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5. Results

In this section we examine the application of the
diffusion based averaging feature extraction method
to do texture analysis. Figure 3 shows a quilt of
textures [1] used for this analysis. The numbering
scheme for the patches used here is the column plus
four times the row index. Thus, the texture numbers
run from zero to fifteen.
We begin by analyzing the discrimination informa-

tion in features extracted from two textures in the

quilt, textures #9 and #10. These textures are repli-
cated, with a linear boundary, in Figure 4a.
Figures 4b and 4c demonstrate the difference in the

computed bounding area (at scale c = 5) with and
without segmentation, respectively. The segmenta-
tion boundary, which was assigned a priori, is de-
noted by the black line in Figure 4c. Clearly, there is a
significant blending of the computed area in the
region about the texture interface in Figure 4b which
is not experienced in Figure 4c.

In Figures 5 and 6 we present scatter plots of slope
versus y-intercept. Figure 5 shows results with no
segmentation. The effect of including segmentation is
readily apparent in the greater feature space separa-
tion of the textures in Figure 6. It is obvious that the
information available for discrimination between
these two textures (or the detection of a spatial

; change point) is much greater for the case presented
in Figure 6, which has had the segmentation informa-
tion incorporated into the feature extraction algo-
rithm.

Figure 7 shows the results of the adaptive mixtures
probability density estimate procedure for fd features
extracted from all 16 textures from Figure 3. The pdfs
are based on the fd estimates for those pixels at least
one decay length (16 pixels) away from the bound-
aries of the texture so as to minimize edge effects.
Exact segmentation boundaries between textures
were used. The nonnormality of these pdfs is note-
worthy. In particular it should be noted that there are
textures which might have a very similar mean fd
(say, textures #3 and #4) but which have quite
distinct pdfs and could therefore be discriminated if
one used the densities rather than mean values.
To support the conjecture that the current approach

provides results that are comparable with those
previously reported in the literature (Table 3 of
Sarkar & Chaudhuri [10]) we also show in Figure 7
the calculated fd for those textures for which Sarkar
& Chaudhuri report values using five different
fractal calculation methods. These reported results
lie, for the most part, in the support of our probabil-
ity density estimates.

We now turn our attention to comparison of the
fractal dimension pdfs. The overlap between the
probability density estimates/, and f for each pair of
textures is measured via the Kullback-Leibler infor-
mation. The smaller the overlap of the density
estimates the greater the KL number. Figure 8 gives a
pictorial representation of KL(texture #i, texture #j).
The values are zero (light gray) on the diagonal, and
the darker values indicate large KL numbers corre-
sponding to more discriminable pairs of textures.
Figure 9 considers a more detailed analysis of

boundary effects on texture # 10. This figure shows
both the edge effects and the boundary effects for the
texture with the largest pdf differences due to these
effects. For each segmentation case, the &dquo;entire&dquo; pdf
shows the density based on the computed fd from all
pixels of the texture. The &dquo;interior&dquo; pdf shows the
density based on the computed fd from only those
pixels at least one decay length (sixteen pixels) from
the texture boundaries. Figure 9a shows the pdfs for
the full segmentation scheme. While there are
differences between the &dquo;entire&dquo; and &dquo;interior&dquo; pdfs,
they are reasonably small. For the partial (grayscale)
segmentation shown in Figure 9b we see that the
pdfs have been degraded significantly from the full
segmentation version, with the pdf built from the
entire patch preserving even less of the structure
than that built on just the interior observations. The
no segmentation results depicted in Figure 9c show
even more degradation. The large tails for these latter
two estimates, especially on the left, mean the
discrimination capabilities between this texture and
the others will be significantly reduced. Thus, the
calculation of the texture features with boundaries

incorporated can be a major advantage.

6. Conclusions

The diffusion equation based covering method
described in this paper constitutes a boundary gated
fd algorithm that produces estimates that are in
general agreement with previously published values
[10]. The largest discrepancies occur for textures #0,
#2, and #7 of the quilt. All three of these textures
tend to vary significantly only at scales larger than
the scales of 3, 4, and 5 pixels used in this work to
estimate the fd. Thus, these three textures should all
yield low estimates of the fd at these scales due to
relatively large scale of variation. In the other cases
(and including texture #0) the mean of the fractal
dimension pdf is within the range of fd values
reported in earlier work.

If the averaging step is left out, the density func-
tions are much more spread out and discrimination
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Figure 3. The quilt of textures used in this paper.

Figure 4. The two textures (#9 & #10) used in the first example are depicted in (a). The area map is shown with no
boundary (b) and with boundary (c). In (c), the boundary is shown in black.
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Figure 5. The y-intercept is plotted against the slope for each pixel of the two preceding texture patches with no
segmentation.

Figure 6. The y-intercept is plotted against the slope for each pixel of the two preceding texture patches with no
segmentation.
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between them becomes much more difficult. The

greater the degree of local averaging, the greater the
compactness of the resulting density estimates until,
in the limit of a global average, the estimate reduces
to a single value. Thus, by varying the decay length
and hence the degree of local averaging, we will
affect the computed densities. This in turn gives us
the freedom to choose a decay length that will
enhance differences in the densities corresponding to
different textures.

Kullback-Leibler information numbers, computed
from the texture fractal dimension pdfs, give a
convenient means for quantifying the similarity or
difference between pdfs. For non-normal distribu-
tions, pdf comparison is a more powerful tool for
pattern recognition than simply comparing the
distribution means.
The incorporation of known segmentation bound-

aries can lead to a dramatic reduction in the tail and
variance of the fd distribution. This in turn can lead

Figure 7. The probability density functions (pdfs) for the fractal dimension (fd) for all sixteen textures.
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Figure 8. Kullback-Leibler Number grayscale matrix plot that shows the relative Kullback-Leibler numbers comparing
different textures.

Figure 9. Edge and boundary effects for fractal dimension probability density functions (pdfs) for textures #10. The cases
are (a) full segmentation (b) partial segmentation and (c) no segmentation.
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to dramatic improvements in classification accuracy,
whether in terms of mean fd or distribution via
Kullback-Leibler numbers.

In the future we will report on ongoing work in
adaptive kernel based averaging methods for the
covering method as well as on applications to medi-
cal computer aided diagnosis.
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