

JOHNS HOPKINS UNIVERSITY

Computing Scalable Multivariate Glocal Invariants of Large Brain-Graphs (with a Web-service to boot)

Disa Mhembere, William Gray Roncal, Daniel Sussman, Rex Jung, Sephira Ryman, R. Jacob Vogelstein, Carey Priebe, Joshua T. Vogelstein, Randal Burns

n-memory invarian

Motivation

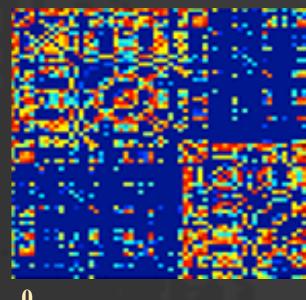
Graphs have quickly emerged as a leading abstraction for the representation of data that can potentially encode multivariate relationships between data points. "Connectomics" models the brain as a graph [1]; vertices correspond to neurons (or collections thereof) and edges correspond to structural or functional connections between them. Computing their invariants may enable neuropsychiatric diagnosis by partially extracting biologically-relevant characterizations of the human brain. Magnetic Resonancederived connectome graphs (connectomes) are of scale $O(10^6)$ vertices and $O(10^8)$ edges. Their scale makes computing invariants (graph statistics) extremely challenging as their size and order can far surpass the bounds of current software tools [2, 3] available for analysis.

To address these computational deficiencies we present an open-source package and complementary Web-services to compute six high-accuracy "glocal" invariants. We define multivariate glocal graph invariants as features of the graph that simultaneously capture various local and global topological properties.

a. LEFT: Desikan structural gyral labeling. RIGHT: Tractography diffusion. Combined to show brain coregistration.

c. Visualization of regional connectivity (connectome) superimposed on a subject's brain.

b. Fiber labeling example where a fiber streamline connects two regions. The notion of a graph edge is derived from such connections.



Vertex Number d. Connectome graph in adjacency matrix form.

Figure 1. Illustration of the last phase of a connectome estimation pipeline that produces graphs on which invariants are computed [4].

The Invariants

The invariants computed are chosen for their effectiveness in characterizing network connectivity [5]. For all equations below let G be a graph with vertices $v \in n$, the set of all vertices.

- Latent Position-k Matrix [6], $LP k \in k \times n$: via Lanczos' algorithm for spectral decomposition • Degree Vector, $Deg \in [n]^n$: $Deg(v, G) = A\mathbf{1}$, where $\mathbf{1}$ is an n-dimensional vector of ones
- Number of Local 3-Cliques Vector [7], $NL 3 \in [\binom{n}{3}]^n$: $NL 3(v, G) \approx \frac{1}{2} \sum \lambda_k^3(G) x_{vk}^2(G)$

where, $v_k(G)$ is the v^{th} entry of the k^{th} eigenvector of A, and $\lambda_k(G)$ is the k^{th} eigenvalue, K is the number of eigen-pairs used in the approximation • Local Clustering Coefficient [8], $CC \in [\binom{n}{3}]^n$:

- $CC(v,G) = 2 \times NL-3(v,G)/(Deg(v,G)(Deg(v,G)-1))$
- Local Scan Statistic-1 [5], $SS i \in [n]^n$: via edge counting. We count the number of edges in the induced sub-graph within the *i*-hop neighborhood i.e. $size(\Omega(N_i[v;G]))$ Mobile scan it!

There are currently no known integrated packages for computing such invariants on brain-graphs of this size.

We provide downloadable open-source code for computing invariants on your own machine, in addition to publicly-accessible Web-services that run on our data-intensive cluster.

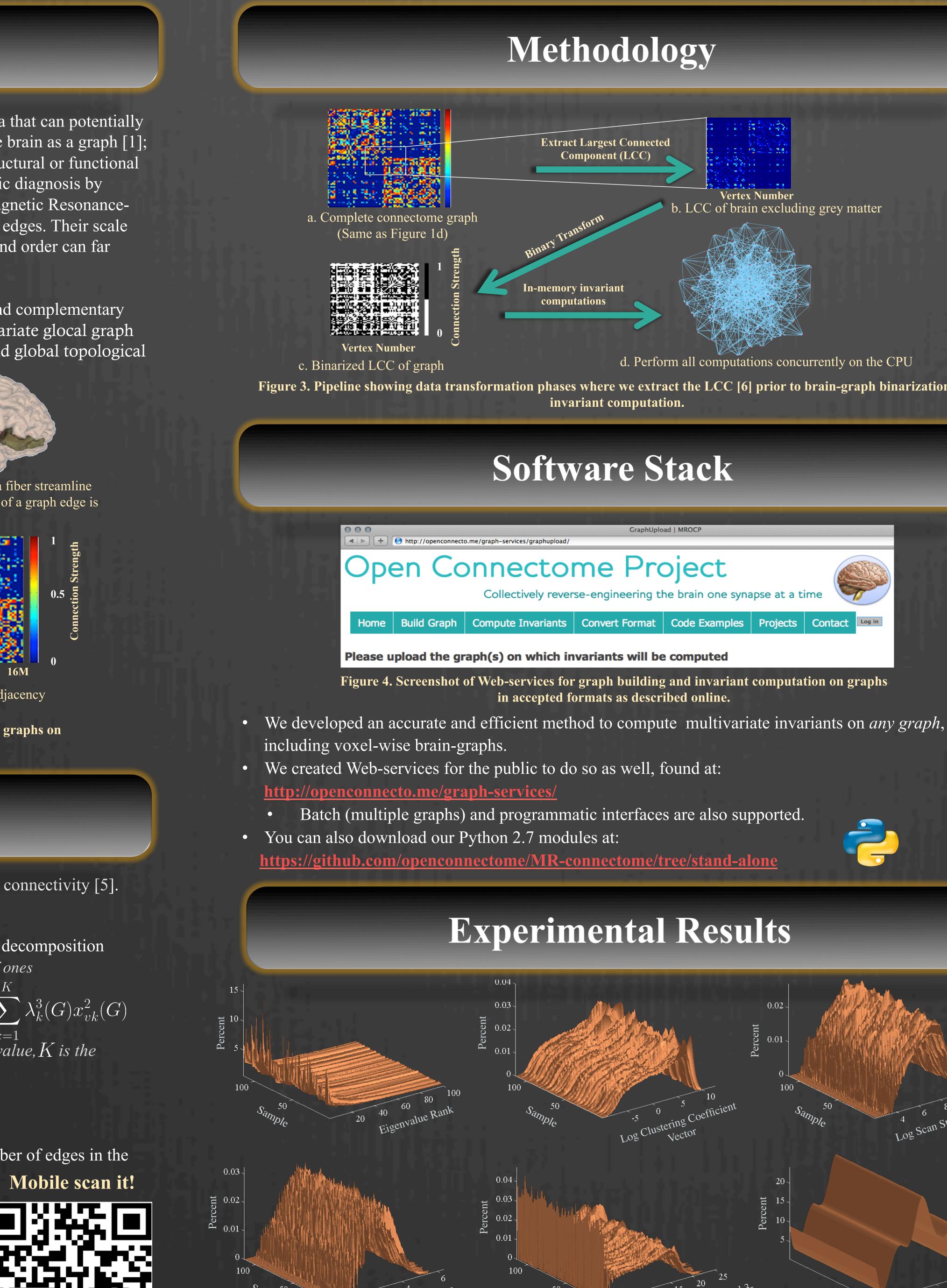


Figure 5. Multivariate invariants computed on 120 subjects. Note that NL-3 uses an approximation algorithm only utilizing the top-k eigenvalue and eigenvector pairs. At 100 eigen-pairs we obtain ~91% accuracy on graphs with O(10⁶) nodes and O(10⁸) edges. All other unrelated invariants (i.e. LP-k, SS-1, Deg) are exact.

Methodology

Extract Largest Connected Component (LCC) Vertex Numbe C of brain excluding grey matter

d. Perform all computations concurrently on the CPU Figure 3. Pipeline showing data transformation phases where we extract the LCC [6] prior to brain-graph binarization and invariant computation.

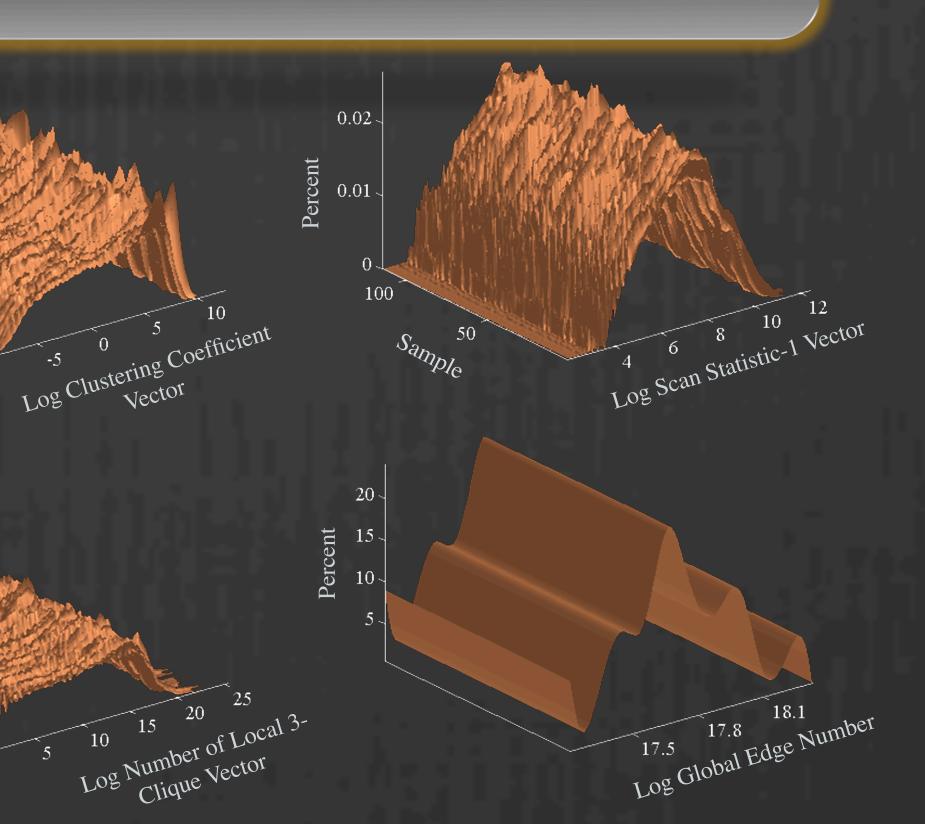
Software Stack

GraphUpload | MROCP

Collectively reverse-engineering the brain one synapse at a time

Figure 4. Screenshot of Web-services for graph building and invariant computation on graphs in accepted formats as described online.

Experimental Results



Clustering Number of L Scan St Latent Po

> Table 1. Asymptotic "Big O" analysis of algorithms used and experimental time measurements using a single 8 core, 2.4 GHz processor Linux server with 16 GB of RAM.

Number of Local 3-Cliques Vector

Figure 6. Performance of each invariant when computed serially and independently of any non-dependent invariants on an 8 core, 2.4 GHz processor Linux server with 16 GB of RAM. Total compute time for all invariants is ~3.7 h per graph, per core.

As extensions to this work, we hope to:

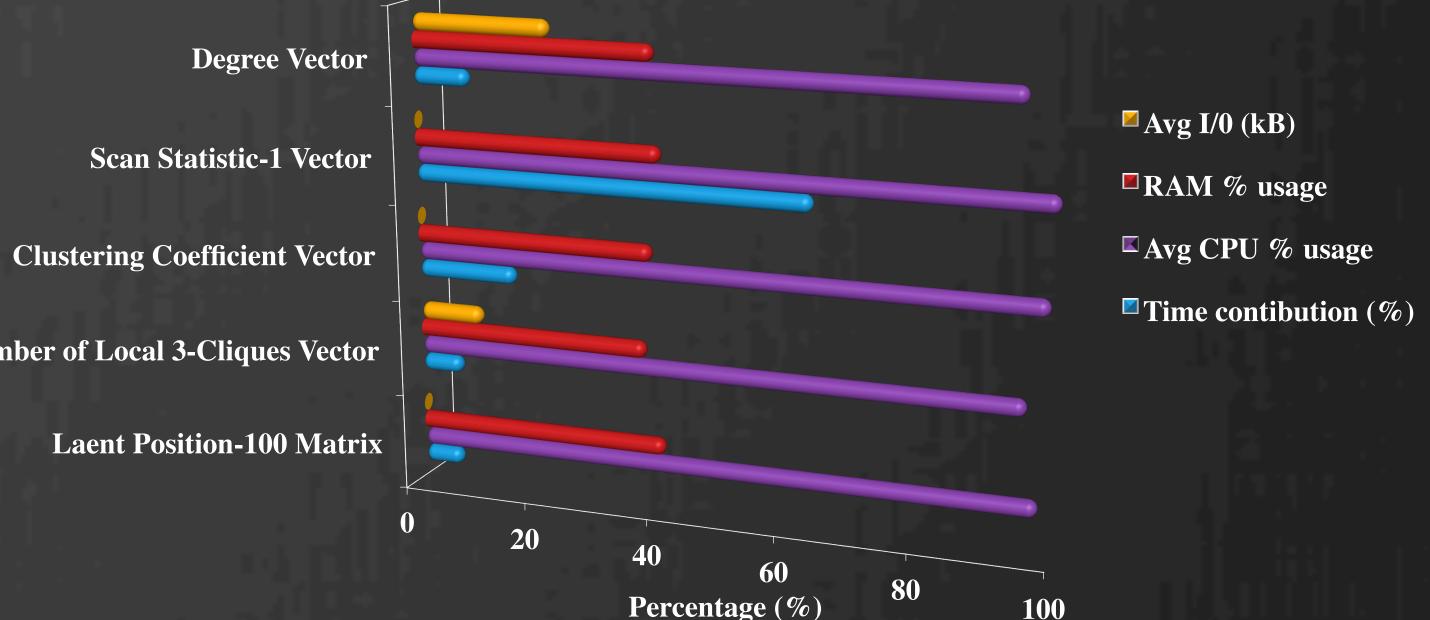
- Develop fully parallelized implementations of all invariants.
- Generate the entire graph from raw diffusion/function MRI data.
- Add additional invariants such as Graph Diameter and Scan Statistic-2.
- Support a wider range of graph data formats for Web-Services.

- 3. Hagberg, A et al (2010). Exploring network structure, dynamics, and function using networkx.
- 4. Gray, William R., et al (2012). "Magnetic resonance connectome automated pipeline: an overview." Pulse, IEEE 3 5. Henry PAO et (2011). 'Statistical Inference on Random Graphs: Comparative Power Analyses via Monte Carlo'.
- 6. Eric Jones et al (2001). 'SciPy: Open source scientific tools for Python'. <u>http://www.scipy.org</u>.
- 7. Charalampos E. Tsourakakis (2008). 'Fast Counting of Triangles in Large Real Networks: Algorithms and Laws'.
- 8. Jari Saramäki et al (2007). 'Generalizations of the clustering coefficient to weighted complex networks'.

disa@jhu.edu

Performance

Invariant	Time Complexity	Mean time per vertex at 1 core
Coefficient Vector	O(n + k)	0.59 (± 2.4) μs
Local 3-Cliques Vector	O(n + k)	48.51 (± 0.9) μs
gree Vector	O(n)	66.64 (± 1.8) μs
tatistic-1 Vector	O(nm)	0.47 (± 0.2) ms
osition-100 Matrix	O(100(m+n))	45.41 (± 0.1) μs



Future Work

References and Acknowledgements

1. Iturria-Medina et al (2007). Neuroimage 'Characterizing brain anatomical connections using diffusion weighted MRI and graph theory' 2. Rubinov, M et al (2010). Complex network measures of brain connectivity: uses and interpretations.

This work was supported by the National Institutes of Health (NIBIB 1RO1EB016411-01) and the National Science Foundation (OCI-1244820).

