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Abstract

Xie and Priebe [2002. “Generalizing the Mann–Whitney–Wilcoxon Statistic”. J. Nonparametric Statist. 12, 661–682] introduced
the class of weighted generalized Mann–Whitney–Wilcoxon (WGMWW) statistics which contained as special cases the classical
Mann–Whitney test statistic and many other nonparametric distribution-free test statistics commonly used for the two-sample testing
problem. The two-sample test that they proposed was based on any statistic within the class of WGMWW statistics optimal in the
Pitman asymptotic efficacy (PAE) sense. In this paper, among other things, we show via simulation studies that for finite samples
the PAE-optimal WGMWW test has substantially higher empirical power compared to the classical Mann–Whitney test for various
underlying densities (especially for those densities for which Mann–Whitney test is considered a better alternative to parametric tests
such as t-tests). The PAE-optimal WGMWW test is not a candidate for the practitioner’s toolbox since the corresponding test statistic
contains parameters which are functions of the underlying null distribution function of the samples. The main thrust of this paper
is in introducing a data-adaptive alternative to the PAE-optimal WGMWW test, which has efficacy and power as good as the latter.
We provide an estimate �̂ for the PAE function � of a WGMWW statistic, and our test is based on a �̂-optimal WGMWW statistic.
We prove strong consistency of �̂, thereby showing that our test has approximately the same efficacy as the �-optimal WGMWW
test for large sample sizes. Via simulation studies we show that for finite samples the empirical power of �̂-optimal WGMWW test
is almost the same as �-optimal WGMWW test for various underlying densities. We also analyze magnetic imaging data related to
subjects with and without Alzheimer’s disease to illustrate our methodology. In summary, we present a strong competitor for the
classical Mann–Whitney–Wilcoxon test and many other existing nonparametric distribution-free tests, especially for moderate and
large samples.
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1. Introduction

One of the central themes of nonparametric testing theory is the two-sample problem. The famous Mann–Whitney
test, equivalent to the Wilcoxon rank sum test, is a solution of the two-sample problem, and is considered nowadays as
one of the breakthroughs of 20th century statistics. Xie and Priebe (2002) proposed a new solution of the two-sample
problem, and their test has higher efficacy than most other nonparametric two-sample tests existing in the literature,
including the Mann–Whitney test. The gain in efficacy for their test compared to the classical Mann–Whitney test
was seen to be phenomenal in some cases (e.g., when the underlying density is strongly skewed) and was seen to be
substantial in other cases (e.g., when the underlying density is either asymmetric bimodal or heavily kurtotic). But
their test was not data-adaptive, since the test statistic that they proposed had parameters which were functions of the
unknown underlying distribution function (i.e., the distribution function of both the samples under the null hypothesis).
In this paper, we propose a methodology which makes the two-sample solution proposed by Xie and Priebe (2002)
data-adaptive. We show via theoretical results and simulation studies that the test statistic proposed in our data-adaptive
methodology has approximately the same efficacy and power as the one proposed in Xie and Priebe (2002), especially
for large sample sizes.

The paper is organized as follows. In this introductory section we present background and our data-adaptive method-
ology. In Section 2, we present our main theoretical results which justify our methodology. The third section contains
the numerical simulation results, and Section 4 contains results related to analysis of magnetic resonance imaging data
from normally aging subjects and patients with dementia of the Alzheimer type.

1.1. The classical Mann–Whitney–Wilcoxon statistic

Consider two i.i.d. samples X1, . . . , Xn and Y1, . . . , Ym from two possibly different populations, with underlying
(continuous) distribution functions F and G, respectively. In order to test

H0 : F = G vs.

HA : F(x)�G(x) ∀x, with strict inequality for at least one x

(i.e., stochastic ordering), we may use the classical Mann–Whitney–Wilcoxon (MWW) statistic (Wilcoxon, 1945; Mann
and Whitney, 1947) which, in its U-statistic form, is given by

1

mn

n∑
i=1

m∑
j=1

I
(
Xi �Yj

)
. (1)

Here I (·) is the indicator function. Let Fn(x) = (1/n)
∑n

i=1 I (Xi �x) and Gm(x) = (1/m)
∑m

i=1 I (Yi �x) be the
empirical distribution functions corresponding to F and G, respectively. The statistic in (1), which may also be written
as ∫ ∞

−∞
Fn(x) dGm(x)

is an empirical estimate of the functional∫ ∞

−∞
F(x) dG(x).

The classical MWW statistic is robust, in the sense that it is distribution free. That is, the null distribution of (1) does
not depend on F. But, generally speaking, it has lesser efficacy compared to many other statistics commonly used to
test stochastic ordering. (Throughout this paper, by efficacy we mean Pitman asymptotic efficacy (PAE), Lehmann,
1998; Pitman, 1979.) We can identify distribution functions for which the test based on the classical MWW is inferior
to the best parametric tests. For example, if the underlying distributions are both normal, the Student t-test is superior
to the MWW statistic in the sense of PAE (Lehmann, 1998).



M. John, C.E. Priebe / Computational Statistics & Data Analysis 51 (2007) 4337–4353 4339

1.2. A class of statistics with higher efficacy

Xie and Priebe (2002) introduced a classCr,s
w of weighted generalized Mann–Whitney–Wilcoxon (WGMWW) statis-

tics to test stochastic ordering. This class contains an important subclass Cr,s
g of unweighted generalized

Mann–Whitney–Wilcoxon (GMWW) statistics presented in Xie and Priebe (2000). In particular, this inclusion im-
plies that Cr,s

w can have higher efficacy than Cr,s
g , in the sense of maximum PAE attainable by statistics within each

class. The unweighted generalized version, GMWW, included as special cases the classical MWW, the subsample
median statistic (Shetty and Govindarajulu (1988); Kumar (1997)), the subsample maxima statistic (Kochar (1978);
Deshpande and Kochar (1980); Stephenson and Ghosh (1985); Ahmad (1996); Adams et al. (2000)) and the subsample
minima statistic (Priebe and Cowen, 1999). The statistics in the class Cr,s

w are based on the functional approximation∫ ∞

−∞
ur(F (x)) dvs(G(x)) (2)

to the functional∫ ∞

−∞
u(F (x)) dv(G(x)). (3)

Here, u and v are arbitrary increasing, continuous, real-valued functions on [0, 1]. ur and vs , respectively, denote the
Bernstein polynomials of order r and s (Lorentz, 1986) corresponding to u and v, and r and s are fixed positive integers.
Expressing the Bernstein polynomials as weighted sums of tail-binomial polynomials, we may write

ur(·) =
r∑

k=1

�kbk:r (·), vs(·) =
s∑

l=1

�lbl:s(·),

where
r∑

k=1

�k = 1 =
s∑

l=1

�l and �k �0, �l �0 for k = 1, . . . , r, l = 1, . . . , s. (4)

In this case, (2) becomes

r∑
k=1

s∑
l=1

�k�l Pr (Xk:r < Yl:s) . (5)

We use the notation Xk:r and Xk:r
(
Xi1 , . . . , Xir

)
to denote the kth order statistic in an arbitrary subsample Xi1 , . . . , Xir

of X1, . . . , Xn (chosen without replacement). The statistics in the class Cr,s
w are empirical estimates of (5) of the

following form:

1(
n
r

) (
m
s

) ∑
C

r∑
k=1

s∑
l=1

�k�lI
(
Xk:r

(
Xi1 , . . . , Xir

)
< Yl:s

(
Yj1 , . . . , Yjs

))
, (6)

where
∑

C extends over all (r+s)-tuples of indices 1� i1 < · · · < ir �n and 1�j1 < · · · < js �m, and �=(�1, . . . , �r ) ,

� = (
�1, . . . , �s

)
are arbitrary weights satisfying (4). Let us denote the statistic in (6) by �(�,�)

n,m and the functional in
(5) by �(�,�). If we assume that as n, m → ∞, (n/(n + m)) → � ∈ (0, 1), then Theorem 2.2 in Xie and Priebe (2002)

states that
√

m + n
(
�(�,�)
n,m − �(�,�)

)
is asymptotically normal with mean 0 and variance �2

�,�, where

�2
�,� = r2

�
var

{∫ X1

−∞

r∑
k=1

s∑
l=1

�k�l (Fk:r−1 − Fk−1:r−1) (x) dGl:s(x)

}

+ s2

(1 − �)
var

{∫ Y1

−∞

r∑
k=1

s∑
l=1

�k�l (Gl:s−1 − Gl−1:s−1) (x) dFk:r (x)

}
.
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Under H0, the variance �2
�,� reduces to �(�, �, �)/(�(1 − �)), where

�(�, �, �) =
(
r2� + s2(1 − �)

) r∑
k=1

s∑
l=1

r∑
i=1

s∑
j=1

�k�i�l�j

(
k+l−2
l−1

) (
r+s−k−l

r−k

)
(

r+s−1
s

)

×
(

i+j−2
i−1

) (
r+s−i−j

r−i

)
(

r+s−1
s

) r+s−1∑
p=k+l−1

r+s−1∑
q=i+j−1

(
r + s − 1

p

)(
r + s − 1

q

)

× (p + q)!(2r + 2s − p − q − 2)!
(2r + 2s − 1)!

−
⎧⎨
⎩
∑r

k=1
∑s

l=1 �k�l

(
k+l−2
k−1

) (
r+s−k−l+1

r−k

)
(r − l + 1)(

r+s
s

)
⎫⎬
⎭

2

. (7)

Note that �(�, �, �) does not depend on F. If we assume that F has a density function f, the PAE for statistics of the
form (6) is given by

�(�, �, �) = 	2(�, �)

�(�, �, �)
(8)

where

	(�, �) =
r∑

k=1

s∑
l=1

r!s!�k�l

∫∞
−∞ F(x)k+l−2(1 − F(x))r+s−k−lf 2(x) dx

(k − 1)!(r − k)!(l − 1)!(s − l)! , (9)

and �(�, �, �) is as defined above. As stated in Theorem 3.2 of Xie and Priebe (2002), there exists a PAE-optimal
statistic in the class Cr,s

w provided that F is a distribution with finite Fisher information. In other words, for such F there
exist � and � satisfying (4) which maximize the PAE function, �(�, �). Throughout this paper, we assume that F has
finite Fisher information.

1.3. A data-adaptive version of the PAE-optimal WGMWW statistic

Although, as noted in the previous subsection, at least one PAE-optimal WGMWW statistic exists, it is in general
not possible to find it in practice unless we know the underlying distribution F. This difficulty arises because the PAE-
function � depends on F. In this paper we propose a strongly consistent estimator �̂(�, �) = 	̂2

(�, �)/�(�, �, �) for
�(�, �) for any (fixed) �, � satisfying (4), where 	̂(�, �) is as given in Theorem 2.1. (Herein, we write �̂, 	̂, � and, 	
for �̂(�, �), 	̂(�, �), �(�, �) and, 	(�, �), respectively, whenever there is no ambiguity.) Our data-adaptive estimator
	̂ is similar to the estimators based on inverses of spacings of order statistics, presented in Hall (1982) and Grenander
(1965).

Xie and Priebe (2002) also introduced the class ofWGWSR statistics. This class of one-sample test statistics contained
as special cases many of the existing nonparametric distribution-free one sample test statistics, especially the Wilcoxon
signed rank statistic. A methodology, similar to that we present in this paper, can be developed to find a PAE-optimal
WGWSR statistic data-adaptively. The two sample test that we present in this paper can also be extended into k-sample
(k > 2) tests for ordered alternatives via Jonckheere-type (Jonckeere, 1954) and Tryon–Hettmansperger-type (Tryon
and Hettmansperger, 1973) extensions.

2. Main result

In this section we present our estimator for the PAE function of WGMWW statistics and we show that it is strongly
consistent under some mild assumptions. We assume that the underlying distribution function F has a piecewise
uniformly continuous density function with nicely behaving tails. The precise statement is given below. As a corollary



M. John, C.E. Priebe / Computational Statistics & Data Analysis 51 (2007) 4337–4353 4341

to this result, we see that the �̂-optimal WGMWW statistic, if convergent, is asymptotically equal to the �-optimal
WGMWW statistic.

Theorem 2.1. Let Xn:1, . . . , Xn:n denote the order statistics of a sample of size n from the distribution F, and let Fn

denote the corresponding empirical distribution function. Suppose F has a piecewise uniformly continuous density f,
which is ultimately monotonically nonincreasing as x → ±∞. If 	 = ∫∞

−∞ h(F (x))f 2(x) dx and

	̂ = (k − 1)

n2

n−k∑

=1

h
(
Fn(�Xn:n−
+1 + (1 − �)Xn:n−(
+k)+1)

) (
Xn:n−
+1 − Xn:n−(
+k)+1

)−1

where

h(y) =
r∑

i=1

s∑
j=1

�i�jC(r, s, i, j)yi+j−2(1 − y)r+s−i−j ,

C(r, s, i, j) = r!s!
(i − 1)!(r − i)!(j − 1)!(s − j)! ,

then 	̂ → 	 w.p.1. Hence �̂ → � w.p.1, where �̂ = 	̂2
/�, � = 	2/� and � is as defined in (7). Here, we assume that

k > 2 is an integer and 0���1.

In Corollary 2.1, we show that the test statistic in our methodology is close to the unknown PAE-optimal WGMWW
test statistic. But Theorem 2.1 is our main theoretical justification for our methodology and hence our main result.
That is, Theorem 2.1 justifies our test as approximately as efficient as the PAE-optimal WGMWW test. (The proof of
Corollary 2.1 is straightforward, and the proof techniques that we use to prove Theorem 2.1 are similar to those used
in Hall (1982). See John and Priebe (2005) for details of the proofs.)

Corollary 2.1. For fixed positive integers r and s, consider the following compact subset of Rr × Rs :

S =
⎧⎨
⎩(�1, . . . , �n, �1, . . . , �s

) : �i �0, �j �0, ∀i = 1, . . . , r, j = 1, . . . , s, and
r∑

i=1

�i = 1 =
s∑

j=1

�j

⎫⎬
⎭ .

Define

�̂ : S → R as �̂ = 	̂2

�

and

� : S → R as � = 	2

�
,

where 	̂, 	 and � are as before. Suppose, y′
n → y0 with some positive probability, where the y′

n and y0 are in S and
the y′

n satisfy

�̂
(
y′
n

)
��̂(y), w.p.1 ∀y�S, n�1;

then �(y0)��(y), w.p.1, ∀y�S.

3. Simulations

In this section, we use the notation M, W, and D, respectively, for the two-sample tests based on the classi-
cal Mann–Whitney–Wilcoxon statistic, the PAE-optimal WGMWW statistic, and the data-adaptive PAE-optimal
WGMWW statistic. The goals of our simulation study are twofold:
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(a) to compare the performance of our two-sample test (i.e., D) with other nonparametric tests (namely, M and W),
for finite samples and

(b) to study the empirical convergence properties of �̂-optimal weights.

For our investigation we generate data from five different distributions with densities. Let g(�,�) denote the density
function for a normal distribution with mean � and variance �2. The densities used for our simulation study are,
respectively,

f1 : g(0,1) (standard normal density),

f2 : 1
5 g(0,1) + 1

5 g( 1
2 , 2

3

) + 3
5 g( 13

12 , 5
9

) (mildly left skewed),

f3 :
7∑

l=0

1

8
g(

3

{(
2
3

)l−1

}
,
(

2
3

)2l
) (strongly right skewed),

f4 : 3
4 g(0,1) + 1

4 g(
3
2 ,
(

1
3

)2
) (asymmetric bimodal),

f5 : 2
3 g(0,1) + 1

3 g(
0, 1

10

) (heavily kurtotic).

To be precise, we generate X1, . . . , Xn and Y1, . . . , Ym from distribution functions F(·) and G(·) = F(· − 
),
respectively, where F is the distribution associated with the density, say, f and the densities (i.e., f’s) that we consider
are, namely, f1 to f5 listed above. Each of the above densities is a normal mixture. These densities correspond to the
first, second, third, eighth and fourth densities considered in Marron and Wand (1992). The plots of these densities are
shown in the first column of Fig. 1.

The main focus of our simulation study is to compare the empirical power behavior of the three tests M, W and D
for a fixed small shift, 
 = 0.1. That is, the null and alternate hypotheses that we test using the three different tests are

H0 : 
 = 0 vs. HA : 
 = 0.1.

Note that although our test statistic may be used to test for stochastic ordering, we focus on the above location problem
(which is an important special case of stochastic ordering), for illustrative purposes.

For a more extensive simulation study see John (2005). We add a disclaimer here: although our simulation study is
reasonably extensive, it is not exhaustive. That is, we do not study the performance of our test in all possible scenarios.
For example, we do not consider unequal subsample and sample sizes. Our main goal in this section is illustration—to
present a few cases where our methodology is substantially better than the existing ones, and also to present other cases
where it is slightly (i.e., nonsignificantly) better.

Table 1 gives the PAEs and Table 2 gives the empirical power of M, and of W for various subsamples sizes, for
underlying densities f1 to f5. Fig. 1 (second and third columns) gives the plots of empirical power vs. � (where
� ∈ (0, 0.1]) of the tests M, W and D for sample sizes 10 and 100 for the underlying densities f1 to f5. From Table 1,
we observe that the W’s have higher efficacy (in the PAE sense) than M. In some cases (such as in the cases where
the underlying density is f3, f4 or f5), there is substantial gain in efficacy, while as in other cases (such as the cases
where the underlying density is f1 or f2), the gain is marginal. Unsurprisingly, a similar type of behavior is observed
in the empirical power characteristics. As seen in Table 1, the PAEs of the W’s are larger than that of M, when the
underlying density is f1 (Normal). In practice, when the population distributions are assumed to differ only in location,
M is directly comparable with the Student’s t-test which is known to be optimal with PAE of 1 under the assumptions
of normality. It is well-known that if the population distributions are normal, the PAE of M is quite high at 0.955. It is
no wonder that many statisticians considered the MWW test (i.e., M) the best nonparametric test for the two-sample
location problem in the case of F normal. Table 1 shows that this was indeed a false belief.

When the underlying density is f2 (mildly left skewed), the PAEs of the W’s are marginally larger than that of M. It
is interesting to note that the gain in empirical power for W and D, gain in efficacy for W, and convergence properties of
D are quite similar when underlying densities are f1 and f2. This makes some intuitive sense since f2 is quite ‘close’
to f1, in terms of skewness, kurtosis and tailweights (see Fig. 1, first column).
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Fig. 1. Plots of the underlying densities f1, f2, f3, f4, f5: (in rows 1–5, respectively, of the first column) and the corresponding plots of estimated
power vs. � (� ∈ (0, 0.1]) of M(−), W(−−), D(− · −·), and confidence intervals (· · ·) for the empirical power of M, for sample sizes n = m = 10
(middle column), and n = m = 100 (last column). Subsamples size r = s = 5 were used for W and D. Monte Carlo sample size, N = 100; shift,

 = 0.1. Parameters k and � in �̂ were chosen to be k = 3, � = 0.5.



4344 M. John, C.E. Priebe / Computational Statistics & Data Analysis 51 (2007) 4337–4353

Table 1
PAE of M and W’s for various underlying densities

Test/density f1 f2 f3 f4 f5

Pitman asymptotic efficacy
M 0.9549 1.7040 3.7222 0.8309 4.5423
W r = s = 2 0.9549 1.8469 9.7806 1.0281 5.5515

r = s = 3 0.9889 1.8554 15.0385 1.1927 6.3238
r = s = 4 0.9932 1.8650 19.0317 1.3776 6.9395
r = s = 5 0.9937 1.8671 27.8753 1.4759 7.4408

Table 2
Empirical power of M, W and D at level 0.05 for the underlying distributions f1, f2, f3, f4, f5

Sample sizes Tests/subsample sizes r = s = 2 r = s = 3 r = s = 4 r = s = 5

Underlying density: f1

n = m = 10 M 0.07 0.07 0.07 0.07
W 0.07 0.10 0.10 0.09
D 0.09 0.10 0.10 0.11

n = m = 100 M 0.19 0.19 0.19 0.19
W 0.19 0.21 0.22 0.21
D 0.17 0.20 0.20 0.19

Underlying density: f2

n = m = 10 M 0.11 0.11 0.11 0.11
W 0.07 0.07 0.07 0.07
D 0.09 0.08 0.10 0.11

n = m = 100 M 0.30 0.30 0.30 0.30
W 0.26 0.26 0.27 0.28
D 0.29 0.29 0.29 0.26

Underlying density: f3

n = m = 10 M 0.15 0.15 0.15 0.15
W 0.21 0.23 0.24 0.29
D 0.22 0.23 0.23 0.22

n = m = 100 M 0.37 0.37 0.37 0.37
W 0.67 0.85 0.93 0.95
D 0.67 0.85 0.93 0.95

Underlying density: f4

n = m = 10 M 0.04 0.04 0.04 0.04
W 0.06 0.07 0.04 0.05
D 0.04 0.05 0.05 0.07

n = m = 100 M 0.09 0.09 0.09 0.09
W 0.11 0.11 0.13 0.17
D 0.11 0.11 0.15 0.15

Underlying density: f5

n = m = 10 M 0.08 0.08 0.08 0.08
W 0.00 0.08 0.00 0.09
D 0.06 0.09 0.11 0.12

n = m = 100 M 21 0.38 0.38 0.38 0.38
W 0.38 0.46 0.45 0.54
D 0.38 0.46 0.51 0.53

Monte Carlo sample size, N = 100; shift, 
 = 0.1. Parameters k and � in �̂ were chosen to be k = 3, � = 0.5.

Among the five cases considered (corresponding to the five underlying densities f1 to f5), the best performance
shown by W and D in terms of PAE and empirical power is in the case where the underlying density is f3 (strongly
skewed). As seen in Table 1, there is a phenomenal gain in efficacy for W (nearly an 800% increase for W with r = s =5)
compared to M. Similar behavior is seen for empirical power of M, W and D, as seen in Table 2.
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Table 3
Discrepancy between �̂’s and � corresponding to subsample sizes r = s = 2 and r = s = 3, for the five underlying densities and various sample sizes

Sample sizes/density f1 f2 f3 f4 f5

Subsample size: r = s = 2
n = m = 25 1.2137 0.4378 0.0675 0.9436 0.1537
n = m = 50 0.6950 0.2244 0.0007 0.6206 0.1308
n = m = 100 0.6656 0.1936 0.0000 0.3447 0.0074
n = m = 250 0.3933 0.0804 0.0000 0.2821 0.0000
n = m = 500 0.2476 0.0607 0.0000 0.2050 0.0000

Subsample size: r = s = 3
n = m = 25 0.3292 0.7197 0.0045 0.8408 0.1772
n = m = 50 0.3546 0.6514 0.0000 0.5054 0.1436
n = m = 100 0.2695 0.5122 0.0000 0.2177 0.0532
n = m = 250 0.1143 0.2550 0.0000 0.1474 0.0169
n = m = 500 0.0426 0.2495 0.0000 0.0138 0.0152

Monte Carlo sample size, N = 100. Parameters k and � in �̂ were chosen to be k = 3, � = 0.5.

When the underlying density is f4 (asymmetric bimodal), we see that W with r = s = 5 has about 78% increase
in efficacy compared to M. (See Table 1.) The substantial gain in efficacy for W matches with the substantial gain in
empirical power of W and D for large finite samples (e.g., n = m = 100) as seen in Tables 1 and 2. The gain in efficacy
for W with r = s = 5 compared to M is about 64% when the underlying density is f5, as seen in Table 1. The empirical
power of W and D for large finite samples is also substantially higher compared to M. We also note that the PAEs of
W’s increase with subsample sizes r and s, in all the five cases corresponding to f1 to f5. We also have plotted the 95%
confidence intervals for the empirical power of M in all the figures.

Importantly, in all the plots, the empirical power behavior of D is almost the same as that of W—the data-adaptive
methodology works well, in practice, for reasonable sample sizes.

3.1. Empirical convergence of data-adaptive weights

Consider the classCr,s
w of WGMMW statistics with fixed subsample sizes r and s. Let �̂

(i)=
(
�̂(i)

, �̂(i)
) = (�̂1

(i)
, . . . ,

�̂(i)
r , �̂(i)

1 , . . . , �̂(i)
s

)
, i = 1, . . . , N , denote the weights obtained by maximizing our estimate of the PAE function for

the class Cr,s
w subject to the constraints (4), at the ith Monte Carlo iteration. Let � = (�, �) = (

�1, . . . , �r , �1, . . . , �s

)
be the weights obtained by maximizing the PAE function for Cr,s

w subject to (4). The �̂ depend on the sample sizes. In
order to study the empirical convergence of �̂ to � as sample sizes increase, we consider the following “discrepancy
measure”:

d
(
�̂
(i)

, i = 1, . . . , N, �
)

= 1

N

N∑
k=1

⎡
⎣( r∑

i=1

(
�̂(k)

i − �i

)2
)

+
⎛
⎝ s∑

j=1

(
�̂(k)

j − �j

)2

⎞
⎠
⎤
⎦ ,

which is the average (over all Monte Carlo iterations) of the squared Euclidean distance between �̂
(i)

’s and �. For
illustrative purposes, we restrict our attention to subsample sizes r = s = 2 and r = s = 3.

The results are presented in Table 3. For both subsample sizes considered, very fast empirical convergence rates
are observed for underlying densities f3 and f5. The convergence rates are quite good also for r = s = 2, when the
underling density is f2, and for r = s = 3, when the underlying density is f1 or f5. The results in Table 3 support
the plots in the second and third column in Fig. 1. That is, in the cases for which the data-adaptive method converges
quickly, the empirical power vs. � plots of W and D are nearly identical even for the small sample sizes considered
here.
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3.2. Discussion about the choice of r, s, k and �

By Theorem 6.3.1 in Xie (1999), whenever r1 �r2 and s1 �s2 the maximum PAE of WGMWW statistics in Cr2,s2
w

is not less than that in Cr1,s1
w and, moreover, at least one member in Cr2,s2

w has strictly larger PAE than does any
member in Cr1,s1

w . So for fixed n, W (and hence D) is more powerful in the PAE sense for larger r and s. The choice of
r, s—model selection—becomes an issue of bias–variance tradeoff. For larger r, s, the model bias is smaller, but the
estimation variance is larger. Another relevant point is the fact that the weight vectors � and � arise from the polynomial
approximations ur and vs (see (2)) to the unknown increasing continuous functions u and v given in (3).Asymptotically,
achieving true optimality requires letting r and s go to infinity at some rate, e.g. O

(
n�), � ∈ (0, 1). How the tests W

and D behave in such a scenario is a topic for further research.
The estimator �̂ in Theorem 2.1 is consistent for any choice of k > 2 and 0���1. That is, for large n, D has

approximately the same efficacy as W in the PAE sense, for any choice of k and �. But the choice of k and � do play
a role in the properties of �̂. In this regard, developing the asymptotic distributional properties of �̂ is a relevant topic
for further research.

4. Analysis of magnetic resonance brain imaging data

Changes in the structure of the cerebral cortex have been associated with both dementia of theAlzheimer’s type (DAT)
and healthy aging. Miller et al. (2003) showed that there exists sharp distinctions in cortical thickness of the cingulate
between normal aging subjects and patients with mild DAT. In their study, the thickness of the cortical mantle was
quantified using cortical mantle distance maps (CMDMs). The cortical mantle has a thin laminar structure consisting
of layers of cerebrospinal fluid (CSF) at the top, layers of gray matter (GM) in the middle, and layers of white matter
(WM) at the bottom. Imaging data from magnetic resonance scans of the cingulate gyrus may be transformed and
interpolated into 0.5 × 0.5 × 0.5 mm3 voxels. CMDMs measure the distance of each voxel to the GM/WM interface.
The data were obtained from elder subjects with mild DAT (n = 9) and healthy elders with no evidence of dementia
(n= 10). The clinical dementia rating scale (CDR) was used to assign the subjects into the above two groups. Subjects
with no discernible evidence of dementia on CDR were designated as healthy subjects with CDR0. A score of CDR1
indicates mild DAT.

4.1. Analysis of the data

CMDMs corresponding to anatomically defined left anterior (LA), left posterior (LP), right anterior (RA), right
posterior (RP) regions of the cingulate gyrus of all the subjects were available for the study. Samples of size 80 were
chosen without replacement from the CMDMs of subjects in the mild DAT (i.e., CDR1) group and healthy aging (i.e.,
CDR0) group. Let F and G denote the underlying distribution functions of the CMDMs from the CDR1 group and
CDR0 group, respectively. The null and alternate hypotheses are

H0 : F = G vs.

HA : F(x)�G(x) ∀x, with strict inequality for at least one x.

The classical Mann–Whitney–Wilcoxon test (i.e., M), the data-adaptive WGMWW test (i.e., D) with subsample sizes
r = s = 2, and D with r = s = 3 were used to test the above hypotheses. The medians of p-values over 15 trials obtained
using each of the above three tests are shown in Table 4. As seen from Table 4, the CMDMs of the CDR1 sample are
stochastically larger than those of the CDR0 sample at a significance level 0.05 (using the data-adaptive statistic) for
each of the four regions LA, LP, RA, RP. Miller et al. (2003) demonstrate this as well, using M, with larger sample
sizes. (We make note of the fact that the data analysis performed here (separately for each of the four regions) parallels
that which was done in Miller et al., 2003.) Our point here is that the data-adaptive WGMWW tests are more powerful
for this real application and data—again, the data-adaptive methodology works well, in practice, for reasonable sample
sizes.
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Table 4
Medians of p-values over 15 trials for various tests

Regions/tests M D (r = s = 2) D (r = s = 3)

Medians of p-values over 15 trials
Left anterior 0.0444 0.0202 0.0104
Left posterior 0.0664 0.0285 0.0256
Right anterior 0.0546 0.0313 0.0170
Right posterior 0.0569 0.0360 0.0311

Samples of sizes n = m = 80 were chosen without replacement from each population.
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Appendix A. Proofs

In this appendix we present a sketch of the proofs of Theorem 2.1 and Corollary 2.1. The proof is lengthy but the
proof techniques are fairly close to that in Hall (1982) and hence we omit most of the details. A reader interested in
the details is referred to John and Priebe (2005). We need Lemma A.3 to prove Theorem 2.1. Lemmas A.1 and A.2 are
needed to prove Lemma A.3.

Lemma A.1. Let Un:1 � · · · �Un:n be order statistics from the U(0, 1) distribution. Let 0���1. Then Un:n−	n�
+1 −
→ (1 − �), w.p.1. In particular, if we define Vn:	n�
 = − log

(
Un:n−	n�
+1

)
, then

Vn:	n�
 −→ − log(1 − �) w.p.1

and

Vn:	n�
 + �
(
Vn:	n�
+k − Vn:	n�


) −→ − log(1 − �) w.p.1,

where k > 0 is an integer, and 0���1.

Proof. See John and Priebe (2005). �

Lemma A.2. Let Vn:r = − log F (Xn:n−r+1), 1�r �n (here Xn:1 < · · · < Xn:n denote the order statistics from some
distribution F, so that Vn:r are order statistics from an Exponential(1) distribution); let 0��1 < �2 < 1; k > 0 be an
integer, and � = 1/(k − 1) = �(k − 1)/�(k). Then

lim
n→∞ E

⎧⎨
⎩ 1

n2

	n�2
∑
r=	n�1


(Vn:r+k − Vn:r )−1

⎫⎬
⎭ = �

2

{
(1 − �1)

2 − (1 − �2)
2
}

= �
∫ �2

�1

(1 − x) dx.

Also,

lim
n→∞ E

⎧⎨
⎩ 1

n2

	n�2/k
∑
r=	n�1/k


(Vn:rk+k − Vn:rk)−1

⎫⎬
⎭ = �

2k

{
(1 − �1)

2 − (1 − �2)
2
}

= �

k

∫ �2

�1

(1 − x) dx.

Proof. See John and Priebe (2005). �
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Lemma A.3. Let Vn:r , �1, �2, k and � be as in Lemma A.2; then

1

n2

	n�2
∑
r=	n�1


(Vn:r+k − Vn:r )−1 −→ �
∫ �2

�1

(1 − x) dx w.p.1. (A.1)

Proof. See John and Priebe (2005). �

Proof of Theorem 2.1. Note that Fm
n is a step function for any positive integer m, and hence piecewise uniformly

continuous. So, there exists (extended) real numbers −∞ = x0 < x1 < · · · < xw = ∞ such that f and Fm
n are both

uniformly continuous on each (xi−1, xi) for 1� i�w. First, we shall prove the following two claims:

Claim A.1. For some 0 < � < � < 1 and 0���1,

1

n2

	n�
∑

=	n�


Fm
n

(
�Xn:n−
+1 + (1 − �)Xn:n−(
+k)+1

) (
Xn:n−
+1 − Xn:n−(
+k)+1

)−1

−→ 1

(k − 1)

∫ F−1(1−�)

F−1(1−�)

Fm(x)f 2(x) dx w.p.1. as n → ∞.

Claim A.2. With probability one,

lim
n→∞

1

n2

	n�
∑

=1

Fm
n

(
�Xn:n−
+1 + (1 − �)Xn:n−(
+k)+1

) (
Xn:n−
+1 − Xn:n−(
+k)+1

)−1

can be made arbitrary small by choosing � small enough. Similarly, with probability one,

lim
n→∞

1

n2

n−k∑

=	n�


Fm
n (�Xn:n−
+1 + (1 − �) Xn:n−(
+k)+1)

(
Xn:n−
+1 − Xn:n−(
+k)+1

)−1

is arbitrary small, when � is sufficiently close to 1.

These two claims would imply that

1

n2

n−k∑

=1

Fm
n

(
�Xn:n−
+1 + (1 − �)Xn:n−(
+k)+1

) (
Xn:n−
+1 − Xn:n−(
+k)+1

)−1

−→ 1

(k − 1)

∫ ∞

−∞
Fm(x)f 2(x) dx w.p.1 as n → ∞. (A.2)

It is easy to see that (A.2) is sufficient to show that 	̂n → 	, w.p.1.

Proof of Claim A.1. Define H(x) = F−1(e−x), x > 0, so that H ′(x) = −e−x/f {H(x)}. Let

Vn:
 = − log {F (Xn:n−
+1)} , 1�
�n.

By the Mean Value Theorem, for some � (which depends on n and 
),

H (Vn:
+k) − H (Vn:
) = H ′ {�Vn:
+k − (1 − �)Vn:
)} (Vn:
+k − Vn:
) .

That is,

Xn:n−(
+k)+1 − Xn:n−
+1 = H ′ {Vn:
 + � (Vn:
+k − Vn:
)} (Vn:
+k − Vn:
) .
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Now choose 0 < 
1 < 
2 < 1, so that
(
F−1 (1 − 
2) , F−1 (1 − 
1)

)
is any one of the following open intervals:

(1) (xi−1, xi), for some i ∈ {2, . . . , w − 1},
(2) (a, x1), for −∞ = x0 < a < x1,
(3) (xw−1, b), for xw−1 < b < xw = ∞.

This assures that bothf and Fm
n are uniformly continuous in

(
F−1 (1 − 
2) , F−1 (1 − 
1)

)
. We will need the following

two subclaims to prove Claim A.1.

Subclaim A.1. Let 
1 ��1 < �2 �
2, and let
(
�(l)

)
be an arbitrary sequence in (
1, 
2), converging to �1. Then we

can define the function �1,�1(·) > 0 on (
1, 
2) such that �1,�1

(
�(l)

) → 0 uniformly as l → ∞ and

lim
n→∞ sup

	n�1
�
�	n�(l)

∣∣∣[H ′ (Vn:
 + � (Vn:
+k − Vn:
))

]−1 − [
H ′ (− log (1 − �1))

]−1
∣∣∣ ��1,�1

(
�(l)

)
(A.3)

w.p.1. In other words, there exists a function �1,�1(·) > 0 on (
1, 
2) such that �1,�1 (�2) → 0 uniformly as �2 ↓ �1
and

lim
n→∞ sup

	n�1
�
�	n�2


∣∣∣[H ′ (Vn:
 + � (Vn:
+k − Vn:
))
]−1 − [

H ′ (− log (1 − �1))
]−1

∣∣∣ ��1,�1 (�2)

w.p.1. Since
[
H ′ (− log (1 − �1))

]−1 is −f
(
F−1 (1 − �1)

)
/1 − �1, the above statement may be rewritten as

lim
n→∞ sup

	n�1
�
�	n�2


∣∣∣∣∣[H ′ (Vn:
 + � (Vn:
+k − Vn:
))
]−1 −

[
−f

(
F−1 (1 − �1)

)
1 − �1

]∣∣∣∣∣ ��1,�1 (�2)

w.p.1.

Subclaim A.2. Let �1, �2 be as in Subclaim A.1. Then there exists a function �2,�1(·) > 0 on (
1, 
2) such that
�2,�1 (�2) → 0 uniformly as �2 ↓ �1 and

lim
n→∞ sup

	n�1
�
�	n�2]


∣∣∣Fm
n

(
�Xn:n−
+1 + (1 − �)Xn:n−(
+k)+1

) − Fm
n

(
F−1 (1 − �1)

)∣∣∣ ��2,�1 (�2) .

See John and Priebe (2005) for the proofs of Subclaims A.1 and A.2.
As a first step towards proving ClaimA.1, we observe that the following is true for 
1 ��1 < �2 �
2, using Subclaims

A.1, A.2, Lemma A.3:

{
Fm

(
F−1 (1 − �1)

)
− �2,�1 (�2)

}{−f
(
F−1 (1 − �1)

)
1 − �1

− �1,�1 (�2)

}{
−�

∫ �2

�1

(1 − x) dx

}

−�Fm
(
F−1 (1 − �1)

)
f
(
F−1 (1 − �1)

)
(�2 − �1)

� lim
n→∞

⎧⎨
⎩ 1

n2

[n�2]∑

=[n�1]

Fm
n

(
�Xn:n−
+1 + (1 − �)Xn:n−(
+k)+1

) (
Xn:n−
+1 − Xn−(
+k)+1

)−1

⎫⎬
⎭

−�Fm
(
F−1 (1 − �1)

)
f
(
F−1 (1 − �1)

)
(�2 − �1)

�
{
Fm

(
F−1 (1 − �1)

)
+ �2,�1 (�2)

}{−f
(
F−1 (1 − �1)

)
1 − �1

+ �1,�1 (�2)

}{
−�

∫ �2

�1

(1 − x) dx

}

−�Fm
(
F−1 (1 − �1)

)
f
(
F−1 (1 − �1)

)
(�2 − �1) w.p.1.



4350 M. John, C.E. Priebe / Computational Statistics & Data Analysis 51 (2007) 4337–4353

Rewriting the above inequalities after expanding the terms we get,

�Fm
(
F−1 (1 − �1)

) f
(
F−1 (1 − �1)

)
1 − �1

∫ �2

�1

(1 − x) dx

−�Fm
(
F−1 (1 − �1)

)
f
(
F−1 (1 − �1)

)
(�2 − �1)

+ �1,�1 (�2)

{
�
∫ �2

�1

(1 − x) dx

}{
Fm

(
F−1 (1 − �1)

)}

− �2,�1 (�2)

{
�
∫ �2

�1

(1 − x) dx

}{
f
(
F−1 (1 − �1)

)
1 − �1

}

− �3,�1 (�2)

{
�
∫ �2

�1

(1 − x) dx

}

� lim
n→∞

⎧⎨
⎩ 1

n2

	n�2
∑

=	n�1


Fm
n

(
�Xn:n−
+1 + (1 − �)Xn:n−(
+k)+1

) (
Xn:n−
+1 − Xn−(
+k)+1

)−1

⎫⎬
⎭

−�Fm
(
F−1 (1 − �1)

)
f
(
F−1 (1 − �1)

)
(�2 − �1)

��Fm
(
F−1 (1 − �1)

) f
(
F−1 (1 − �1)

)
1 − �1

∫ �2

�1

(1 − x) dx

−�Fm
(
F−1 (1 − �1)

)
f
(
F−1 (1 − �1)

)
(�2 − �1)

− �1,�1 (�2)

{
�
∫ �2

�1

(1 − x) dx

}{
Fm

(
F−1 (1 − �1)

)}

+ �2,�1 (�2)

{
�
∫ �2

�1

(1 − x) dx

}{
f
(
F−1 (1 − �1)

)
1 − �1

}

−�3,�1 (�2)

{
�
∫ �2

�1

(1 − x) dx

}
w.p.1. (A.4)

In (A.4), we used �3,�1 (�2) for �1,�1 (�2) �1,�1 (�2). Note that �3,�1 (�2) also converges uniformly to zero, as �2 ↓ �1.
Partition [
1, 
2] into t equal intervals:


1 = �0 < �1 < · · · < �t = 
2.

Then using (A.4) we obtain

�
t∑

i=1

{
Fm

(
F−1 (1 − �i−1)

) f
(
F−1 (1 − �i−1)

)
1 − �i−1

∫ �i

�i−1

(1 − x) dx

}

−�
t∑

i=1

{
Fm

(
F−1 (1 − �i−1)

)
f
(
F−1 (1 − �i−1)

)
(�i − �i−1)

}

+�
t∑

i=1

{
�1,�i−1 (�i )

{∫ �i

�i−1

(1 − x) dx

}{
Fm

(
F−1 (1 − �i−1)

)}}
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−�
t∑

i=1

{
�2,�i−1 (�i )

{∫ �i

�i−1

(1 − x) dx

}{
f
(
F−1 (1 − �i−1)

)
1 − �i−1

}}

−�
t∑

i=1

{
�3,�i−1 (�i )

∫ �i

�i−1

(1 − x) dx

}

� lim
n→∞

⎧⎨
⎩ 1

n2

	n
2
∑
r=	n
1


Fm
n

(
�Xn:n−
+1 + (1 − �)Xn:n−(
+k)+1

) (
Xn:n−
+1 − Xn−(
+k)+1

)−1

⎫⎬
⎭

−�
t∑

i=1

{
Fm

(
F−1 (1 − �i−1)

)
f
(
F−1 (1 − �i−1)

)
(�i − �i−1)

}

��
t∑

i=1

{
Fm

(
F−1 (1 − �i−1)

) f
(
F−1 (1 − �i−1)

)
1 − �i−1

∫ �i

�i−1

(1 − x) dx

}

−�
t∑

i=1

{
Fm

(
F−1 (1 − �i−1)

)
f
(
F−1 (1 − �i−1)

)
(�i − �i−1)

}

−�
t∑

i=1

{
�1,�i−1 (�i )

{∫ �i

�i−1

(1 − x) dx

}{
Fm

(
F−1 (1 − �i−1)

)}}

+�
t∑

i=1

{
�2,�i−1 (�i )

{∫ �i

�i−1

(1 − x) dx

}{
f
(
F−1 (1 − �i−1)

)
1 − �i−1

}}

−�
t∑

i=1

{
�3,�i−1 (�i )

∫ �i

�i−1

(1 − x) dx

}
w.p.1. (A.5)

In the limit as t → ∞, (A.5) becomes

0� lim
n→∞

⎧⎨
⎩ 1

n2

	n
2
∑
r=	n
1


Fm
n

(
�Xn:n−
+1 + (1 − �)Xn:n−(
+k)+1

) (
Xn:n−
+1 − Xn−(
+k)+1

)−1

⎫⎬
⎭

− �
∫ 
2


1

Fm
(
F−1(1 − x)

)
f
(
F−1(1 − x)

)
dx�0 w.p.1.

(See John and Priebe, 2005 for more details.) That is,

lim
n→∞

⎧⎨
⎩ 1

n2

	n
2
∑

=	n
1


Fm
n

(
�Xn:n−
+1 + (1 − �)Xn:n−(
+k)+1

) (
Xn:n−
+1 − Xn−(
+k)+1

)−1

⎫⎬
⎭

= �
∫ 
2


1

Fm
(
F−1(1 − x)

)
f
(
F−1(1 − x)

)
dx

= �
∫ F−1(1−
1)

F−1(1−
2)

Fm(x)f 2(x) dx, w.p.1. (A.6)
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Now for any �, � satisfying 0 < � < � < 1, we can partition the interval (�, �) as a disjoint union of open intervals:(

(0)

1 , 
(0)
2

)
∪
(

(1)

1 , 
(1)
2

)
∪ · · · ∪

(

(p)

1 , 
(p)
2

)
,

where � = 
(0)
1 , � = 
(p)

2 , 
(i−1)
2 = 
(i)

1 , for i = 1, . . . , p, and f and Fm
n are uniformly continuous in

(
F−1

(
1 − 
(i)

2 ,

F−1
(

1 − 
(i)
1

)
, for i = 1, . . . , p. Hence, (A.6) implies that

lim
n→∞

⎧⎨
⎩ 1

n2

	n�
∑

=	n�


Fm
n

(
�Xn:n−
+1 + (1 − �)Xn:n−(
+k)+1

) (
Xn:n−
+1 − Xn−(
+k)+1

)−1

⎫⎬
⎭

= �
∫ F−1(1−�)

F−1(1−�)

Fm(x)f 2(x) dx w.p.1.

This proves Claim A.1. �

Proof of Claim A.2.
∣∣∣H ′(Vn:
 + � (Vn:
+k − Vn:
))−1

∣∣∣ = exp (Vn:
 + � (Vn:
+k − Vn:
)) f (H (Vn:
 + � (Vn:
+k

−Vn:
))) . Since Vn:
 is increasing in 
,

exp (Vn:
 + � (Vn:
+k − Vn:
)) � exp (Vn:
+k) .

Also, H is a monotone nonincreasing function. Therefore, H (Vn:
 + � (Vn:
+k − Vn:
)) �H (V
+k). But we assume
that f is ultimately monotone nonincreasing. Hence, if we choose 
 sufficiently small, then

f (H (Vn:
 + � (Vn:
+k − Vn:
))) �f (H (Vn:
+k)) .

Combining all these facts, we see that if � is sufficiently small, then for all sufficiently large n, w.p.1,∣∣∣{H ′ (Vn:
 + � (Vn:
+k − Vn:
))
}−1

∣∣∣ � exp (Vn:
+k) f (H (Vn:
+k))

�Cf
(
Xn:n−(
+k)+1

)
,

uniformly in 1�
�	n�
. Here, C is some positive constant. Then,

lim
n→∞

1

n2

	n�
∑

=1

Fm
n

(
�Xn:n−
+1 + (1 − �)Xn:n−(
+k)+1

) (
Xn:n−
+1 − Xn:n−(
+k)+1

)−1

�C lim
n→∞

1

n2

	n�
∑

=1

{
Fm

n

(
�Xn:n−
+1 + (1 − �)Xn:n−(
+k)+1

)
f
(
Xn:n−(
+k)+1

)
(Vn:
+k − Vn:
)−1

}

w.p.1, when � is small enough. But Fm
n �1 always, and f

(
Xn:n−(
+k)+1

)
�K , for some positive constant K, when 


is small enough, since f is ultimately nonincreasing. This implies that, when � is small enough, w.p.1,

lim
n→∞

1

n2

	n�
∑
r=1

Fm
n

(
�Xn:n−
+1 + (1 − �)Xn:n−(
+k)+1

) (
Xn:n−
+1 − Xn:n−(
+k)+1

)−1

�C′ lim
n→∞

1

n2

	n�
∑
r=1

(Vn:
+k − Vn:
)−1

= C′
∫ �

0
(1 − x) dx.
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Here C′ is some positive constant and the last equality follows from Lemma A.3. Clearly,

lim
�↓0

∫ �

0
(1 − x) dx = 0

and this proves the first assertion in the claim. The second assertion follows similarly. �

As noted previously, the two claims combined prove the theorem. �

Proof of Corollary 2.1. See John and Priebe (2005). �
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