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Spatial scan density (SSD) estimation via mixture models is an important problem
in the � eld of spatial statistical analysis and has wide applications in image analysis. The
“borrowed strength” density estimation (BSDE) method via mixture models enables one to
estimate the local probability density function in a random � eld wherein potential similari-
ties between the density functions for the subregionsare exploited.This article proposesan
ef� cient methods for SSD estimation by integrating the borrowed strength technique into
the alternative EM framework which combines the statistical basis of the BSDE approach
with the stabilityand improved convergencerate of the alternativeEM methods. In addition,
we propose adaptive SSD estimation methods that extend the aforementionedapproach by
eliminating the need to � nd the posterior probability of membership of the component
densities afresh in each subregion. Simulation results and an application to the detection
and identi� cation of man-made regions of interest in an unmanned aerial vehicle imagery
experiment show that the adaptive methods signi� cantly outperform the BSDE method.
Other applications include automatic target recognition, mammographic image analysis,
and mine� eld detection.

Key Words: Cyclical EM; Kernel density estimation; Missing data; Mixture distribution;
Nonhomogeneity detection; Nonparametric model; Paired complete data EM algorithm;
Pro� le likelihood; Random � eld; Rotated EM algorithm; Scan process; Segmentation;
Semiparametric model.

1. INTRODUCTION

Mixture models (Titterington,Smith, and Makov 1985; Lindsay 1995; McLachlan and
Peel 2001) have become one of the most widely used statistical tools in the analysis of het-
erogeneous data, aiding researchers in interpreting existing data or in classifying new data.
Recent applicationsof mixturemodels to spatial scan analysis (Cressie 1993;Chen and Glaz
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1997), particularly spatial scan density estimation (Priebe, Marchette, and Rogers 1997a;
Priebe and Chen 2001), show great promise for image analysis problems (Bhanu et al.
1997; Popat and Picard 1997). For example, mammographic image analysis (Priebe 1996),
automatic target recognition (ATR) (special issue on ATR of IEEE Transactions on Image
Processing 1997; Solka et al. 1998; Priebe, Solka, and Tao 1997b) and mine� eld detection
are special cases. One can view a spatial process as a mixture of local processes—mixing
over different neighborhoods.The guidingprinciplebehind the applicationof mixture mod-
els to spatial scan analysis is that one can contrast two or more regions in a scanned area
by comparing their relative levels of variability captured by a mixture distribution.

Let ¹ (x): R0 ! < be a random � eld (Geman 1990), with a domain of de� nition
R0 » <d. A “random � eld” in this context is simply an image. For simplicity, we assume
that (1) the image is made up of r disjoint regions so that we can write R0 = [r

k = 1Rk

and (2) the random variable associated with each random � eld (or the observations from a
region) are identically distributed and have the same dependence structure. The probability
density function(pdf) associatedwith the kth random� eld is called the classconditionalpdf,
denotedby gk( ¹ ). That is, each Rk is a subregionof homogeneityand ¹ (x), a feature valueat
pixel locationx in region Rk , follows the pdf gk( ¹ ). A realizationof the piecewisestationary

random� eld ¹ (x) (Priebe 1996) is calleda piecewise stationaryspatial sample. For example,
an image is a piecewise stationary spatial sample and the value of a � eld observation ¹ (x)

at site x represents pixel intensity. The basic idea is to classify the spatial observations
adaptively into an unknown number of disjoint regions each of which is homogeneous and
in turn use a simple model within the regions. However, the number, the locations, and
the shapes of the regions are not known a priori. In this scenario, it is useful to obtain the
information about the underlying (often unknown) class conditionalpdf of the observations
in each region.

The lack of knowledge of the location of differing regions necessitates that the regions
obtained in the initial segmentation be small compared to the size of the true but unknown
region so that the chosen region is in the interior of any of the Rk. Due to the small effective
sample size from each region,one cannot obtainan accurate nonparametricestimationof the
pdfs. To obtain a parametric estimate of the density, one must make certain assumptions on
the form of the densities.To thisend,we assume that theclass conditionalpdf is of the form of
a � nite mixture of distributionsso that the goal becomes obtaining the maximum likelihood
estimators (MLEs) of the parameters that characterize the mixture density.The standard and
powerful computational tool for � nding the MLE of the parameters in the mixture model is
the well-known EM algorithm (Dempster, Laird, and Rubin 1977). Considerable work has
been done to improve the (often slow) rate of convergence of the EM algorithm in various
situations [see McLachlan and Krishnan (1997) and the references therein for a general
discussion and for several extensions of the EM algorithm].

The principal dif� culty in the application of mixture models to spatial scan analysis
is that when we look afresh at an image, we have no a priori information on the loca-
tions and spatial extents of the regions and hence we introduce a regional structure on R0.
Priebe (1996) proposed the borrowed strength density estimation (BSDE) method via mix-
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ture models to improve the segmentation of random � elds. A BSD estimator exploits the
similarities between the densities in different regions of the � eld by combining all of the
observed data to � nd an estimate of the invariant parameters—or equivalently the compo-
nent densities—in the mixtures. In turn, the component densities are � xed at the estimated
values and then mixture models are � tted in each of the many small subregions. The BSDE
method is an elegant solution to many image analysis problems as it produces superior
detection performance. However, it is computationally expensive due to slow convergence
of the EM algorithm in the BSDE setting. The slowness of the conventional EM is worse
when (1) component densities are poorly separated or (2) ML estimator requires some of
the mixing coef� cients to be zero. Situation (1) means that the component densities are
highly correlated. As in linear regression with collinearity, this means that the parameter
values can be varied widely with little effect on the density, creating in turn a relatively � at
likelihood function. This collinearity also has an adverse effect on the EM algorithm since
the missing data become much more informative relative to the observed data (Pilla and
Lindsay 2001). The goal of this research is to improve the ef� ciency of the BSDE method.

Our emphasis is on both performance and computational speed. The latter is becoming
increasingly important as the demandson image processing systems have increased. For ex-
ample, ATR in gray-scale images—speci� cally, the automated detection and identi� cation
of man-made regions of interest (ROI) in unmanned aerial vehicle (UAV) imagery (Solka
et al. 1998)—is the main objective of many image segmentation systems. The goal of these
systems is to detect, recognize, and classify targets (typically man-made objects, such as
buildings, tanks, and aircraft) in an image. The speed and detectionperformance of the ATR
techniques (used in both the national defense and the manufacturing industries) in image
processing and analysis play an important role in making this goal a reality. For this article,
we de� ne an ROI as targets and some parts of the “background” or “clutter.”

Section 3.1 discusses a motivating example that is concerned with a high-dimensional
ATR problem cast in the framework of a mixture model. In this scenario, the convergence
of the conventionalEM algorithm in the BSDE setting is extremely slow since some of the
component densities are severely overlapping. Pilla and Lindsay (2001) proposed alterna-
tive EM methods that signi� cantly improve the rate of convergence of the conventionalEM
algorithm. In the current research we propose ef� cient computationalmethods for the SSD
estimation, a synthesis of the BSDE and the alternativeEM methods. The resulting methods
combine the statistical basis of the BSDE technique with the stability and improved con-
vergence rate of the alternative EM methods. Furthermore, we extend the aforementioned
cyclical approachesvia a “dynamic adaptation rule” for the mixing coef� cients which elim-
inates the need to � nd the posterior probability of membership of the component densities
afresh in each subregion.We refer to the resulting approachesAdaptiveSpatialScan Density
Estimation methods.

Forbes and Raftery (1999) proposed a Bayesian morphologymethod that combines the
elegance of Bayesian image analysis with the speed of mathematical morphology. Their
approach involvescasting the marginal distributionof the pixel intensitiesas a � nite mixture
model and in turn estimating the parameters via the EM algorithm. Although both the
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Bayesian morphologyand the AdaptiveSSD estimationmethodsare based on � nitemixture
models, the framework and the methodology of the two approaches are very different. As
pointed out by Forbes and Raftery (1999), one limitation of their approach is the need to
specify some insensitive conditions which may limit the applicability to simple image and
noise models. However, our method is not only computationally simple but also applicable
to a larger class of problems.

The rest of this article is organizedas follows: Section 2 reviews the SSD estimationand
the conventionalEM algorithm to estimate the scan densities. Section 3 presents the paired
complete data framework for the SSD estimation and embeds the Rotated EM into the SSD
estimation problem. Section 4 developsadaptiveSSD estimationmethods. Section 5 details
some of the issues that arise in implementing our methods. Section 6 presents simulation
studies to evaluate the performance of one of our adaptive methods. We investigate the
adaptive SSD estimation method via the ATR experiment in Section 7. Section 8 concludes
with a discussion of the merits and extensions of the methods.

2. BACKGROUND: SPATIAL SCAN DENSITY ESTIMATION

In this section we introduce the SSD estimation and describe its relation to image
processing.Recall that R0 = [r

k = 1Rk. As there is seldoma priori knowledgeof the location
of the local regions of interest Rk, it is necessary to introduce a regional structure on R0. In
general, a regional structure on R0 is introduced via the scan process (Cressie 1993; Priebe
1996) so that R0 = [s 2 R0 Ns( ¯ ), where Ns( ¯ ) is a scan window about the spatial location s

with a size index ¯ . For a two-dimensional discrete image, one possible choice for Ns( ¯ ) is
a (2 ¯ + 1) £ (2 ¯ + 1) square-shaped “moving scan window”: Ns( ¯ ) = f(s0 + p; s1 + q) 2
R0 : ¡ ¯ µ p; q µ ¯ g, where s = (s0; s1) 2 R0 is the location of the pixel in the image.
If scan window Ns( ¯ ) is entirely within the region Rk, the class conditional pdf gk is
same as the scan density gs; otherwise they are different. The choice of the scan regions as
balls or rectangles is arti� cial. In practice, one can use an image segmentation algorithm
to partition R0 into a disjoint union of subregions which in turn can be used as the scan
regions for incorporating the edge information into the process. However, this leads to an
added complexity of unequal and random sample sizes. This was considered by Priebe et
al. (1997a) in the mammography analysis.

In the development of the theory for the SSD estimation, one assumes that the ob-
servations are identically distributed but dependent and the stationarity assumption holds.
Although neither of these assumptions are particularly realistic, the methodology seem to
exhibit robustness to their violation. Future work involves developing theory that will take
these into consideration.

Let ys = (ys
1 ; : : : ; ys

ns
) be the observation vector from the scan window Ns( ¯ ). The

pdf of ys, called the scan density or scan pdf and denoted by gs, plays an important role in
many statistical image analysisapplicationssuch as nonhomogeneityanalysis and ATR. For
example, in nonhomogeneity analysis, one obtains the scan density estimate gs using the
features from the scan window Ns( ¯ ) to test the hypothesisH0: homogeneity(gs = gt 8 s; t)
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against H1: nonhomogeneity (9 s; t 3 gs 6= gt) via the test statistic T = maxs;t d(gs; gt),
where d(x; y) denotes distance between x and y. For the reasons discussed in Section 1, we
model the underlyingscan densitiesparametricallyby assuming that the gs is a � nitemixture
of ms absolutely continuous exponential family densities. That is, gs = g(ys; ªªªs) =

j º s
j ’(ys; ³ s

j ), where ªªªs = (µs; ¼s) = [( ³ s
1 ; : : : ; ³ s

ms ); ( º s
1 ; : : : ; º s

ms )]0, j º s
j = 1

and º s
j ¶ 0 for all j = 1; : : : ; ms. The s; j and i subscripts identify the scan window,

mixture component and the observation, respectively. The component parameters ³ j’s and
the weights º j’s are the supportpointsand the probabilitymasses of the mixing distribution,
respectively. In this article, we assume that ’ is a normal density so that ³ s

j = ( · s
j ; ¼ s

j ) for
· s

j 2 < and ¼ s
j 2 (0; 1); however, the treatment is applicable in general.

The underlyingmixture componentsof the scan densities are invariant across the entire
� eld domain R0 in terms of their location in the parametric space, and hence these pdfs
differ only in their mixing coef� cients, ¼s. A borrowed strength estimate exploits this
invariance by using all of the observed data to � nd an estimate of the invariant parameters
and imposing this estimate as a constraint in estimating the scan pdf. The BSDE method
can be summarized as follows:
Step 1: On observing the overall sample y = (y1; : : : ; yn) from an image that is cur-

rently being processed, estimate the number of mixture components and the com-
mon mixture density of the features via the alternating kernel and mixture (AKM)
algorithm (Priebe and Marchette 2000) as g(y;ªªª) =

m
j = 1 º j ’(y; ³ j), where

ªªª = [(³ 1; : : : ; ³ m); ( º 1; : : : ; º m)].
Step 2: Based on the local sample ys = (ys

1 ; : : : ; ys
ns

) from the scan window Ns( ¯ ) and the
estimates of m and µ from step 1, the pro� le likelihood estimate of ¼s is obtained
by maximizing the regional pro� le likelihood

L(¼sjµ; ys) =

ns

i = 1

g(ys
i ; ¼sjµ) =

ns

i = 1

m

j = 1

º s
j ’(ys

i ; ³ j): (2.1)

For the � nite mixture case, (2.1) is the standard pro� le likelihood estimate of Cox and
Reid (1987). The resulting scan density estimator, denoted gs = g(ys; ¼sjµ), is a “local
density estimator” as it is based only on the local sample ys from the scan window Ns( ¯ ).
The estimator, (µ; ¼s), is called the borrowed strength MLE. Priebe (1996) showed that the
BSDE yields superior results compared to the conventional local likelihood methods. The
conventional local likelihood method is based on maximizing the regional local likelihood
function L(ªªªsjys) = i g(ys

i ; µs; ¼s) to obtain the joint maximum likelihood estimators
of µs and ¼s. For the subsequent spatial scan analysis,we � x the number of componentsand
the common support at m and µ, respectively, for the model in (2.1). From here onwards, we
use a shorter notation’j(ys

i ) for ’(ys
i ; ³ j) as our interest lies only in estimating the mixing

coef� cients. For many practical applications, the time critical part of the algorithm is in
obtaining the pro� le estimator of the mixing coef� cient vector ¼s for each scan window,
as this step must be performed in real-time. Thus the number of times the pro� le likelihood
estimation criterion is evaluated is relevant.

Remark 1. Note that the pdf of ys, the observation vector from the scan window
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Ns( ¯ ), denotedby gs is a mixturedensityand shouldnot be confusedwithan ns-dimensional
density.The subscript“s” identi�es the windowfromwhich theobservationvector is drawn.

Remark 2. The AKM algorithm proceeds by alternating between the � ltered kernel
estimation (FKE) proposed by Marchette et al. (1996) and the � nite mixture estimation
methods. The AKM � nds an estimate of the number of mixture terms m, by increasing the
complexity of the mixture model based on the mismatch between the current m-component
mixture and the FKE. The latter is based on a multiple-bandwidth kernel estimation and
data-driven smoothing with an added advantage of not requiring a critical choice of the
bandwidth parameter.

Maximization of the Regional Pro� le Likelihood: For a given µ, one can maximize
(2.1) via the conventionalEM algorithm to obtain the estimator of the weight vector ¼s. On
observingthe ys from the scan windowNs( ¯ ) one can construct the hypothetical“complete”
data as xs = (ys; zs), where zs = (zs

1 ; : : : ; zs
ns

) and zs
i = (zs

i1; : : : ; zs
im)0 with zs

ij = 1 or
0 depending on whether ys

i 2 Ns has been drawn from the jth component density or not.
Note that zs

i ¹ Mult(m; ¼s). At the (c + 1)st step, the conventionalEM algorithm assigns
mass ( º s

j )c+ 1 = n¡1
s i zij to ³ j , where

zs
ij = E[zs

ij jys; ¼c
s] =

( º s
j )c ’j(ys

i )

[ j( º s
j )c ’j(ys

i )]
(2.2)

is the posterior probability that the observation ys
i is drawn from the jth component for i =

1; : : : ; ns; j = 1; : : : ; m. See McLachlan and Krishnan (1997) for more details. From here
onwards, we will refer to the BSDE via the conventional EM algorithm as the Traditional
BSDE method.

3. PAIRED COMPLETE DATA FRAMEWORK FOR THE SSD
ESTIMATION PROBLEM

In this section, � rst we demonstrate the slow convergence of the conventional EM
algorithm through an application of the SSD estimation method to an ATR problem. Next,
we will set up the SSD estimation problem in the paired complete data frame work of
Pilla and Lindsay (2001). As illustrated in Section 1, the conventional EM algorithm is
particularly slow when the (1) component densities are poorly separated or (2) mixing
coef� cients are on the boundary of the parametric space.

3.1 EXAMPLE: FINITE MIXTURE MODEL

The ML classi� er requires that the user knows a priori the parameters that de� ne the
density for the image under consideration. Alternatively, representative “trial data” must be
available, consisting of pixels whose class is known. Figure 1(a) shows one of the images
collected by Solka et al. (1998) which were extracted from a video tape of a UAV test
� ight over the Naval Strike Warfare Center, Fallon, Nevada, in the summer of 1995. For
this article, we use class to mean a target (a tank or a building), clutter, or background.
A training image provides information about the regions Rk and the corresponding pdf
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Figure 1. An example of a mixture model with poorly separated components and zero mixing coef� cients: (a) The
feature image used for training (target and clutter regions are annotated as “A” and “B”, respectively) and (b)
the class conditional density estimates g1 and g2 .

estimates gk for all k (see Priebe 1996, � gs. 2(f) and 2(g)). On observing the representative
feature values y, called the training data, from the gray-level image in Figure 1(a), a
subset of these pixels were pre-identi� ed as belonging to class 1 (or target) or class 2
(or clutter). In essence, training data y = fyk(x1); : : : ; yk(xnk

)g representing a value at
the pixel locations x in region Rk for which the true class is known is used to build the
model. The resulting model is used in assessing the accuracy of the estimate obtained from
the model at hand. The marginal distribution of gray-scale pixel intensities is assumed
to be in the form of � nite mixture of distributions. The AKM estimation method was
used to � nd the four-component segmentation and the estimate of the common support:
µ = ( · 1 = 0:1124; ¼ 1 = 0:000984; · 2 = 0:1832; ¼ 2 = 0:000662; · 3 = 0:2790; ¼ 3 =

0:001187; · 4 = 0:4397; ¼ 4 = 0:006205). These four-component densities per class are
suf� cient to provide reasonably good density estimators.

Let g1 and g2 be the normal mixture densities correspondingto the scan windows N1( ¯ )

(associated with target region) and N2( ¯ ) (associated with clutter region), respectively,with
¯ = 8. Thus, each window is of size 17 £ 17 with (2 ¯ + 1)2 = 289 observations. For a
given µ, the MLE of the scan densities are obtained via the conventional EM algorithm
as g1 = g(y1; ¼1jµ) = 0:022 ’1(y1) + 0:058 ’2(y1) + 0:134 ’3(y1) + 0:786 ’4(y1) and
g2 = g(y2; ¼2jµ) = 0:709 ’1(y2) + 0:291’2(y2), respectively.

Figure 1(b) shows the scan density estimates for the target and clutter pixels, respec-
tively. It is clear from Figure 1(b) that the component densities within each class are not
only poorly separated but the mass associated with the third and fourth componentdensities
corresponding to the clutter pixels are zeros [see Priebe (1996) and Popat and Picard (1997)
for more such examples]. Recall that the jth and kth component densities in a scan window
s are well separated in the sense that ’j(ys)=g(ys; ¼sjµ) ¢ ’k(ys)=g(ys; ¼sjµ) º 0 and
poorly separated in the sense that ’j(ys)=g(ys; ¼sjµ) º ’k(ys)=g(ys; ¼sjµ) for j 6= k.
This example demonstrates the extremely slow convergence of the conventional EM. See
Titterington et al. (1985) and Pilla and Lindsay (1996, 2001) for more details on why the
conventional EM performs poorly in these scenarios.
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3.2 MODEL SETUP

From Section 3.1, it is clear that our interest lies only in estimating the ¼ and hence
we treat the component densities ’j(ys) as known. The paired complete data (PCD)
framework of Pilla and Lindsay (2001) starts with the choice of a pairing of densities,
say [f’1(ys); ’2(ys)g; : : : ; f’m¡1(ys); ’m(ys)g] such that the pairing re� ects correlated
pairs; the last density ’m(ys) is treated separately if m is odd. For the rest of the article,
we assume m, the total number of densities used in gs, is even and the nearby compo-
nent densities are highly correlated. Continuing with the notation in Section 2, we de� ne
Zs

i1 = (zs
i1 + zs

i2); : : : ; Zs
im=2 = (zs

i(m¡1) + zs
im) with (zs

ij + zs
i(j + 1)) = 1 or 0 according

to whether ys
i belongs to the [’j; ’j + 1]th pair of densities or not. The paired complete data

becomes: x?
s = (ys; Zs), where Zs = (Zs

1 ; : : : ; Zs
m=2) and Zs

k = (Zs
1k; : : : ; Zs

ns k) for all
k = 1; : : : ; m=2.

The mixture density g(ys
i ; ¼sjµ) =

m
j = 1 º s

j ’j(ys
i ) can now be reparameterized as

m=2

k = 1

» s
k [ ¬ s

2k¡1 ’2k¡1(ys
i ) + ¬ s

2k ’2k(ys
i )];

where » s
k = ( º s

2k¡1 + º s
2k); ¬ s

2k¡1 = º s
2k¡1=( º s

2k¡1 + º s
2k) and ¬ s

2k = (1 ¡ ¬ s
2k¡1). Let

½s = ( » s
1 ; : : : ; » s

m=2) and ®s = ( ¬ s
1 ; : : : ; ¬ s

m) for all k = 1; : : : ; m=2. The PCD likelihood
function

LPCD(¼sjµ; x?
s) =

ns

i= 1

º s
1 ’1(y

s
i ) + º s

2 ’2(y
s
i )

Z s
i1

: : : º s
m¡1 ’m¡1(ys

i ) + º s
m ’m(ys

i )
Z s

im=2

becomes

LPCD(½s; ®sjµ; x?
s) =

i k

[ » s
k]Z

s
ik [ ¬ s

2k¡1 ’2k¡1(ys
i ) + ¬ s

2k ’2k(ys
i )]Z

s
ik : (3.1)

Note that k » s
k = 1 and ( ¬ s

2k¡1 + ¬ s
2k) = 1 for all k = 1; : : : ; m=2. Thus the ¬

parameters act as relative weights of the pairs. From the above formulation, it is clear
that the parameter vectors ½s and ®s separate out in the complete data log likelihood
and logLPCD can be written as a sum of A(½s) = i k Zs

ik log » s
k and k B( ¬ s

2k) =

k i Zs
ik log [¬ s

2k¡1 ’2k¡1(ys
i ) + ¬ s

2k ’2k(ys
i )] for k = 1; : : : ; m=2, where each piece

depends on a single parameter.

3.3 SPATIAL SCAN DENSITY ESTIMATION VIA THE PAIRED EM

Following Pilla and Lindsay (2001), starting with the current values of the parameters
½c

s and ®c
s, the E-step replaces Zs

ik in the A and B functionswith its conditionalexpectation
given by

Zs
ik = ( » s

k)c
f( ¬ s

2k¡1)c ’2k¡1(y
s
i ) + ( ¬ s

2k)c ’2k(ys
i )g

k( » s
k)c f( ¬ s

2k¡1)
c ’2k¡1(ys

i ) + ( ¬ s
2k)c ’2k(ys

i )g (3.2)



340 R. S. PILLA, P. TAO, AND C. E. PRIEBE

which is the posterior probability that ys
i is drawn from the (’s

2k¡1; ’s
2k)th pair of densities.

Due to the separated parameters in the log-likelihood, the optimization problem in the M-
step is simpli� ed and one can maximize A(½s) explicitly,subject to the constraint k » s

k =

1. However, one cannot maximize the univariate function B(¢) explicitly. Following Pilla
and Lindsay, we apply a single Newton–Raphson (NR) on each of the B functions in the
M-step which turns out to be highly effective, as the NR for the univariate parameter ¬ s

2k¡1

is not only quadratically convergent but also is nearly monotonic (Böhning and Lindsay
1988). The Paired EM iterates between the E- and the M-steps until convergence. The
original mixing coef� cients can be retrieved using º 2k¡1 = » k ¬ 2k¡1 and º 2k = » k ¬ 2k for
all k = 1; : : : ; m=2.

The rate of convergence of an EM algorithm is independentof the number of NR-steps
within each EM-step and hence one NR-step is suf� cient (Lange 1995; proposition 1). See
Pilla and Lindsay (2001) for details on practical implementation.

3.4 SPATIAL SCAN DENSITY ESTIMATION VIA THE ROTATED EM ALGORITHM

The Paired EM stays with one � xed pairing of densities in each EM-step. Pilla and
Lindsay (2001) considered changing the missing data formulation between the EM-steps to
achieve improved acceleration in all directionsof the parameter space.We present their sim-
plest approach,which involvesrotating througha sequenceof different pairingsof densities.
Suppose one starts with six densities such that the adjacent pairs are most similar. One pos-
sible choice of a rotation cycle involves alternating between the pairing (’s

1 ; ’s
2); (’s

3 ; ’s
4)

and (’s
5 ; ’s

6) in an odd EM-step and (’s
2 ; ’s

3); (’s
4 ; ’s

5) and (’s
6 ; ’s

1) in an even EM-step. We
apply the Paired EM within each pairing scheme. By changing the missing data formulation
between the EM-steps one is able to accelerate a complementary set of relative weights,
namely the ¬ parameters. To make effective use of the Paired EM, we construct the pairing
schemes such that the paired densities are similar.

One could consider other cyclical algorithms, within the BSDE framework, developed
by Pilla and Lindsay (2001); however, they found that this simplest method provides major
gains in the rate of convergence and hence we use this approach in our article. They termed
this EM based on the PCD augmentation with the above two step rotation cycles as the
Rotated EM. Pilla (1997) showed that the Rotated EM has a better asymptotic rate of
convergence than that of the conventional EM. We will demonstrate the effectiveness of
this RotatedEM in the BSDE framework, particularly when the solution¼s has many zeros,
through our numerical studies.

4. AN ADAPTIVE SSD ESTIMATION METHOD BASED ON
ROTATED EM ALGORITHM

In applicationsof SSD estimation to image analysis, a (2 ¯ +1)£(2 ¯ +1)-pixel moving
scan window is scanned throughout the region. At each site, the scan pdf is estimated via
the BSDE method. In general, to improve the detection accuracy one creates the scan
windows such that there is a substantial overlapping region between any two adjacent
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ones. Overlapping of two scan windows Ns and Nt, say, implies that the mixture densities
corresponding to these windows are “similar” in the sense that d(¼s; ¼t) < tol, where
d(¢; ¢) is a distance measure (under a speci� ed norm) and tol is a prespeci� ed tolerance.
Equivalently, in the complete data framework for the mixture model, there is a substantial
overlapping of both the observed and the missing data. In this scenario, it is wasteful to
replace the entire missing data in each scan window by their conditionalexpectations—that
is, � nding the posterior probability of membership of the component densities afresh in
each subregion. This motivates our dynamic adaptation of the mixing coef� cients and in
turn leading to one version of the adaptive SSD estimation methods.

4.1 DYNAMIC ADAPTATION OF THE MIXING COEFFICIENTS

Let us assume that the (2 ¯ + 1) £ (2 ¯ + 1) scan window at site s is moving to a
neighboring site t. Let Ns( ¯ ) and Nt( ¯ ) (denoted Ns and Nt, respectively, for exposition)
be two overlapping scan windows of size ¯ centered at s and t, respectively, such that Ns is
processed before Nt. Let us assume that the cardinality of Ns or Nt be n and the cardinality
of thedifference set (Ns ¡ Nt) or (Nt ¡ Ns) be n1. We also assume thatn ismuch greater than
n1 so that there is a substantialoverlappingregion between the two windows.We decompose
Ns and Nt such that Ns = (Ns \ Nt) [ (Ns ¡ Nt), Nt = (Ns \ Nt) [ (Nt ¡ Ns),
where (Ns ¡ Nt) = fuju 2 Ns; u =2 Ntg. Suppose the observed values in Ns and
Nt are fy1; : : : ; yn1 ; : : : ; yng and fyn1 + 1; : : : ; yn; : : : ; yn2 g, respectively, so that the pixels
f1; : : : ; n1; : : : ; ng 2 Ns and fn1 +1; : : : ; n; : : : ; n2g 2 Nt. Note that n2 = (n1 +n) since
Ns and Nt are of the same size, namely n = (2 ¯ + 1)2. We have f1; : : : ; n1g 2 (Ns ¡ Nt),
fn + 1; : : : ; n2g 2 (Nt ¡ Ns) and fn1 + 1; : : : ; ng 2 Ns \ Nt.

Suppose the center of the scan window is moved from a site s to a neighboring site t,
then the pixels f1; : : : ; n1g will be replaced with that of fn + 1; : : : ; n2g in Nt. In general,
the larger the adjacent scan window, the higher the number of overlapping pixels. Suppose
a 5 £ 5 scan window is used in the case of a two-dimensional image. Let s = (s0; s1) and
t = (s0 + 1; s1) so that Ns \ Nt = f(s0 + p; s1 + q)jp = ¡ 1; 0; 1; 2; q = ¡ 2; ¡ 1; 0; 1; 2g,
(Ns ¡ Nt) = f(s0 ¡ 2; s1 + q)jq = ¡ 2; ¡ 1; 0; 1; 2g and (Nt ¡ Ns) = f(s0 + 3; s1 + q)jq =

¡ 2; ¡ 1; 0; 1; 2g. It is clear that Ns \ Nt containing 20 pixels overlaps with Nt and only
� ve old pixels from (Ns ¡ Nt) were replaced by � ve new ones from (Nt ¡ Ns).

Let us assume that the scan windowNs( ¯ ) is processed � rst and in turn the localmixture
density estimate gs = g(ys; ¼sjµ) =

m
j = 1 º s

j ’j(ys) that characterizes the features of this
window is obtained. In what follows, we present an ef� cient method to estimate the mixture
density gt = g(yt; ¼tjµ) =

m
j = 1 º t

j’j(yt) that characterizes the features of the scan
window Nt which is to be processed next. Following the notation of Section 2, we use
the superscripts (s=t) and (s; t) to represent (Ns ¡ Nt) and Ns \ Nt, respectively. From
Equation (2.2), it follows that

z
s=t
ij =

( º s
j )c ’j(y

s=t
i )

[ j( º s
j )c ’j(y

s=t
i )]

; (4.1)
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and

zs;t
ij =

( º s
j )c ’j(ys;t

i )

[ j( º s
j )c ’j(ys;t

i )]
(4.2)

represent the posterior probabilities that y
s=t
i 2 (Ns ¡ Nt) and ys;t

i 2 (Ns \ Nt), re-
spectively, are drawn from the jth component density for j = 1; : : : ; m. Since Ns =

(Ns ¡ Nt) [ (Ns \ Nt), we have n
i = 1 zs

ij = [
n1

i = 1 z
s=t
ij +

n
i = n1 + 1 zs;t

ij ].

Step 1: The estimator of º s
j , corresponding to the scan window Ns, obtained via the con-

ventional EM is given by

º s
j =

1
n

n

i= 1

zs
ij =

1
n

n1

i = 1

z
s=t
ij +

n

i = n1 + 1

zs;t
ij :

Equivalently, we have

º s;t
j =

1
(n ¡ n1)

n

i= n1 + 1

zs;t
ij =

n

(n ¡ n1)
º s

j ¡ 1
n

n1

i = 1

z
s=t
ij ;

where ¼s;t = ( º s;t
1 ; : : : ; º s;t

m ) represents the coef� cient vector corresponding to the
region (Ns \ Nt).

Step 2: The initial value for the vector of mixing coef� cients that characterizes the mixture
density gt corresponding to the scan window Nt( ¯ ) can be obtained as

º t
j

0
=

1
n

n2

i= n1 + 1

zt
ij =

1
n

n

i = n1 + 1

zs;t
ij +

n2

i = n + 1

z
t=s
ij

= º s
j ¡ 1

n

n1

i = 1

z
s=t
ij +

1
n

n2

i = n + 1

z
t=s
ij =

(n ¡ n1)

n
º s;t

j +
1
n

n2

i = n+ 1

z
t=s
ij

for all j = 1; : : : ; m. Since n >> n1, the last equation becomes

º t
j

0
= º s;t

j +
1
n

n2

i = n + 1

z
t=s
ij ; (4.3)

where z
t=s
ij = º s

j ’j(y
t=s
i )=[ j º s

j ’j(y
t=s
i )]. Thus, the starting point for º t

j can
be obtained by adding the contributing share of pixels fn + 1; : : : ; n2g 2 Nt ¡ Ns

to º s;t
j .

The abovedynamicadaptationrule takes advantageof the existing localmixturedensity
estimator characterizing the features of the scan window Ns and provides reasonably good
starting points for the mixing coef� cients characterizing the mixture density corresponding
to the scan window Nt. As will be shown in Sections 6 and 7, the dynamic adaptation rule
simpli� es the computational burden signi� cantly. In addition, this dynamic adaptation rule
can be generalized to other problems (i.e., beyond � nite mixture model) that can be cast in
the missing data framework (see Section 8).
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4.2 AN OVERVIEW OF THE ADAPTIVE SSD ESTIMATION METHODS

In what follows, we summarize the Adaptive SSD Estimation method based on the
Rotated EM algorithm.

1. On observing the overall sample y = (y1; : : : ; yn), we estimate the common support
set µ and the number of mixture terms m via the AKM algorithm as described in
Section 2.

2. Partition the domain of the piecewise stationary random � eld into scan windows:
R0 = [s 2 R0 Ns( ¯ ) for a pre-speci� ed size index ¯ as shown in Section 2.

3. For a given µ, obtain the estimator of the vector of mixing coef� cients ¼s corre-
sponding to the scan window Ns via the RotatedEM algorithm illustrated in Section
3.4.Note that one can replace the RotatedEM with any of the cyclicalEM algorithms
of Pilla and Lindsay (2001) to create other adaptive SSD estimation methods.

4. For a given ¼s, update the mixing coef� cients ¼t corresponding to a neighboring
scan window Nt via the dynamic adaptation rule given by Equation (4.3). Recall
that the scan window is moved from a site s to a neighboringsite t in such a way that
there is a substantial overlapping. The dynamic adaptation rule takes advantages of
this overlapping region and eliminates the need to � nd the estimate of the mixing
coef� cients afresh in each scan window.

5. Scan the window Ns( ¯ ) for each s 2 R0 throughoutthe entire regionR0 by repeating
Steps 3 and 4.

5. IMPLEMENTATION ISSUES

This section addresses some of the issues that arise in the implementation of the al-
gorithms. Following Pilla and Lindsay (2001), we compare the methods in terms of the
number of parameter updates that occur instead of the “number of iterations.” On observ-
ing the data ys from the scan window Ns( ¯ ), we � nd the average number of parameter
updates as well as the average CPU time, where the average is over the total number of scan
windows, required by each estimation method to converge to the speci� ed tolerance level ".
Note that the CPU time is approximately proportional to the number of pixels in each scan
window, namely (2 ¯ + 1)2, and also affected by the tolerance parameter ". Our simulations
and experiments were run on a SUN Ultra station 1 with 128MB RAM and 143MHz clock
speed.

Convergence Criterion: The AKM algorithm is used to estimate the number of mixture
terms, the common support µ and the vector of mixing coef� cients ¼. For this step, we
used the likelihood based convergence criterion: stop the algorithm if logL(µc; ¼cjy) ¡
log L(µc¡10; ¼c¡10jy) µ 0:005. Recall that the ML calculationsare done only once for the
entire imageand hencea strict likelihood-basedconvergencecriterion is not computationally
demanding.

We need a measure of accuracy to compare the two methods. In practice, one does
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not know the � nal value of the regional pro� le log-likelihood in Equation (2.1). Following
Pilla and Lindsay (2001), we used the following gradient based stopping criterion because
it has a solid theoretical foundation (Lindsay 1995). The gradient function creates a natural
stopping rule for iterative algorithms in the mixture problem when the � nal log-likelihood
is unknown.We stop the iterative process when sup

j
D º ºº (j) µ ", where the gradient function

is given by

D¼(j) =

ns

i = 1

’j(ys
i )

g(ys
i ; ¼sjµ)

¡ ns for all j = 1; : : : ; m: (5.1)

It follows from Lindsay (1995, pp. 131–132) that if we set " = 0:005, then we automati-
cally satisfy the ideal stopping criterion: jlog Lobs(¼jy) ¡ log Lobs(¼

pjy)j µ ". This is an
important measure of convergence of an ML algorithm as it provides information about the
accuracy of the parameter estimates on a con� dence interval scale.

6. SIMULATION RESULTS

This section presents a simulation experiment that evaluates the performance of the
adaptive SSD estimation method for various window sizes ¯ and levels of tolerance pa-
rameters " required for convergence. In general, one has two types of images for feature
recognition: training images (or preidenti� ed spatial samples) and test images (or null seg-
mented spatial samples). The training image consists of pixels that are preidenti� ed—that
is, the stationary random � eld from which the pixel comes from is known. One obtains
the class conditional pdf estimates via supervised learning. The training model, which is a
collectionof the class conditionalpdf estimates (Priebe et al. 1997a;Tao 2000) is built using
the user identi� ed pixels from the training images. The test image consists of pixels that
are not pre-identi� ed. The goal of an image recognition is to assign the class membership
to the pixels in the test image by using the information contained in the training model.

We consider a scenario in which the random � eld of interest ¹ is an embedding of
two random � elds ¹ 1 and ¹ 2 with ¹ s

iid¹ gs for s = 1; 2. The following normal densities
N (0; 1); N (0:5; 1), N (1:5; 1:5), N (2:5; 1:5), N (3:5; 2), N (4:75; 2), N (6; 2:25),
N (7; 2:25) are taken as the eight componentdensities’1( ¹ ); : : : ; ’8( ¹ ). The same densities
are used for both the training and test images, respectively. We have two class conditional
pdfs: g1( ¹ ) =

6
j = 1 º 1

j ’j( ¹ ) with º 1
j = 1=6 for j = 1; : : : ; 6 and g2( ¹ ) =

8
j = 4 º 2

j ’j( ¹ )

with º 2
j = 1=5 for j = 4; : : : ; 8. Figures 2(a) and (b) show the realizations of ¹ 1 and ¹ 2,

respectively. This setting might seem extreme, but it is useful to investigate the effects of
highly overlapping densities with having many mixing coef� cients on the boundary of the
parametric space.

Let b be a binary (0, 1) Markov random � eld used in modeling the presence of different
classes of objects. Figure 2(c) shows the realization of b, generated using a Gibbs sampler
(Geman and Geman 1984), with an initial Bernoulli � eld (with p = 0:56) and a 24-pixel
square neighborhood.The random � eld of interest ¹ , shown in Figure 2(d), is an embedding
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of the two random � elds ¹ 1 and ¹ 2 such that ¹ s
iid¹ gs via the piecewise stationary random

� eld ¹ = Ifb(s)= 0g ¹ 1 + Ifb(s)= 1g ¹ 2. Thus, the random � eld ¹ in Figure 2(d) is the union
of r = 2 disjoint regions and each region is composed of some disjoint and connected
subregions. Note that ¹ (s) is identically distributed as ¹ 1(s) (or ¹ 2(s)) for s in the “white”

(c) (d)

(a) (b)

Figure 2. Realizations of stationary random � elds: (a) Stationary random �eld ¹ 1, (b) stationary random � eld ¹ 2 ,
(c) binary random � eld b used to embed ¹ 1 and ¹ 2 into ¹ and (d) a realization of a piecewise stationary random
� eld ¹ .
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Figure 3. Class conditional pdfs g1 and g2 .

(or “black”) region associated with Ifb(s)= 0g (or Ifb(s)= 1g). Let Image S1 be the Figure
2(d) which is a realization of the piecewise stationary random � eld embedded by the binary
random � eld b in Figure 2(c). The class conditional pdfs g1 and g2 corresponding to ¹ 1

and ¹ 2, respectively, are shown in Figure 3. Similarly, we generated Images S2 and S3 (not
shown here) with different realizations of the binary � eld b.

The � eld ¹ meets the criteria for applying the BSDE approach in detecting the targets.
The scan density gs associated with the scan window Ns( ¯ ) is estimated and the pixel s is
then classi� ed according to the rule:

s 2 class 1 if and only if
d(gs; g1)

d(gs; g2)
µ T; (6.1)

where d(¢; ¢) is any distance and T is a prespeci� ed threshold. In the present context, the
integrated square error is used to measure the distance. That is, d(gs; g) =

1
¡1 [gs(y) ¡

g(y)]2 dy. See Geman (1990) for other types of distance measures such as the relative
entropy that one could use. We � rst generated the data Figure 2(c) to create Figure 2(d). The
goal is to obtain Figure 2(c) from Figure 2(d) since in practice, one has only the knowledge
of Figure 2(d) but not Figure 2(c). The classi� cation of each pixel to its corresponding class
via the rule (6.1) creates a � gure similar to that of Figure 2(c). However, the resulting � gure
obtained from Figure 2(d) may not appear like Figure 2(c) due to noise and classi� cation
errors.

We consider two key measures for comparison of the two methods: (1) the average
number of parameter updates per scan window required to reach the desired accuracy of
" and (2) the corresponding average CPU time per scan window relative to that of the
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Table 1. Comparisons at Different Tolerance Levels of " for a Fixed Scan Window Size of ¯ = 2

Simulation (Image S1) Experiment (Image 1)
Improvement Improvement

" Speed # Updates Speed # Updates

0.1 7.0 4.8 3.0 3.7
0.01 13.3 7.1 3.7 5.2
0.005 16.2 8.4 4.3 5.7

conventional EM. The results are summarized in Table 1. The Improvement column gives
the relative improvement of the adaptive SSD estimation method over the traditionalBSDE
approach with respect to the number of parameter updates and the inverse of the CPU time
of the adaptivemethod. It is clear from Table 1 that the adaptivemethod always outperforms
the traditional one with 4- to 8-fold improvement in terms of parameter updates and 7- to
16-fold improvement in terms of the speed. Note that the improvement is quite signi� cant
especially at " = 0:005. Table 2 comparisons were done at " = 0:01 since at " = 0:005, the
traditional BSDE method was extremely slow, especially for larger window sizes, to obtain
the results in a reasonable amount of time. Table 2 demonstrates the effect of increasing the
window size ¯ for a � xed ". Once again, the magnitude of improvement obtained via the
adaptive method depends on the size of the scan window and shows a 26-fold improvement
for ¯ = 4. In Table 3, we � x both ¯ and " at speci� ed values and then assess the performance
of the methods on various images.

It is not surprising to see that the choice of the method becomes clear as the window
size increases or as the tolerance parameter decreases. This is expected since in the � rst
case, the bene� ts of the dynamic adaptation rule (Section 4.1) become apparent with an
increasing size of the overlapping region; whereas in the latter case, the higher the required
accuracy, the slower the traditional BSD estimator is to progress towards the solution. The
plots in Figure 4 con� rm the results presented in the tables.

7. APPLICATION TO AUTOMATIC TARGET RECOGNITION

One of the goals of an ATR experiment is to detect and identify ROI in images. Given
the image of a target region, spatial scan analysis based approach uses estimates obtained

Table 2. Comparisons at a Fixed Tolerance Level of " and for Varied Scan Window Sizes

Simulation (Image S1) Experiment (Image 1)
" = 0.01 " = 0.005

Improvement Improvement

¯ Speed # Updates Speed # Updates

1 9.3 5.8 3.6 5.2
2 13.3 7.1 4.3 5.7
3 17.4 9.3 4.4 6.0
4 26.4 13.2 5.0 6.2
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Table 3. Comparisons at a Fixed Scan Window Size of ¯ = 2 for Different Images

Simulation (" = 0.01) Experiment (" = 0.005)

Improvement Improvement

Image identity Speed # Updates Image identity Speed # Updates

S1 13.3 7.1 1 4.3 5.7
S2 13.6 7.3 2 5.7 7.5
S3 13.5 7.3 3 4.1 5.1
– – – 4 3.8 4.2
– – – 5 3.6 4.7
– – – 6 4.4 5.5

via the moving scan window to estimate the image characteristics in local regions. In turn,
these local estimates are compared across the entire image and if the local estimates are
nearly identical, then the region is considered as homogeneous and hence contains no ROI.
However, if the local estimate is signi� cantly different from the majority, it is labeled as a
potential region of interest for further study.

We now investigate the new approach via the ATR experiment in gray-scale images; in
particular, the detection and identi� cation of man-made ROI in UAV imagery. A set of six
infrared images, shown in Figure 5, extracted from a videotape of a UAV test � ight over
the Naval Strike Warfare Center, Fallon, Nevada in the summer of 1995 (Solka et al. 1998)
are used in our study. In here, the task of an analyst is to determine the location of possible
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Figure 4. Performance curves of the scan processes at the tolerance level of " = 0.01 for varied scan window
sizes: (a) average CPU time per scan window and (b) average number of parameter updates per scan window.
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targets. We build a training model (see Figure 6) as a four-component mixture model based
on Image 1, a training image.

In assessing the methods, we again consider three cases (1) varying ¯ for a � xed ", (2)
varying" for a � xed ¯ , and (3) varying images for a � xed ¯ and ". From Tables 1–3 and Figure
7 it is clear that the adaptive SSD estimation method outperforms the traditional one. The
� ndings are similar to the simulation study, although the improvements are not as dramatic.

Image 1 Image 2

Image 3 Image 4

Image 5 Image 6

Figure 5. Zoomed out electro optical images of the army compound.
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Figure 6. Training models from Image 1.

However, the ATR experiment is conducted in real-time and hence an improvement of
� ve-fold is still substantial.

8. DISCUSSION

This article proposes ef� cient SSD estimation methods by integrating the borrowed
strength technique into the alternative complete data framework. The new methods com-
bine the statistical basis of the BSDE (Section 2) procedure with the stability and improved
convergence rate of the alternative EM methods (Section 3). Furthermore, we extended
the aforementioned approaches via a dynamic adaptation rule for the mixing coef� cients
(Section 4) to eliminate the need to � nd the posterior probabilityof membership of the com-
ponent densities afresh in each subregion. The resulting adaptive SSD estimation methods
(a) provide fast processing; (b) naturally adapt to changes in local image variations (often
the case in missile guidance systems) and background noise as well as the uncertainty of
target properties; and (c) improve the speed of the ATR methods by several fold, with gains
that increase as the size of the scan window increases or as the level of tolerance parameter
for convergence decreases. The adaptive method based on the Rotated EM algorithm is not
only simple and � exible but also showed a seven to 26-fold improvement in simulation
studies (Section 6) and a three to � ve-fold improvement in the ATR experiment (Section
7); with greater improvements for larger window sizes. Improvements were the greatest
in the case of highly overlapping densities. It is possible to apply our adaptive SSD esti-
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Figure 7. Performance curves of scan processes at " = 0.01: (a) average CPU time per scan window and (b)
average number of parameter updates per scan window.

mation methods in contexts where great speed is required such as in processing real-time
and interactive images. We believe that the methods presented in this article represent a
substantial advance for a general larger (possibly complex) class of image problems and
spatial analysis.

We would not expect a substantial improvement over the traditional BSDE approach if
the densities were well separated, overlapping region between the adjacent scan windows
were minimal, or most of the mixing coef� cients were positive. Due to the simplicity of
the BSDE via the Rotated EM, one might prefer it; however, when most of the weight
parameters are zeros, one might combine the Rotated EM with the zero-eliminationscheme
(by sequentially eliminating those support points from the algorithm that have mass zero)
proposed by Pilla and Lindsay (2001).

The dynamic adaptation rule developed for the mixture problem in Section 4 can be
generalized to any problem that can be cast in the missing data framework. The amount of
missing data is directly related to the rate of convergence of an EM-based algorithm. Hence
it is natural to avoid replacing the entire missing data with their conditional expectations
when indeed there is only a fraction of which is missing in the overlapping region. We
believe that this enables one to adaptively manage the missing data in the overlapping
region and further improve the computational ef� ciency.

An alternative approach to the adaptive SSD estimation would replace the AKM algo-
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rithmwith the nonparametricmaximum likelihood(NPML) estimation,where we maximize
the likelihoodover all the mixing distributions.As pointed out by Pilla and Lindsay (2001),
one can start with a Rotated EM on a � ne grid of ³ parameters (act as the support set of
the mixing distribution) and in turn use the resulting solution as a starting point for the
continuous support EM (estimates the ³ parameters simultaneouslywith the º parameters).
This eliminates the problem of using incorrect number of support points or � nding subopti-
mal solutions. See Pilla and Lindsay for details on � nding the NPML estimator via a � xed
support mixture algorithm.
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