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ABSTRACT
We consider the problem of �nding the correspondence between
two graphs with di�erent sizes where the small graph is still large.
We propose using graph matching methodology and padding the
smaller matrix in di�erent ways. We show that under a statistical
model for correlated pairs of graphs, the resulting optimizations
problems can be guaranteed to perform well, though there are cur-
rently no fast algorithms to solve these problems. We also consider
an algorithm that exploits a partially known correspondence and
show via simulations and applications to the Drosophila connec-
tome that in practice this algorithm can achieve good performance
using random restarts.
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1 INTRODUCTION
In many settings, we often want to quantify how multiple networks
relate to each other in order to study how actors jointly use these
networks. This may arise from multiple modalities, such as com-
munications networks, delivery networks, �nancial networks, and
social networks, or from a time dynamic setting. Similarly, in neu-
roscience or biology we may seek to compare brain networks or
protein networks of di�erent individuals or species. Often these
networks are on di�erent unmatched sets of vertices that are not
the same size. This limits the set of available tools as the adjacency
matrices can not be directly compared.
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In a related fashion, we often want to detect and locate the pres-
ence of particular induced subgraphs that correspond to a given
activity or structure of interest. When the induced graphs are small,
with up to ⇡10–20 vertices, there are a number of approaches in-
cluding color coding [Zhao et al. 2010], backtracking algorithms
[Kuramochi and Karypis 2001]. However, it may be the case that
these subgraphs may contain > 20 vertices in which case many
existing approaches will either fail to �nd the subgraphs of interest
or be computationally intractable. Furthermore, we often expect the
subgraphs may not appear exactly in the graph but rather only ap-
proximately, due to errors in one or both of the graphs, so �nding an
exact subgraph might not always be possible. A more challenging
problem that we will not consider is to detect anomalous subgraphs
within a collection of graphs [Akoglu et al. 2015].

Herein, wewill use themachinery of graphmatching to construct
a matched �lter to detect (potentially errorful) subgraphs of interest
within a larger network. In the simplest setting, when the two
graphs adjacency matrices A,B 2 {0, 1}n⇥n are of equal size, the
graph matching problem (GMP) seeks the permutation matrix

argminP 2P kA � PBPT k = argmaxP 2P tr(APBP
T ). (1)

While this problem is NP-hard in general, there are numerous ap-
proaches in the literature that e�ciently approximately solve the
GMP; see [Conte et al. 2004; Emmert-Streib et al. 2016] for a review
of the prescient literature. In particular, when prior knowledge
about the correspondence between vertices the can be incorporated
into the algorithms, the GMP can be approximately solved e�-
ciently for graphs with more than 105 vertices [Lyzinski et al. 2015;
Yartseva and Grossglauser 2013] without the need for sophisticated
modern parallel computing to be brought to bear.

Our main goals in this manuscript are to investigate the theoreti-
cal limitations of noisy graph matching when the graphs may be of
very di�erent sizes; as is often the case in the noisy subgraph detec-
tion framework. To match graphs of radically di�erent sizes in Eq.
(1), we consider a number of padding schemes for the smaller ma-
trix to render graph matching an appropriate tool for the problem
[Fishkind et al. 2017]. Under a statistical model for noisily implant-
ing an induced subgraph into a larger network, we show that the
true induced subgraph will be found by an oracle GM algorithm
using an appropriate padding scheme provided the correlations and
probabilities satisfy certain mild model assumptions. We further
demonstrate the e�ectiveness of these strategies when the vertex
correspondence is partially known.

2 BACKGROUND FOR GRAPH MATCHING
In this section we provide a brief background on graph matching,
some methods to incorporate prior information, and a statistical
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model for correlated graphs. Throughout the remainder of this
article we will use the following notation. Let [n] = {1, 2, . . . ,n}.
Let Pn and Dn denote the set of n ⇥ n permutation matrices and
doubly stochastic matrices, respectively. Let Jn and 0n denote the
n ⇥ n all ones and all zeros matrices, respectively. Let An denote
the set of adjacency matrices corresponding to simple undirected
graphs. When clear from context, we may omit subscripts. Finally,
let � denote the direct sum of two matrices.

2.1 Algorithms
Solving the GMP problem is very challenging but there are a num-
ber of approaches which have shown promise [Conte et al. 2004;
Emmert-Streib et al. 2016]. Some approaches rely on tree based
methods for exact branch and bound algorithms for integer pro-
grams. For larger graphs, the constraints for GMP are often relaxed
so that continuous optimization machinery can be brought to bear
on the graph matching problem; see, for example, [Fiori et al. 2013;
Vogelstein et al. 2014; Zaslavskiy et al. 2009]. The relaxed solutions
are then projected back onto P yielding an approximate solution
to the graph matching problem. Some relaxations involve applying
spectral methods which allows the application of fast linear algebra
techniques [Egozi et al. 2013]. For the computational experiments
in this manuscript we will rely on a principled inde�nite relaxation
of the GMP constraints [Lyzinski et al. 2016] to the set of doubly
stochastic matrices D, the convex hull of P. Details are discussed
in Section 3.2.

Frequently, these approaches can exploit seeds, a partial list of
known correspondences between the two vertex sets. When su�-
ciently many seeds are present, these algorithms, which often have
few guarantees, can be solved e�ciently and the resulting match
can be guaranteed to be correct [Fishkind et al. 2017; Lyzinski et al.
2014] asymptotically almost surely for relatively general random
graph models. While the theory we discuss below does not require
seeds, our algorithms will use seeds and subsequent algorithmic
performance relies heavily on the number of seeds.

2.2 Statistical Models
In order to understand the applicability and limitations of a graph
matching approach for subgraph detections, we will analyze the
problem from a statistical viewpoint, situating our approach in the
correlated heterogeneous Erdős-Rényi model [Lyzinski et al. 2016].
The following de�nition provides a distribution for pairs of random
graphs with di�erent sizes where there is a positive correlation
between corresponding edge-pairs. Without loss of generality, we
assume that the smaller matrix is A and that the corresponding
vertices to A in B are the �rst nc  n vertices.

De�nition 2.1 (Correlated Erdős-Rényi). Suppose � 2 [0, 1]n⇥n
and R 2 [0, 1]nc⇥nc for 0 < nc  n. Denote by �c , the order nc
principal submatrix of �. A pair of adjacency matrices (A,B) ⇠
CorrER(�,R) if A 2 Anc , B 2 An , for each u < � , Bu� are inde-
pendent with Bu� ⇠ Bernoulli(�u� ) and for u < �  nc , Au� are
independent with Au� ⇠ Bernoulli(�u� ). Additionally, the Bu,�’s
and Au0,� 0 ’s are mutually independent except that for u,� 2 [nc ],
u < � , it holds that the Pearson correlation corr(Au� ,Bu� ) = Ru� .

When nc = n, it can be shown that the solution to the GMP will
asymptotically almost surely yield the correct vertex correspon-
dence, i.e., the only element in the argmin in 1 is the identity matrix
I [Lyzinski et al. 2016, 2014].

3 PADDING APPROACHES
In order to match pairs of nodes with di�ering numbers of ver-
tices we propose to pad the smaller matrix with enough rows and
columns to match the size of larger matrix. We will consider a trio
of padding schemes which will result in di�ering qualities for the
resulting match [Fishkind et al. 2017].
Naive Padding The naive padding scheme is to let Ã = A � 0nj

and to match Ã and B.
Centered Padding The centered padding scheme is to let Ã =

(2A � J) � 0nj , let B̃ = 2B � J, and match Ã and B̃.
Oracle Padding The oracle padding scheme is to let Ã = (A �

�nc ) � 0, let B̃ = B � �, and match Ã and B̃.
As we will see in the next section, the naive padding scheme—

which �nds the best �tting subgraph of B to match with A—will
not be guaranteed to �nd the true correspondence between nodes,
while the other padding schemes, the centered padding—which
�nds the best �tting induced subgraph of B to match with A—
and the oracle padding scheme are guaranteed to succeed under
mild model conditions, even in the presence of an exponentially
small (in terms of the size of B) subgraph A. In general the oracle
padding scheme will be inaccessible as � is unknown, but using
various methods to estimate � [Chatterjee 2014; Davenport et al.
2014], we can approximate � in ways that can improve matching
performance.

3.1 Theory
For each of the padding scenarios, we will consider nc and n as
tending to1 in order to understand the ability of these optimization
programs to detect progressively larger subgraphs. Note that we
will require that the number of verticesnc is growing withn, as ifnc
is �xed and n grows then eventually every subgraph of size nc will
appear as an induced subgraph in B multiple times just by chance.
For each padding scenario let P⇤ 2 {0, 1}nc⇥nc denote the order
nc principal submatrix of the solution to the corresponding graph
matching problem. The proofs of these theorems can be found in
[Lyzinski and Sussman 2017].

The �rst theorem we present is a negative result that shows that
under weak assumptions on �c , one can construct a � under which
the naive padding scheme is almost surely guaranteed to not detect
the errorful version of A in B.

T������ 3.1. Let A,B ⇠ CorrER(�,R) with R 2 [0, 1]nc⇥nc and
� 2 [0, 1]n⇥n . If 2nc < n and there exists constants �, � > 0 such that
(entry-wise) �c  � < 1, �c = � (n�1c lognc ), and R  � < 1, then
there exists a choice of � such that using the naive padding scheme,

P[P⇤ , I ] = 1 � o(1). (2)

This occurs due to the fact that the naive padding scheme �nds the
best matching subgraph, rather than the best matching induced
subgraph, since there is no penalty for matching non-edges in A to
edges in B. Hence, if B has a dense substructure of size nc which
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does not correspond toA then the naive padding scheme will match
A to that dense structure, regardless of the underlying correlation.

On the other hand, the centered padding scheme can be guaran-
teed to result in the correct detection of the subgraph even when
the number of vertices in B is exponentially larger than the number
of vertices in A provided R > 1/2 + � .

T������ 3.2. Suppose that A,B ⇠ CorrER(�,R) with Ru� 2
[1/2 + �, 1] and �u� 2 [� , 1 � �] for � , � 2 (0, 1/2). It holds that

log(n)
� 2nc� (1�� )2 = o(1) implies that using the centered padding scheme

P[P⇤ , I ]  2 exp
(
��(�2nc� (1 � � )2)

)
.

Hence, for this theorem we only require that the correlations are
su�ciently large to guarantee that large subgraphs of logarithmic
size can be found via an oracle GM algorithm.

Finally, while the oracle padding is inaccessible for general �,
it represents the optimal padding scheme as it eliminates any em-
pirical correlations introduced by � leaving only the theoretical
correlations from R.

T������ 3.3. Suppose that A,B ⇠ CorrER(�,R) with Ru� 2
[�, 1] and �u� 2 [� , 1 � �], for some � , � 2 (0, 1). It holds that

log(n)
nc �� (1�� )2 = o(1) implies that using the oracle padding scheme

P[P⇤ , I ]  2 exp
(
��(nc�2� (1 � � )2)

)
.

3.2 Computation
Our approach to solve the graph matching problem in this setting
will be analogous to the approach describe for graphs of equal sizes.
In particular, we will relax the constraints GMP from P to D and
use gradient ascent starting at a given D0. We will also incorporate
seeds, which without loss of generality we will assume are the �rst s
nodes. This gradient ascent approach is then given by Algorithm 1.

Algorithm 1: FAQ Algorithm [Vogelstein et al. 2014]
Data: A,B 2 A, D0 2 D, k = 0
while not converged do

1 Pk  argmaxP 2P tr(ÃnnDk B̃nnP ) + 2tr(AsnPBns );
2 �k  argmax� 2[0,1]tr(ÃnnD� B̃nnD� ) + 2tr(AsnD�Bns ),

where D� = �Dk + (1 � � )Pk ;
3 Dk+1  D� and k  k + 1;
end

4 Project Dk onto P;

Note that using any of the padding schemes, we do not need to
store or compute the entire matricesDk or Pk as we only need know
their �rst nc rows in order to compute the objectives described
above. Hence, lines 1 and 4 can be simpli�ed and accomplished by
searching over the set nc ⇥ n matrices corresponding to injections
from [nc ] to [n], or equivalently the �rst nc rows of permutation
matrices. In this way, lines 1 and 4 can be solved e�ectively by vari-
ants of the Hungarian algorithm for non-square matrices [Munkres
1957]. Line 2 is a quadratic equation in � and is easily solved.

Note the convergence criterion is generally easy to check as the
optimal doubly stochastic matrix is frequently itself a permutation

Figure 1: Subgraph detection in the CorrER(�Jn , �Jnc ) with
� = 0.5 and � = 0.6, 0.7, 0.8. We consider n = 500, nc = 40,
andM = 1000. In the top panel of the �gure we plot the GMP
objective function for each initialization (note that we or-
dered the random restarts in the �gure to be monotone in
f ); in the middle we plot the number of vertices correctly
matched; in the bottom panel we plot the number of edges
correctly matched. In red we plot � = 0.5, in green � = 0.7,
and in blue � = 0.8. In all cases, we consider s = 7 seeds to
initialize the FAQ algorithm.

matrix, which also means the �nal projection step can be omitted.
While this algorithm is not guaranteed to converge to a global
optimum, if there are enough seeds or if the matrixD0 is su�ciently
close to the identity, the local maximum which this procedure
converges to will be the identity.

4 EXPERIMENTS
In this sectionwe demonstrate the e�ectiveness of a graphmatching
matched �lter for errorful subgraph detection in both synthetic and
real data settings. Our matched �lter algorithm proceeds as follow:
We initialize the FAQ algorithm at a random start point which

Algorithm 2: GMMF
Data: Template A, network B, seeded vertex sets

{S1, S2, · · · , SM }, number of MC replicatesM
Result:Matchings {B1,B2, · · · ,BM }
for i  1 toM do

1: Generate a random doubly stochastic matrix D;
2: Initialize FAQ at D with soft seed set Si ; match A to B;
3: FAQ output is Bi , subgraph of B matched to A

end

initially aligns the seeded vertices across graphs. Repeating this
processM times, we outputM potential matches for the subgraph
A in B.

4.1 Correlated Erdős-Rényi graphs
For our synthetic data example, we will consider subgraph detection
in the CorrER(�,R) with � = 0.5 (i.e., the maximum entropy ER
model) and R = � for � = 0.6, 0.7, 0.8. We consider n = 500, nc = 40,
and M = 100. Results are plotted in Figure 1. In the top panel of
the �gure we plot f , the GMP objective function, for each of the
M = 100 initializations (note that we ordered the random restarts
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Figure 2: Detecting KC cells in the Drosophila mushroom
body. In the top panel, in the �rst row, we plot the GMP
objective function for each initialization (note that we or-
dered the random restarts in the�gure to bemonotone in f );
in the middle row, we plot the number of vertices correctly
matched; in the bottom row we plot the number of edges
correctly matched. In the top panel of Figure 2, we plot the
performance of our �lter with the centered padding scheme,
and in the bottom panel we use an approximate to the ora-
cle padding scheme, centering by the least-squares optimal
rank 1 approximations of � and �c . The number of edge er-
rors are not reported for the oracle as the objective function
does not correspond to edge errors.

in the �gure to be monotone in f ); in the middle panel we plot
the number of vertices correctly matched across the M = 100
initializations; in the bottom panel we plot the number of edges
correctly matched across the M = 100 initializations. In red we
plot � = 0.5, in green � = 0.7, and in blue � = 0.8. In all cases,
we consider s = 7 seeds to initialize the FAQ algorithm. Note two
key observations from the �gure: �rst, performance is monotonic
in �; second, there is an objective function gap between perfect
performance and imperfect performance. This is a key feature, as it
allows for an online algorithm to dynamically choose the number
of MC restarts needed to achieve the correct result; indeed, stop
after observing the gap!

4.2 Finding KC cells in a Drosophila connectome
For our real data example, we consider using the matched �lter to
locate the induced subgraph of the Kenyon cells (KC) in the fully
reconstructed Drosophila mushroom body of [Eichler et al. 2017].
Using the induced subgraph of the KC cells in the left hemisphere
of the mushroom body (i.e., as A), we seek to �nd the KC cells on
the right hemisphere. Although in this example, the KC cells are
identi�ed across both hemispheres, this was achieved only with
great e�ort and expenditure. Being able to use one hemisphere to

locate structure in the other hemisphere could potentially allow
for faster, cheaper neuron identi�cation in future connectomes.
After initial data preprocessing, there are nc = 100 KC cells in each
hemisphere and n = 213 vertices total in the right hemisphere both.
We consider s = 0, 2, 4, 8 seeds andM = 1000 random restarts for
our matched �lter.

In the top panel of Figure 2, we plot the performance of our �lter
with the centered padding scheme, and in the bottom panel we use
an approximate to the oracle padding scheme, centering by the least-
squares optimal rank 1 approximations of � and �c . In the �gure,
we see that more seeds produces better performance, and that the
approximate oracle centering provides better performance (�nding
⇡ 85 of the 100 KC cells in the right hemisphere) than the data-
independent centered padding scheme. We expect progressively
more accurate estimations of the � matrices in the oracle centering
to produce even better results, ideally resulting in an optimization
gap as in the synthetic setting.
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