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The detection and identification of regions of interest in spatial or temporal data is a common concern 
in automatic target recognition. One approach to region-of-interest identification involves the use of 
spatial scan statistics. A difficulty arises due to competing concerns: Small scan windows are required 
for potentially small targets, but larger scan windows are necessary to improve the accuracy of the 
detector. When the scan statistics are mixture-model density estimates, a borrowed strength profile 
likelihood approach is shown to be superior to conventional likelihood estimators. We investigate these 
spatial scan density estimates on example imagery from an unmanned aerial vehicle. 
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Automatic target recognition (ATR) is a problem of great 
importance attracting significant research activity; see, for 
instance, the special issue on ATR of IEEE Transactions on 
Image Processing (1997). One aspect of ATR is the automated 
detection and identification of regions of interest (ROI) in 
images. Given the image of a target area, our approach is 
that of spatial scan analysis, or "moving window estimates," 
wherein image characteristics in local regions are estimated 
and these estimates are compared across the entire image. 
If all the local estimates are nearly identical, then the area 
is likely homogeneous, indicating that it contains no ROI. 
A region for which the local estimate is significantly different 
from the majority "background" should be labeled as a 
potential region of interest for further study. 

Let an image be represented as real-valued observations 
S(x) made at spatial locations x E R? C Rd, where the obser- 
vations represent pixel intensity. Cressie (1993) described the 
scan process for given 6 > 0 as f(s(y): y E R(x; 5)) for all x 
such that R(x; 5) c R?. The R(x; 8) are scan regions around 
the spatial locations x. For a discrete image defined at pixel 
locations on a lattice, we let I and n' denote the number of 
scan regions and the number of observations in the ith region 
R' respectively. The locality statistic f(.) is a function of the 
observations in the local neighborhood around x. One choice 
for R(x; 8) is the ball of radius 8 centered at x. 

Henceforth, we use s instead of ((x) for simplicity. We 
consider the local regional image characteristics of interest 
to be the parameters in a finite mixture estimate of the local 
marginal probability density function. That is, the probability 
density function ai has the functional form 

inj 

c'() = a(; 0') = A'C(; ), (1) 
t=l 

where each A' is nonnegative, E' , A, = 1, and each C(Q; #;i) 
is itself a density function parameterized by a, E r' c Rk,. 
We denote 0' = (i',i A') = (('i, . .. , l ), (A,, .... A,))' 
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and set 

in 

o'= {(i ,A')' :0 A< 1, EA = 1, 
t=l 

and ti E fI' for all t = 1,..., mi}. 

(Here and hereafter we take t = 1, ... m - 1 in the mixing 
coefficients A' due to the constraint that the A' sum to unity.) 

We use an estimate of a', a = a(.; 0') = f(s(x): x E Ri), 
as the locality statistic. A fundamental assumption underlying 
our approach to the ROI problem is that the (marginal) prob- 
ability density function of local image features can be used to 
distinguish between background and regions of interest. 

Our interest is to determine if there are candidate ROI in the 
image or if the I regions are identical in terms of the image 
characteristics under consideration. In this framework, the null 
hypothesis in a traditional multiple-comparisons methodology 
is that all the marginal density functions a' are the same, 
whereas the alternative hypothesis is the nonhomogeneity 
among those marginal densities. 

The key to the test of nonhomogeneity is to find 
an accurate estimate of the maximum pairwise distance 
D = max,jE(l ....)d(a, ai), where the (pseudo-)distance 
d(., .) is defined on the space of probability densities under 
consideration. Large values of D indicate nonhomogeneity of 
the image, thus giving evidence of the existence of an ROI. 

To test for nonhomogeneity, we consider the scan statistic 
T = maxi,jE(, ...) d(a', aj). The power of the test based on 
this statistic is related to the success of T as an estimate of 
D. Regardless of the choice for d(., .), the variance of the 
estimates ai will affect the variance of the statistic T, which in 
turn may affect its power to detect large distances between two 
densities. Because the densities a' are finite mixture models, 
the variance of T is a function of the variance of the parameter 
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estimates Oi. Thus, better estimates of 0O yield a more accurate 
scan statistic T that should have higher power for the test of 
nonhomogeneity under the alternative. 

Different choices are available for d(., .). In Section 2, we 
consider tests for which d(.) is based on the squared error 
(SE) of the mixing coefficients; given the similarity assump- 
tion qif = i/ j for all i, j discussed in Section 2, we present 
results based on SE(A', Aj) = (A'- AJ)'(A'- AJ). Section 2.3 
relates these results to tests based on integrated squared 
error (ISE): 

ISE(0i, e') = fa((; 0i - a(\; ej))2d. 

The choice of d(., .) is an important issue in the test of non- 
homogeneity. If this choice does not capture important differ- 
ences in the local image characteristics, high power of the test 
of nonhomogeneity will not necessarily translate into better 
detection of ROI. 

Given an appropriate measure of distance d(., .), the 
efficiency of detection based on spatial scan analysis is 
highly influenced by the variance and bias of the estimates. 
To detect anticipated ROI of unknown size, the size of the 
scan regions needs to be relatively small. Thus, the number 
of observations ni in each scan region, on which the local 
estimates are based, is limited. This in turn suggests that 
the local estimates may have unacceptably large bias and 
variance, which reduces the probability of the scan statistic T 
being close to D, thus adversely affecting the power of the 
test for nonhomogeneity. Dependency further exacerbates this 
problem; because imagery exhibits (at least local) positive cor- 
relation, the effective local sample size, in terms of equivalent 
number of independent observations (Cressie 1993), is even 
smaller than ni. (A second dependency, due to the overlap in 
adjacent scan regions, complicates the multiple-comparison 
problem.) 

To address the conundrum raised by the competing require- 
ments for small scan regions (yielding small sample sizes) and 
large sample sizes (for better local estimates), we consider 
the borrowed strength methodology (Priebe 1996). This entails 
combining all the observations in R? into one sample and 
estimating an unconditional probability density function. The 
estimates of the regional characteristics are obtained through a 
profile likelihood technique. An assumption for using the bor- 
rowed strength methodology is that the underlying marginal 
densities of all the regions can be modeled with finite mix- 
ture models. In addition, the difference between the mixture 
models for the different classes is encompassed entirely in the 
mixing coefficients. These assumptions are practical because 
mixture models can approximate (nearly) any probability den- 
sity function (e.g., Young and Coraluppi 1970) and even low- 
order normal mixtures span a rich class of densities (Marron 
and Wand 1992). 

We show that, by reducing the mean squared error (MSE) of 
the local parameter estimates if/' and Ai, the borrowed strength 
methodology is superior to the local likelihood (LL) method- 
ology, which uses only observations in one scan region for the 
corresponding local estimate. Furthermore, we compare the 
borrowed strength estimates with those obtained via the seem- 
ingly appropriate joint likelihood (JL) approach and exhibit 
the superiority of the former. 
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The LL, JL, and borrowed strength profile likelihood 
(BSPL) functions are given in Section 1, together with 
the steps of the EM algorithm for obtaining the maximum 
likelihood estimate (MLE) based on each. Section 2 discusses 
the properties of these three estimators and, in particular, 
compares the JL with borrowed strength in terms of the 
asymptotic bias of the JL estimates 0L and the difference 
between the asymptotic MSE of the JL estimate AJL and 
the BSPL estimate APL. The intuition for the superior- 
ity of the borrowed strength estimates comes from the 
nonorthogonality between parameters (see Cox and Reid 
1987). Here we obtain a proof of the asymptotic biasedness 
of the joint likelihood estimate, in the spirit of Neyman and 
Scott (1948), by analyzing the EM steps. In Section 3 we 
consider the application of our methodology to the ATR 
ROI identification problem. We conclude in Section 4 with 
a discussion of the results, their implications, and their 
applicability. 

1. FINITE MIXTURE ESTIMATES IN 
SPATIAL SCAN ANALYSIS 

For the spatial scan process under consideration, we assume 
that the observations in region R', { } = s(x'), j = 1 .. , n'}, 
have the identical underlying density a'. For practical 
purposes, it is straightforward to incorporate dependence 
structures such as m-step dependence and simple mixing into 
the estimation frameworks considered in this section (Guyon 
1995). The dependency translates into a smaller effective 
sample size but does not otherwise affect the asymptotic 
behavior of the estimators. The likelihood functions become 
pseudolikelihoods. For simplicity and concreteness, we 
assume in what follows that the observations C are mutually 
independent. 

We consider three competing estimates for a' that are 
relevant to spatial scan applications. These estimates are 
MLE's obtained from the LL, JL, and BSPL functions, 
respectively. 

1.1 Local Likelihood 

Consideration of only the local sample, the observations in 
region R', yields the simplest of the three estimates. Based on 
the observations s and the marginal density a' given in (1), 
the regional LL function is 

(2) L(0'I) = n ai(j) = nia (; 
j=l j=l 

and the MLE therefrom, hereafter called the LL estimate, is 
denoted as OLL = (ILL' LL). One such estimate is required 
for each scan region Ri. 

The EM algorithm (Dempster, Laird, and Rubin 1977; 
Redner and Walker 1984; McLachlan and Krishnan 1997) is 
applied to obtain the LL estimate 0LL. For normal mixtures 
[i.e., in (1), C(.) is a normal density 0(.) with if/ = (t'I, v,)', 
where ,/' and v, are the mean and variance, respectively, for 
the tth mixture component in the ith scan region], the EM 
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algorithm gives the iterative parameter update equations 

i(k+ ) 1 
+ ,i(k) 

j=l 

i(k+\1) I_ lj= jPjt 
.-i(k) fi,k+ ) = ;=':~"i(tk) and 

Vt = n 

where 
= i(k) 4(, ^ i(k) -i(k) 

Ajt(pi ^,; LI, , 
-i(k+l) 

t o 6j ; it t ) 
Pjt ~ 

ml 'i(k)o(gj; Hi(k) -i(k)) 

for i= ,...,I, j= 1,.. . n, and t = ,...,mi. 

1.2 Joint Likelihood 

To apply the JL methodology, one must assume common 
characteristics across the scan regions. This commonality is 
achieved by letting all the mixtures be of the same order 
(mi = m for i = 1, .... I) and designating i/ to be structural 
parameters (Neyman and Scott 1948) with i/' = i?/ for all i. 

Thus, 
m 

a'() a(; oi ) = a(; qt?, A') = EAC(e; o?) 
t=l 

so that the difference between the densities is encompassed 
entirely in the incidental parameters (Neyman and Scott 
1948)-the mixing coefficients A' = (Al,..., ;)'. For 
example, for normal mixtures, Equation (1) becomes 

a' () = a (e, iO, A') 

=a(; (O,, o.. ,),(A. ,,, )) 
I11 

= E A't 0(:; ~ot?, pt), 
t=l 

(3) 

where ,? = (/f? , O . /, vo o)' is the common structural I ' ' m' I/n 
A 

m 

parameter to all of the densities a'. 
Because the structural parameter vector 4?i is common to 

all the regions, it is natural to consider the JL estimate 0JL = 
,(Lf, ALL) obtained by maximizing the JL function 

I ni I Ili 

(O'..... 0) = n I f a(; oi) = n n a(; o, A). 
i=lj=l i= j=l 

(4) 
The EM algorithm for the JL estimate for m-component 

normal mixtures yields 

i(k+I) p (k) 

j= I 

E1 

~ 

t' i E,i(k) 
11(k+I]) ily= I, j= ;pi t 

t 1I ini(k) 

and 

i(k) (k+l) 2 
V(k+l) Ii=l j= Pjt t; ) 

t 

1 il' ~ 

where 

vi(k+l) k X' 4(j; (k) -(k) 

Pjt m \I,k /(k) ,(k) 

for i= 1,... I, j= 1,... ni, and t= 1,.. m. 
Under the similarity assumption, the JL estimate is more 

appropriate than the LL estimate because it uses observations 
in all the regions to estimate the structural parameter 1i0. 
A major deficiency of JL is that it is appropriate only 
for nonoverlapping scan regions. When overlapping scan 
windows are used, which is advantageous because it elimi- 
nates the boundary issue inherent in an arbitrary choice of 
partition, the applicability of the JL procedure is limited. 
[Note that when the sizes of the scan windows are all the 
same and edge effects are disregarded, the log of Eq. (4) is 
proportional to the actual log JL.] 

1.3 Borrowed Strength Profile Likelihood 

Under the same assumptions considered in the previous sec- 
tion, we now present BSPL. If we consider that any of the 
no = > ni' observations are taken from the ith sample with 
probability pi proportional to n' for all i = 1,... I, Ei p' = 
1, then the unconditional [unconditional on the location x of 
((x)] density function can be expressed as 

) I n= A(; , .,) a0(5t) = p'a'(S) = EA?UI(f; /L? V?) -C(Q; #1, A?), 
i=l t=l 

where AO = EipiAi. 
The BSPL estimate is obtained by combining the likelihood 

estimate I0p obtained by maximizing 

n0 n( 

L0(0O,, Ao) = HI a(e(; 00) = FI a(j; ?,,O AO) 
j=l j=l 

(5) 

with regional profile likelihood (PL) estimates (McCullagh 
and Nelder 1989) APL obtained by maximizing the PL function 

j=i 
(6) 

The first step in the BSPL demonstrates the idea of "borrow- 
ing strength." Under the similarity assumption, the structural 
parameter 1?0 is the same throughout the region. Thus, all the 
observations can be used to estimate ,r?. 

In this case, the overall sample can be represented as 
UI {(J: j = 1, . . ., n = 1, . . . nO}. We use the 
EM algorithm twice first to find 0? = (,PL' A?) and then to 
fin~ ~- gtpn tl o find APL given PL. 

For normal mixtures the EM steps for 1L are essentially 
the same as the LL steps, except for using the overall sample 

i=1 j= n1= 0(k?+\) = 1 .n.i (k) < . - -(k) 

-O(k+l) i/ Z 1= ,Pjt En,l nPnt At = -noXo (k noE (k) 
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Let the positive definite Fisher information matrix for Oi be 
1 I ni 

.0t 
(k+1) 1 -0 (k+ 1 E :i ni i(k) _ 

i - _-0 (k+l))2 
-k Pjt c A 

n A X i=l j=l 

n/, 
--(k) -0 ( k+l)2 

0 0(k) EP,, 
(Sn -t ) 

n At n=1 

where 

P jt ' - - P nnt 
^i (kl) _ A? ( j^t i ^,( k) +i) 
Pjtyr - m 0^(k)( n; 0^(k) ^O(k) Pnt 

for i = ,...,I, j= 1,. . . n, and t= 1,. ..m. 
Once we obtain L = (pu PL, ^ PPL) the ^ 'IPOL PL I IPL '- ...mp L I.... mPL' , 

EM algorithm for APL yields 
n'. 

Ai(k+l) 
1 

_ p(k) 

j=l 

where 

i('(k) i. 0 0? 
~i(k+l) At CC(, It t 

Pit 
~ 

m Xi(k) ( i fO i )t 

for i= 1 ... I, j = 1,. .., and t = 1, . m-1. 
The BSPL methodology thus combines the structural 

parameter estimates based on all available observations with 
subsequent local profile estimates of the incidental parameters. 

Intuitively, the BSPL estimates are superior to the JL esti- 
mates. Although the JL estimate of f/i uses all the avail- 
able observations as well, the incidental parameters A' are 
estimated at the same time. As suggested by Neyman and 
Scott (1948) and proved in Section 2, the JL estimate rJL of 
the structural parameter io? is asymptotically biased for large 
I, the number of scan regions, and fixed n', the sample size. 
Cox and Reid (1987) indicated that the bias of the MLE of af0 
can adversely influence the estimate of A' if the two parame- 
ters are nonorthogonal. To resolve the problem of asymptotic 
biasedness, we introduce the unconditional marginal density 
a? with universal parameters (a(?, A?) to obtain an asymptotic 
unbiased estimate PL, and this is then used in estimating 
local A"s, yielding a better estimate of A'. In Section 2, we 
compare the three estimation approaches in terms of the MSE 
of the various parameters. 

2. COMPARISONS 

Spatial scan analysis for ROI identification in ATR demands 
many small scan regions. Thus, the relevant asymptotic results 
are for I -, oo and n' fixed for i = 1, .., I. Let the MSE of an 
estimate of 0O, say 0', be defined as MSE(0i) = E(se(0', Oi)). 
In this section, the three competing likelihood estimators are 
investigated in terms of MSE as I -- oo. 

2.1 Comparison Between the BSPL and 
the LL Estimates 

2.1.1 Local Likelihood. Recall from Section 1.1 that the 
LL estimates are obtained using only the n' observations in 
region R'. When the sample size n' is fixed and finite, the LL 
estimate 0OL is not consistent for i = 1, ..., I and remains 
inconsistent as I increases. 

= I ( 
Ai'A IAiA 

We assume that the derivatives of a(5; 0) of orders up to 
3 exist and meet certain boundedness conditions (Lehmann 
1983). By allowing n' -- oo, the LL estimate 0.L = (t,L ALL) 
is asymptotically normal; that is, 

ot 
. OLL 1 L 

/('"i 
- >= / I N(0, I-l). 

VALL-A'/ 

(7) 

For the MSE of the LL estimate 0LL, we have n'. 

MSE(0LL) > tr[(7,')] as ni -- oo, where tr(A) is the trace 
of a square matrix A, the sum of its diagonal elements. In 
particular, n' MSE(ALL) > tr[(I,,)Ai], where (,')AiA is 
the (mi - 1) x (mi - 1) lower right submatrix of I1'. 

2.1.2 Borrowed Strength Profile Likelihood. For the 
BSPL estimate, denote by 

I =o ( = I o 
IA() '4 IA, A? 

the Fisher information matrix of the unconditional den- 
sity a(6; 0?), where 0? = ('?, A?). We assume that the 

assumptions mentioned in Section 2.1.1 for a(5; 0) also 
holds for a(S, 0?). In this case, the distribution of 0PL is 
asymptotic normal: 

V(PL 
-- 
-?) f > N(0, ((Ioo )q(,o) as I -+ oo, ql p 11 (8) 

where (Ioe0) -I0,, is the 2m x 2m principal submatrix of (Ioo)-. 
Equations (7) and (8) indicate that the convergence rate 
for 0PL and ' is V/ and /n, respectively. This leads to 
the following comparison: 

Proposition 1. 
1. MSE(L) = 0(1/ni) and MSE(4L) = O(1/n?). As 

I -- oo and n -+ oo, if af0 and A' are nonorthogonal, then 
2. n' MSE(AL) < ni MSE(AL). 

Proof. See Appendixes A.1 and A.2. 

Both the LL and BSPL can be used on overlapping scan 
windows. Intuitively, the BSPL estimates are superior to the 
LL estimates because all the observations are used to estimate 
the structural parameter fr?. Proposition 1 shows this superi- 
ority of the BSPL estimates explicitly. 

2.2 Comparison Between the BSPL Estimate and 
the JL Estimate 

2.2.1 Asymptotic Bias of ioL. In this framework, though 
the structural parameter vector 1?0 is the same across regions, 
the incidental parameter vectors A' are not assumed to be 
the same, and their number increases as the number of scan 
regions I -- oo. Neyman and Scott (1948), through an exam- 
ple, showed that the MLE of the structural parameter may 
not be consistent. We generalize this result to the case of JL 
estimation for finite mixture models in spatial scan analysis. 
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Theorem 1. Consider general m component mixtures of 
an absolutely continuous exponential family density function 
C(.) with 0 = (itl, .. ., n, A,... ., A,_l)', an (m(k+ 1)- 
1)-dimensional parameter vector, where i, E I, C [Rk is a 
k-dimensional parameter for the tth component C(.; i',) in the 
mixture. 

If (1) the structural parameter if = (at, .. ., t,,)' and the 
incidental parameter A = (AI, ..., A,,)' are nonorthogonal and 
(2) the existence of, and certain boundedness conditions on, 
derivatives of a((; 0) of orders up to 3 are given and I(0,rue), 
the Fisher information matrix evaluated at the true 0true is 

assumed to be well defined and positive definite, then fI? 
is asymptotically biased almost surely. 

Proof. See Appendix A.3. 

For m component normal mixtures, when ni is fixed and 
I -> oo, let {bo,,, b, }'L be the asymptotic biases of the esti- 
mates of if0 = (/U, o,. .. ? v)'. These biases can be 
obtained through the EM algorithm as 

E(Z ';'=,i I i; E(-O j= j,0, jt)^ tE(^JL)= )A + b E= l PIJ 
Ic L (/A;JL) 

E( -tJL) = tb) = 
ilE(A;j 

(9) 

where t = 1,. . ., m. The biases {bl,, b<,},7l can be obtained 
by solving the preceding 2m equations once we find the values 
of the expectations on the right side of (9) through numer- 
ical integration. For m = 2 and for any fixed n', {p5l,}', is 
a sequence of deterministic functions of { = }J'i conditional 
on 0L and is independent of the choice of the starting point 

0o(0). For m > 3 and n' > 2, {p/,} =l depends not only on the 

observations {j) }ji but also on i/0() whenever the JL func- 
tion (4) has more than one local maxima. This dependence 
on the starting point for the EM algorithm adds complexity to 
the calculation of the biases for m > 3. 

2.2.2 AMSE(AjL) versus AMSE(A'L). Once we have 
the asymptotic bias for 0L, the JL estimate A,JL for the Lllq U'JL I VI~ V1CLr3 IVI ~f~JtJL 
incidental parameter A" can be obtained, alternatively, by 
maximizing the conditional likelihood function 

n' in 

Lj(A'il) = EA (; ) cL~<' L- t I )' 
j=l t=l 

Define the asymptotic MSE AMSE (A') to be the limit of 
MSE (Ai) as I -+ oo. Provided that the random variables Aj tJL 
are independent of the starting point for the EM algorithm, 
the calculation of AMSE (A,JL) is straightforward. 

As shown in Section 2.1.2, the BSPL estimate iPL for the 
structural parameter i/0 is consistent. This result indicates that, 
with b,, = be, = 0 for t = 1 ., m, the AMSE (APL) can 
be calculated in a similar manner as that of AMSE (AL) for 
fixed ni when I -- oo. 

We now consider the simple case of m = 2 component nor- 
mal mixtures with o = v o= 1 and /? known. Thus, /? and A' 
are the only unknown parameters. From (9) it follows that the 
asymptotic value of E(?OJL)) can be obtained by numerically 

evaluating 

-- n i n t in 

(niE(AIJL))-J , i n ELA ( ?, ) d,, 
j= j=- t=l 

where the integration is multidimensional when n' > 2 (see 
Appendix A.3). 

For example, for n' = 2 for all i, the asymptotic bias of -/0J 
denoted b(,, (Ai) to make explicit that this bias is a function 
of the mixing coefficient, satisfies the following equation: 

E"1, I',Jl- IW2 
E(A,i' =,u)=J +b,o (A')= 

2E(AIJL) 

ff~(flj(l f, ~,,(AJL))+ P2( y: (AO .L) _ 2? (f(Pl (5f 15, (E(A(IIL 2j2 1 
,E(01IJL)) 

* L(0; 0)dI d (10) 
ff'( tls,(fl,f , E((i,JL))+Pti;(fl, s, E(f(,j)*L(f; )dd, (10) 

where L( ; 0) = R= ( EL A' ; , v )). We calculate 
bo ,,(A), a function of A' and the difference of component 
means for the case in which the true /? = 0. Figure 1 shows 
the asymptotic bias of the JL estimate -/20 from Equation (10) 
when /? = 2 for 0 < A' < 1, along with Monte Carlo simu- 
lation results when the number of regions I = 100, 000. The 
figure also depicts the analogous results for the asymptotically 
unbiased BSPL estimate uIPL. The asymptotic bias of JL is 
strictly decreasing as a function of A, thus there is only one 
choice of A' for which b,( (A') = 0. That is, asymp- 
totically biased almost everywhere with respect to Lebesgue 
measure on A'. 

Given the asymptotic bias of /-0 we also calculate the 
difference of the AMSE of the BSPL estimate APL and the 
JL estimate AjL, where A' = A'. Both the theoretical curve 
and the Monte Carlo simulation results are shown in Figure 2. 
This figure shows that the improvement in estimation accu- 
racy obtained by using BSPL rather than JL can be signifi- 
cant indeed. It is noteworthy that there is a range of mixing 
coefficients for which the AMSE of the JL estimate is less 

(D o 

.8 
D 

0 O; 

0 

9 
CM 

0.0 0.2 0.4 0.6 0.8 1.0 

mixing coefficient 

Figure 1. Theoretical (curve) and Simulation (dots) Results for the 
Asymptotic Bias of the JL Estimate ?iJL and the BSPL Estimate l?p in 
Two-Component Normal Mixtures, as a Function of the Mixing Coeffi- 
cient A; for ni =2, ,o = O, A? = 2, and v? = 4 = 1: , Theoretical 
JL;- . , Simulation JL;--, Simulation PL. 
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GO 

E 

o. 
c0 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 2. Theoretical (curve) and Simulation (dots) Results for the 
Difference D( Al l l Difference D(A~j,Ap.) = AMSE(AL) - AMSE(AL,) of Asymptotic MSE's 
for the JL Estimate AJL and the BSPL Estimate Ap,, Where A' = A, in 
Two-Component Normal Mixtures. It is a function of the mixing coeffi- 
cient A for ni = 2, ? = 0, ? = 2, and v? = v2 = 1. 

than that of the BSPL estimate. [The theoretical curve for 
D(A, APL) = AMSE(AL) - AMSE(Ap) does fall slightly 
below 0 for a small range (A,, A,, + 8), where A,, is such 
that b,(,(A) = 0.] Examination of Figure 2 indicates that the 
minimax rule favors the BSPL estimate; when the AMSE of 
AJL is smaller than that of APL, the difference is negligible 
compared to the difference of the two MSE's when the BSPL 
estimate is better. That is, the BSPL estimate 0PL is mini- 
max over C = {08', 0JL}, meaning maxo<A,,< D(A'L, AJL) < 

maxo<A'<, D(AJL, ApL) for i = 1,... I. [In general, 0 is min- 
imax over C > 

0 = argmin! max max D(A", A'), 
6"'C O,EC\6" O<A<1 

where ! stands for the uniqueness of the minimum.] 
In fact, having demonstrated our minimax superiority of 

BSPL'for 0* e {(/?, v^?,/G, o ?, A') : / - / = 2, v = ^ = 
1, and 0 < A' < 1} and appealing to continuity of AMSE as 
a function of A, we have the following theorem. 

Theorem 2. BSPL is superior to JL in our minimax sense 
in an open neighborhood mrinimax C O around 0*. 

General analytic results analogous to those just presented 
require significant computational effort. In particular, the mul- 
tidimensional integration required for the asymptotic value of 
E(/tJL) becomes unwieldy for large values of ni. (The almost 
sure asymptotic biasedness of the JL estimate from Theorem 1 
holds; however, obtaining the exact value for this bias is a 
computational issue.) 

To demonstrate that the minimax superiority of BSPL 
generalizes to large values of n', a Monte Carlo simulation is 
presented. We choose I = 100 regions and generate n' = 100 
observations in each region. The observations in the first 
10 regions have the underlying marginal density a(s; 0') = 
.1(S; 0, 1) + .904(; /, 1), whereas the observations in the 
remaining 90 regions have the underlying marginal density 
a(S; 02) = .540(s; 0, 1) + .4604(; /?, 1). The unconditional 
density is therefore a((; 0?) = .54(s; 0, 1) + .50(; /-, 1). 

o - 

o- 

o 

6 
V 

o \ 

0.5 1.0 1.5 2.0 

Figure 3. Simulation Results for the Difference D(AL ,ApL) = 
MSE(A\L) - MSE(A^L) of the MSE for the JL estimate A1L and the BSPL 
estimate AL, where A' = Al, as a function of AO for I = 100, n' = 100, 
A=0, Ao =., and v?=v=1. 

We consider estimating 01 = (0, 1, /, 1, .1). For various 
values of _0 we perform 100 Monte Carlo replicates for each, 

obtaining estimates 0pL and OIL for the underlying density 
a(6; 01) of the first region. Figure 3 shows the difference 
D(A, APL) = MSE(AJL) - MSE(APL) between the estimated 
MSE's of 0pL and OL as a function of /. The simulation 
results indicate the minimax superiority of the BSPL esti- 
mate 0 for 0* e{(/t I,v,/ ,v ?, A0):0<-L- o, = 

v?-= 1, A = .1}. A sign test for H : median(MSE(AIL)- 
MSE(AL)) < 0 results in a p value of .003 at / -/A = .8, 
providing an indication of the statistical significance of the 
BSPL superiority represented in Figure 3. 

2.3 The Choice of Distance Measure 

Given the similarity assumption on the underlying marginal 
density a' proposed in Section 1-that is, different scan 
regions share the same structural parameter .t? and the 
difference lies entirely in the incidental parameters (mix- 
ing coefficients) A'-it seems natural to use a measure 
based only on the incidental parameters. That is, con- 
sider se(A', Ai) = (A'- Aj)'(A' - Aj). As discussed in 
the introduction, a better estimate of A', in terms of a 
smaller MSE, will increase the power of the test. The 
question is whether the test based on SE detects the 
nonhomogeneity of interest in the application. For exam- 
ple, suppose we have, as the underlying marginal density 
for the background region, the three-component normal 
mixture given by a0(x) = .764(x; 0, 1) + .05O(x; 1, .5) + 
.19f(x; 1.25,.0625) and the marginal density for the ROI 
region has the form a'(x) = .4 (x; 0, 1) + A.l(x; 1, .5) + 
.54(x; 1.25,.0625). Suppose we have two estimates for 
a', denoted a - and a-, given by a-(x) = .420(x; 0, 1) + 
.1A (x; 1, .5) + .47A(x; 1.25, .0625) and a&(x) = .500(x; 
0, 1) + .15((x; 1,.5) +.35(x; 1.25, .0625). The density 
estimate oa is superior to &b in terms of SE of the mix- 
ing coefficients and ISE. Figure 4 plots the four densities 
a?, a', t, and a& together, illustrating that SE is an appro- 
priate measure of distance for this case in that the test based 
on SE is more reliable when using ', as desired. a,asdsrd 

TECHNOMETRICS, FEBRUARY 2001, VOL. 43, NO. 1 

78 



SPATIAL SCAN DENSITY ESTIMATES 

6 

ON 0 

aB ci 

q - 

0 

'a 

I 

o - 

-3 -2 -1 0 1 2 3 

Figure 4. This Plot Gives an Example for Which the SE of the Mix- 
ing Coefficients Is an Appropriate Distance Measure for Finite Mixture 
Models. The two solid curves (a? and a') are the underlying marginal 
densities for background and ROI regions (bold), respectively. The dot- 
ted curve (a\) and the dashed curve (&,b) are two density estimates 
for a1. The density estimate ̂ x has a smaller SE, and it is clear that a1 
is superior to &X in terms of ISE as well. This illustrates that SE is an 
appropriate measure of distance in this case. 

Unfortunately, SE is not a universally appropriate measure. 
For example, for finite normal mixtures with more than two 
components, when the variances of the normal components are 
of the same scale and two of the means are close, the SE of 
the mixing coefficient A' may not capture the important differ- 
ence between densities. It can be seen from this example that 
finding better parameter estimates and choosing an appropriate 
measure of distance are two separate issues. Although better 
parameter estimates yield higher power in the test of nonho- 
mogeneity, an inappropriate measure can lead to an incorrect 
conclusion from the test. To demonstrate, suppose that the 
baseline density function is given by 

1 1 1 
a?(x) = 3(x; 0, 1)+ +(x; .01, 1)+ 3-(x; 10, 1). 3 3 3 

Then clearly (see Fig. 5) 
2 1 

a'(x) = 5-(x;0, 1)+ -(x; 10,1) 3 3 
is much closer to a? than 

1 1 
a2(x) = I(x; O, 1) + 

I 
(x; .01, 1) 2 2 

in terms of the ISE. SE indicates, however, that a2 is closer 
to a0. 

Under these circumstances, the ISE 

ISE(O')= (a'(S; ^')-a(s; 0))2rd 

is a better choice than SE(Ai). A quadratic approximation 
relating MSE(I?) and MSE(A') with E[ISE(O')] can be 
established via Taylor expansion. Intuitively, for large sample 
sizes (when all estimates are close to the true parameters) a 
smaller MSE(r?) and MSE(Ai) yields a smaller E[ISE('i)]. 
Due to the limitations of SE(Ai) for small samples (when 
n' is small), ROI identification results in Section 3 are 
presented using both SE and ISE. Although other functional 
measures, such as integrated absolute error distance L, might 

0 10 

Figure 5. This Figure Gives an Example of the Limitations of Using 
the SE of the Mixing Coefficients. The density a? (solid curve) and a' 
are essentially identical (indistinguishable in the plot). The SE between 
a? and a', however, is larger than the SE between the density a2 

(dashed curve) and a?. 

provide more suitable distance metrics for this application 
(see Devroye and Gyorfi 1985), we chose the ISE distance 
because of its computational advantages, (closed form for 
mixtures of normals). 

3. APPLICATION 

We now describe the use of borrowed strength finite mixture 
estimates in spatial scan analysis for ROI identification. 
For illustration we consider the identification of ROI in 
unmanned aerial vehicle (UAV) imagery. The infrared imagery 
is extracted from a videotape collected from a UAV test flight 
over the Naval Strike Warfare Center, Fallon, Nevada, in 
the summer of 1995. Figure 6 presents one image from the 
Fallon videotape. Previous results on imagery extracted from 
this videotape were given by Solka et al. (1997a,b, 1998). 
Although the buildings in the image are easy to observe, 
detecting the track made by vehicle traffic in the upper left 
region of the image is a more challenging problem. We 
consider as our domain of interest R? as annotated in Figure 6. 
Many realistic ROI identification scenarios have multiple 
target and/or background types. Preliminary results for the 
Fallon UAV imagery using the BSPL approach were given 
by Priebe, Solka, and Tao (1997), who compared the regional 
estimates aiP against estimates of each background model 
aBI in the class A = {aB, . . BL }. Such a procedure allows 
for detecting ROI in a more cluttered scene but requires 
estimation of each aB,. For simplicity, we have chosen a 
domain of interest involving only one "background" and one 
"target." 

For many detection problems such as this, the pixel intensity 
observations are not particularly useful. Often consideration 
of a local "texture," or roughness, feature can improve detec- 
tion capability. We investigate the marginal probability density 
function of derived texture features ; : (x) = h({((y): y E 
B(x, e)}), where h(.) is a function defined on a neighborhood 
B(x, e), E > 0 for each spatial location x. An example of a tex- 
ture feature that characterizes local roughness is the coefficient 
of variation; ;(x) = S(x)/'(x), where the sample statistics 

(x) = 1/IBI E ByB(x. ) e(y) and S(x) = 1/I B E,sB(x,e)((y)- 
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