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Abstract

In unsupervised learning, where no train-
ing takes place, one simply hopes that
the unsupervised learner will work well
on any unlabeled test collection. How-
ever, when the variability in the data is
large, such hope may be unrealistic; a
tuningof the unsupervised algorithm may
then be necessary in order to perform well
on new test collections. In this paper,
we show how to perform such a tuning
in the context of unsupervised document
clustering, by (i) introducing a degree of
freedom,α, into two leading information-
theoretic clustering algorithms, through
the use of generalized mutual informa-
tion quantities; and (ii) selecting the value
of α based on clusterings of similar, but
superviseddocument collections (cross-
instance tuning). One option is to perform
a tuning that directly minimizes the error
on the supervised data sets; another option
is to use “strapping” (Eisner and Karakos,
2005), which builds a classifier that learns
to distinguish good from bad clusterings,
and then selects theα with the best pre-
dicted clustering on the test set. Experi-
ments from the “20 Newsgroups” corpus
show that, although both techniques im-
prove the performance of the baseline al-
gorithms, “strapping” is clearly a better
choice for cross-instance tuning.
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1 Introduction

The problem of combining labeled and unlabeled
examples in a learning task(semi-supervised learn-
ing) has been studied in the literature under various
guises. A variety of algorithms (e.g., bootstrapping
(Yarowsky, 1995), co-training (Blum and Mitchell,
1998), alternating structure optimization (Ando and
Zhang, 2005), etc.) have been developed in order to
improve the performance of supervised algorithms,
by automatically extracting knowledge from lots of
unlabeledexamples. Of special interest is the work
of Ando and Zhang (2005), where the goal is to build
many supervised auxiliary tasks from the unsuper-
vised data, by creating artificial labels; this proce-
dure helps learn a transformation of the input space
that captures the relatedness of the auxiliary prob-
lems to the task at hand. In essence, Ando and Zhang
(2005) transform the semi-supervised learning prob-
lem to amulti-task learningproblem; in multi-task
learning, a (usually large) set ofsupervisedtasks is
available for training, and the goal is to build mod-
els which cansimultaneouslydo well on all of them
(Caruana, 1997; Ben-David and Schuller, 2003; Ev-
geniou and Pontil, 2004).

Little work, however, has been devoted to study
the situation where lots of labeled examples, of one
kind, are used to build a model which is tested on
unlabeled data of a “different” kind. This problem,
which is the topic of this paper, cannot be cast as a
multi-task learning problem (since there are labeled
examples of only one kind), neither can be cast as a
semi-supervised problem (since there are no training
labels for the test task). Note that we are interested
in the case where the hidden test labels may have
no semantic relationship with the training labels; in
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some cases, there may not even be any informa-
tion about the test labels—what they represent, how
many they are, or at what granularity they describe
the data. This situation can arise in the case of un-
supervised clustering of documents from a large and
diverse corpus: it may not be known in what way the
resulting clusters split the corpus (is it in terms of
topic? genre? style? authorship? a combination of
the above?), unless one inspects each resulting clus-
ter to determine its “meaning.”

At this point, we would like to differentiate be-
tween two concepts: a targettask refers to a class
of problems that have a common, high-level de-
scription (e.g., the text document clustering task, the
speech recognition task, etc.). On the other hand,
a taskinstancerefers to a particular example from
the class. For instance, if the task is“document
clustering,” a task instance could be“clustering of
a set of scientific documents into particular fields”;
or, if the task is“parsing,” a task instance could be
“parsing of English sentences from the Wall Street
Journal corpus”. For the purposes of this paper, we
further assume that there are task instances which
are unrelated, in the sense that that there are no
common labels between them. For example, if the
task is“clustering from the 20 Newsgroups corpus,”
then“clustering of the computer-related documents
into PC-related and Mac-related”and “clustering
of the politics-related documents into Middle-East-
related and non-Middle-East-related”are two dis-
tinct, unrelated instances. In more mathematical
terms, if task instancesT1, T2 take sets of observa-
tionsX1,X2 as input, and try to predict labels from
setsS1, S2, respectively, then they are called unre-
lated ifX1 ∩X2 = ∅ andS1 ∩ S2 = ∅.

The focus of this paper is to study the problem
of cross-instance tuningof unsupervised algorithms:
how one can tune an algorithm, which is used to
solve a particular task instance, using knowledge
from an unrelated task instance. To the best of our
knowledge, this cross-instance learning problem has
only been tackled in (Eisner and Karakos, 2005),
whose “strapping” procedure learns a meta-classifier
for distinguishing good from bad clusterings.

In this paper, we introduce a scalar parameterα
(a new degree of freedom) into two basic unsuper-
vised clustering algorithms. We can tuneα to max-
imize unsupervised clustering performance ondif-

ferent task instances where the correct clustering is
known. The hope is that tuning the parameter learns
something about the task in general, which trans-
fers from the supervised task instances to the un-
supervised one. Alternatively, we can tune a meta-
classifier so as to select good values ofα on the su-
pervised task instances, and then use the same meta-
classifier to select a good (possibly different) value
of α in the unsupervised case.

The paper is organized as follows: Section 2 gives
a background on text categorization, and briefly de-
scribes the algorithms that we use in our experi-
ments. Section 3 describes our parameterization of
the clustering algorithms using Jensen-Rényi diver-
gence and Csiszár’s mutual information. Experi-
mental results from the “20 Newsgroups” data set
are shown in Section 4, along with two techniques
for cross-instance learning: (i) “strapping,” which, at
test time, picks a parameter based on various “good-
ness” cues that were learned from the labeled data
set, and (ii) learning the parameter from a supervised
data set which is chosen to statistically match the test
set. Finally, concluding remarks appear in Section 5.

2 Document Categorization

Document categorization is the task of deciding
whether a piece of text belongs to any of a set of
prespecified categories. It is a generic text process-
ing task useful in indexing documents for later re-
trieval, as a stage in natural language processing
systems, for content analysis, and in many other
roles (Lewis and Hayes, 1994). Here, we deal
with the unsupervised version of document cate-
gorization, in which we are interested in cluster-
ing together documents which (hopefully) belong to
the same topic, without having any training exam-
ples.1 Supervisedinformation-theoretic clustering
approaches (Torkkola, 2002; Dhillon et al., 2003)
have been shown to be very effective, even with a
small amount of labeled data, whileunsupervised
methods (which are of particular interest to us) have
been shown to be competitive, matching the classifi-
cation accuracy of supervised methods.

Our focus in this paper is on document catego-
rization algorithms which use information-theoretic

1By this, we mean that training examples having the same
category labels as the test examples are not available.
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criteria, since there are natural ways of generalizing
these criteria through the introduction of tunable pa-
rameters. We use two such algorithms in our exper-
iments, the sequential Information Bottleneck (sIB)
and Iterative Denoising Trees (IDTs); details about
these algorithms appear below.

A note on mathematical notation: We assume
that we have a collectionA = {X(1), . . . , X(N)}
of N documents. Each documentX(i) is essentially
a “bag of words”, and induces an empirical distri-
bution P̂X(i) on the vocabularyX . Given a sub-
set (cluster)C of documents, the conditional dis-
tribution onX , given the cluster, is just the cen-
troid: P̂X|C = 1

|C|
∑

X(i)∈C P̂X(i). If a subcollec-
tion S ⊂ A of documents is partitioned into clusters
C1, . . . , Cm, and each documentX(i) ∈ S is as-
signed to a clusterCZ(i), whereZ(i) ∈ {1, . . . ,m}
is the cluster index, then the mutual information be-
tween words and corresponding clusters is given by

I(X;Z|S) =
∑

z∈{1,...,m}

P (z|S)D(P̂X|Cz
‖P̂X|S),

whereP (z|S) , |Cz|/|S| is the “prior” distribution
on the clusters andD(·‖·) is the Kullback-Leibler
divergence (Cover and Thomas, 1991).

2.1 The Information Bottleneck Method

The Information Bottleneck (IB) method (Tishby et
al., 1999; Slonim and Tishby, 2000; Slonim et al.,
2002) is one popular approach to unsupervised cat-
egorization. The goal of the IB (with “hard” clus-
tering) is to find clusters such that the mutual in-
formationI(X;Z) between words and clusters is as
large as possible, under a constraint on the number
of clusters. The procedure for finding the maximiz-
ing clustering in (Slonim and Tishby, 2000) is ag-
glomerative clustering, while in (Slonim et al., 2002)
it is based on many random clusterings, combined
with a sequential update algorithm, similar toK-
means. The update algorithm re-assigns each data
point (document)d to its most “similar” clusterC,
in order tominimizeI(X;Z|C ∪ {d}), i.e.,

δD(P̂X|{d}‖P̂X|{d}∪C)+(1−δ)D(P̂X|C‖P̂X|{d}∪C),

whereδ = 1
|C|+1 . This latter procedure is called

thesequential Information Bottleneck(sIB) method,
and is considered the state-of-the-art in unsuper-
vised document categorization.

2.2 Iterative Denoising Trees

Decision trees are a powerful technique for equiva-
lence classification, accomplished through a recur-
sive successive refinement (Jelinek, 1997). In the
context of unsupervised classification, the goal of
decision trees is to cluster empirical distributions
(bags of words) into a given number of classes, with
each class corresponding to a leaf in the tree. They
are built top-down (as opposed to the bottom-up
construction in IB) using maximization of mutual
information between words and clustersI(X;Z|t)
to drive the splitting of each nodet; the hope is that
each leaf will contain data points which belong to
only one latent category.

Iterative Denoising Trees (also called Integrated
Sensing and Processing Decision Trees) were intro-
duced in (Priebe et al., 2004a), as an extension of
regular decision trees. Their main feature is that
they transformthe data at each node, before split-
ting, by projecting into a low-dimensional space.
This transformation corresponds to feature extrac-
tion; different features are suppressed (or ampli-
fied) by each transformation, depending on what
data points fall into each node (corpus-dependent-
feature-extractionproperty (Priebe et al., 2004b)).
Thus, dimensionality reduction and clustering are
chosen so that theyjointly optimize the local objec-
tive.

In (Karakos et al., 2005), IDTs were used for an
unsupervised hyperspectral image segmentation ap-
plication. The objective at each nodet was to maxi-
mize the mutual information between spectral com-
ponents and clusters given the pixels at nodet, com-
puted from theprojectedempirical distributions. At
each step of the tree-growing procedure, the node
which yielded the highest increase in the average,
per-node mutual information, was selected for split-
ting (until a desired number of leaves was reached).
In (Karakos et al., 2007b), the mutual information
objective was replaced with a parameterized form of
mutual information, namely the Jensen-Rényi diver-
gence (Hero et al., 2001; Hamza and Krim, 2003), of
which more details are provided in the next section.

3 Parameterizing Unsupervised Clustering

As mentioned above, the algorithms considered in
this paper (sIB and IDTs) are unsupervised, in the
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sense that they can be applied to test data with-
out any need for tuning. Our procedure of adapt-
ing them, based on some supervision on a different
task instance, is by introducing a parameter into the
unsupervised algorithm. At least for simple cross-
instance tuning, this parameter represents the infor-
mation which is passed between the supervised and
the unsupervised instances.

The parameterizations that we focused on have
to do with the information-theoreticobjectivesin
the two unsupervised algorithms. Specifically, fol-
lowing (Karakos et al., 2007b), we replace the mu-
tual information quantities in IDTs as well as sIB
with the parameterizedmutual information mea-
sures mentioned above. These two quantities pro-
vide estimates of the dependence between the ran-
dom quantities in their arguments, just as the usual
mutual information does, but also have a scalar pa-
rameterα ∈ (0, 1] that controls the sensitivity of the
computed dependence on the details of the joint dis-
tribution of X andZ. As a result, the effect of data
sparseness on estimation of the joint distribution can
be mitigated when computing these measures.

3.1 Jensen-Ŕenyi Divergence

The Jensen-Ŕenyi divergence was used in (Hero et
al., 2001; Hamza and Krim, 2003) as a measure of
similarity for image classification and retrieval. For
two discrete random variablesX, Z with distribu-
tionsPX , PZ and conditionalPX|Z , it is defined as

Iα(X;Z) = Hα(PX)−
∑

z

PZ(z)Hα(PX|Z(·|z)),

(1)
whereHα(·) is the Ŕenyi entropy, given by

Hα(P ) =
1

1− α
log

(∑
x∈X

P (x)α

)
, α 6= 1. (2)

If α ∈ (0, 1), Hα is a concave function, and hence
Iα(X;Z) is non-negative (and it is equal to zero if
and only ifX andZ are independent). In the limit
asα → 1, Hα(·) approaches the Shannon entropy
(not an obvious fact), soIα(·) reduces to the regular
mutual information. Similarly, we define

Iα(X;Z|W ) =
∑
w

PW (w)Iα(X;Z|W = w),

whereIα(X;Z|W = w) is computed via (1) using
the conditional distribution ofX andZ givenW .

Except in trivial cases,Hα(·) is strictly larger
thanH(·) when0 < α < 1; this means that the ef-
fects of extreme sparsity (few words per document,
or too few occurrences of non-frequent words) on
the estimation of entropy and mutual information
can be dampened with an appropriate choice ofα.
This happens because extreme sparsity in the data
yields empirical distributions which lie at, or close
to, the boundary of the probability simplex. The
entropy of such distributions is usually underesti-
mated, compared to the smooth distributions which
generate the data. Rényi’s entropy is larger than
Shannon’s entropy, especially in those regions close
to the boundary, and can thus provide an estimate
which is closer to the true entropy.

3.2 Csisźar’s Mutual Information

Csisźar defined the mutual information of orderα as

IC
α (X;Z) = min

Q

∑
z

PZ(z)Dα(PX|Z(·|z)‖Q(·)),

(3)
where Dα(·‖·) is the Ŕenyi divergence (Csiszár,
1995). It was shown thatIC

α (X;Z) retains most
of the properties ofI(X;Z)—it is a non-negative,
continuous, and concave function ofPX , it is con-
vex inPX|Z for α < 1, and converges toI(X;Z) as
α → 1.

Notably, IC
α (X;Z) ≤ I(X;Z) for 0 < α < 1;

this means, as above, thatα regulates the overesti-
mation of mutual information that may result from
data sparseness.

There is no analytic form for the minimizer of the
right-hand-side of (3) (Csiszár, 1995), but it may be
computed via an alternating minimization algorithm
(Karakos et al., 2007a).

4 Experimental Methods and Results

We demonstrate the feasibility of cross-instance tun-
ing with experiments on unsupervised document cat-
egorization from the 20 Newsgroups corpus (Lang,
1995); this corpus consists of roughly 20,000 news
articles, evenly divided among 20 Usenet groups.

Random samples of 500 articles each were chosen
by (Slonim et al., 2002) to create multiple test col-
lections: 250 each from 2 arbitrarily chosen Usenet
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groups for theBinary test collection, 100 articles
each from 5 groups for theMulti5 test collection,
and 50 each from 10 groups for theMulti10 test col-
lection. Three independent test collections of each
kind (Binary, Multi5 andMulti10) were created, for
a total of 9 collections. The sIB method was used to
separately cluster each collection, given the correct
number of clusters.

A comparison of sIB and IDTs on thesame9 test
collections was reported in (Karakos et al., 2007b;
Karakos et al., 2007a). Matlab code from (Slonim,
2003) was used for the sIB experiments, while the
parameterized mutual information measures of Sec-
tion 3 were used for the IDTs. A comparison was
also made with the EM-based Gaussian mixtures
clustering toolmclust (Fraley and Raftery, 1999),
and with a simpleK-means algorithm. Since the
two latter techniques gave uniformly worse cluster-
ings than those of sIB and IDTs, we omit them from
the following discussion.

To show that our methods work beyond the 9 par-
ticular 500-document collections described above,
in this paper we instead use fivedifferentrandomly
sampled test collections for each of theBinary,
Multi5 andMulti10 cases, making for a total of 15
new test collections in this paper. For diversity, we
ensure that none of the five test collections (in each
case) contain any documents used in the three col-
lections of (Slonim et al., 2002) (for the same case).

We pre-process the documents of each test col-
lection using the procedure2 mentioned in (Karakos
et al., 2007b). The 15 test collections are then
converted to feature matrices—term-document fre-
quency matrices for sIB, and discounted tf/idf ma-
trices (according to the Okapi formula (Gatford et
al., 1995)) for IDTs—with each row of a matrix rep-
resenting one document in that test collection.

2Excluding the subject line, the header of each abstract is
removed. Stop-words such asa, the, is,etc. are removed, and
stemming is performed (e.g., common suffixes such as -ing, -
er, -ed, etc., are removed). Also, all numbers are collapsed
to one symbol, and non-alphanumeric sequences are converted
to whitespace. Moreover, as suggested in (Yang and Pedersen,
1997) as an effective method for reducing the dimensionality of
the feature space (number of distinct words), all words which
occur fewer thant times in the corpus are removed. For the
sIB experiments, we uset = 2 (as was done in (Slonim et al.,
2002)), while for the IDT experiments we uset = 3; these
choices result in the best performance for each method, respec-
tively, on another dataset.

4.1 Selectingα with “Strapping”

In order to pick the value of the parameterα for
each of the sIB and IDT test experiments, we use
“strapping” (Eisner and Karakos, 2005), which, as
we mentioned earlier, is a technique for training a
meta-classifier that chooses among possible cluster-
ings. The training is based on unrelated instances of
the same clustering task. The final choice of cluster-
ing is still unsupervised, since no labels (or ground
truth, in general) for the instance of interest are used.

Here, our collection of possible clusterings for
each test collection is generated by varying theα pa-
rameter. Strapping does not care, however, how the
collection was generated. (In the original strapping
paper, for example, Eisner and Karakos (2005) gen-
erated their collection by bootstrapping word-sense
classifiers from 200 different seeds.)

Here is how we choose a particular unsupervised
α-clustering to output for a given test collection:

• We cluster the test collection (e.g., the first Multi5
collection) with various values ofα, namelyα =
0.1, 0.2, . . . , 1.0.

• We compute a feature vector from each of the
clusterings. Note that the features are computed
from only the clusterings and the data points,
since no labels are available.

• Based on the feature vectors, we predict the
“goodness” of each clustering, and return the
“best” one.

How do we predict the “goodness” of a cluster-
ing? By first learning to distinguish good cluster-
ings from bad ones, by using unrelated instances of
the task on which we know the true labels:

• We cluster some unrelated datasets with various
values ofα, just as we will do in the test condi-
tion.

• We evaluate each of the resulting clusterings us-
ing the true labels on its dataset.3

• We train a “meta-classifier” that predicts the true
rank (or accuracy) of each clustering based on the
feature vector of the clustering.
3To evaluate a clustering, one only really needs the true la-

bels on asampleof the dataset, although in our experiments we
did have true labels on the entire dataset.
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Specifically, for each task (Binary, Multi5, and
Multi10) and each clustering method (sIB and IDT),
a meta-classifier is learned thus:

• We obtain 10 clusterings (α = 0.1, 0.2, . . . , 1.0)
for each of 5 unrelated task instances (datasets
whose construction is described below).

• For each of these 50 clusterings, we compute the
following 14 features: (i) One minus the aver-
age cosine of the angle (in tf/idf space) between
each example and the centroid of the cluster to
which it belongs. (ii) The average Rényi diver-
gence, computed for parameters1.0, 0.5, 0.1, be-
tween the empirical distribution of each example
and the centroid of the cluster to which it belongs.
(iii) We create 10 more features, one perα. For
theα used in this clustering, the feature value is
equal toe−0.1r̄, wherer̄ is the average rank of the
clustering (i.e., the average of the 4 ranks result-
ing from sorting all 10 clusterings (per training
example) according to one of the 4 features in (i)
and (ii)). For all otherα’s, the feature is set to
zero. Thus, onlyα’s which yield relatively good
rankings can have non-zero features in the model.

• We normalize each group of 10 feature vectors,
translating and scaling each of the 14 dimensions
to make it range from 0 to 1. (We will do the same
at test time.)

• We train ranking SVMs (Joachims, 2002), with
a Gaussian kernel, to learn how to rank these 50
clusterings given their respective normalized fea-
ture vectors. The values ofc, γ (which control
regularization and the Gaussian kernel) were op-
timized through leave-one-out cross validation in
order to maximize the average accuracy of the
top-ranked clustering, over the 5 training sets.
Once a local maximum of the average accuracy
was obtained, further tuning ofc, γ to maximize
the Spearman rank correlation between the pre-
dicted and true ranks was performed.

A model trained in this way knows something
about the task, and may work well for many new,
unseen instances of the task. However, we pre-
sume that it will work best on a given test instance
if trained on similar instances. The ideal would be
to match the test collection in every aspect: (i) the

number of training labels should be equal to the
number of desired clusters of the test collection; (ii)
the training clusters should be topically similar to
the desired test clusters.

In our scenario, we enjoy the luxury of plenty
of labeled data that can be used to create similar
instances. Thus, given a test collectionA to be
clustered intoL clusters, we create similar train-
ing sets by identifying theL training newsgroups
whose centroids in tf/idf space (using the Okapi for-
mula mentioned earlier) have the smallest angle to
the centroid ofA.4 (Of course, we exclude news-
groups that appear inA.) We then form a supervised
500-document training setA′ by randomly choosing
500/L documents from each of theseL newsgroups;
we do this 5 times to obtain 5 supervised training
sets.

Table 1 shows averaged classification errors re-
sulting from strapping (“str” rows) for the Jensen-
Rényi divergence and Csiszár’s mutual information,
used within IDTs and sIB, respectively. (We also
tried the reverse, using Jensen-Rényi in sIB and
Csisźar’s in IDTs, but the results were uniformly
worse in the former case and no better in the latter
case.) The “MI” rows show the classification errors
of the untuned algorithms (α = 1), which, in almost
all cases, are worse than the tuned ones.

4.2 Tuning α on Statistically Similar Examples

We now show that strapping outperforms a simpler
and more obvious method for cross-instance tun-
ing. To cluster a test collectionA, we could simply
tune the clustering algorithm by choosing theα that
works best on a related task instance.

We again take care to construct a training instance
A′ that is closely related to the test instanceA. In
fact, we take even greater care this time. GivenA,

4For each of the Binary collections, the closest training
newsgroups in our experiments weretalk.politics.guns,
talk.religion.misc; for each of the Multi5 collections
the closest newsgroups weresci.electronics, rec.autos,
sci.med, talk.politics.misc, talk.religion.misc, and for
the Multi10 collections they were talk.politics.misc,
rec.motorcycles, talk.religion.misc, comp.graphics,
comp.sys.ibm.pc.hardware, rec.sport.baseball, comp.os.ms-
windows.misc, comp.windows.x, soc.religion.christian,
talk.politics.mideast. Note that each of the Binary test
collections happens to be closest to thesame two training
newsgroups; a similar behavior was observed for the Multi5
and Multi10 newsgroups.
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PPPPPPPPPMethod
Set

Binary Multi5 Multi10
ID

T
s MI 11.3% 9.9% 42.2%

Iα (str) 10.4% 9.2% 39.0%
Iα (rls) 10.1% 10.4% 42.7%

sI
B

MI 12.0% 6.8% 38.5%
IC
α (str) 11.2% 6.9% 35.8%

IC
α (rls) 11.1% 7.4% 37.4%

Table 1: Average classification errors for IDTs and
sIB, using strapping (“str” rows) and regularized
least squares (“rls” rows) to pickα in Jensen-Ŕenyi
divergence and Csiszár’s mutual information. Rows
“MI” show the errors resulting from theuntunedal-
gorithms, which use the regular mutual information
objective (α = 1). Results which are better than the
corresponding “MI” results are shown inbold.

we identify the same set ofL closest newsgroups as
described above. This time, however, we carefully
select|A|/L documents from each newsgroup rather
than randomly choosing500/L of them. Specifi-
cally, for each test example (document)X ∈ A, we
add a similar training exampleX ′ intoA′, chosen as
follows:

We associate each test exampleX to the most
similar of theL training newsgroups, under a con-
straint that only|A|/L training examples may be as-
sociated to each newsgroup. To do this, we iterate
through all pairs(X, G) whereX is a test example
andG is a training newsgroup, in increasing order
by the angle betweenX andG. If X is not yet asso-
ciated andG is not yet “full,” then we associateX
with G, and chooseX ′ to be the document inG with
the smallest angle toX.

We clusterA′ 10 times, forα = 0.1, . . . , 1.0,
and we collect supervised error resultsE(α), α ∈
{0.1, . . . , 1.0}. Now, instead of using the single best
α∗ = argminα E(α) to clusterA (which may re-
sult in overfitting) we use regularized least-squares
(RLS) (Hastie et al., 2001), where we try to approx-
imate theprobability that anα is the best. The esti-
mated probabilities are given by

p̂ = K(λI + K)−1p,

whereI is the unit matrix,p is the training prob-
ability of the bestα (i.e., it is 1 at the position of

α∗ and zero elsewhere), andK is the kernel matrix,
whereK(i, j) = exp(−(E(αi) − E(αj))2/σ2) is
the value of the kernel which expresses the “sim-
ilarity” between two clusterings of the same train-
ing dataset, in terms of their errors. The parame-
tersσ, γ are set to0.5, 0.1, respectively, after per-
forming a (local) maximization of the Spearman cor-
relation between training accuracies and predicted
probabilitiesp̂, for all 15 training instances. Af-
ter performing a linear normalization of̂p to make
it a probability vector, the average predicted value
of α, i.e., α̂ =

∑10
i=1 p̂i αi, (rounded-off to one of

{0.1, . . . , 1.0}) is used to clusterA.
Table 1 shows the average classification error re-

sults using RLS (“rls” rows). We can see that, on
average over the 15 test instances, the error rate of
the tuned IDTs and sIB algorithms is lower than that
of the untuned algorithms, so cross-instance tuning
was effective. On the other hand, the errors are
generally higher than that of the strapping method,
which examines the results of using differentα val-
ues onA.

5 Concluding Remarks

We have considered the problem of cross-instance
tuning of two unsupervised document clustering al-
gorithms, through the introduction of a degree of
freedom into their mutual information objective.
This degree of freedom is tuned usinglabeleddoc-
ument collections (which are unrelated to the test
collections); we explored two approaches for per-
forming the tuning: (i) through a judicious sampling
of training data, to match the marginal statistics of
the test data, and (ii) via “strapping”, which trains a
meta-classifier to distinguish between good and bad
clusterings. Our unsupervised categorization exper-
iments from the “20 Newsgroups” corpus indicate
that, although both approaches improve the base-
line algorithms, “strapping” is clearly a better choice
for knowledge transfer between unrelated task in-
stances.
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