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1. Introduction

One-class classification problems are abundant in realkdwapplica-
tions. They often arise in the context détection where a system is tasked
with determining whether or not a given stimulus is part ofeaa&in type. A
common example of such a system comes from target detedier from
imagery or acoustic data. In this case, a continuous urddb&leam of data
is processed in order to segment portions of it that are stardi with a pre-
determined definition of what a target is. Targets can be lehar people in
the military context, abnormal tissue in the medical coptBuman speech in
the acoustic context, etc. A common feature of these tamfeiction applica-
tions is that the relative frequency of occurrence of targeverwhelmingly
lower than that of non-targets. For example, when searcliingn armored
vehicle in a radar image, most of the scene is occupied bgstither than the
desired target, such as trees, buildings, ground, etc. Wethirzk of this as a
classification problem with two classes, one of which is vemypmon while the
other is exceedingly rare. Alternatively, we may approdis as the problem
of modeling the support of a single distribution (that of tamget class).

Regardless of the approach we choose for this problem, mitant
to understand that the relative abundance of the target andanget classes
in the real world must be taken into consideration when atalg classifier
performance. Relative priors for the two classes in typilsgection problems
can be off by six or more orders of magnitude. Under thesecistances, and
considering that we often have a limited training and ev#unsset of data, a
naive performance evaluation will indicate that simplyssi&ying every obser-
vation as non-target is the optimal strategy. Proper pemaliys on the type-I
and type-Il errors are required in order to obtain meaningfsults.

A number of techniques for modeling the support of a distitiucan
be found in the literature (Duda and Hart 1973; Duda, Hart &taitk 2000;
Jain, Duin and Mao 2000; Hastie, Tibshirani, and Friedmarl2MxtLachlan
and Peel 2000; Ripley 1996; Scott 1992; Silverman 1986). Athe§e degrade
sharply as the dimensionality of the data increases, and ofideem are not
applicable for relatively high dimensions, say above tere ake particularly
interested in detection problems, where the data dimeakipiis routinely on
the order of several hundred. Additionally, in such proldetime volume of
data to be processed is normally very large, therefore theime speed of
the classifier/detector is important. Our goal in this papdpbidemonstrate a
set of related strategies for approaching the one-classdiiten) problem with
low computational cost. Emphasis will be on obtaining thehbgj possible
operational speed, and at every point choices will be madeftévor speed
or simplicity instead of performance or theoretical comess. These choices
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will, of course, be justified at the very least heuristicallyjhe reader should
keep in mind, however, that the principle of computatiorifitiency is a major
driving force for the techniques proposed herein.

Throughout the paper we will use, as an example, the probledeof
tecting human faces in grayscale images. The data, in thés gab consist
of 21 x 21 pixel image chips, interpreted d41-dimensional vectors by raster
scanning. The target class consists of those vectors condsy to a face cen-
tered in the image chip with eyes at specified locations. Thetaet class
consists of all other possibletl-dimensional vectors, with the distribution of
naturally occurring non-face images. This is a well studiesbfem, which
exhibits the key aspects of the skewed-priors one-clasgsdgroin high dimen-
sions. In addition, a successful face detector must oftemnade in real-time on
live video streams, so the role of computational compleigityery relevant. In
our example application, as in most other detection probjeve have a limited
amount of training/testing data for the target class andsaemially unlimited
amount of training/testing data for non-targets. This ispcgl scenario, since
data from the target class usually must be manually prodgsser to use, and
is cumbersome or expensive to acquire. Non-target datdheonther hand, is
plentiful and normally easily collected. Specific details loé application of
our methods to face detection are reported in Socolinskyhbieal, Priebe,
Marchette, and DeVinney (2003). In the current article, weaentrate on pat-
tern recognition aspects of the problem, and use the faeetilm dataset as a
unifying thread.

The present work builds upon our previous research, spebffiezier-
aging the Class Cover Catch Digraph classifier, developedéb®&rMarchette,
DeVinney, and Socolinsky (2003); DeVinney, Priebe, Marahethd Socolin-
sky (2002); Socolinsky et al. (2003). Much of what follows danadapted to
other classifiers, and we attempt to make a note of that whenelezant. An
extension of this work using support vector machines is umdgy, and will
be reported on in a later publication. A number of of auth@gzproposed re-
lated methods in various contexts (Viola and Jones 200E&bret and Geman
2001).

This paper is organized as follows: In Section 2 we describeCthss
Cover Catch Digraph classifier. In Section 3 we develop a strador boosting
the CCCD classifier, which is then optimized for data with ureriors in
Section 4. A data-adaptive technique is explored in Sectiorfiérther improve
performance. Finally, in Sections 6 and 7 we present resultsanclusions.
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2. The Class Cover Catch Digraph Classifier

This section provides a brief introduction to the Class-C&vatch Di-
graph (CCCD) classifier. A more detailed description andyaistan be found
in Priebe et al. (2003). In particular, this work uses a dékezof the random-
walk CCCD classifier introduced in DeVinney et al. (2002).

The CCCD classifier is a nearest-prototype classifier with sjoea
non-linear dissimilarity function. For simplicity, comi&r as training data two
sets of class-condition&"-valued observation&, andX}, and a dissimilarity
measurep : R” x R" — Ry, satisfying0 = p(z,z) < p(z,y) < oo, for
x # y € R™. The goal of classifier design is to construct a functjap x, :
R™ — {0, 1} such that for a given unlabeled observatioa R™ with unknown
class label iny € {0, 1}, the probability of misclassificatioR [gx, x, () # y]
is close to Bayes optimal (Fukunaga 1990; Kulkarni, Lugosi] sankatesh
1998).

For a set of prototype€’; = {c;1,...,¢x} C &; and scaling factors
R; = {r1,...,r} C Ry, i = 0,1, the CCCDcover-dissimilarity measures
defined by
Az, C5) = min LECik) (1)
k TL

Given setg’;, andR; as above, the CCCD classifier is defined in terms of the
cover-dissimilarity measure (1) by

9x, x, (x) = argmind(z, C;). 2)

The choice of prototypes; and scaling factor®;, determines the clas-
sifier map. Below, we give a short account of the method for simgpthese
parameters. A more thorough account can be found in Priebke €083);
DeVinney et al. (2002); Socolinsky et al. (2003), along wighfprmance analy-
ses for applications other than face detection.

For each point; ; € X;, we consider the random walk defined as follows

Ry, (1) =[{w € Xi: p(wij,z) <r} — {o € Xu_y : plwij, ) <7}, (3)

forr € Ry, 4 = 0,1. This random walk can be thought of as a ball growing
around the point; ;. As it reaches each observation the walk takes a step either
up or down, depending on the class of the observation. Thitugrated in
Figure 1, where the random walk is depicted as the ball grows.hbnizontal
steps correspond to the distance taken to reach the nextvatisa. A large
value of R, ; indicates a high local density of same-class points araynd
relative to the local density of other-class points (see D&y et al. (2002) for

the case of unequal training priors). In fact, the value efridmdom walk at
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Figure 1. Example of random walk construction for a two-dimensiorathlpm.

any givenr € R, can be taken as a measure of relative deviation between the
local densities of the training data. A Kolmogorov-Smirngpé test is applied
in DeVinney et al. (2002) to obtain a distinguished choice fufr each training
observation, given by
r;” = arg max R, , (r) — P(r), (4)

where P(r) is an increasing penalty function that biases the choicatdw
smaller values of-. This is done in order to encourage more local estimation
of the classifier parameters, and is achieved in practice éyse of a linear
penalty function.

Once a distinguished scaling factdr . has been chosen for each train-
ing observation, it remains to find the choice of class-comuattl prototypes
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C; that will fully determine the CCCD classifier. The procedur¢he standard
CCCD classifier is somewhat different than the one used ip#per (described
in detail below), but we include a summary of it for completss. Ideally, the
choice of prototypes would be that which maximizes classgiEfformance.
However, the combinatorial explosion involved in checkaifpossible pro-
totype sets precludes this direct approach. The choice tbtypes for each
class proceeds in a greedy fashion, using a surrogatei@nitier the classifier
performance

Txi,j = RQ?LJ (T;,» ) - P(’I";”) (5)

For a given class, the first prototypg; is chosen to be that with the highest
value of . All training observations: for which p(z,c;1) < r: = are then
deleted from the training set, all scaling factotsare recomputed for the re-
maining training observations, and the next prototype @seh using the surro-
gate criterionl” as before. This process continues until all but a predetemnin
proportion of the classtraining data has been deleted.

3. A Sequentially Boosted CCCD Classifier

Although some degree of boosting is inherent to the CCCDsiflas (by
means of censoring the training data in the greedy protagfextion process),
increased performance can be achieved by more explicitingaduring train-
ing. Additionally, it is necessary to incorporate the fawttin our skewed-
priors scenario, the relative likelihood of observing a arget (classl) is
several orders of magnitude larger than that of observinarget (clas).
Therefore, classifier design should be geared toward regettiz background
class, both for accuracy and performance reasons (FleudeGaman 2001).
In our case, we will achieve this by boosting on only the backgd class and
structuring the classifier as a sequential testing procedure

3.1 Structure of the Class Cover

By virtue of the nature of the surrogate criterion (5), theGIZclassifier
(2) for a set of prototype€’; = {c;1,...,cir} C &; and scaling factorg; =
{r1,...,m7} C R4 is dominated by the influence of the first few elements
of each set. In particular, the first prototype and scalingofaare the most
important in determining the classification map. Figure 2 shtive number of
training observations in each of the balls correspondingutizesively chosen
prototypes for a typical two-class CCCD classifier. Clearlgst of the training
data is represented by the first few prototypes in each class.



Class Detection Problems with Skewed Priors 23

1000 T T T T T

Data points

Figure 2. Number of data points per ball for a typical two-class CCCDxifias

3.2 Biasing Classifier Performance

It is often necessary to bias the performance of a classifierdet re-
quired tolerances on type-l and type-Il errors. This is oftene, in the Neyman-
Pearson spirit, by varying a threshold. This is a quick and gethod, and we
will take advantage of it below. We would like to point out thiae appropriate
way to bias performance for a CCCD classifier is to alter thedeamwalk (3).
We see that in (3), equal absolute value is assigned to cigmrg of either
class; that is, the penalty for covering a training obsémmatbf the opposite
class is equal in magnitude as the reward for covering adiies observation.
Simply rewriting (3) as

R, (r) = al{z € X p(aijz) <r.} - [{z € Xa_y : pluij.) <, }(|,6)
with a > 0 we obtain a classifier with a variable ratio of type-I to typeiror.
Note that the previous procedure requires that we re-treiassifier each
time we wish to change the bias, which can be a time-consupringedure.
Since we desire the ability to easily change the bias, we éothg previous
construction in favor of a simpler procedure. We easily bieesclassification
performance of any CCCD classifier in favor of lower type-lygra-II error by
modifying the scaling factors as

Ry =t Ry, Ry =t Ry, (7)
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for 0 < t < co. Values oft in (0, 1) favor lower classt error at the expense of
higher error rate on class-and vice-versa. Geometrically, the valuetdfas
the effect of shrinking or growing the estimated supportaifreclass.

3.3 Sequentially Boosted Classifier

A sequentially boosted CCCD classifier is essentially a chbi@CCD
classifiers trained in a specific fashion, detailed below, gudied in order to
an unlabeled observation. The process is best explained bgdirsidering the
detection stage. In the original CCCD classifier, classificatif an unlabeled
observation is based on the class label of the nearest sebtoftypes, where
this is defined as the distance to the nearest prototype inssdckor simplic-
ity, let us assume that the target class has a geometridgaiples support, and
therefore can be represented by a small number of protatyieseas the non-
target class is more complex, and thus necessitates maogymes. Computing
the distance from the unlabeled observation to the targssgbrototype set is
computationally cheap, since there are few prototypes.es&nimplemented
on a parallel computing architecture, computation of ttstattice from the un-
labeled observation to the non-target prototypes procsedsentially and in
order. The first simple observation is that if for any non-tag®totype the
distance is lower than the minimum distance to the targebprpes, then we
need not compute the remaining distances, as the classiffitouill be non-
target, regardless of those distances. Therefore, thefedatien process can
be shortened by bypassing the remaining computations. Tdoandeemark is
equally pedestrian but has farther-reaching implicatidis simply note that if
an observation is closer to the first non-target prototype tbany of the target
prototypes, then that changes our prior on the distribubioinat observation.
That is, we know more about the type of observation we aremtgalith as we
sequentially compute its distance to consecutive noretgngtotypes.

The first remark above leads to a sequential testing structuriaé ul-
timate classifier, where comparison with successive nayetgrototypes must
be favorable in order for the testing process to continueat ny time, we
find that the unlabeled observation is closer to a non-tanggbfype than to
all target prototypes, we simply exit the decision procésgractice, this has
the advantage of quickly classifying all “easy” observasio We should note
that in real-world detection applications, the vast m&jyoof observations are
easy. This is simply because the hard observations are thioish Vie near
the discriminant boundary between the two classes and fet problems this
is an almost everywhere regular submanifold of space withineension one.
Therefore, the majority of possible non-target observatiia far away from
this boundary and can be correctly classified with ease.
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The second remark leads us to the boosted nature of the pobplassi-
fiers. In the standard CCCD classifier (DeVinney et al. 2002)h etass cover
is computed separately using the greedy dominating seeduve in Section
2. This is done in the interest of training speed, since theidating set prob-
lem is exponential in the size of the graph. The most time aoiirsy step in
the greedy algorithm is the computation of distances betténing observa-
tions needed to construct the catch digraph, which is gtiadnathe number of
training observations. In the sequentially boosted digssive explicitly use
the fact that unlabeled observations that have pagdedts against non-target
prototypes are known to be drawn from a different distritmitinan those that
have passed only — 1 such tests. We do this by filtering the training data with
partially trained classifiers, as described below.

3.4 Training a Sequentially Boosted Classifier

Training of a sequentially boosted CCCD classifier is sepdratostages
andsub-stagesin what follows, we associate prototypes and their cordp
ing scaling factors, and we refer to them simply as protatypestage is char-
acterized by a fixed set of clagsprototypes, while a sub-stage corresponds
to a single class- prototype (see Figure 3). The first prototype in each class
is selected by the same procedure as in Section 2 (if more-¢lpestotypes
are desired, they are all chosen in this step, but we desttréoprocess for a
1-prototype stage, for simplicity). At this point, we haveimpgle CCCD clas-
sifier, with one prototype per class. Using the biasing praoedf Equation (7)
and a test set of clagsebservations, we find the lowest valuet@br a suitable
approximation) that yields an empirical error rate belowedetermined fixed
tolerance. The two prototypes along with the resulting sagalactors consti-
tute the first sub-stage of the sequential CCCD stage. In ¢odsympute the
second sub-stage, we apply the first sub-stage classifier (gedgthAm 2) to a
set of classt data and collect the misclassified observations, which bedbm
classi training observations for the second sub-stage. Using ageé the
procedure in Section 2, a single clasprototype is selected, and through the
bias procedure in (7), the scaling factors for the single @fixaasse prototype
and the newly chosen clasgsrototype are computed. This process is repeated
as many times as necessary to obtain the desired number-stagds. In Fig-
ure 4 we see an example of how the training data is filtered Isypifticess for
the face-detection example. On the left we see a unifornmhpsed selection of
the non-face training data, while on the right we have a sarapthe non-face
data that remains after training one stage of a boostedfaasdlote how the
images on the right hand side have more face-like strucsud as dark circles
located in the eye region, or horizontal striations thaenaisle eyebrows and
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Figure 3. Schematic representation of a sample CCCD tree stage. Inghigthware is a single
target-class prototype and three sub-stages identified by distinct rymi-paototypes.
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Figure 4. Sample non-face training data before and after the firstdaBiting stage.

mouths.

The number of sub-stages within a given stage is empiricaligrdhined,;
we continue to add sub-stages to a stage as long as the adassification rate
on the non-target class increases by a significant (predetedinpercentage
over that of the previous sub-stage. At that point, we staming an entirely
new classifier stage, using the original cl@ssaining data, and the clags-
training data that is misclassified by all previous classifiegss. While speed
considerations may dictate (see Socolinsky et al. (2003a))ttte first stage of
the classifier have a single cla@grototype, subsequent stages are allowed to
have multiple such prototypes. In fact, it is natural to wllater stages to use
more target-class prototypes than earlier ones, thus ialipthe classifier to
more closely model the effective support of the distribaitiRather than hand-
select the number of target-class prototypes used for a gitage, we use the
following simple method. We pick the firdt prototypes for the target class,
wherek is the maximum desired number of prototypes. Then using thie firs
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Figure 5. Sequential CCCD structure with three stages of three sutsstage. Target proto-
types are smiley faces and non-target prototypes are represenpadyggnal shapes. This is a
graphical representation of Algorithm 2.

Non-face

sub-stage non-target prototype, we evaluate the emprp@éormance of the

k classifiers using throughk target prototypes, and select the one with highest
accuracy. The resulting structure is illustrated in FigurevBere we see a
classifier with three stages, each of which contains threestades. Algorithm

1 shows the steps in the boosted training algorithm. Heeeintiexes and;j
correspond to stages and sub-stages, respectively. Eayghi stadefined by
its f; target-class prototypeSj = {c},, ..., ¢} ;} and scaling factor&j, as
well as then; non-target prototypes and scaling fact6ts= {¢} ,..., ¢}, }
andR: corresponding to each sub-stage. A large (on the order ofli@mor
more) set of non-target observatiofi8 is used for the boosting process, and a
separate séf; of target-class samples is used to evaluate the empiresdifier
performance on the target class.

Figure 6 illustrates the result of sequentially boosteding for a sim-
ple problem in two-dimensions. The target class is suppartethe union of
two overlapping squares in the unit square, with the delisiigg uniform with
equal intensity on both components of their symmetric diffice, and uniform
with twice the intensity on their intersection. The backgrdwlass is distrib-
uted uniformly on the unit square. One-thousand trainingeolations of each
class are used. Each row of Figure 6 corresponds to a stage gtiargilly
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Algorithm 1: Boosted training algorithm.
Let 7, and 7 bei.i.d. sets of clas$-and classt data respectively.
Let 5 be the required number of stages.
Let « be the threshold on the incremental classification

je ke 1) TP
fori«—1...6do
SelectC§ = {cf ;- .-, ¢} s, } and R as in Section 2
repeat
Selectr} ; andr{ ; as in Section 2, using’y ! as training data
Adjust the scaling factors as in Equation 7 to enforce thaeired classh em-
pirical performance bound
Let 7} C T be the class- observations incorrectly classified by the current
classifier;
Let X be the misclassified cladstraining observations
k—k+1
until [75/| T > a
end for

Algorithm 2: Sequentially boosted classification.
Let = be the unlabeled observation.
Let 5 be the number of stages.
Let C = {c}h...,c;k;} forall j € {0,1},4 € {1,...,3} be the sets of target
(j = 0) and non-targetj(= 1) class prototypes for stage

Let R: = {r} ... ,r;,k;} be the scaling factors faf’.

fori—1,...,8do
. kg i
mo < ming 2, p(x, g y)
for j «1,...,ki do
if p(z, ¢} ;) < mg then
Classify as non-target arekit
end if
end for
end for
Classify as target
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Figure 6. Sequential refinement of the classifier through stages arstages. Each row cor-
responds to a stage and each column to a sub-stage within it. The regiantmsitihes is the

true support of the target class. The three stages have one, threix aadjet-class prototypes,
respectively. The first stage has three sub-stages, while the latehavesfour each.

boosted CCCD classifier, and each column represents a Sydssitin each
stage, so the figures should be read from left to right and tdgottom. Each
figure shows the estimate of the effective support for theetactpss corre-
sponding to the respective stage and substage. The thres siage one, three
and six target-class prototypes, respectively, and tiogvalll error for each sub-
stage i9.5% (thus the total error on the target class is bounded. b¥%). Note
that the first stage has only three sub-stages, while stagearnd three have
four sub-stages each. We see how easy non-target obsas/a#io be correctly
classified using only a small portion of the classifier, and ¢h@ase ones near
the discriminant boundary must be processed by later stagash-stages.

Figure 7 shows classifier performance on each class as a faruétthe
total sub-stage count, for42 sub-stage sequentially boosted classifier. This
was evaluated using a set of several thousand faces anéoes-flisjoint from
the training set. Note how the performance on the face classedses as the
number of sub-stages increasashile the error rate on the background class
decreases. A straight sum of the error rates is not a goaetioritof perfor-
mance, however, as the priors are severely skewed towabdtkground class.
Hence, even though it would appear that the optimal claséifihis case has
around10 sub-stages, the full cascade indeed has a better deteotiatse
alarm ratio.

1. The error rate on the face class is bounded above by the mwhbab-stages times the error bound on
each individual sub-stage.
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Figure 7. Sequentially boosted performance as a function of totaltagk-sount, for @2 sub-
stage sequentially boosted classifier.

3.5 Fast Training of a Sequential Classifier

The main emphasis of our work lies in lowering the classifieorerate
and speeding up its application at time of detection. Trgjrtime is not a ma-
jor factor, since training occurs off-line and once comgdetioes not need to
occur again; that is, once a classifier has been trained, ieased indefinitely
without modification. However, if training times are prolibely long, then it
is not possible to obtain the desired classifier. In our cdse)arge number
of training observations used, especially for the nondgalpss, would make
standard CCCD training as in Priebe et al. (2003) and DeVimtey. (2002)
all but impossible, since the algorithm there requires tmaputation of all dis-
tances between training observations. Even though it malebeto the reader,
we should remark that a very large number of non-target dbservations are
normally required to train a sequentially boosted CCCDgifees because of
the filtering inherent to the training process. In order tmteagiven sub-stage,
we must collect a sufficiently large number of hon-target ole@ns that have
been incorrectly classified by all previous stages and sadpest This becomes
increasingly hard for later stages, as the partial classsfreormally fairly good
early in the training process. As a concrete example, wiaémiig a face detec-
tor (Socolinsky et al. 2003) we have used tens of millions of-face examples.
Note that this does not mean collecting tens of millions o&g®s, but rather
using that many subwindows of a few hundred images manuatirohined to
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contain no faces.

In order to avoid the quadratic growth problem, we apply tiiving
stochastic search strategy. At each sub-stage of trairimglom subsamples
from the clas®} and classt training data are drawn, consisting of a few hun-
dred observations each. These subsets are used to trairbtistage as above,
and the empirical performance of the resulting stage orsdlafata is evalu-
ated on the class-data not used for training (the complement of the random
sample). Recall that the performance on clasita is enforced explicitly, so
it is not necessary to evaluate it. This process is repeatdtipfautimes for
new random samples of the training data, and the sub-stadging highest
empirical performance is used in the final classifier. We camktbf this as a
degenerate form of bagging (Breiman 1998).

Experimentally, we have observed that if the random traisirgsets are
not too small, this procedure yields a classifier whose perdoice is indistin-
guishable from that of one trained on the full set of trainitaga, but requiring
only a small fraction of the computation time. We normallg ws the order of
50 random iterations of the above procedure for each sub-stae classifier
tree.

4. Biasing Performance for Optimal Sequential Testing

Given a training dataset, the CCCD training process in Se@ieeeks
to find the classifier minimizing the empirical error rate onttet. This is not
the desired outcome if the relative priors in the trainingdsenot reflect those
in the real world. For a detection problem, where the realldvpriors differ
by many orders of magnitude, it is not feasible to work withepresentative
training set, so we resort to biasing the classifier perfooeaas in Section 3.2.
Likewise, when our classifier is to be used within a sequerg#ing process, it
becomes necessary to bias its performance. In this casenipbrtant that the
error rate on the target class for each test in the sequencrible lower than
that on the non-target class. It is easy to see that if foreatarget observation
a sub-stage of our classifier makes a mistake, the final classifiaqasult will
be incorrect. On the other hand, if a mistake is made for a nretarget
observation, we simply incur the cost of (at least) anothet.tHence, errors
on the target class are unrecoverable, whereas those onrtHanget class are
potentially recoverable at the price of additional compata

It follows from the previous remarks that it is a valid statdo seek,
for any given sub-stage, the highest performance on thetarget class for a
fixed maximum error rate on the target class. Note that giverstiucture of
our sequential testing procedure, the overall error (ofeslts in sequence) on
the target class is bounded above by the sum of the target-elaors of the
individual tests. We do not have a comparable bound on thetarget class
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error, and in any case such a bound would not be of much use sie have
no control over that error during training. It follows thatwe seek to train a
sequentially boosted CCCD classifier with a given maximurovable error
on the target class, we must simply control the individudl-stage empirical
errors so that their sum does not exceed the allowed errcs.rébipe leaves us
with a great deal of freedom as to how to distribute the pbrstage errors, or
equivalently as to the choice of the corresponding biasketpfs. When train-
ing the boosted classifier, the choice of biasing factor igitital importance.
Not only will it affect the detection rate of the classifier,t iuwill affect the
computational cost as well, especially in the earlier stagé/e show below
how different choices of per-substage-error with equakalVerror result in
classifiers with substantially different run-time speeds.

4.1 Varying the Biasing Factor on a Per-Sub-Stage Basis

For this discussion, let;(k) be the class-error for sub-stagé only,
where the error rate is only evaluated for classamples for which all sub-
stages froml to k — 1 assign the class-0 labélLet ¢} (k) be the cumulative
classs error for sub-stagebkthroughk. Furthermore, lef denote the set com-
plement. Based on the algorithm for boosted classificatiain@ cumulative
error rates are as follows:

i B 0 whenk = 0,

eo(k) = { eo(k)eh(k — 1) +¢i(k — 1) otherwise. ®
. _ 1 whenk = 0,

er(k) = { e1(k)ej(k —1) otherwise. ®)

To analyze the effects of varying the biasing factor, let u& fionsider
the simple case wheny(k) is constant, sey(k) = o(l), for all k,1 > 1. This
can be achieved by adjusting the biasing factor at eachtagie,sand allowing
the class-1 error to vary from sub-stage to sub-stage. $rctge it is simple to
computes;; as follows:

k—1
eo(k) = eo(k) Y _&o(k)" < keo(k) (10)

<.
Il
o

On the other hands (k) will in general depend on the data, according to the
receiver operating characteristic (ROC) curves for theviddal sub-stages.
See Figures 8 and 9.

2. Recall that if any sub-stage prior kohad assigned a cladstabel to the observation, then it would never
have been evaluated by sub-stége
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Figure 8. An ROC curve for a typical sub-stage as compared to a staiudlaCCCD classifier.
While it is a weaker classifier, it is faster to evaluate, and can be used wjtlestal testing to
achieve high performance. Inset shows a magnification.

Now assume that since the prior on the non-target class i$ aunger
than that on the target class, there is a fixed acceptabld targerate, and that
the goal of training is to get the best possible non-targettien rate for that
amount of target-class error. The simplest way to achiegdgho take the total
allowed error, divide that by a constant number, and lintihesub-stage error to
that. If the total error is small, then each step up in errdirlvé nearly the same
size according to Equation (10). When we compute empiricaCRQrves for
a sequentially boosted CCCD classifier trained in this faghie see that each
sub-stage corresponds to a roughly constant step dowmésicig error on the
target class), and an incrementally decreasing leftwartbm@mproving error
on the non-target class), as is shown as the solid line in &igur

The expected computational cost of evaluating a non-taegepke up to
no more thark sub-stages is proportional to the average number subsstiaate
need to be evaluated,

k
Ui(k) oc Y ei(k). (11)
i=1

SinceU; depends on the training and testing data, it is hard to estiatzead
of time, but there are several strategies for reducing it.
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Figure 9. ROC curves for the first, third, and fifth stages in a boostedBC€l@ssifier. The
ROC curves are generated by adjusting the bias between the neagestdiamon-face prototypes
explored. Also shown is an ROC curve generated by varying the nuofibeb-stages used with
no bias. Inset shows a magnification.

Recall that after a sample has been classified as non-tacgeputation
stops, thus reaching a high rejection rate early in the se@lgrocess will
result in a lower average number of sub-stages requirinly&tian. Since a
higher rejection rate on the non-target class will necates# higher error rate
on the target class, it is not possible to have many largectems in false
alarms before exceeding the limit on correct classificatibis.the early stages
that have the greatest effect on classification speed, gdriftal stages of high
non-target rejection rates and high target error rates,ameswitch to biasing
factors that yield lower target-class error for the remajstages. See Figure
9.

Figure 10 shows three strategies for varying biasing fadtoas yield
the same final correct classification rate of 98% on the targsscbut rapidly
achieve most of the non-target rejection in the first few dalgess. The first
method is to allow a constant maximum error of 0.2%. The sesohdme is to
allow a large error in the first step, and then a constant snetiter thereafter.
This scheme is labeled “Stepped” in Figure 10, and uses a 1%lisi&p, fol-
lowed by a 0.1% limit, as compared to the 0.2% limit in the ¢anscase. Both
the “constant” and “step” strategies take steps to reach 98% correct target
classification. The third scheme is to take an exponentialydexta of1/2 the
target error each step to converge on a final rate of 98%.
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Figure 10. ROC curves for three different biasing strategies. Theatipeal point of the final
classifier is at 98% correct classification. While the linear strategy hatiex bgjection rate, the
computational expense of the other two strategies are significantly lower.

Table 1. Average number of sub-stages evaluated for non-facplesmnder three different
biasing schemes with equal final correct classification rate of 98% dadkeclass.

| Linear [ Step | Exponential|
[ 215] 1.40] 135 |

Performance results for these three different biasingegires are shown
in Table 1. The performance is measured by the average nurhbab-atages
that must be evaluated for a non-target observation. Thistimated using a
large set of non-target observations not used for trainitigshould be clear
that since the relative frequency of non-targets is ovelmhngly higher than
that of targets, the computational cost of classifying a-tawget observation
determines the run-time speed of the classifier when usedeimetal world.
Results show that both of the dynamic strategies for adigstie biasing factor
markedly improve performance. Between the two strategiesexponential
decay of target error has slightly superior performancecesthe exponential
decay strategy is also able to achieve a higher non-tarptian rate for the
same correct classification, it should be preferred over tiye method. The
constant bias factor will be able to achieve the best nagetaejection rates of
all however, so should be considered when speed is not astiampo
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5. Adaptive CCCD Trees

In Section 3.4, we discussed the fact that as we train the deawhsub-
sequent stages of a sequentially boosted CCCD classifier]love multiple
prototypes to be used for the target class. This is so that wentae accu-
rately model the support of the target class. In the classificatage, however,
we are only concerned with whether the unlabeled sample lpaercto any
target or non-target prototype. In particular, if a samgléound to be closer
to some target prototype than to all non-target prototypitisinva stage, the
specific closest target prototype is irrelevant. This is a vabvaluable infor-
mation, since the set of target-class protoypes inducetdiparspace. More
explicitly, for any given CCCD stage, we can view the set oféd-class pro-
totypes as a set of cluster representatives. Now, almosf eaeple (target or
non-target) can be assigned to one target-class clusteg the nearest neigh-
bor rule with respect to (1). Figure 11 shows the cluster medmained by
training a CCCD stage on a set of zero mean unit norm face isnagk fixed
eye locations. Even though the choice of prototypes is a greptimization
of the graph dominating set, we see that structure withirdtte arises natu-
rally. In this case, the three prototypes encode the typ#umhination under
which the face image was acquired. In this section we inttedu variant of
the sequentially boosted CCCD classifier that exploits thttiea induced by
the target representatives to yield better performancdastdr run times. The
inevitable trade-off is more complex and lengthier tragnin

In order to train a boosted tree, we proceed as in Section 84dt&in the
first two stages of a sequentially boosted CCCD classifier. Apoisted out
before, for reasons of run-time speed, one normally usesgesiarget-class
prototype for the first stage, and multiple ones for subsetgsteges. In order
to train the third level stages of the tree, we run the trgjmiata through the par-
tial classifier and discard, as before, any training obsenvstthat are labeled
as non-target. We separate the remaining training obsengainto groups ac-
cording to the nearest target-class prototype in the sestagg. Now, for each
one of these groups (one per target-class prototype) wearsequential CCCD
stage using only the data in the group. As in the sequentmisted CCCD
training, we need only specify the maximum allowable nurdiearget proto-
types, and the algorithm will select at most such a numbarekample, when
training the stage whose target clusters are shown in Figurthé training al-
gorithm was told to select no more than four prototypes, tyghose to stop at
three, since the data would only support three naturaleisisEigure 12 shows
a boosted CCCD tree. Each stage is shown as a box containitayget¢-class
prototypes along the bottom and the non-target prototyjmegydhe right side.
A rightward-pointing arrow indicates classification as narget. A downward-
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Figure 11. Clusters found by the CCCD classifier while training a boostecctassifier. Each
image represents the mean face within that cluster. While the clusters aratalfirshosen
to maximize classification performance, they do correspond to the magmeiriasses that are
intuitively expected. Frontal, left and right illumination are all the domindunsters.

pointing arrow leads to either further testing or classifarats target.

Once a boosted CCCD tree is trained, classification is a ktfaigvard
extension of the sequentially boosted case. Algorithm 8Svshaseudo-code for
the boosted CCCD tree classifier. We simply compare the uleldisample se-
guentially against the target and non-target prototypessitage, as before, and
if the sample is closer to the target class, we choose theseexif target/non-
target prototypes based on the closest target prototypec@mtinue. If at any
point the sample is closer to some non-target prototype tinail target-class
prototypes, then it is labeled as non-target and the prdsdssted. Alterna-
tively, if the sample is never found to be closer to a nondagototype, it
is declared target class. By partitioning the data at tngitime, we tune the
later-stage CCCD classifiers to local regions of the diserémi boundary. As
a result, each later stage is required to represent onlyiarred the boundary
in the vicinity of its target-class prototypes, thus allog/ifiner modeling of the
class support with the same number of prototypes. Note theat though a
boosted CCCD tree may have a large number of target classtypes, only
those along the path explored by a given unlabeled samplgsak Therefore
the increase in representational capacity does not reslalihger run times. On
the other hand, training is a lengthier process, and moeeislaeeded. In some
cases, the need for extremely large amounts of trainingrdagerender the tree
training infeasible after a few stages, especially for ttambhes exploring rare
cases. In order to obtain sufficient training data to exteaddlbranches it is of-
ten necessary to filter millions of non-target training dataugh the previous
tree stages.

Performance when using a CCCD tree is improved on two frontstlyi
overall accuracy is better, with results shown in Figure 13 fidason for this
is that the number of effective target prototypes is inaedasin the sequen-
tially boosted CCCD classifier, only a few target prototypagehto represent
the entire target-class distribution, which does not adiglly change from
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Figure 12. A boosted CCCD tree classifier. Terminal arrows facing niglicate a target-class
decision, while arrows facing up indicate a non-target decision. Nagettarototypes (sub-
stages) are evaluated from left to right.
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Algorithm 3: Boosted tree CCCD classifier

Let C«(S) be the set of clask-prototypes for the stagg.

Let ¢, (S, 7) be the clasg: prototype for thej-th sub-stage of the stage
Letr(S, 7) be the class: radius for thej-th sub-stage of the stage
LetT(S, j) be the biasing factor for thgth sub-stage of the stage
Let Child(S, 7) be thej-th child stage of the stage.

S « The root stage.
while S # 0 do
for j « 1...]Cp(S)| do
dj — d(z7CO(Saj))
end for
for j « 1...]C1(5)| do
b — argminke[l,‘co(s)” W
0~ T
e d(m’qr(f(g,)])‘)T(SJ)
if vy, > | then
return 1
end if
end for
S« Child(S, b)
end while
return O

stage to stage. With the boosted CCCD tree classifier, the samber of face
prototypes can be used to model only the cluster within tlee fiistribution
matching the previous decisions in the tree. As the targstsdlistribution will
decrease in complexity as we narrow our scope, a small nuaflgptotypes
normally suffices for good performance.

A secondary performance improvement comes from the fatttiesav-
erage cost of evaluating a target sample is lower than in eqeential case.
This is clear from the fact that for a face sample to be coyetdssified by the
sequential process, it must be compared to all target pymtst The average
number of comparisons for the tree case is lower, thus yigl#ister run-times.
Of course, itis the expected cost of evaluating a non-ta@®iple that normally
drives the run-time speed of a detector. However, thereamescwhere the cost
of evaluating a target sample is a significant run-time fatfable 2 shows the
average number of sub-stages evaluated when processimge#-¢kass sam-

3. For example, if one were to use the detector within a targeking framework, the likelihood of observing
a target would be relatively high as long as the tracker mimista good estimate. In this case the relative
class priors are no longer so severely skewed, and the coktssifying a true target observation is relevant
to overall speed.
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Figure 13. ROC curves for sequentially boosted and boosted tree Cla€fifiers. Insert shows
a magnification.

ple using sequentially boosted and boosted tree CCCD fitassiWe see that
the number of sub-stage evaluations required to procesget sample is sub-
stantially lower when using a tree-based classifier. The nombsub-stages
required for evaluating a non-target sample is not venediifit. This should be
no surprise, as the majority of non-target samples are cityrelassified using
the first stage only, which occurs before the tree begins todbra

6. Performance and Speed Analysis

This section provides a number of performance comparisamskea the
proposed CCCD approaches and support vector machinesiKVe@®8). The
comparison to SVMs is patrticularly relevant since CCCDs lrag@y concep-
tual similarities with them, especially SVMs based on rathiasis functions.
While SVMs model the discriminant boundary by choosing claggesenta-
tives close to that boundary, CCCDs do so by using reprethargadn regions
of high statistical deptf.Both methods restrict their choice of representatives
to elements of the training set, unlike other methods fotqiype selection,
such ask-means. In both cases, this restriction is imposed in oralendake

4, The statistical depth of a point can be thought of as itsesiess to the center of a dataset. For a more
detailed discussion, see Zuo and Serfling (2000).
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Table 2. Average number of sub-stages that must be evaluatec:cfotvea classifiers of roughly
equal classification performance on both targets and non-targets.

| | Targets| Non-Targets|

Sequential CCCD; 20.58 1.44
Tree CCCD:| 12.31 1.36

training computationally tractable. Unlike SVMs, howewe;CDs use a sub-
optimal procedure for picking the prototype set, since thgnaal method is
NP-complete.

In some cases CCCD classifiers have been shown to have sim#iar o
perior performance to SVMs (DeVinney et al. 2002). For manyhefexper-
iments presented in this paper, SVMs have shown better fitadixin perfor-
mance than CCCD classifiers, although at considerably highmputational
cost. Figure 14 shows ROC curves for SVMs with linear, polyrartdegree
two), and Gaussian kernels as compared to a CCCD classifidipMCCCD
classifiers were trained on random subsets of the dataQ@idonfidence in-
tervals on their performance are shown in the graphs. Natdlie comparisons
are between standard CCCD classifiers with no bound on the ennifiproto-
types (not boosted ones) and SVMs. We have observed that eedd@€CD
classifier will have roughly similar classification perforncaras a standard one
with no bound on the number of prototypes per class, althaighmuch lower
computational cost. Therefore, these comparisons shofléttréhe expected
performance of the boosted classifiers. Unfortunatelyyitngithe boosted clas-
sifiers is a lengthy process, and it would be infeasible toteaiarge enough
sample in order to have meaningful confidence intervals. Asawesee in Fig-
ure 14, SVMs with quadratic and Gaussian kernels outperfo@@@&D, while
the CCCD outperforms a linear SVM. All of them were trainedhathe same
data set.

Figures 15, 16 and 17 explore the generalization capabifit¢@CD
classifiers versus linear, quadratic and Gaussian SVMs ettaand tested on
the same data. The training set consisted of face images reitiaf or near
frontal illumination, and the test set consisted of facegesawith severly lat-
eral (left or right) illumination. As we can see, CCCDs geattize statistically
significantly better than linear SVMs. For Gaussian SVMs, CC@psear to
generalize slightly worse, but it is unclear whether thifegénce is significant.
The difference appears to be more significant with quadratic §\déthough
once again the confidence intervals are wide enough as to miakériclear.

The clear advantage of CCCDs over SVMs comes when we consiler th
computational cost of applying the classifier. Table 3 shdv@swumber of sup-
port vectors for each of the three tested support vector mashin each case,
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Figure 14. Performance of CCCOersusseveral SVMs. The same training and testing data are
used for both. Since the CCCD training algorithm is non-determiniii#, confidence intervals
are shown. Insert shows a magnification. SVM performance is bist®aussian kernels,
followed by polynomial and linear kernels.

all support vectors must be evaluated in order to obtain ssiflaation. For
the boosted CCCD classifiers, we noted that the average nwhbeb-stages
evaluated when processing a non-target (the driving coeptaof the run-time
cost) is about .4, which would result in an average 9f4 prototype compar-
isons per non-target sample. (One for the face class, andesiage of 1.4 non
faces.) Since the computational cost of processing a supgcidr is the same
as that of processing a CCCD prototype, this is ald6Qttimes fewer compar-
isons than the various SVMs, and hence about 450 times fastenmber of
authors have proposed methods for reducing the compleik@y s (Burgess
1996; Schilkopf, Burgess, Knirsch, Miler, Ratsch, and Smola 1999). Using
the algorithm in Scblkopf et al. (1999), and the Gaussian SVM whose perfor-
mance is displayed in Figure 14, we created a reduced SVM wittpatational
complexity comparable to a boosted CCCD tree. Figure 18 sR&S curves
for the full Gaussian SVM, the reduced one, and a boosted CC&D tWe
can now see that for the same computational cost, the bo@E€&D tree is
superior to the Gaussian SVM.
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Figure 15. The generalization capability of an SVM with a linear keveesusa CCCD classifier.
Testing is on lateral illumination (top) and severe lateral illumination (bottom)bdth cases,
the training data was frontal or near frontal illumination. Error bars stim®5% confidence
intervals afte25 random restarts for the CCCD classifier. Insert shows a magnification.
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Figure 16. The generalization capability of a SVM with a degree-2 polyrnomigusa CCCD
classifier. Testing is on lateral illumination (top) and severe lateral illumingkiotiom). In both
cases, the training data was frontal or near frontal illumination. Erner $leow thed5% confi-
dence intervals afte5 random restarts for the CCCD classifier. Insert shows a magnification.
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Figure 17. The generalization capability of a SVM with a Gaussian keerslsa CCCD classi-
fier. Testing is on lateral illumination (top) and severe lateral illumination (bojttdn both cases,
the training data was frontal or near frontal illumination. Error bars stim®5% confidence
intervals afte25 random restarts for the CCCD classifier. Insert shows a magnification.
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Figure 18. ROC curves for a full Gaussian SVM, reduced Gaussiavi & boosted CCCD
tree, all trained on the same data. The CCCD tree’s accuracy lies betinatent the full SVM
and the reduced set SVM. The reduced set SVM and CCCD tree hasarie computational
cost, while the full SVM is considerably more expensive.

7. Conclusion

We introduced a novel extension to the CCCD family of clagsifi&he
proposed methods are specifically designed for the one;cliedstection, prob-
lem where the natural abundance of one class is overwhelyniaiger than
that of the other. In this context, processing speed for ldwsdier is primarily
driven by the cost of evaluating a sample from the non-tasigesis. As a result,
we structured the new classifiers in such a way as to minimgeakt of eval-
uating such samples. This allowed us to reduce the averagefoegluating
a sample more than tenfold with no degradation in classifingtierformance.
The key insight was to structure the classifiers as either dasaar trees with a
maximal rejection bias.

Due to the large amount of data needed to train the proposedifiérs,
it was necessary to introduce a fast training method basexdlmygging tech-
nique. Fast training makes it possible to use millions ahtre observations
(for the non-target class) in a manageable period of timevidre CCCD train-
ing implementations were limited to a few thousand trairodbgervations.

Comparisons with support vector machines were providel footaccu-
racy and speed. While the classification performance ofice®dMs appears
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Table 3. Number of support vectors used in various experiments.

Support

Name Kernel Vectors
Linear K(x,y)xx-y 887
Polynomial K(x,y) x (x-y)? 1306
Gaussian | K(x,y) o exp 7% 922

to be higher on the sample problem, their computationalis@sveral hundred
times higher, thus making them unsuitable for applicati@giiring very high

processing throughput. As the proposed CCCD classifiers designed for

use in real-time applications, we find this comparison to besitipe one.

The most valuable contribution of this paper, in the autheiesy, is the
adaptive CCCD tree. The combination of an early rejectiomopuwith what
amounts to adaptive classifier selection is a powerful toofdst and accurate
classification. An effort is currently underway to constracdimilar classifier
based on SVMs instead of CCCDs, the results of which will bemeg else-
where.
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