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Adaptive Mixtures 
Carey E. PRIEBE* 

The estimation of a probability density function based on a sample { A } I of independent identically distributed observations is 
essential in a wide range of applications. In particular, a sequence of estimates 'a, that converges in some sense to the true density a0 
can yield asymptotically optimal performance in classification and discrimination problems. In this article an estimation technique 
called "adaptive mixtures" is developed from the related methods of kernel estimation and finite mixture models. Asymptotic 
properties of adaptive mixtures are obtained via the so-called method of sieves, yielding almost sure LI convergence. Monte Carlo 
simulations indicate the performance of the method, and an experimental study based on a typical discrimination problem is performed, 
indicating the scope of applicability. 
KEY WORDS: Finite mixture models; Kernel estimators; Method of sieves; Nonparametric estimation; Probability density esti- 

mation. 

1. INTRODUCTION AND SUMMARY 

This article discusses nonparametric, or distribution-free, 
maximum likelihood density estimators. Modern engineer- 
ing practice has exploited nonparametric density estimates 
in a wide variety of settings. One application of density es- 
timation is to pattern recognition problems. Indeed, under 
appropriate conditions, consistent density estimates yield 
asymptotically optimal discriminant procedures. The need 
for nonparametric techniques stems from a wide range of 
applications in which the experimenter is unwilling to assume 
a parametric family for the true underlying probability den- 
sity function. In these cases it is necessary to consider esti- 
mation in an infinite-dimensional parameter space A. Fur- 
thermore, recursive procedures are often required due to the 
nature of the application. In recursive estimation of a prob- 
ability density function, the estimate based on n + 1 obser- 
vations { i, .. ., An+I } is a function of the n + 1 st observation 
tn+j and the estimate based on the n previous observations 
{ t1, * * * X tn }; that is, fn+l (x; t1, . . ., An+i) = Z(f~n, n+1). 

Such a procedure obviates the need to store all the incoming 
observations, thus allowing for high data rates. 

A consideration in nonparametric probability density 
function estimation is the smoothness of the estimator. Con- 
sider the standard kernel estimation approach where fn(x; 

t , * * * X An) = (nh)f 
- 

7=1 K((x- )/h) for certain choices 
of the kernel function K( * ). The smoothness off is directly 
influenced by the choice of the window-width parameter, h. 
Small values of h produce rough estimates with spikes at the 
individual observations. Conversely, a large h yields an over- 
smoothed estimate. Although certain basic conditions are 
placed on h by asymptotic considerations, the choice of the 
smoothing parameter is nevertheless an art, guided by rules- 
of-thumb, heuristic techniques such as cross-validation, or 
user interaction. 

The study of data-driven smoothing (i.e., estimators that 
develop their smoothing properties stochastically based on 
the observations) is of significant current interest. In this 
article a particular adaptive nonparametric maximum like- 
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lihood technique termed "adaptive mixtures" is developed 
and justified. The theory of maximum likelihood estimation 
with data-driven smoothing is discussed from the viewpoint 
of the method of sieves. A simulation analysis is performed 
and experimental results are presented to indicate the use of 
adaptive mixtures in discriminant analysis. 

The conclusions to be drawn from this work stem from 
the need for more robust estimators. Robust statistics has 
been defined as the study of situations in which simple para- 
metric assumptions fail to allow for an adequate model of 
the data. In this context, consider the computational statistics 
agenda presented by Wegman (1988). To motivate the study 
of nontraditional probability and statistics techniques (in- 
cluding recursive processing and nonparametric estimation), 
Wegman argued that current and future problems have in- 
herent difficulties requiring expanded capabilities. Driven 
primarily by modern data collection capabilities, it is no 
longer sufficient to make simple parametric assumptions 
concerning the character of the data being provided. The 
central limit theorem, unfortunately, is true, but often ir- 
relevant. It is necessary to consider robust methods, such as 
the work presented herein, to deal with ever less-conventional 
data. 

Given a probability density function a0 belonging to some 
class i, the adaptive mixtures procedure produces a sequence 
of estimators { a', } that is consistent. The kernel estimator 
is consistent for a large class of functions ', but the com- 
putational complexity of the method is often prohibitive. 
The finite mixture model approach to density estimation, 
on the other hand, has very appealing properties but can be 
consistent only when the number of terms in the model has 
been correctly chosen. The adaptive mixtures technique 
yields the appealing properties of both of these approaches: 
consistency for a large class of functions I with the low com- 
putational complexity associated with finite mixture models. 
The method automatically determines the number of terms 
in the model based on the data. 

Section 2 develops the adaptive mixtures nonparametric 
maximum likelihood technique. The drawbacks that make 
neither kernel estimation nor finite mixture models an ac- 
ceptable solution to the problems of computational statistics 
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are presented, and the two methods are merged to produce 
an estimation technique with the desirable properties of both. 
Section 3 outlines a theoretical analysis of adaptive mixtures 
using the method of sieves. The previous work of Wald 
(1949), Grenander (1981), Geman and Hwang (1982), and 
others is applied to yield asymptotic results for a particular 
class of sieves encompassing adaptive mixtures. Section 4 is 
devoted to simulation analysis of the adaptive mixtures 
technique. The goal is to develop a feel for the performance 
of the algorithm. Section 5 indicates the relationship of these 
results to discriminant analysis by relating the results of pre- 
vious sections to an important pattern recognition measure, 
the probability of misclassification, and an illustrative ex- 
perimental study is presented. Section 6 concludes with a 
discussion of the relevance of the results presented. 

2. A SOLUTION PROCEDURE 

2.1 Kernel Estimation 

The method of kernel (or Parzen) estimation was intro- 
duced by Rosenblatt (1956) and Parzen (1962), studied by 
many authors, and summarized in detail by Silverman (1986) 
and Scott (1992). For the univariate case, an(x; 1, .. ,n) 

= (nh)-' 71-= K((x - i)/h), where K(v) is the kernel 
function. The asymptotic properties of kernel estimators, in 
particular the strong convergence in L1 under very weak 
conditions as given in Devroye and Gyorfi (1985), Chapter 
3, are very appealing. A probability density function esti- 
mation method with such power is, on the surface, hard to 
dismiss. However there are computational disadvantages to 
this method. To evaluate a,n all n observations t1, ..,n 
must be available and n evaluations of K(*) are necessary. 
For many computational statistics problems of interest (i.e., 
those with very large data sets) such a constraint is unac- 
ceptable. Although there are recursive versions of the kernel 
estimator and even Fourier domain results, these approaches 
do not fully address the computational complexity issues 
outlined previously. 

2.2 Finite Mixture Models 

Assume for the moment that the true but unknown density 
is of the form ao(x) = E, i14= I ri(x; ,ui, ai ), where N < oo is 
known, the nonnegative mixing coefficients 7ri sum to unity, 
and Oj(x) = 0(x;,uj, ai) = ((27r)11/2. ai)-'exp[-.5((ui -x)/ 
ai )2] is the normal probability density function with mean 
,ui and standard deviation ai. The goal is to estimate the 
parameter vector 0, which consists of 3N components; 0 

={iri , Al, 5 .5... 7.,rN AN. ON}. (Actually, because 7i= 
= 1, 0 may be reduced to a 3N - 1 vector.) Finite mixture 
models have been discussed at length by Everitt and Hand 
(1981), Titterington, Smith, and Makov (1985), and Mc- 
Lachlan and Basford (1988). 

A standard technique for estimating the parameter vector 
0 based on observations Zn = { ;1 . . . X tn } is to maximize 
the (log)likelihood lz,(f ) over the family of N mixtures J. 
Denote an estimate for ao_(x) with estimated parameter 
vector 0 as a(x) = &e(x; 0). The iterative expectation- 
maximization (EM) algorithm given by Dempster, Laird, 
and Rubin (1977) and Redner and Walker (1984) is a method 

for maximum likelihood estimation of these parameters that 
can yield, under appropriate circumstances, strong L1 con- 
vergence. (EM is an alternative numerical algorithm to, say, 
Newton-Raphson.) 

To approach this estimation problem recursively requires 
further development, however. Following Titterington 
(1984), let S(x, 0) denote the vector of scores. That is, for 
each component 0i of the parameter vector 0, let Si (x, 0i ) 
= (a/a0i)log(a&(x; 0)). Consider now the recursive update 
formula ,n+1 = O, + knS(f +1; On), with kn a sequence con- 
verging to 0. This equation can be- interpreted as a gradient 
ascent on the log-likelihood surface. With the proper choice 
of the sequence kn, this stochastic approximation procedure 
can be made consistent. An example of this kind of approx- 
imation formula, which will be used herein, is the following 
set of recursive update equations for normal components 
from Titterington (1984) and Titterington et al. (1985, chap. 
6): 

pM(i = (i) ki( n+ I) 

P n i) + n + - i)) (2) 

Uni) = An(i) + (7rn(i)) l0n(i)Pn(i+1(?n+1 An i)) (3) 

and 

n+i = a(n) + (71rni))-1i)PP(i+ 

X (( tn+l - Aun ))( tn+l - Ani -n2i) 4 

with 
f(i) = n-1. (5) 

This set of equations (1) -(5) will be called the "update rule" 
Un( tn+l; in). The superscript (i) used on the dummy variable 
p and the three parameters ir, ,u, and a in these equations 
indicates the ith term in the mixture estimate. The idea be- 
hind this update rule is to distribute the effect of the new 
observation to all the terms in proportion to their respective 
likelihoods. The mean, variance, and mixing coefficient are 
then updated by this proportion. In the case of a single term, 
where p = 1 and ir = 1, these update rules are just recursive 
versions of the sample mean and sample variance calcula- 
tions. 

Convergence results regarding the recursive update rule 
'U () have been given by Titterington (1984). Once again, 
this procedure can be made strongly convergent in the LI 
sense. 

Even if the true probability density function a0 is not 
known to be a mixture of normals, one might still wish to 
use the foregoing formulation to find an approximation to 
the density by a mixture. The kernel estimator is an extreme 
example of such an approximation, with N = n and no max- 
imum likelihood updating involved. Thus one could choose 
N "large enough," start the estimate with some initial Oo, 
and then recursively update the estimate using 'U ( ). As- 
suming that the density is well approximated by such a mix- 
ture (which is the case if N is large enough) and a reasonable 
initial estimate is used, this procedure will result in a good 
estimate of the density. 
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To obtain consistency, very strong assumptions must be 
placed on the underlying density and on the initial state of 
the estimator. In particular, the underlying density must be 
a mixture of the same type as the estimator. 

2.3 Adaptive Mixtures 

If an approximation of the density a by a finite mixture 
is used, then the number of terms N and an initial estimate 
must be chosen. It would be helpful if an algorithm could 
choose N from the data in a recursive manner. The approach 
taken by the adaptive mixtures estimator is to recursively 
adapt not only the parameters, as in 'i ( * ), but also the num- 
ber of terms needed to fit the data. If the number of terms 
is allowed to grow indefinitely, then the requirement that 
the true density be a mixture of normals can be relaxed. An 
extreme case of this is the kernel estimator, which has been 
shown to be consistent under very weak conditions on the 
underlying density. The adaptive mixtures approach is de- 
signed to allow the number of terms to grow, but at a much 
slower rate than that of a kernel estimator. The adaptive 
mixtures approach is much less computationally and mem- 
ory intensive in practice, can produce a more useful small- 
sample estimator, and allows general consistency results. 

It is well understood that one cannot perform maximum 
likelihood estimation in an infinite-dimensional manifold if 
one attempts unconstrained maximization. The likelihood 
can be made arbitrarily large, for example, by taking f(x) 
as f(x; , ..., An) = (n * (27r) 112. *fl 1 in=i exp[-.5((x 
_ ti)la)2]. In this case as a -O 0, Ilz(f) -- oo. Thus Dirac 
6 functions obtain, and maximum likelihood density esti- 
mation fails. Thus care must be taken to properly constrain 
the growth of the number of terms in the adaptive mixture 
model. 

To extend finite mixtures to nonparametric estimation 
with a variable number of terms, consider using the stochastic 
approximation procedure 

kn+1 = [1 -Pn(Un+l; On)Iq/n(En+i; On) 

+ 'Pn(n+l; On)en(Un+l; On) (6) 

to recursively update the density. sPn( * ) represents a (possibly 
stochastic) create decision and takes on value 0 or 1. 'Un( * ) 
updates the current parameters as in recursive maximum 
likelihood estimation, whereas @n( * ) adds a new term to the 
model analogous to a kernel estimation approach. 

2.3.1 Update Rule. The update function 'U(*) guides 
a traversal of the estimate of the likelihood surface provided 
by the observations {t } 7=1 and based on the likelihood 
equations. This recursive maximum likelihood technique 
converges to the desired resultant estimator when properly 
constrained. For completeness, note that an alternative it- 
erative version of adaptive mixtures can be easily defined in 
which all of the data are stored and the update rule is the 
iterative EM algorithm. 

2.3.2 Create Rule. Assuming that the system has de- 
cided to add a term ( P(.*) = 1 ), a create rule @ ( *) can be 
derived from the fact that the kernel estimator based on n 
+ 1 observations is closely related to the kernel estimator 

based on n observations. The differences are a new kernel, 
or term, centered at the newest observation t,+1; updated 
proportionality constants for each term, from n-r to 
(n + 1)-i; and possibly different variances. This analogy is 
captured by the create rule @ (*) defined by equations (7)- 
(1 1): 

1n) = n+1 (7) 
a(N+ 1) = 0(8) 

rn+ = n 0 - n+l) (i = 1, ... X N), (9) 

7 n(N+ 1 = An+ 1 X (10) 

and 

N=N+r. (11) 

Thus the new term is centered at the newest observation and 
given a small mixing coefficient and an initial standard de- 
viation a?n, which may be user defined or derived from the 
terms in the neighborhood of the observation. All of the 
other mixing coefficients must be updated so that they sum 
to unity. Otherwise, the other terms are unaffected. 

@n(H) adds new parameters to 0, changing the character 
and dimensionality of the likelihood surface. The fact that 
sPn( * ) depends on ;n+ implies that this change can be data 
driven. The create rule On( * ) is chosen so that the proportion 
and variance of the new term decrease with the number of 
terms. 

If Pn(An+l; bn) I for n < T and Pn(tEn+l; bn) 0 for n 
> T, then the algorithm will fit T terms to the data. Alter- 
nately, one could start with T terms chosen using some a 
priori knowledge and then let sPn( ;n+ 1; On) 0 for all n. In 
particular, if K( * ) is the normal distribution, then this yields 
a normal mixture model as described earlier. On the other 
hand, if sPn( ;n+l; On) 1, then the algorithm always creates 
a new term, centered at the new data point, and the estimate 
then becomes 

a"(x) = - - K( . 
n i1 hi \hi 

This a(x) is the recursive kernel estimator considered by 
Wolverton and Wagner (1969), Devroye (1979), and Weg- 
man and Davies (1979). Its consistency is easily established. 
Thus in this extreme case of PP ( 1, the estimator (6) 
with @( ( ) as described in equations (7)-( 11) is consistent. 
Therefore, it is reasonable that because the update rule 'U ( * ) 
is a recursive maximum likelihood estimator, it improves 
the estimate between the addition of new terms, and that if 
P( (.), the decision to add a term, is properly chosen, then 
(6) can be made consistent. The performance of the estimator 
obtained by using recursive updates, as opposed to merely 
always adding another term as in kernel estimation, is im- 
portant. The reduction in the number of terms required in 
the estimate (investigated as "model complexity" in Sec. 4) 
yields a storage and computational advantage. Of interest 
here is the "reduced" kernel estimator of Fukunaga and 
Hayes (1989), which is an iterative technique with the sole 
goal of reducing the number of terms in a kernel-like esti- 
mator. 
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Note that the recursive kernel estimator has no practical 
advantage over a kernel estimator unless the estimate is de- 
sired at only a finite number of predetermined points. Thus 
the idea of adaptive mixtures is to reduce the number of 
terms so that the computational requirements necessary to 
compute the estimate for arbitrary x at any time is lessened 
and the estimate is more efficiently represented. 

2.3.3 Decision Rule. Observations for which Pn( tn+1; 

On) = 1 in (6) correspond to jumps in the likelihood surface. 
This is a so-called "dynamic dimensionality," which can be 
useful for guiding the estimator toward a good solution and 
away from local maxima corresponding to poor solutions. 
The consistency of adaptive mixtures hinges on the fact that 
these jumps do in fact propel the recursive EM-type algo- 
rithm into a high-quality estimate. 

The decision to add a term P ( ( ), a kind of clustering 
criterion, can be made in a number of ways. The simplest 
is to check the Mahalanobis distance from the observation 
to each of the terms; if the minimum of these exceeds a 
threshold (called the create threshold, Tc) then the point is 
in some sense too far away from the existing terms, and a 
new term should be created. Recall that the square of the 
Mahalanobis distance between a point x and a term with 
mean W and standard deviation (i) is defined by M(i)(x) 
= ((x -Ai))/ a (i))2. Thus if the create threshold is Tc, then 
a new term is created at the point A+1 if and only if M( gn+1) 

- mini(M(i)( n+l)) > TC. 
Tc = 1 implies creation of a new term for any observation 

that is at least one standard deviation away from the mean 
of each term. Similarly, Tc = 4 implies creating a new term 
for any observation that is at least two standard deviations 
away from the mean of each term. The former will yield a 
faster rate of increase in the number terms in the model than 
the latter. Considering A(x) = exp (- M(x)), P(*) may be 
defined as f(ln+1) = 1 if and only if A(tn+1) < Tc and 
P( rn+ I) = 0 otherwise. This version of P( * ) is used in the 
sequel. In this case Tc = exp(-.5) .6065 translates into 
a threshold of one standard deviation; Tc = exp(-2.) 

.1 353; into a threshold of two standard deviations. 
Other approaches would be to create stochastically with 

probability inversely proportional to M( tn+l) (scaled appro- 
priately so that the values lie in the range [0, 1]) analogous 
to a simulated annealing technique or use the estimated den- 
sity directly rather than the individual terms. 

2.3.4 Relationship to Other Methods. The adaptive 
mixture model given by (6) is designed to allow for both 
data-driven smoothing and data-driven increases in com- 
plexity. Although such an approach is relatively novel, it is 
instructive to consider the relationship with maximum pe- 
nalized likelihood estimation and semiparametric estimation. 

The decision rule P described earlier is analogous to the 
penalty function used in maximum penalized likelihood es- 
timation in that it can be chosen to force a smoother estimate 
by allowing fewer terms in the estimate. But the theory of 
maximum penalized likelihood has no explicit method for 
data-driven complexity (for example, Tapia and Thompson 
1978). 

Roeder (1990), (1992) and Lindsay and Roeder (1992) 
considered an estimator superficially similar to adaptive 
mixtures but with a focus on mixtures with a single smooth- 
ing parameter. Motivation for pursuing adaptive mixtures 
can be gained from Roeder (1992), who echoed the words 
of Geman and Hwang (1982) in stating that no satisfactory 
data-based technique exists by which to choose the number 
of terms in a mixture and that for the method of sieves, no 
data-based method exists by which to choose the smoothing 
parameter(s). The adaptive mixtures technique was for- 
mulated specifically to address these two difficulties. 

Another version of semiparametric estimation of interest 
was given by Olkin and Spiegelman (1987), who considered 
a probabilistic combination of parametric and nonparametric 
models. This approach does not address the computational 
statistics questions raised earlier, however, as a full-kernel 
estimator is inherent in the model. 

2.3.5 Example. Consider a simple example of (6), 
where the procedure is rewritten as 

Mn 

a"(x)= r iy(x; ,u, a]) (12) 
j=1 

and 

an+l = [1 - Pn(An+l; an)dn ( n+i; In) 

+ Pn ( n+1; an)@n(An+I; an) (1 3) 

for clarity. For illustrative purposes, the case in which a0 
= .5N(-2, 1) + .5N(2, 1), c0 = 1, and T, = .606 is inves- 
tigated for a particular random sample of 100 observations. 
The purpose is simply to walk through the approach. In this 
example t, = 1.71, and thus 'a = N(1.71, 1). For the second 
observation, the decision rule P () tests t2 = 1.57 against 
the model a&. 2 is close to a& in Mahalanobis distance and 
hence is within the threshold. Therefore, P (* ) = 0 and the 
update rule rather than the create rule is used. ?3 = -2.72 
is far away in Mahalanobis distance from the single term in 
a2. Thus P (*) = 1, and a new term is created based on this 
third observation. The estimate is now a mixture of two 
terms. Continuing, new terms are created at t1, t3, t4, t8, 

t17, . . . . The rest of the observations yield updates. Figure 
1 shows the model after the third observation. By the time 
that 100 observations have been processed, the estimate is 
definitely taking on the character of the true distribution (see 
ae Oin Fig. 2). 

Table 1 gives the model depicted in Figure 2 after 100 
observations, consisting of nine terms. Investigation of this 
table indicates that there are two major terms in & 100. That 
is, there are two terms with ir > .1. These two terms have 
means in the vicinity of -2 and 2, the means of the true 
distribution. This lends credence to the conjecture that the 
adaptive mixture model is going toward a reasonable esti- 
mate. 

Simulations and applications discussed in Sections 4 and 
5 indicate that the approximation (1 2)-( 13) has desirable 
properties for the recursive estimation of unknown densities. 
In particular, it seems to converge quickly to a good estimate 
of the density for a large class of densities. Nevertheless, be- 
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0.2- 

0.1 

-5 -3 -1 

Figure 1. Adaptive Mixtures Example after Three Observations. True 
distribution ao = .5N (-2, 1) + .5N (2, 1) (solid line) versus adaptive mix- 
tures estimate &a3 (dashed line). After three observations, the estimate has 
two terms. 

cause adaptive mixtures have been designed for use in re- 
cursive, nonparametric applications, the traditional small- 
sample analysis is not the main issue. Asymptotic results will 
allow a more complete understanding of the algorithm and 
will be of use in evaluating the utility of (12)-(13) for par- 
ticular applications. 

3. CONVERGENCE PROPERTIES 

3.1 The Method of Sieves 

Letting BC = BC(R) be the set of bounded, continuous 
functionsf: R R, consider the parameter space A = { a I a 
E BC, f a(x) = 1, a(x) 2 0 for all x}. That is, A is the set 
of univariate, bounded, continuous probability density 
functions. Consider also the associated metric space (A, d), 
where d( * ) is the L1 metric, and the true and unknown pa- 
rameter to be estimated is ao E A. The method of sieves 
(Geman and Hwang 1982; Grenander 1981) is a scheme by 

0.3. 

0.2- 

0.1 

0 
-5 -3 -1 1 

Figure 2. Adaptive Mixtures Example After 100 Observations. True dis- 
tribution a0 = *5N(-2, 1) ? .5N(2, 1) (solid line) versus adaptive mixtures 
estimate &a,0 (dashed line). After 100 observations, the estimate has 9 
terms (see Table 1). 

Table 1. Model al00 After 100 Observations in the 
Adaptive Mixtures Example 

Term Mean Variance Proportion 

1 1.845 .801 .410 
2 -2.098 .589 .367 
3 3.085 .874 .057 
4 -3.545 .958 .039 
5 -1.461 .800 .043 
6 .992 .809 .035 
7 -.569 .816 .026 
8 4.153 .911 .012 
9 -4.603 .972 .010 

which the set of admissible estimators in A is constrained, 
with the constraint relaxed as the number of observations 
increases in an effort to ensure that the estimator remains 
in A. This constrained mathematical optimization is im- 
portant for nonparametric maximum likelihood estimation 
in that unconstrained maximum likelihood methods can 
yield a discrete estimate with a spike at each observation. 
Recall the example of Dirac 6 spikes encountered previously. 
Such an estimate is not absolutely continuous with respect 
to Lebesgue measure and normally is not considered an ad- 
missible estimator. 

A sieve for A is a sequence of subsets { Sm } of A, usually 
requiring the constrains (a) U Sm is dense in A, (b) Sm C Sm+i, 
and (c) Sm is compact for each m. The idea is to approximate 
the density ao by a succession of densities from Sm, with m 
increasing slowly compared to n. Examples of sieves include 
the conventional histogram where the number of bins is in- 
creased slowly compared to the number of observations, as 
well as the more sophisticated data-adaptive estimate dis- 
cussed by Wegman ( 1975). 

Let P1, {2, ... be independent identically distributed ob- 
servations drawn from the probability density ao E A. Con- 
sider the following sieve of mixtures contained in A: 

m 
Sm = {am am(x) = m ?(x; Ai / ); 

m 

i c_m < 7ri < cm; 
i=l 

bm < i < 'Ym; I ti I < ?Tm} (14) 

m = 1, 2, ..., where X is the standard normal probability 
density function, cm > 0 for m > 1, 0 < am < ym < o , and 
o < Tm < oo for all m. Under appropriate conditions on the 
true density ao and the sequence { mn } = { m}, this is a 
consistent sieve. 

Let the entropy be defined as H(a, f) = a a(x)ln A(x) 
dx. Consider A' C A, where A' = { E A I H(a, a) < oo 
and a E CO }. CO C BC is defined as the set of functions that 
vanish at oo; that is, A' is the restriction of A to densities 
with finite self-entropy and sufficiently regular tail behavior. 
A function f that vanishes at infinity is one in which for 
every C > 0, the set { x I I f( x) I 2 C } iS compact. This restricts 
the tail behavior off. 

Further restrict attention to the parameter space A " C A ' 
C A, whereA"' = { e CA'Isupp(ae) C [-k, k] for some k 
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< oo }; that is, A" is the restriction of A' to densities with 
compact (but possibly unknown) support. Letting BC, be 
the set of bounded, continuous functions with compact sup- 
port, we have BC, C BCo C BC. 

For notational purposes, let Ln( (a) be the likelihood func- 
tion, L?,(a) = n ai (xi). Let Mm = Mm(w) be the set of 
all maximum likelihood estimators in Sm given a sample size 
n. Thus Mn = {a E Sm: LCn(a) = Sup,3s,ES n(f)}. Let 
qMnm = {a E Sm: Ln(a) 2 q sup3esmIZn(f3)} be the subset 
of Sm for which the likelihood is within a constant multiplier 
O < q ? 1 of the maximum likelihood. Using qM' and 
applying Wald's theorem 2 (Wald 1949), Sm can be shown 
to be a consistent sieve. 

Theorem 1. For ao0 E A 'there exists a sequence m = Mn, 
and for ao0 E A" this sequence can be specified, such that 
qM nm ao in L1 a.s. for Sm. 

Sieve (14) is a generalization of the sieve considered by 
Geman and Hwang (1982) allowing separate smoothing pa- 
rameters for each term in the mixture. It is this more complex 
model of data-driven smoothing that gives the adaptive mix- 
tures procedure its power and utility, that causes trouble in 
maximum likelihood estimation, and that is investigated 
next. 

3.2 Adaptive Mixtures Asymptotics 

Consider now the adaptive mixtures procedure from the 
standpoint of the method of sieves. The procedure described 
by (12) and (13) can easily be seen to be an instantiation of 
sieve (14). The sieve parameter m, is the number of terms 
in the mixture after n observations, and the decision to move 
to the next higher sieve parameter is governed by P( * ). Thus 
Theorem 1 can be applied to the adaptive mixtures proce- 
dure. It remains to ensure that the number of terms in (13) 
grows slowly enough with respect to the number of obser- 
vation (as identified in Theorem 1) and that the estimate 
an is eventually in qMn. 

Technical details require the consideration of a convergent 
baseline sequence in Sm and small neighborhoods about this 
sequence. For 6 > 0, let Dm = {a E Sm H(ao, a) < H(ao, 
am) - 6}, where {am} = {mh ml E T (x; j, hm) E Smn} is 
a subsample kernel estimator based on the data. Using am 
as a baseline, Dm is the set of all estimators in Sm that are at 
least 3 worse than am (in entropy). Given { OK} Iu-I, with each 
set OK C Sm, let {t(x; OK) = sup:eOKf3(x). Let pm = maXKinf,,O 
f ao (x)exp[t lnI 4,(x; O/ am(x)}] dx. Note that pm 
= Pm" and Xm = Xm, are dependent on n as {m } = { mn } . 
For the following analysis consider the conditions (A) Dm 
C U OK and (B) Z2mXm( pm)fn < 00. Condition (A) couples the 
magnitude of Xm (i.e., the number of covering sets) together 
with pm (i.e., how well they cover) through the size of the 
covering sets OK. Once the covering sets are chosen to satisfy 
(A), condition (B) gives the condition for consistency (as in 
Geman and Hwang 1982, thm. 2). The sequence discussed 
in Theorem 1 can thus be specified. 

To indicate the procedure of adding new terms to the 
model, write &tn E Sm for Nm ? fl < Nm+i -1. A new term 
is added (the mth) at observation Nm; that is, PNm-l ( Nm; 
abNm_l) = 1. In this notation, ( 13) becomes &t = 'd (&-1; tn) 

for Nj + 1 < n < Nj+ - 1,]j 1 and aY = a(&Y1; An) for 
n E {Nj, N2, *} 

Assume that based on the first n' observations, m' =Mn' 

terms have been created, where m' << n'. (Thus Nm, = n'.) 
Otherwise, there are minimal constraints on this early cre- 
ating process, with the provision that N2 ? 3. Now, in ac- 
cordance with condition (B), consider 

oc) OC Nm+ I-l 

JXmfn => z z Xmp nm 
n=1 m=1 n=Nm 

m'-1 Nm+i-l O Nm+ I 

= z z Xmpni + 
X 

z XmP n 
m=1 n=Nm m=m' n=Nm 

After observation, Nm,, Xm'+1, and Pm'?+ can be calculated, 
for by letting =1, 2 =m+I = tNm for m ? 2 
and requiring that N2 ?3, { (i = t1, 2, {2Nm }I M=2 is the 
subsequence required for the kernel estimator am described 
earlier. At this point, the covering sets can be identified and 
Nm'+? can be chosen to conform with the requirements of 
conditions (A) and (B) by choosing Nm,+i such that 

n=Nm 1 <Cm' = 2 -m'. More generally, after creating 
term k on observation Nk, Xk, Pk, and Nk+? can be calculated 
to conform with conditions (A) and (B) and ensure consis- 
tency. 

The adaptive mixtures procedure thus has an approxi- 
mation theorem derived from the method of sieves. In par- 
ticular, the adaptive mixtures procedure is strongly consistent 
in L1 for ao0 E A' (and also for A", because A" C A'). 

Theorem 2. If ao E A' (resp. A"), then the sequence of 
estimates { &,n } produced by the adaptive mixtures procedure, 
under the conditions detailed later on P( ( ) and @(*), is 
strongly consistent. That is, a^n -o ao in L1 a.s. 

The assumptions placed on the decision rule P(*) are 
that one "waits long enough" between creations-that is, m 
increases slowly enough with respect to n. It is also required 
that when there are local maxima of the likelihood surface, 
@( ) must propel An into a sufficiently small neighborhood 
of a sufficiently good maxima. This can entail alteration of 
the step size [ 3 in Eq. (5)] in the recursive update procedure 
'i(.), because "sufficiently good maxima" is in terms of 
qMn and, given such a maxima, "sufficiently small neigh- 
borhood" is in terms of the recursive step size. Thus this 
second assumption assures one of eventually being near a 
good (possibly local) maximum, whereas the first stipulation 
is necessary to allow the estimate to conform to the require- 
ments of Theorem 1. The geometry of these likelihood sur- 
faces was discussed by Lindsay (1983a), (1983b). 

In light of these assumptions, given a true density a0 from 
whichZn= {Z . .1 n } is drawn, define A n = {aESmla 
as the location of a (possibly local) maxima of Ln( ) }. Note 
that Am depends on a0 through the dependence of the like- 
lihood function n( *n) on Zn. It is necessary to argue that 
for some M and all m > M, a&Nm+,I- E qM m+1'. 

With ~P(.) = 0 and 11(q) in effect, the procedure is a 
recursive version of the EM algorithm (Titterington 1984, 
thin. 2). In this case, for any ae (q + )MNmm+1 1, 0 <C < 1 
- q, there exists a step size A3 and a sufficiently small neigh- 



802 Journal of the American Statistical Association, September 1994 

borhood Q. such that 

aNm E Qa Nm+i1 E qMNm+l (15) 

Thus any @ (*) that propels aNminto such an Qa will suffice. 
Consider the iterative version of adaptive mixtures, 

aNm+i-I = EM( aNmX ZNm+ I )X with a step size f small enough 
so the estimate does not jump out of the convex neighbor- 
hood of the likelihood surface defined by ZNm+, in which 
aNm resides. Then for each a e ANm+l-l n (q + e)Mmm+l, 
the convex neighborhood Qa of a has the property (15) re- 
quired for Theorem 2. 

Returning now to the recursive procedure, the identifi- 
cation of appropriate neighborhoods Qa is more difficult. In 
this case Theorem 2 requires aNm+1 -= REM (aNm, 
ZNm+-I_) E qMmm+l. Thus Q- can depend on the data or- 
dering. Nevertheless, for f sufficiently small, each a 
E ANm+l l n (q + e)MNm+ 1 has a nonempty neighborhood 
Qa satisfying (15). 

Furthermore, for ao E B' (resp. B") where B' (resp. B") 
= {a E A' (resp. A"), there exists a fixed 0 < q < 1 and M 
such that m > M = there exists (a.s.) Nm > Nm such that 
Amrm C (q + e)MmNmr where CN/*) (and hence Amrm and (q 
+ e )Mrnm) depend on ae as earlier, the identification of @ (.*) 
is trivial; Sm = Qa. 

For ae0 E B' (and B"), Theorem 2 not only yields strong 
L1 consistency for recursive adaptive mixtures, but also the 
create function @ (E) and the decision function P7 (.) are 
easily identified via Theorem 1 for A ' (and A ") . In particular, 
@ (.*) is (almost) arbitrary (Sm = Q), and 7f (.) is driven by 
the N' . Otherwise, for ao0 E A' (and A"), @ (*) must propel 
&e into a sufficiently small neighborhood of some density ae 
E An nl (q + e)Mn . 

4. SIMULATION RESULTS 
The following simulation examples, using the adaptive 

mixtures algorithm described in Section 2, focus on large- 
sample properties and computational complexity for adap- 
tive mixtures. To analyze these simulation results from the 
viewpoint of conventional estimators, consider three simu- 
lations that, taken together, indicate the utility of the adaptive 
mixtures technique. Simulation 1 considers data drawn 
from a normal pdf, ae0 = 4(0, 1 ). For simulation 2, a simple 
normal mixture is considered with ae0 = 1 /20( -2, 1 /2) 
+ 1 /20( 1 /2, 3 /2). Simulation 3 considers the much more 
difficult situation of a log-normal pdf, ae0 = x-l (2ijr)-1/2 

exp(-1/2(1n x)2) -5 for 0 < x < 00. Each simulation 
example consists of 20 Monte Carlo replications, with the 
number of observations (i.e., the sample size) going from 
100 to 1,000 in increments of 100 for simulations 1 and 2 
and from 1,000 to 10,000 in increments of 1,000 for simu- 
lation 3. The computer run time required for the adaptive 
mixtures procedure is minimal, and the number of Monte 
Carlo replications could have been increased dramatically; 
however, 20 replications is sufficient to get a feel for the 
performance of the estimator. 

For the normal case, the adaptive mixtures procedure 
converges quite quickly. Specifically, both the mean L1 and 
L2 errors and the variance of the estimator under both norms 
appear to be decreasing toward 0. For the purposes of pre- 

liminary quantitative comparisons, an estimated rate of 
convergence for the adaptive mixtures based on a regression 
of the error curves to the model O(n-Y) is considered. In 
this case, y(L1 ) = .49 and y(L2) = .91. The relevant numbers 
for comparison in L2 (see Silverman 1986) are 1.0, .8, and 
.5. That is, a convergence rate of O( n -l) is the best that one 
can expect even with a parametric estimator, O(n- 8) with 
an optimal kernel estimator, and O(n -5) with a simple 
function approach. Thus adaptive mixtures perform quite 
well. Although the procedure is nonparametric, this partic- 
ular implementation is inherently based on the normal 
model, and hence this performance may not be completely 
unexpected. 

The computational complexity of the model is defined as 
the number of terms used in the data-driven adaptive mix- 
tures development. Here this complexity grows quite slowly 
with n, with an average of less than 8 terms used for 1,000 
observations. Recall that this complexity increase is the sieve 
parameter mn in Equation (13). This is compared to the 
kernel estimator, which requires a separate term for each of 
the 1,000 observations. A qualitative comparison indicates 
that the adaptive mixtures estimator is significantly more 
parsimonious than the kernel estimator. Comparing the 
adaptive mixtures with a conventional normal approxima- 
tion would obviously indicate degraded performance, as the 
average of 8 terms used in the adaptive mixtures is compared 
with a single term in the normal approximation. But for a 
situation in which the true distribution is not known to be 
normal, one simply desires a good estimator while at the 
same time keeping the model complexity as small as possible. 
The aforementioned error rates, together with the complexity 
indicated, would appear to meet these goals. If the true dis- 
tribution is known to be normal, then the normal approxi- 
mation is obviously a superior choice. 

Simulation 2 indicates a similarly impressive, although 
slower, rate of convergence for the adaptive mixtures pro- 
cedure in the normal mixture case. Again, both the mean 
LI and L2 errors and the variance of the estimator under 
both norms appear to be decreasing toward 0. The estimated 
rate of convergence for the adaptive mixtures based on a 
regression of the error curves to the model O(n-Y) yields 
,y(LI) = .37 and zy(L2) = .69. Thus the adaptive mixtures 
perform better than the simple functions and nearly as well 
as the kernel estimator for this mixture case. 

The computational complexity again grows quite slowly 
with n with an average of 9.5 terms used for 1,000 obser- 
vations. Considering this complexity, note that if one at- 
tempted to perform the estimation with a conventional nor- 
mal approximation, convergence would be impossible. If 
knowledge of the specific nature of the true distribution is 
given, then one can estimate the ao with a two-term normal 
mixture. But lacking such information, the nonparametric 
adaptive mixtures approach allows estimation of this mixture 
ao without prior knowledge of its two-term character. The 
same algorithm that exhibited quality performance in the 
normal case (simulation 1) succeeds when the true distri- 
bution is nonnormal. Furthermore, the increase in compu- 
tational complexity from an average of 8 terms in simulation 
1 to an average of 9.5 terms here is quite acceptable. 
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Simulation 3 indicates the performance of the system on 
the much more difficult problem of a log-normal distribution. 
Because the procedure is based on a sieve of normal mixtures, 
the added difficulty of this third estimation problem is in 
some very real sense a different kind of difficulty, as opposed 
to just the difference in degree of difficulty between the first 
two examples. The convergence of the adaptive mixtures 
procedure is not nearly as clear in this example. Here sim- 
ulations of 10,000 observations (compared to 1,000 in Sim- 
ulations 1 and 2) are used, and the convergence is much 
slower. This is of course to be expected. The estimated rate 
of convergence for the adaptive mixtures based on a regres- 
sion of the error curves to the model O(n-Y) yields y(L1) 
= .12 and y(L2) = .09. Again, this deterioration of perfor- 
mance from the normal and mixture cases is expected. 

The computational complexity shown in Figure 3 grows 
to an average of 28.75 terms for 10,000 observations (and 
less than 47 terms for 100,000 observaitions), which for per- 
formance like that depicted in Figure 4 (a single example of 
the recursive estimate produced after 100,000 observations 
with 46 terms) seems outstanding. Again, it is noteworthy 
that the same algorithm that successfully fitted an average 
of 8 terms to a normal distribution in simulation 1 and an 
average of 9.5 terms to a mixture distribution in simulation 
2 has successfully used a relatively parsimonious average of 
28.75 terms to estimate this decidedly nonnormal distribu- 
tion. The error results indicate that the performance is not 
as good in L1 or L2 error, but in terms of the difficulty of 
the problem, the results presented for simulation 3 may in- 
deed be more impressive. A nonparametric estimator was 
required, and the adaptive mixtures procedure automatically 
allocated a reasonable number of terms for the problem. 

Figure 5 depicts the largest terms in a preliminary model 
(after 1,000 observations) for the estimate shown in Figure 
4, which is based on 100,000 observations. The three terms 
shown in Figure 5 indicate a typical instantiation of the ap- 
plication of the adaptive mixtures procedure to the log- 
normal distribution based on a sample size of 1,000 obser- 
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Figure 3. Log-Normal Simulation: Model Complexity (number of terms) 
and Standard Deviation Versus Number of Observations for the Adaptive 
Mixtures Estimator, Based on 20 Monte Carlo Replications. 
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Figure 4. Log-Normal Simulation: Example Estimate a'700,000 (Dashed 
Line) Versus True Distribution a0 (Solid Line). This recursive model has 
46 terms. 

vations. Here one sees the aforementioned data-driven 
smoothing. In the region of support where the true density 
spikes, the terms in the model have relatively small variances. 
Conversely, in the broad tail of the support of the true density, 
the model gravitates toward terms with a large variance. Ta- 
ble 2 shows this phenomenon numerically for the terms de- 
picted in Figure 5. The individual variances in the adaptive 
mixture model, allowed under sieve Sm [Equation (14)], yield 
the ability to fit the local smoothness of the true density. 

These local smoothing results should be compared to the 
transformed kernel estimator approach of Wand, Marron, 
and Ruppert (199 1). Their approach involves using a trans- 
formation to normality and then performing a standard ker- 
nel estimator in the transformation space. The inverse trans- 
formation then yields an estimator with nonuniform 
smoothing parameters superficially similar to the results in 
Figure 5. But it should be noted that their approach is not 

0.7- 

Figure 5. Log-Normal Simulation: Three Malor Terms for an Example 
Estimate &>,ooo (Dashed Line) Versus True Distribution a0O (Solid Line) . This 
model indicates data-driven smoothing (see Table 2). 
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Table 2. Simulation 3: Log-Normal 
Distribution 

Term 3 = -4.184744 
2= .259182 
r= .689485 

Term 4 ,u = -2.358960 
a2= .658321 
Xr= .179715 

Term 5 / .128446 
O= 1.260401 
Xr= .051398 

NOTE: Terms in the adaptive mixture model for an ex- 
ample estimate & based on 1,000 observations. Only 
the terms with w 2 .02 are shown. 

designed to reduce the computational complexity of kernel 
estimation and hence does not directly address the concerns 
considered here. 

Although these simulation results are based on qualitative 
analysis, they nevertheless lend credence to the conclusions 
developed in Section 3-that adaptive mixtures density es- 
timation has desirable complexity and convergence prop- 
erties. A theoretical analysis of rates of convergence will re- 
quire coupling the results available for the recursive EM 
algorithm with an understanding of the impact of the creation 
process. Convergence rates for adaptive mixtures would not 
be expected to be superior to a recursive implementation of 
finite mixtures when the true distribution is a mixture of 
normals and the number of terms has been correctly speci- 
fied. 

5. APPLICATION TO DISCRIMINANT ANALYSIS 

5.1 Discriminant Analysis 

As an application of this density estimation technique, 
consider its relationship to discriminant analysis. In the two- 
class discrimination problem, the observations are assumed 
to be independent identically distributed random variables 
with a probability density of the overall distribution of a(x) 
= I 17ri ai (x), where 7ri are the prior probabilities for the 
individual classes and ai are the probability density functions 
for the individual classes. A formal motivation for using 
density estimation in discriminant analysis is obtained via 
consideration of the asymptotics of the discriminant pro- 
cedure. When using the Bayesian discriminant function, LI 
convergence of density estimates to the true (though un- 
known) class-conditional densities implies convergence of 
the discriminant procedure to Bayes-optimal in the mini- 
mum probability of misclassification sense (see Devroye and 
Gyorfi 1985, chap. 10). Thus Theorem 2 immediately im- 
plies the following. 

Theorem 3. If a1 and a2 are elements of A' (resp. A"), 
then, under the conditions of Theorem 2, the probability of 
misclassification produced by the adaptive mixtures tech- 
nique converges to the Bayes optimal. 

Although Theorem 3 does not give the universality of ker- 
nel discriminant analysis, it does allow for significantly more 
robust estimation than the finite mixture models. One need 
not know the structure of the model. 

4.25 

2I i 

Feature 1 

Figure 6. Two-Class Scatterplot of Experimental Data: 1,000 Obser- 
vations From Class 0 (#) and 2,000 Observations From Class 1 (+). 

5.2 Experimental Results 

This experiment is based on feature vector observations 
drawn from a gray-scale image using power law theory. Solka, 
Priebe, and Rogers (1992) discussed these texture-based ob- 
servations, which are local in nature in that they depend 
only on a given pixel and a small neighborhood about that 
pixel, and provided references to the literature. The problem 
considered here is to discriminate between two classes of 
objects (man-made vs. natural) based on these observations. 

The data set consists of 2,000 observations from class 1 
(natural) and 1,000 observations from class 0 (man-made) 
chosen at random (see Fig. 6). Performance is considered 
from the standpoint of the trade-off between increases in 
probability of correct classification and decreases in proba- 
bility of false alarm. 

Numerical performance results are given in a hypothesis 
testing framework in which the null hypothesis is "Ho: ob- 
servation R is drawn from class 0," the alternative hypothesis 
is "HI: observation ? is drawn from class 1," and the like- 
lihood ratio test statistic is used. The P(CC) values represent 
the probability of correctly classifying a class 0 observation 
as class 0; the P(FA) values represent the probability of in- 
correctly classifying a class 1 observation as class 0. The re- 
sults for the estimators are given based on leave-one-out 
cross-validation. 

Figure 7. Adaptive Mixtures Density Estimate for Class 0. 
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The adaptive mixture models presented use 5 terms per 
class, as opposed to the 3,000 total terms required by the 
kernel estimator. That is, the complexity of the adaptive 
mixture model shown in Figure 7 is based on models with 
significantly fewer terms. 

Figure 6 presents a scatterplot of the 3,000 observations 
used in this example. For illustrative purposes, Figure 7 pre- 
sents the adaptive mixtures density plot for class 0 in the 
bivariate feature space. For this sample at least, the structure 
of the estimates is quite nonnormal. Figure 8 shows the class 
0 observations overlaid on the adaptive mixtures-based 
classifier. The purpose of Figure 8 is to illustrate the signif- 
icant increase in faithfulness to the data that a mixture-based 
approach can have as compared to an approach predicted 
on the normal assumption. The close adherence of the adap- 
tive mixtures approach to the structure of the data indicates 
that this nonparametric approach is more powerful than an 
approach with strict parametric assumptions. In addition, 
this adaptive mixtures approach uses significantly fewer terms 
than a kernel estimator, making the approach more appli- 
cable. In fact, adaptive mixtures is the superior estimator for 
this problem, as is shown in Figure 9, which compares adap- 
tive mixtures to linear and quadratic classifiers as well as 
kernel estimation. This can be explained by the fact that 
although the problem at hand requires more complex dis- 
criminant surfaces than the linear and quadratic classifiers 
can yield, five-term adaptive mixture models are sufficiently 
complex. Furthermore, the sample is perhaps too small to 
support the extreme complexity afforded by the kernel es- 
timator. The adaptive mixtures procedure fills a niche in the 
middle ground between the normal assumption and the ker- 
nel estimator. 

6. CONCLUSIONS 

Preliminary work in developing adaptive mixtures has 
been done by Priebe and Marchette (1991, 1993), and an 
original formulation was given by Marchette and Priebe 
(1990). The technique combines the appealing properties of 

4.25 :.4' 1t tt 44 +++ * 1 4 .| +++-4 44Ix+ 

, 44+ - . 4 * ,.4 
e 

t 4 + q4 -1 i. i 
if M4{X-+ l0 if i{ 

4- 4--4-4-4- 4- 4- , 1 4H44i{4 
* 44 4- 4+ +4 

'I 44 4t. 4-4t + + + 

4+444 # 4+4++4+ 4144 4- 4. 
'-4- 4 4-I4-l4141i4i4 14 - 4 4 t 

F *-t 4.1 4-+-. 44 --1--4-- t--it- 414- 1t 
+44 14-XXK 4 4--t-+t+- 4 4-1---t-.--X.- ti 

4 44 ++++. 
44 44 .1.4-1.44-44----44-4-1i-4-4----44! 

i i-ixxwXw fXSwsr B t--- 4--i144-i-|--+ -44Ft+ 4--144II44-4 -I -. 

-1- 4--1- 4-4-4--f-4-44-4---4-44144 

...+ 4-XX ^ l++ ..+ 4 4.. 44-44-t-4t+4i :+-- 

141XXXX+++ *4 4 4- 4 lI44 -t4t-*t i 4 +:t4 -t4-t*iI 
X X t-t#4-*I t -4-+4'1 --l- t4--4'444-i4-|-l-|41t 41-i-|-4--4 4-44-4 -I 4 -4-44-*1-;4 - 

4 44 44-111 1-+' iXt|*l** 4i.---4- -f:+|i-4f i* -4-*-*--*- 

- I4 4 4-ft f14 '- 4 i-4tt-t*ii'4+44-14-i-4-I-4 4 --1-- 4- ..4 
4 -14--1+ -t-I-+i+4--4 4ll.t-;-4-*-- t4-i-t-i-t --f f144+--4---1 -4- l-+ - -444-t t..1..*-4-4-4-. 4- ' - l--t .t4444-t-i-.-1 4--4- - 441-i--4-4-4 -I 

*tf4t4--|--.4ix+* ittf 4+t t t--i-+ J..f A44ti- -t 4 t4 4 i-4 - P x 1 44 4 * , ;- 
t-}4 -*4- It+v t- |41t-t + 4 44 -4-f4- ++ -1l 44 tt t --t-*t-+................................,1 :.- 

1.4 44-4 +5--lt f 11 X t ---1 t-t.t- -XtS+ztt t 4 4t-- f ---- 
+4-+-114 +*+4+ -* t t t +++.--t tt- -- f 4 tt ........ -t44 t -+ 4--t-- 

+4+++44-q4- 4-4-4.-t- -i-t -4-- .-t-1--I4--14--1-i-. -- +4 - -4 -ti -+ 

_~~~~~~~~~~~~~~~~~~~ . . ._ 

Feature 1 

Figure 8. Adaptive Mixtures Discriminant Regions Over/aid with C/ass 
o Data: The Region for Class 0 (xxxx) Versus the Region for silass 1 

/1111~~~~~~~- 4 \..:441+11? ,4+!:~4 

0.9l 

0.8 

0.7 

0.6 

O obS 01 O.iS 0:2 0. 03 O S 0'4 o.is 0 
1- P(CC 

Figure 9. Discriminant Results for Four Classifiers: #, Adaptive Mixtures; 
x, Kernel Estimator; +, Quadratic Classifier; and 0, Linear Classifier. 

both kernel estimators and finite mixture models in that it 
converges for a large class of probability density functions 
5I while maintaining the low computational complexity as- 
sociated with finite mixture models. The automatic deter- 
mination of the number of terms in the model based on the 
data, as well as the ability to determine separate smoothing 
parameters for the separate terms, gives the technique pow- 
erful new capabilities that directly address the issues inherent 
in the field of computational statistics. Preliminary work by 
Geman and Hwang (1982) considered the theoretical prop- 
erties of a restricted version of adaptive mixtures. The theory 
has been extended to allow for data-driven smoothing, and 
explicit mechanisms have been developed by which the 
complexity of the model adapts to the data. The utility of 
the procedure for finite sample problems is in its ability to 
automatically determine the number of terms and their 
placement for a finite mixture model. 

[Received April 1993. Revised September 1993.] 
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