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An initial assessment of discriminant surface

complexity for power law features

Jeffrey L. Solka, Carey E. Priebe, and George W. Rogers
Dahlgren Division

Naval Surface Warfare Center
Dahlgren, Virginia 

The detection of man-made objects in
natural terrain is important in both the
targeting and terminal homing phase of
modern warfare. The presence of man-made
objects in gray-scale images has been
successfully detected using a new class of
density estimation neural networks to
analyze power law signatures. The complex
nature of the discriminant surface relating
these features has been elucidated using
these adaptive mixture networks.

Keywords: terrain, warfare, man-made
objects, neural networks, power law
signatures

Introduction

The purpose of our discussion a gray-scale image is a
relation that assigns an integer value between 0 and 255
inclusive to each point in pixel space. Therefore each
point in pixel space can be specified by an ordered triple
(i, j, k) where i E [0,511], j E [0,479], and k E [0,255].
Given a gray-scale image one is often interested in
focusing attention on the man-made objects in the
image. For example the capability to detect the presence
of the camouflaged tank among the bushes in Figure 1 is
highly desirable. The ability to detect the presence of
man-made objects in natural terrain is important in the
mission planning/targeting problem, and in the termi-
nal homing phase of autonomous weapons. Techniques
which rapidly identify these areas can play a role as part
of an automatic image processing system or as an
adjunct to wetware components in a traditional system.
Much work has been done in recent years using

fractal geometry to model natural objects. This work
has included artificial generation of synthetic terrain[1I,
the use of iterated function systems to compress im-
ages,121 and the use of recursive update rules to generate
synthetic plant images.13’ The problem of interest here
can be stated as follows: given an image, what subsets
of it can be identified as possessing fractal structure and
can this fractal structure be used to classify portions of
the image.
Previously Mandelbrot defined a fractal as any object

whose Hausdorff-Besicovitch dimension exceeds it

topological dimension Two properties that character-
ize fractals are self similarity and the prescribed varia-
tion of a measured quantity of a fractal with scale.
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Figure 1. Gray-scale image of tank.

Self similarity can be thought of as the propagation of
geometric features across scale space, wherein an image
looks the same when viewed from different size per-
spectives (see Figure 2). The manner in which measured
properties vary across scale space is known as
Richardson’s law:

In equation (1) M(e) is the measured property at scale

Figure 2. The propagation of geometric features across scale
space as illustrated by the Sierpinski Triangle.

ê, K is a constant, d is the topological dimension, and D
is the Hausdorff-Besicovitch dimension (i.e. fractal
dimension). The natural regions of a gray-scale image
are not true fractals, and hence should only obey
Richardson’s law in distribution.151 As will be seen, this

equation provides us with a method to estimate the
fractal dimension D. The fractal dimension is thought to
be one of the best measures of image texture currently
available. [61
Our problem, then, is one of discrimination between

different object classes based on features extracted from
power-law theory. In general, we consider the observa-
tions to be independent, identically distributed random
variables, with the probability density of the overall (N-
class) distribution being

where the 1t¡ are the prior probabilities for the individual
classes and the D are the probability density functions
for the individual classes. It suffices for analysis to
consider N = 2. A formal motivation for using density
estimation in discriminant analysis is obtained via
consideration of the asymptodcs of the discrimant
procedure. Let

and consider our decision procedure for discrimination,
given an observation ~ drawn from an unknown class,
as .

This procedure can be seen to be equivalent to the Bayes
discriminant function.171

Let Pd(e) be the probability of misclassification when
using discriminant d( · ). It follows from Bayes theory
that DO(*) is the optimal discriminant function dOPT(.),
and hence Por7(e) = Poo (e) is the minimum probability
of misclassification that one can expect. Furtllermore, let
{Dn(x)} be a sequence of estimates of Do(x). Under
appropriate conditionst’l we have PDn(e) - Poo (e)
almost surely. That is, convergence of the density
estimates to the true (though unknown) densities
implies convergence of the discriminant procedure to
the optimal in the minimum probability of misclassifi-
cation sense. Thus, such a sequence of density estimates
{Dn(x)} is desirable for applications involving discrimi-
nant analysis.
The most enviable situation is that in which the true

form of the class densities OJ is known. For example, in
the Linear Case each Di is normally distributed with
independent mean p and common variance J2 : D <I>(fJ,;
,0), where 4)(x) is the well-known normal probability ’
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density function. For the Quadratic Classifier, each class
density has independent variance as well: D. = <t>(J,!; ,cr.).
In this case it is well known that standard parametric
estimation techniques will converge. However, it is
often the case that simple parametric models cannot be
assumed. It then becomes necessary to employ either
complex parametric models (such as finite mixtures) or
nonparametric estimators (such as the kernel estimator).

For finite mixture models19’ we assume each class

density D¡ is a sum of basic terms. For the normal
mixture case, where each term in the mixture is param-
eterized by a proportion x, a mean p., and a standard
deviation 0, we have

Estimation via finite mixtures can often be performed
recursively (as opposed to iteratively) by maximum
likelihood techniques. In this case, the estimate based
on n teaching observations is simply an update of the
previous estimate (based on n -1 observations) and the
newest observation ~.
The added model complexity of a mixture of normals

yields more power than in the case of a simple normal
assumption (linear or quadratic classification), but still
requires a priori knowledge (or a guess) as to the true
character of the class densities. In this case, the class of
functions that can be correctly modeled is the class of all
m (or fewer) normal mixtures.
Kernel estimation[’Ol is a powerful nonparametric

density estimation technique. We let our density
estimate, based on {~1, ..., ~}, be

where h is the window width, which depends on n, and
K( .) is the kernel function, often taken to be the normal
distribution function. Kernel estimators have quite
favorable asymptotic properties under very general
conditions on the true density D(x). These properties
then translate into asymptotic discriminant properties as
described above. Unfortunately, as the formulation (4)
suggests, kernel estimation requires the storage and
processing of each teaching observation. Thus, while
high-quality density estimates can be expected when n
is large, the computational and storage requirements
quickly become unmanageable, rendering kernel
estimation inapplicable for many high data rate prob-
lems of interest. This drawback must be weighed
against the nonparametric property of the kernel
estimator, which allows estimation of a rich class of
densities.
The reduced kernel, or Parzen, estimatorl11] is a

method designed to address this difficulty associated
with kernel estimation. Here, we consider a sub-kernel

estimator based on some subset (of size N « n, say) of
the original teaching set. Hence

The estimate quality is reduced by fixing the number of
kernels at N, but the process is computationally feasible.
Unfortunately, the process of choosing the appropriate
N observations to retain is iterative and quite
computationally intensive. The choice of N also reduces
the technique to a parametric method, with its inherent
limitation on discriminant complexity.
The complexity of our chosen model directly impacts

our performance potential. The probability of misclas-
sification obtainable via a discrimination procedure
Pd(e) is directly linked to the ability to approximate the
true discriminant d°~(·). The complexity of the model
used in estimating the density translates directly into tlie
discriminant complexity that one may attain. In particu-
lar, the parametric mixture model approach (3), with m
fixed and small, can yield only a relatively small class of
discriminants. (Linear and Quadratic discriminant
functions fall in this category.) The same is true with the
reduced Parzen estimator (5). On the other hand, the
kernel estimator (4) can yield arbitrarily complex
discriminants as the number of terms in the model
increases. The computational costs for this arbitrary
complexity can be quite high, however, and will be
addressed below.

Approach
There are several different methods used to compute

fractal dimension. The method used in this paper, the

covering method, first appeared in the literature in the
paper of Peleg.[12] Our implementation makes use of the
modified version of the covering method developed by
Peli,l13] The covering method views the image as a two
manifold embedded in R3 in order to estimate the
surface area of the image in a window surrounding a .

pixel.
To each pixel (i,j) we associate an integer gray scale

value g(i,j). We wish to define a sequence of upper and
lower surfaces, U(i,j,£) and L(i,j,E) respectively, which
bound the original image in grey scale intensity. For a
scale value of 0 define

For other scale values we recursively define U and L as
follows:
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In equations (7) and (8) we define 11 as {(k,m) I Euclid-
ean distance((i,j),(k,m)) < 1}.
Using a window R centered at the pixel (i,j) we define

an area estimate at that pixel as follows:

Once this area estimate is obtained for several values of
E we can use them along with Richardson’s law to
compute D. D is computed as the slope obtained via a
regression of log [A(E)] vs E as illustrated in Figure 3.
Given A as a function off there are several features

that can be extracted for use in the pixel discrimination
process. In particular, if we consider

then (3~ - log (K) and ~1 - d - D are obvious regression-
derived features. Furthermore, the F-statistic (or the
logarithm thereof) for the significance of the regression
is a third feature which intuitively lends itself to dis-
crimination in our problem. The use of each of these
three features will be motivated independently. The
slope is directly related to the previously mentioned
texture feature of fractal dimension. Since there is a

simple shift constant relating the two quantities, one
should be as good a feature as the other. The y-intercept
is another naturally occuring property of the regression
line. In some sense it represents a scale factor on the rate
of area change with respect to E. The F statistic repre-
sents the significance of our regression.l141 The larger the
value of the F statistic the greater the degree of signifi-
cance that can be attributed to the regression. Since a
purely fractal object would exactly fit the regression line,

Figure 3. Power law features extracted from Richardson’s
Law.

it is expected that pixels in our gray-scale image that lie
in natural terrain would in general have larger values of
the F-test statistic.

It should be noted at this point that the use of power
law signatures for pixel classification has appeared
previously in the literature. Stein developed a discrimi-
nation scheme employing the slope and standard error
of fit of the regression line. IS] Besides the use of different
features our approach differs from his in two respects.
The first is that the set of man made pixels in Steins
work represented a small percentage of the overall
image, whereas they occupy a large area of our image.
Secondly, the decision rules used by Stein were basically
heuristic in nature. We propose advanced density
estimation techniques in an effort to fully characterize
the decision surfaces which originate from our power
law signatures.
The adaptive mixtures density estimation proce-

dure[1S] used in the simulations below is a cross between
the kernel estimator and the mixture model. The
recursive nonparametric character of the estimator
makes it appropriate for computationally intensive, high
data-rate problems such as the discrimination applica-
tion considered herein. We model the density as

Here m is not fixed as in the mixture model, but can be
increased based on the input observations. Thus the
parameter list is not fixed (or even bounded!), making
(10) a nonparametric estimation technique. The scheme
employs the stochastic approximation procedure

which is used to recursively develop density estimates
for discriminant analysis. P(·) represents a (possibly
stochastic) create decision (a decision to add a new term
to the mixture) and takes on values 0 or 1. U(o) updates
the current parameters using maximum likelihood
techniques, as in mixture modelling, while C(·) adds a
new component to the model, incrementing m, analo-
gous to a kernel estimation approach.
Thus the method of adaptive mixtures has the

capability to model a rich class of probability density
functions, while at the same time having computational
efficiencies inherited from its mixture model origins. It

is this method that is used to develop the densities, and
hence discriminants, used in the simulations below.

It is argued that the ability to model a richer class of
densities, inherent in the adaptive mixture procedure,
provides more powerful pattern recognition capabilities
than simple parametric approaches, as well as insight
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into the feature-space structure of the application. It
should be noted that the development of complex
discriminants is a major focus of neural network
researchil6l . The relationship between the techniques
described above and neural networks is easily seen. In
particular, kernel estimators[17] and finite mixture
models[181 have been discussed from the perspective of
artificial neural implementation, as has adaptive
mixtures[19] .

Results

Our simulations are based on the gray-scale image
shown in Figure 1. We are concerned with the problem
of discriminating the three classes found in the image:
grass, bush, and tank. In addition, we analyze the
performance based on a two-class discrimination
problem: natural (grass & bush) vs. man-made (tank).
The first step in the experiment is to choose n scale

factors £1’ ..., e~ around each pixel of an image in which
we estimate the image area. In these experiments, n = 8.
Step two is to determine the measures A(c), using the
covering method, as described a bove, and to perform a
least squares regression estimate of the line fitting the 8
measures. The three features described above thus
determine a point in 3-space for each pixel.
The training set must now be determined. Here, 50

points from each class (grass, bush, and tank) are chosen
at random to train the classifier, and density estimates
are produced based on this training sample. It is
important to note here that the training set comprises
less then one tenth of one percent of the total number of
points in the image.
For simplicity, we present first a univarite example of

the adaptive mix ture estimator densities in Figure 4.
This figure uses the log of the F-statistic as its feature.
We see that the class densities break out as expected. In
particular, the &dquo;bush&dquo; density falls between the &dquo;grass&dquo;
and &dquo;tank&dquo; densities, and the ’tank’ density lies to the left
of the ’bush’ and ’grass’ densities. We see also that some
level of correct discrimination could be expected based
on this single feature.

It is expected, based on the Power-Law theory, that
adding the additional information carried by the y-
intercept (~1) feature will improve performance. In
Figure 5, we present the density plots for the three
classes in the bivariate feature space of y-intercept vs.
log(F-statistic). We see that, for this sample at least, the
structure of the estimates are quite non-normal. To
compare the performance of this estimators vs. the
quadratic classifier described above we consider Figures
6 and 7. Figure 7 shows the closer adherence of the
adaptive mixtures approach to the structure of the data,
and we deduce that this nonparametric approach is
more powerful than using an estimator with strict
parametric assumptions. This argument is predicated

Figure 4. Univariate probability density function for the
significance of the regression feature.

Figure 5a. Bivariate probability density function for the tank
class extracted from power law features.

Figure 5b. Bivariate probability density function for the bush
class extracted from power law features.
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Figure 5c. Bivariate probability density function for the grass
class extracted from power law features.

Figure 6. Projected quadratic discriminant surface.

Figure 7. Projected adaptive mixtures neural network
discriminant surface.

on the fact that the discriminant surfaces produced via
adaptive mixtures more closely model the training data
than quadratic discriminants can, while seemingly
maintaining generalization capabilities. Detailed
simulations are necessary to quantify these results in
terms of probability of misclassification.
Some preliminary results as to the performance of the

three classifiers on a data set consisting of 1000 points
from each of the three classes are given in Table 1. The
results were obtained by training and testing the linear
and quadratic classifiers on the full 1000 observation
sets. The P(C) values represent the probability of
correctly classifying a tank pixel. P(FA) is the probability
of incorrectly classifying a bush or grass pixel as tank.
The results for the adaptive mixtures classfier were
obtained by training on 500 observations and testing on
the remaining 500. This process was then repeated with
the roles of the observations switched. As can be seen
from the table the adaptive mixtures classifier improved
the probability of correct classification by about eight
percent while at the same time lowering the probability
of false alarm by about the same amount. A classifica-
tion threshold of T = 0.5 was used for the tabular results
where pixel was classified as tank if M > T where

Table 1. Comaprison of classifier performance
for threshold T = 0.5

These results are obtained with an adaptive mixtures
model of approximately 20 terms per class. This is a
computationally reasonable number of terms compared
to a kernel estimator approach, and justifies the consid-
eration of this approach for high data-rate applications.
Figures 8,9, and 10 show the results of processing the

entire image (Figure 1) using the discriminants pro-
duced via the estimation approach (Figure 7), with the
highlighted pixels being those classified as man-made.
We see that, as one would expect based on the
univariate densities shown in Figure 4, there are few
false alarms in the grassy regions, more false alarms in
the bushes (the densities for &dquo;bush&dquo; and &dquo;tank&dquo; are less
distinct) and a high percentage of correctly classified
pixels in the tank itself. As can be seen from the figures,
as T is made larger both the false alarm rate and the
probability of correct classification is lowered. Depend-
ing on the scenario this low false alarm rate may be
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Figure 8. Adaptive mixtures classification results where the
pixels classified as manmade are highlighted (T = .58).

Figure 9. Adaptive mixtures classification results where the
pixels classified as manmade are highlighted (T = .88).

appropriate so as to not overload a group of human
photo-analysis. There is however still a sufficient
number of correctly classified manmade pixels to
indicate further inspection of this region by the analyst.

Conclusions

The conclusions to be drawn from this experiment are
twofold. First, power-law based features can be useful

Figure 10. Adaptive mixtures classification results where the
pixels classified as manmade are highlighted (T = .98).

in performing object discrimination. While the probabil-
ity density functions presented above do have nontrivial
overlap, they are sufficiently distinct to indicate the
potential for a low probability of misclassification.
Second, there is a need to investigate complex discrimi-
nant structures for the features obtained in such a

process. The densities presented require relaxed para-
metric assumptions, and the discriminant surfaces
derived from these densities may be significantly better
than the corresponding linear and quadratic discrimi-
nants. Future work will include a quantitative analysis
of the performance of the adaptive mixtures estimator
on the power law signatures of testing sets obtained
from the original tank image and other field collected
images.
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