θ(p)
s

Θ(n−p)

)
,

where the last n−p dimensions are transformed independently
of the class grouping.

As before, the projections are computed so that the like-
lihood of the original Gaussian data is as high as possible.
The maximum-likelihood approach can be summarized as
follows:

• Each class-conditional distribution in the original space is
assumed to be Gaussian.
• The data are transformed through yj = Θsxj ,
j = 1, . . . , N , where Θs is a n × n invertible matrix and
s = s(cj).
• As with HLDA, the class-conditional distributions in the

transformed space are Gaussians with parameters µ̃c and
Σ̃c, which are dependent on the class c only through the
first p components.
• The objective in the estimation of Θs is the maximization

of the log-likelihood of the original data:

L({(x1, c1), . . . , (xN , cN )})

=
∑

s

∑
c:s(c)=s

∑
j:cj=c

log φ(xj ;µc,Σc). (13)

Conditioning on class c, the relationship between the pdfs of
the original data x and the transformed data y = Θsx, s =
s(c), can be established as

φ(x;µc,Σc) = |Θs|φ(Θsx; µ̃c, Σ̃c)

= |Θs|(φ(p)(Θ(p)
s x; µ̃(p)

c , Σ̃(p)
c )×

φ(n−p)(Θ(n−p)
s x; µ̃(n−p), Σ̃(n−p))).

Thus in the case of multiple transforms, the log-likelihood
of the training data is given by

−N
2

log(2π)n +
∑

c

[Nc log |Θs(c)| −
Nc

2
log |Σ̃(p)

c |

−1
2

∑
j:cj=c

(Θ(p)
s(c)xj − µ̃(p)

c )T(Σ̃(p)
c )−1(Θ(p)

s(c)xj − µ̃(p)
c )]

−N
2

log |Σ̃(n−p)|

−1
2

N∑
j=1

(Θ(n−p)xj−µ̃(n−p))T(Σ̃(n−p))−1(Θ(n−p)xj−µ̃(n−p)
c )

Note that Θ(n−p) does not have a subscript s, meaning that
it is restricted to be the same for all s.
The log-likelihood of the training data is maximized when

µ̃(p)
c =

1
Nc

∑
j:cj=c

Θ(p)
s(c)xj = Θ(p)

s(c)µc

Σ̃(p)
c =

1
Nc

∑
j:cj=c

(Θ(p)
s(c)xj − µ̃(p)

c )(Θ(p)
s(c)xj − µ̃(p)

c )T

= Θ(p)
s(c)Σc(Θ(p)

s(c))
T

µ̃(n−p) =
1
N

N∑
j=1

Θ(n−p)xj = Θ(n−p)µ

Σ̃(n−p) =
1
N

N∑
j=1

(Θ(n−p)xj − µ̃(n−p))(Θ(n−p)xj − µ̃(n−p))T

= Θ(n−p)Σ(Θ(n−p))T,

where µ,Σ are the global mean and covariance of the data,
respectively. Substituting these values in the expression for
the log-likelihood of the training data gives

L∗({(x1, c1), . . . , (xN , cN )})

=
∑

c

Nc log |Θs(c)| −
N

2
log(2π)n

−
∑

c

Nc

2
log |Θ(p)

s(c)Σc(Θ(p)
s(c))

T|

−
∑

c

pNc

2
− N

2
log |Θ(n−p)Σ(Θ(n−p))| − (n− p)N

2

=
∑

c

Nc log |Θs(c)| −
∑

c

Nc

2
log |Θ(p)

s(c)Σc(Θ(p)
s(c))

T|

−N
2

log |Θ(n−p)Σ(Θ(n−p))| − nN

2
log(2πe) (14)

Thus expression (14) is the objective function for Multiple
LDA. Comparing with the objective function of HLDA (6),
the difference lies in having multiple transforms for the p
dimension of the transformed data.
Once again, the maximizing Θs cannot be given in closed
form. Even in the special case where the projected per-
class Gaussians are constrained to have diagonal covariance
matrices, the simplification used in [9] cannot be used



to estimate Θ(n−p); instead a Newton-based optimization
scheme can be used.

IV. EXPERIMENTAL RESULTS

Here we aim to test the projection schemes described above
under various conditions. For each specified condition, 100
data sets of 15 dimensional full covariance Gaussian data are
generated for 5 classes, with each data set containing 1000
training samples and 2000 testing samples for each class.

For each data set a projection is trained using LDA, HLDA
or MLDA to project the original 15 dimensional data into 3
dimensional space, and then the resulting lower dimensional
test data are classified by the statistics obtained from the
corresponding training data. In the case of MLDA when there
is more than one possible grouping of the classes, we chose the
grouping that gives the best performance on the training data.
The average error rate of the 100 data sets are then reported
for each condition.

The first set of experiments is designed to compare the
performance of LDA, HLDA and MLDA under different de-
grees of class “overlap” in the original 15 dimensional space,
which is reflected by the Bayes error and approximated by the
classification error rate in the original 15 dimensional space.
Five conditions are designated with the degree of overlap
ranging from almost complete “overlap” to well separated,
with condition 1 corresponding to the most confusable dataset.
The error rate for each condition and projection scheme are
presented in Table I.

Average Error Rate (%)
Condition

1 2 3 4 5
Approximate Bayes Error 72.71 55.48 36.96 19.57 1.66

LDA projection 79.85 76.53 72.80 69.86 16.15
HLDA projection 79.48 71.39 64.25 54.69 16.03

Best MLDA projection
S = 2 groups 79.33 69.01 59.12 45.48 10.77
S = 3 groups 79.16 67.36 55.66 39.57 8.22
S = 4 groups 79.10 66.04 52.88 35.24 6.99
S = 5 groups 79.03 64.99 50.83 32.27 6.40

S ∈ {1, . . . , 5} groups 79.06 65.04 50.86 32.27 6.41
TABLE I

COMPARISON UNDER DIFFERENT “OVERLAP” CONDITIONS.

As seen in the table, MLDA always outperforms HLDA,
which always outperforms LDA. Also note that MLDA gives
a more significant relative improvement over HLDA when the
original data are well separated (condition 5). But even at the
data-set level, MLDA is superior: Figure 1 shows that MLDA
results in a lower error rate for each one of the 100 experiments
(condition 2).

Another set of experiments is constructed to investigate
how the size of training data affects the performance of the
projection schemes. The results are shown in Table II with
each column corresponding to the percentage of the 1000
samples per class used for training: while MLDA still performs
best, its performance is the most affected by the lack of
training data, while LDA is the least affected.

Fig. 1. HLDA and MLDA Error Rates for all data sets of Condition 2.

Average Error Rate (%)
Condition 2

Training Data Size
20% 50% 100%

Approximate Bayes Error 55.48 55.48 55.48
LDA projection 77.73 77.01 76.53

HLDA projection 73.41 71.83 71.39
Best MLDA projection

S = 2 groups 71.90 69.87 69.01
S = 3 groups 70.73 68.43 67.36
S = 4 groups 69.60 67.26 66.04
S = 5 groups 68.84 66.21 64.99

S ∈ {1, . . . , 5} groups 68.96 66.38 65.04
TABLE II

COMPARISON WITH DIFFERENT AMOUNTS OF TRAINING DATA.

V. CONCLUDING REMARKS

From our experiments we observed that under the various
conditions we constructed, MLDA always gives the best per-
formance. Higher dimensional projections were also examined,
and the same trend holds. At the same time, how much MLDA
can improve over HLDA and LDA is determined by the
characteristics of the original data.
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