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Figure 4. The two textures (#9 & #10) used in the first example are depicted in (a). The area map is shown with no
boundary (b) and with boundary (c). In (c), the boundary is shown in black.
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Figure 5. The y-intercept is plotted against the slope for each pixel of the two preceding texture patches with no

segmentation.
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Figure 6. The y-intercept is plotted against the slope for each pixel of the two preceding texture patches with no
segmentation. .
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between them becomes much more difficult. The
greater the degree of local averaging, the greater the
compactness of the resulting density estimates until,
in the limit of a global average, the estimate reduces
to a single value. Thus, by varying the decay length
and hence the degree of local averaging, we will
affect the computed densities. This in turn gives us
the freedom to choose a decay length that will
enhance differences in the densities corresponding to
different textures.

Kullback-Leibler information numbers, computed
from the texture fractal dimension pdfs, give a
convenient means for quantifying the similarity or
difference between pdfs. For non-normal distribu-
tions, pdf comparison is a more powerful tool for
pattern recognition than simply comparing the
distribution means.

The incorporation of known segmentation bound-
aries can lead to a dramatic reduction in the tail and
variance of the fd distribution. This in turn can lead
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Figure 7. The probability density functions (pdfs) for the fractal dimension (fd) for all sixteen textures.
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Figure 8. Kullback-Leibler Number grayscale matrix plot that shows the relative Kullback-Leibler numbers comparing
different textures.
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Figure 9. Edge and boundary effects for fractal dimension probability density functions (pdfs) for textures #10. The cases
are (a) full segmentation (b) partial segmentation and (c) no segmentation.
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to dramatic improvements in classification accuracy,
whether in terms of mean fd or distribution via
Kullback-Leibler numbers.

In the future we will report on ongoing work in
adaptive kernel based averaging methods for the
covering method as well as on applications to medi-
cal computer aided diagnosis.
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