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Short Papers____________________________
Segmentation of Random Fields Via

Borrowed Strength Density Estimation

Carey E. Priebe, David J. Marchette, and George W. Rogers

Abstract —In many applications, spatial observations must be
segmented into homogeneous regions and the number, positions, and
shapes of the regions are unknown a priori. Information about the
underlying probability distributions for observations in the various
regions can be useful in such a procedure, but these distributions are
often unknown. Furthermore, while there may be a large number of
observations overall, the anticipated regions of interest may be small
with few observations from the individual regions. This paper presents
a technique designed to address these difficulties. A simple
segmentation procedure can be obtained as a clustering of the disjoint
subregions obtained through an initial low-level partitioning procedure.
Clustering of these subregions based upon a similarity matrix derived
from estimates of their marginal probability density functions yields the
resultant segmentation. It is shown that this segmentation is improved
through the use of a “borrowed strength” density estimation procedure
wherein potential similarities between the density functions for the
subregions are exploited. The borrowed strength technique is
described and the performance of segmentation based on these
estimates is investigated through an example from statistical image
analysis.

Index Terms —Mixture model, profile likelihood, image analysis, digital
mammography.

————————   ✦   ————————

1 INTRODUCTION

RANDOM field applications often require small-area estimates for
some aspect of the local statistical structure. For instance, estimates
of the local probability density of the observations in an image can
be used to improve upon a preliminary segmentation. This is es-
pecially useful in cases for which little or no knowledge of the
number, spatial structure, or statistics of the underlying image
regions is assumed. Unfortunately, the requirement for local esti-
mation implies that there are few observations available for these
individual estimation problems and it is difficult to obtain suffi-
ciently accurate estimates. This paper presents an approach using
borrowed strength estimators which often can improve small-area
estimation, and hence segmentation capabilities.

The purpose of this paper is not to develop a new segmentation
scheme. Rather, we wish to show explicitly that the borrowed
strength methodology presented in Section 2, which produces
improved density estimates by taking advantage of potential
similarities between the local densities, can result in improved
segmentation. Thus we provide comparisons of a simple segmen-
tation scheme with and without borrowed strength.

Let x x Rb g: 0 Æ R  be a random field, with domain of definition

R d0 Ã R . For many applications it suffices to assume that the

sampling is performed on a regular lattice. Let I d d= 0 1,  be the

unit cube in d-space and let R LN
d0 =  be the N-pitch lattice in I d ;
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N corresponds to the resolution. For instance, in digital image proc-
essing one may consider x x LM Mb g:
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sents an M M1 2¥  lattice of pixel locations and the value of the
field observations represents pixel intensity.

Assuming for simplicity that the image is made up of r disjoint
regions R R i ri0 1= » = , ,Kc h  with associated probability density

functions x a xx ib g b g~  for x RiŒ , then the goal is a segmentation

of the image into disjoint regions each of which is homogeneous.
For the purposes of this paper the simple definition of segmenta-
tion is a partition of R0 .
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Thus a segmentation is a clustering, and the goal is to determine
which x RŒ 0  are to be grouped together. Fig. 1 gives an example
of this idea from digital mammography; the mammogram consists
of (subjectively) r = 5  regions: healthy tissue, tumorous tissue,
edge of breast, off breast, and the calcified artery in the lower right
corner. This example will be used throughout to illustrate the as-
sumptions and approach.

It is often the case that the original image pixel values are inap-
propriate for segmentation analysis. In mammography, much
attention has been given to texture features. It is well-established
that gray level alone is insufficient to characterize mammographic
tissue, and that local texture is relevant to the analysis (see, for
instance, [1], [2], [3]). For this paper we consider one of the sim-
plest versions of a local texture, the coefficient of variation s m/ .

For each pixel x we calculate the mean m and the variance s 2  for
the pixel values in a window of radius s centered at x. This yields a
derived field whose observations represent a local roughness
characterization of the original image, normalized for intensity
level. Fig. 2 shows the local coefficient of variation field associated
with the mammogram from Fig. 1 for s = 3.

There are a large number of simple, low-level segmentation al-
gorithms available ([4], [5, chapter 3]). These algorithms provide
an initial partitioning of an image. For simplicity and concreteness
we will consider the watershed algorithm ([6], [7]) which auto-
matically provides a segmentation according to definition (2)
above. (A general feeling for the philosophy of watershed seg-
mentation can be gained from the name itself, the idea being a
partition of the image into local basins of attraction.) Fig. 3 depicts
a watershed segmentation of the coefficient of variation field de-
rived from the example mammogram.

Many low-level segmentation algorithms, including the water-
shed approach, give good localization of boundaries but generate
extraneous regions. The goal of a second stage segmentation rou-
tine is to refine this initial segmentation. Our approach is to cluster
the watershed regions, which will necessarily yield a segmenta-
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tion. (Other approaches to refinement, such as adjustment of re-
gion boundaries, are also possible.) The watershed segmentation
depicted in Fig. 3 can be considered as a regional structure on R0

which defines the local regions. Thus we have
R R i ri0 1= » =~

, , ~Kc h, where the 
~
Ri  are the watershed regions.

For the example shown in Fig. 3, ~r = 101. Estimates of the prob-
ability density for these regions can be used to cluster the regions,
yielding a final segmentation.

The segmentation refinement procedure requires a similarity

matrix Ti j i j, $ , $= a a  based on the local density estimates

$ , , ~a i i r= 1 Kc h . One choice is the integrated squared error given

by

T ISE di j i j i j, $ , $ $ $= = -
-•

•za a a x a x xe j b g b ge j
2

.

In addition, it is often necessary to incorporate spatial proximity
into the procedure. For context-free segmentation, this clustering
is not based upon spatial dependencies among the regions. Such
an approach is often unrealistic ([8, chapter 13], [9, chapter 7]),
ignoring useful spatial information. Fig. 4 presents the irregular
lattice derived from the watershed segmentation and used to rep-
resent spatial neighborhoods. The lattice is obtained by consider-
ing two sites, or watershed regions, to be neighbors if the Euclid-
ean distance between their centers of mass is less than a prescribed
constant c. This is analogous to the neighborhood structure im-
posed in [9] on North Carolina counties. Fig. 4 shows the neigh-
borhoods associated with c = 0.075. As discussed in [9], the justifi-
cation for c = 0.075 is based on a trial-and-error analysis of a lat-
tice’s ability to characterize the spatial dependence.

In this paper we consider the case in which the initial low-level
segmentation and the spatial neighborhood structure are given
and the goal is to refine the segmentation via region clustering.
Furthermore, we consider the clustering algorithm to be given (see
the Appendix). The only aspect of the procedure which is altered
for comparison is the method of obtaining the estimates $a i , and it
is shown that the second stage segmentation benefits from using
borrowed strength.

2 DENSITY ESTIMATION

To improve segmentation of the image (Fig. 1) we suggest that a
refinement of the initial segmentation produced by the watershed
algorithm can be obtained by clustering the watershed regions
(Fig. 3), and that this clustering be based on spatial proximity (Fig.
4) and local probability density estimates $a i  for the marginal den-

sities of the coefficient of variation (Fig. 2) in the various regions
~
Ri . The implicit hypothesis is that the $a i  are sufficiently different
for different tissue types (healthy and tumorous) to aid in the
clustering.

An initial investigation of this hypothesis, given in Fig. 5, is
promising. Fig. 5 depicts kernel density estimates (see, for in-
stance, [10]) for the coefficient of variation in the true regions RH

(healthy tissue) and RT  (tumorous tissue) in the example mam-
mogram. For this image the numbers of observations per region
are nH = 63,505 and nT = 2,031. This plot serves as first-order verifi-
cation that the probability density functions for tumorous versus
healthy tissue differ and estimates can be useful in clustering the
watershed regions.

Unfortunately, the lack of knowledge of the location of differ-
ing regions (tumor and healthy) necessitates that the regions 

~
Ri

obtained in the initial segmentation (Fig. 3) be small compared to
the anticipated size of the true but unknown Ri . These region sizes
are too small to allow accurate nonparametric estimation of the
densities a i , especially in light of the even smaller effective num-
ber of observations due to dependence.

The competing requirements of estimation of an unknown den-
sity and local investigation to determine the segmentation regions
lead to an impasse which cannot easily be overcome. However, in
many applications it is reasonable to assume that the underlying
local densities are (potentially complex) mixture models. Further-
more, it may be the case that the underlying mixture components
can be considered to be invariant across class with the probability
density functions differing only in their mixing coefficients.

In order to perform parametric estimation of the a i , assump-
tions must be made as to the form of the densities. As a working
assumption, consider the a i  to be finite mixture models (e.g., [11],
[12]). For simplicity we assume mixtures of normals, but the
treatment can be generalized to mixtures of any absolutely con-

tinuous exponential family density. Assume a x a x y li i ib g e j= ; ,  is

a mixture of mi component normals. That is,

a x p j x m ni
t
i

t
i

t
i

t

mi

b g e j=
=
Â ; ,

1

                               (3)

where y m n m ni i i

m

i

m

i
i i= 1 1, , , ,Ke j  and l p pi i

m

i
i= 1, ,Ke j .

We let $a i  represent a maximum likelihood estimate of the
marginal densities of the coefficient of variation for the ni  obser-

vations x xx x
ni1c h e j, ,K , where x x R

n

i
i1, ,

~
K{ } Ã . These estimates

are termed “local” throughout because they are based only on the

Fig. 1. Digitized mammogram (enhanced for display) and radiologist’s
boundary for biopsy-proven malignant tumor.

Fig. 2. Local coefficient of variation field and radiologist’s boundary for
the mammogram depicted in Fig. 1.
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local sample from region 
~
Ri , unlike the borrowed strength esti-

mates described below. Once the number of terms has been de-
termined, the $a i  are conventional maximum likelihood estimates
obtained via the EM algorithm (see, for instance, [11]). Given mi ,

an estimate for y li i,e j  is obtained by maximizing the regional

likelihood

L xi i i

j

n

j
i i

i

y l a x y l, ; ,e j e je j=
=

’
1

                          (4)

It should be noted, however, that the determination of the
number of terms in a mixture model, required for both the local
and borrowed strength estimators considered herein, is no mean
feat ([12, Section 5.2], [13]). The complexity of the density esti-
mates used here is chosen using the adaptive mixtures proce-
dure of [13]. The requirement in this work for a data-driven de-
termination of the number of terms in the models makes it nec-
essary to use a flexible mixture-based estimator such as adaptive
mixtures. Priebe et al. [14] investigate semiparametric borrowed
strength.

Consider the estimates $a H  and $a T  shown in Fig. 6. These esti-
mates have complexity mH = 9  and mT = 4, and compare favora-
bly with the kernel estimates. As one would expect, the moderate
size of the tumorous sample translates to a less accurate estimate.
Nevertheless, Fig. 6 suggests that, at least for this example, the
mixture model assumption may indeed be reasonable, and normal
mixture models can be used to estimate the densities.

The borrowed strength assumption is that the local estimates
can be improved upon when there are fundamental similarities
between the a i  and a j , even when these densities differ. In par-
ticular, when the a i  are finite mixture models whose underlying
mixture components y i  are invariant across the entire field do-

main R0  in terms of their location in parameter space, then the
local mixture probability density functions differ only in their
mixing coefficients li . An estimator which exploits this invari-
ance by using all the observed data (“borrowing strength” from
potentially dissimilar densities) to develop an estimate of the
invariant parameters y i  and imposing this estimate as a con-

straint on the estimation of the li  (and hence the local probabil-
ity densities a i ) can produce superior local estimates and hence
superior segmentation. This procedure can be seen to be a pro-
file likelihood technique [15].

The additional assumption is made that m mi = 0  and

m n m n y y m n m n1 1
0

1
0

1
0 0 0

0 0
i i

m

i

m

i i

m mi i, , , , , , , ,K Ke j e j= = =

for all i. Thus for normal mixtures

a x p j x m ni
t
i

t t
t

m

b g e j=
=
Â ; ,0 0

1

0

                              (5)

y 0  is common to all of the densities a i  and the difference between
the densities is encompassed entirely in the mixing coefficients

l p pi i

m

i= 1 0, ,Ke j. The borrowed strength estimate is obtained by

obtaining a maximum likelihood estimate for y 0  based on

all the data (the n0  observations x xx x
n1 0c h e j, ,K , where

x x R
n1

0
0, ,K{ } Ã ). The profile likelihood estimate 

~
li , given this

estimate ~y 0  of y 0 , is then obtained based on the local sample of ni

observations x xx x
ni1c h e j, ,K . That is, we combine the joint likeli-

hood estimate ~y 0  obtained by maximizing

L xj
j

n
0 0 0 0 0

1

0

y l a x y l, ; ,e j e je j=
=

’                          (6)

with the regional profile likelihood estimate 
~
li  obtained by maxi-

mizing

L xi i
j

i

j

ni

l y a x l y~ ; ~0 0

1
e j e je j=

=
’                         (7)

Estimating ~ ; ~ ,
~

a x a x y li ib g e j= 0  using (6) and (7) is termed bor-

rowed strength maximum likelihood. The improvement in these esti-
mates that can be gained through the use of the borrowed strength
methodology is potentially significant.

For model (5) we have consistency of the borrowed strength es-
timators and their superiority to the local approach for independent
observations. These results follow in a straightforward manner from
the standard maximum likelihood results in finite mixtures of expo-
nential family densities as given in, for instance, [11]. A more de-
tailed presentation of borrowed strength mixture models can be
found in [16]. Under spatial dependence the above equations repre-
sent M-estimators (see, for example, [17, chapter 3]) and additional
considerations are necessary to establish consistency.

Consider an eight-term approximation m0 8=e j  to

a a a0 0 0= +n n n nH H T T/ /e j e j

Fig. 3. Watershed algorithm yields an initial segmentation of the exam-
ple mammogram into ~r = 101 local regions.

Fig. 4. Lattice derived from watershed regions (c = 0.075) depicted in
Fig. 3 represents spatial neighborhood structure.
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where n n nH T0 = + . (As before, adaptive mixtures [13] is used to
determine the number of terms in the model.) This approximation also
yields the estimate ~y 0  for the means and variances of the borrowed

strength estimates ~a H  and ~a T ; these approximation are shown in Fig.
7 to compare favorably with the kernel estimates indicating that the
borrowed strength assumption may indeed be warranted.

3 EXAMPLE RESULTS

When employing any statistical procedure it is necessary to vali-
date the assumptions to the extent possible. For borrowed strength
the key assumption is that the different local densities can be
modelled as finite mixtures with the same means and variances.
This assumption is investigated for digital mammography in [18].
In summary, the ISE between borrowed strength mixture esti-
mates and their associated kernel estimates for healthy and tu-
morous tissue ISE ISEKE KE, ,a a a ae j e je jand  is negligible com-
pared to the ISE between estimates for different tissue types
ISE ,a ae je j .

Nevertheless, it is difficult to conclude that the densities for the
watershed subregions 

~
Ri  are being accurately modeled based on

the estimates ~a H  and ~a T , and it is these subregion densities which
are at the heart of the borrowed strength assumption. Figs. 6 and 7
could be misleading. An investigation of subregion density esti-
mation performance is necessary, and will now be presented. Ac-
tual estimates for selected watershed regions in the example
mammogram are investigated to indicate the improvement in local
density estimates afforded by the borrowed strength methodology
and how this improvement impacts the eventual agglomerative
segmentation of the initial regions.

Four regions, two tumorous and two healthy, have been se-
lected. For each of these four regions, both local and borrowed
strength estimates have been obtained. The two tumorous esti-
mates are more alike when using borrowed strength than when
using local estimation. Similarly for the two healthy estimates.
These within-class results, taken together with the between-class
results, show that borrowed strength yields tumorous estimates
more distinguishable from healthy estimates than does the local
estimation procedure. These results are presented numerically, in
terms of ISE, in Table 1. The tumorous regions are T = {63, 69} and
the healthy regions are H = {70, 73}. These results involve only the
ISE distances and do not take into account spatial proximity. Nev-
ertheless, in terms of the most simple-minded clustering, we can
see that the borrowed strength estimates will allow the four re-
gions to be separated into the correct two clusters, while the local
estimates will not.

TABLE 1
ISE RESULTS FOR SELECTED REGIONS FROM

THE EXAMPLE MAMMOGRAM

Local Estimates Borrowed
Strength
Estimates

Within
Tumorous
Class

ISE $ , $ .a a63 69 0 16e j = ISE ~ , ~ .a a63 69 0 04e j =

Within
Healthy
Class

ISE $ , $ .a a70 73 0 12e j = ISE ~ , ~ .a a70 73 0 02e j =

Between
Classes

min $ , $ .
h H
t T

t hISE
Œ
Œ

=a ae j 0 13 min ~ , ~ .
h H
t T

t hISE
Œ
Œ

=a ae j 0 11

Actual segmentation of the image depicted in Fig. 1 is quite
successful. Figs. 8 and 9 give the results of applying the segmenta-
tion algorithm described previously to local and borrowed
strength probability density estimates, respectively, for each wa-
tershed region. A synopsis of the approach employed includes:

1) Given an image I (Fig. 1), feature maps, consisting of scalar
or vector-valued observations at each x RŒ 0 , are obtained.
F f I= b g used here is shown in Fig. 2, where  f  yields a local
coefficient of variation.

2) C c F= b g  produces local regions via a low-level operation.
The scheme employed here uses the watershed algorithm,
with results shown in Fig. 3.

3) For each of these regions we produce density estimates $a i

obtained solely on the data in region 
~
Ri  and ~a i  using the

borrowed strength approach.
4) Consideration of some distance (ISE is used here) between

these estimates together with the spatial information pro-
vided by a lattice based on region location (Fig. 4) yields a
distance di j,  between 

~
Ri  and 

~
Rj .

Fig. 5. Kernel density estimates for healthy versus tumorous tissue
coefficient of variation.

Fig. 6. Comparison of local mixture model estimates $a H  and $a T  with
kernel estimates (dashed) for the probability density of healthy versus
tumorous tissue coefficient of variation.

Fig. 7. Comparison of borrowed strength estimates $a H  and $a T  with
kernel estimates (dashed) for the probability density of healthy vs.
tumorous tissue coefficient of variation.
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5) The symmetric ~ ~r r¥  similarity matrix D di j= ,o t  thus ob-

tained, and a clustering parameter d, are all that is required
to produce a clustering of the original regions, yielding a fi-
nal segmentation. The simple clustering algorithm used in
this paper is given in the Appendix.

The segmentation algorithms have produced distinct clusters,
or classes, with the two regions corresponding to the location of
the tumor making up one of these. Thus the segmentor has suc-
cessfully indicated the tumorous tissue as distinct from the rest of
the image. The two watershed regions entirely within the tumor-
ous region have been correctly segmented as distinct from the
majority of the tissue. Separate segmentation clusters have been
obtained for tissue on the edge of the breast. The lower right cor-
ner corresponds to the calcified artery. It is seen from comparing
the figures that the borrowed strength procedure produces fewer
false positives - regions of healthy tissue which are not clustered
with the majority of the healthy tissue. Monte Carlo simulation
results and quantitative results from a set of mammograms are
presented in [19] indicating that this conclusion genralizes beyond
this example image.

4 CONCLUSIONS

A borrowed strength approach to estimating local probability den-
sity functions in a random field has been presented as a technique
to improve upon an initial low-level segmentation routine. Given
an initial region map, probability density estimates, and spatial
proximity information, the initial regions are clustered to produce
a final segmentation.

This algorithm is seen to yield superior results when employ-
ing the borrowed strength density estimation technique, as com-
pared to local estimation. The assumption is that some subset of
the original segmentation boundaries are acceptable and we wish
to delete those which are extraneous through clustering. Thus
borrowing strength has the potential to improve present perform-
ance in segmentation applications for which no simple parametric
assumptions can be made and there is a limited number of obser-
vations available for the required estimation of local densities.
Using specific algorithms for the various components of the over-
all approach, we have presented a detailed example from digital
mammography which indicates how and why the borrowed
strength technique yields superior results

Issues which need to be addressed include the effect of within-
region dependencies on the density estimation procedures, the
incorporation of class allocation dependency assumptions, the
choice of low-level segmentation algorithm, the choice of texture
feature, and particulars concerning the clustering routine.

APPENDIX: CLUSTERING ROUTINE

Given a distance d > 0 and a similarity matrix D di j= ,o t  for re-

gions 
~

, , ~R i ri = 1 Kc h , for t Œ 1, , ~K rm r , let T dt t td t db g o t= ¢ <¢: , .

Let T denote the set of ¢r  unique Tt db g ; T T T= ¢1, ,K ro t . Note

that for d > 0, t tŒ » "Ti  and T Ti j,  are not necessarily disjoint.

Let ¢ ∫ ¢ ¢ ¢$ $ , , $J J J1 K ro t  where

¢ ∫ =
R
S|
T|

U
V|
W|Œ

$ arg max
. .

J i Card Ti

j s t T

j

j
t

t
e j

(with ties broken arbitrarily).
Note that ¢$J i  might be null, t tŒ » ¢ "$J i , and the ¢$J i  are disjoint.

Let r  be the number of nonnull ¢$J i  and $ $ , , $J J J∫ 1 K ro t  be the set

of these “clusters.” Then $J  is a segmentation of R0 .
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