Note

On the monotone likelihood ratio property for the convolution of independent binomial random variables

Andrey Rukhin \(^a\), Carey E. Priebe \(^a\,^*\), Dennis M. Healy Jr. \(^b\)

\(^a\) Johns Hopkins University, United States
\(^b\) University of Maryland, United States

ARTICLE INFO

Article history:
Received 16 October 2007
Received in revised form 23 February 2009
Accepted 3 March 2009
Available online 27 March 2009

Keywords:
Convolution of binomials
Monotone likelihood ratio
Uniformly most powerful test

ABSTRACT

Given that \(r \) and \(s \) are natural numbers and \(X \sim\) Binomial\((r, q)\) and \(Y \sim\) Binomial\((s, p)\) are independent random variables where \(q, p \in (0, 1) \), we prove that the likelihood ratio of the convolution \(Z = X + Y \) is decreasing, increasing, or constant when \(q < p, q > p \) or \(q = p \), respectively.

1. Introduction

Let \(r, s \in \mathbb{N}, z \in \{0, \ldots, r+s\} \), and \(q, p \in (0, 1) \). Let \(X \sim\) Binomial\((r, q)\) and \(Y \sim\) Binomial\((s, p)\) be independent random variables. Let \(P_{r,s}(z) \) denote the likelihood function of the convolution \(Z = X + Y \), so that

\[
P_{r,s}(z) = \sum_{k=0}^{r} \binom{r}{k} \binom{s}{z-k} q^k (1-q)^{r-k} p^{z-k} (1-p)^{s-z+k}.
\]

We will show that the ratio

\[
\frac{P_{r+1,s-1}(z)}{P_{r,s}(z)}
\]

is increasing, decreasing or constant – with respect to \(z \) – when \(q < p, q > p \) or \(q = p \), respectively. Moreover, this result is obtained by only appealing to elementary combinatorial identities.

This same ratio has been analyzed for its monotone likelihood ratio (MLR) properties with respect to fixed \(z \) (Ghurye and Wallace [2], Grayson [3], Huynh [4]). Our main result is that the family of convolutions of independent binomial random variables indexed by parameters \(r, s \) with \(r + s = c \) constant is a MLR family in \(z \).

In statistical inference, MLR families give rise to uniformly most powerful tests — for a given null hypothesis, the same test statistic is known to be optimal (in terms of statistical power) across an entire composite alternative hypothesis (Bickel and Doksum [1], Section 4.3). Our result demonstrates that, for \(r + s = c \) constant and \(q > p \), rejecting \(H_0 : r = 0 \) for large values of the test statistic \(Z \) is most powerful against any alternative \(H_A : r = r' > 0 \).
2. Main result

Theorem. The ratio
\[
\frac{P_{r+s-1}(z)}{P_{r,s}(z)}
\]
is increasing, decreasing or constant – with respect to \(z\) – when \(q < p, q > p\) or \(q = p\), respectively.

Proof. Fix \(r, s \in \mathbb{N}\) and \(p, q \in (0, 1)\). We are considering the likelihood
\[
P_{r,s}(z) = \sum_{k=0}^{r} \binom{r}{k} \binom{s}{z-k} q^k (1-q)^{r-k} p^{s-k} (1-p)^{r-z+k}
\]
or equivalently
\[
P_{r,s}(z) = [(1-q)^r (1-p)^s] \left(\frac{p}{1-p} \right)^z S_{r,s}(z)
\]
where
\[
S_{r,s}(z) = \sum_{k=0}^{r} \binom{r}{k} \binom{s}{z-k} \alpha^k
\]
and \(\alpha = \frac{q(1-p)}{p(1-q)}\).

In particular, for \(1 \leq z \leq r + s\), we are interested in the difference of the likelihood ratios
\[
\frac{P_{r+s-1}(z)}{P_{r,s}(z)} - \frac{P_{r+s-1}(z-1)}{P_{r,s}(z-1)} = \left(1 - \frac{q}{1-p} \right) \left(\frac{S_{r+s-1}(z)S_{r,s}(z-1) - S_{r+s-1}(z-1)S_{r,s}(z)}{S_{r,s}(z)S_{r,s}(z-1)} \right).
\]

Let
\[
\Delta_{r,s}(z) = S_{r+s-1}(z)S_{r,s}(z-1) - S_{r+s-1}(z-1)S_{r,s}(z).
\]

We will show that \(\Delta_{r,s}(z)\) vanishes, is positive, or is negative when \(p = q, q > p\), or \(q < p\), respectively.

For legibility, we will use the notation \(a = s - 1\), \(b = z - j\), \(c = z - l + j\), and \(d = z - k\).

First, we will rewrite the quantity \(\Delta_{r,s}(z)\) in terms of powers of \(\alpha\), and apply an elementary combinatorial identity on selected terms:
\[
\Delta_{r,s}(z) = \sum_{j=0}^{r+1} \sum_{k=0}^{r} \binom{r+1}{j} \binom{r}{k} \left[\binom{a}{b} \binom{a+1}{d-1} - \binom{a}{b-1} \binom{a}{d} \right] \alpha^{j+k}
\]
\[
= \sum_{j=0}^{r+1} \sum_{k=0}^{r} \binom{r+1}{j} \binom{r}{k} \left[\binom{a}{b} \left(\binom{a}{d-1} + \binom{a}{d-2} \right) - \binom{a}{b-1} \left(\binom{a}{d} + \binom{a}{d-1} \right) \right] \alpha^{j+k}
\]
and thus for each \(l \in \{0, 1, \ldots, 2r + 1\}\) we can express the coefficient of \(\alpha^l\) as
\[
\sum_{j=0}^{r+1} \binom{r+1}{j} \binom{r}{l-j} \left[\binom{a}{b} \left(\binom{a}{c-1} + \binom{a}{c-2} \right) - \binom{a}{b-1} \left(\binom{a}{c} + \binom{a}{c-1} \right) \right].
\]

We will split this coefficient into a pair of sums
\[
\sum_{j=0}^{l+1} \binom{r+1}{j} \binom{r}{l-j} \left[\binom{a}{b} \binom{a}{c-2} - \binom{a}{b-1} \binom{a}{c-1} \right]
\]
\[
+ \sum_{j=0}^{l} \binom{r+1}{j} \binom{r}{l-j} \left[\binom{a}{b} \binom{a}{c-1} - \binom{a}{b-1} \binom{a}{c} \right]
\]
and separately analyze each sum in this pair of sums.

Note that twice the first of these sums can be expressed as
\[
\sum_{j=0}^{l+1} \binom{r+1}{j} \binom{r}{l-j} \left[\binom{a}{b} \binom{a}{c-2} - \binom{a}{b-1} \binom{a}{c-1} \right]
\]
\[
+ \sum_{j=0}^{l+1} \binom{r+1}{j+1} \binom{r}{l-j} \left[\binom{a}{c-1} \binom{a}{b-1} - \binom{a}{c-2} \binom{a}{b} \right]
\]
which equals
\[\sum_{j=0}^{l+1} \left[\binom{r+1}{j} (r-j) - \binom{r+1}{r-j+1} (j+1) \right] \left[\binom{a}{b} \binom{a}{c-2} - \binom{a}{b-1} \binom{a}{c-1} \right]. \]

Twice the second of these sums can be expressed as
\[\sum_{j=0}^{l} \left[\binom{r+1}{j} (r-j) \right] \left[\binom{a}{b} \binom{a}{c-1} - \binom{a}{b-1} \binom{a}{c} \right] + \sum_{j=0}^{l} \left[\binom{r+1}{l-j} \right] \left[\binom{a}{b-1} \binom{a}{c} - \binom{a}{b} \binom{a}{c-1} \right] \]
which equals
\[\sum_{j=0}^{l+1} \left[\binom{r+1}{j} (r-j) - \binom{r+1}{r-j+1} (j+1) \right] \left[\binom{a}{b} \binom{a}{c-1} - \binom{a}{b-1} \binom{a}{c} \right]. \]

Thus, twice the entire coefficient of the \(\alpha^l\) term can be expressed as the following new pair of sums:
\[2|\alpha| l = S_1^{(l)} + S_2^{(l)} = \sum_{j=0}^{l} \left[\binom{r+1}{j} (r-j) - \binom{r+1}{r-j+1} (j+1) \right] \left[\binom{a}{b} \binom{a}{c-2} - \binom{a}{b-1} \binom{a}{c-1} \right] + \sum_{j=0}^{l} \left[\binom{r+1}{l-j} \right] \left[\binom{a}{b-1} \binom{a}{c} - \binom{a}{b} \binom{a}{c-1} \right]. \]

For \(l \in \{0, \ldots, 2r\}\), let \(T^{(l)} = -S_2^{(l+1)} + S_2^{(l)}\). From the identity
\[\binom{r+1}{j} (r-j) - \binom{r+1}{r-j+1} (j+1) = -\left[\binom{r+1}{j} (r-j) - \binom{r+1}{r-j+1} (j+1) \right], \]
we have
\[\Delta_{r,s}(z) = \left(\frac{1}{2} \right) \left[\sum_{l=0}^{2r} T^{(l)} \alpha^l + (S_1^{(2r+1)} + S_2^{(2r+1)}) \alpha^{2r+1} \right]. \]

Since \(S_1^{(2r+1)} = S_2^{(0)} = 0\), we can rewrite \(\Delta_{r,s}(z)\) as
\[\left(\frac{\alpha - 1}{2} \right) \sum_{l=0}^{2r} S_2^{(l+1)} \alpha^l \]
which vanishes, is positive, or is negative when \(p = q, q > p\), or \(q < p\), respectively, due to the fact that each of the \(S_2^{(l)}\) terms are non-negative. \(\square\)

3. Example

Consider an illustrative example the application of statistical inference to random graphs — for instance, social network analysis. Let \(G = (V, E)\) be a random graph on the \(n\) vertices \(\{1, \ldots, n\}\). Assume that the \(\binom{n}{2}\) random variables \(X_{ij} = \text{edge}(i, j) \in E\) for \(i, j \in V\) are independent Bernoulli(\(p_{ij}\)). A simplest null hypothesis is homogeneity - \(p_{ij} = p \in [0, 1]\) for all \(i, j \in V\) (Erdos–Renyi) — and a corresponding alternative hypothesis is that some subset \(V_A \subset V\) with \(1 < |V_A| \leq n\) has the property that \(i, j \in V_A \Rightarrow X_{ij} \sim \text{Bernoulli}(q)\) while all remaining edges are Bernoulli(\(p\)), with \(q > p\). Assuming that one observes only the size of the graph, \(z = |E|\), our MLR result shows that the uniformly most powerful test rejects the null hypothesis for large values of \(z\).

References