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Abstract

We formulate change-point detection in a time series of graphs as a hypothesis testing
problem in terms of Stochastic Block Model time series. We analyze two classes of scan
statistics by deriving the limiting properties and power characteristics of the competing
scan statistics.

1. Change-Point detection in Stochastic Block Model formulation

Given a time series of graphs Gt = (V,Et), where the vertex set V = [n] = {1, · · · , n}
is fixed throughout, an important inference task in time series analysis is to identify, from
{Gt}, excessive communication activities in a subregion of a dynamic network.
Statistically speaking, we want to test, for a given t ∈ N, the null hypothesis H0 that t is
not a change-point against the alternative hypothesis HA that t is a change-point.
We say that t∗ is a change-point for {Gt} if there exists distinct choices of matrices P0, PA

independent of t such that

H0 : Gt ∼ SBM(P0, {[ni]}) for all t, HA : Gt ∼
{

SBM(P0, {[ni]}) for t ≤ t∗ − 1

SBM(PA, {[ni]}) for t ≥ t∗

where SBM(P, {[ni]}) denotes the stochastic blockmodel of [1], with block connectivity
probabilities P and unknown block memberships {[ni]} In each block [ni], vertices follow
the same probabilistic behavior and P is a B × B symmetric matrix where Pj,k denotes
the block connectivity probability between blocks j and k
In this work, to illustrate a subset of vertices with chatter anomalous behavior in an other-
wise stationary setting, we are concerned about is of the particular form for some δ > 0,

P0 =




p p . . . . . . p
p h2

. . . ...
... . . . . . . . . . ...
... . . . hB−1 p
p . . . . . . p p



,PA =




p p . . . . . . p
p h2

. . . ...
... . . . . . . . . . ...
... . . . hB−1 p
p . . . . . . p p + δ



.

The case where h2 > p, . . . , hB−1 > p is of interest because we can consider each of the
[ni] as representing a “chatty” group for time t ≤ t∗−1, and at t∗, the previously non-chatty
group [nB] becomes more chatty. The detection of this transition for the vertices in [nB] is
one of the main reasons behind the locality statistics that will be explored.Time Series of Attributed Graphs - norm
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Figure 1: Notional depiction of a 3-block time series of graphs in which the anomaly oc-
curs at time t∗, a subset of vertices exhibits a change in behavior. When testing for change
at time t∗, the recent past graphs Gt, Gt−1, . . . are used to standardize the invariants.

2. Locality Statistics and Graph Invariants

2.1 Two locality statistics
Let Nk[v;G] = {u ∈ V : d(u, v) ≤ k} and Ω(V ′, G) denote the subgraph of G induced by V ′.
We now define two different but related locality statistics on {Gt}. For a given t, let Ψt;k(v),
introduced in [2], be defined for all k ≥ 1 and v ∈ V by

Ψt;k(v) = |E(Ω(Nk(v;Gt);Gt))|. (1)

Ψt;k(v) counts the number of edges in the subgraph of Gt induced by Nk(v;Gt).
Let t and t′ be given, with t′ ≤ t. Now define Φt,t′;k(v), introduced in [3], for all k ≥ 1 and
v ∈ V by

Φt,t′;k(v) = |E(Ω(Nk(v;Gt);Gt′))|. (2)
Φt,t′;k(v) counts the number of edges in the subgraph of Gt′ induced by Nk(v;Gt). Through
this measure, a community structure shift of v can be captured even when the connectivity
level of v remains unchanged across time.

2.2 Temporally-normalized statistics
Let Jt,t′;k be either the locality statistic Ψt′;k or Φt,t′;k, where for ease of exposition the in-
dex t is a dummy index when Jt,t′;k = Ψt′;k. With the purpose of determining whether t
is a change-point, we now define two normalized statistics for Jt,t′;k, a vertex-dependent
normalization and a temporal normalization. These normalizations and their use in the
change-point detection problem are depicted in Figure 1.
For a given integer τ ≥ 0 and v ∈ V , we define the vertex-dependent normalization
J̃t,τ ;k(v) of Jt,t′;k(v) by

J̃t;τ,k(v) = (Jt,t;k(v)− µ̂t;τ,k(v))/σ̂t;τ,k (3)
where

µ̂t;τ,k(v) =
1

τ

τ∑

s=1

Jt,t−s;k(v), σ̂t;τ,k(v) = 1{τ≤1}+1{τ>1}

√√√√ 1

τ − 1

τ∑

s=1

(Jt,t−s;k(v)− µ̂t;τ,k(v))2.

We then consider the maximum of these vertex-dependent normalizations Mτ,k(t) =

maxv(J̃t,τ ;k(v)) and refer to Mτ,k(t) as the standardized scan statistics.
Finally, for a given integer l ≥ 0, we define the temporal normalization of Mτ,k(t) by

Sτ,`,k(t) = (Mτ,k(t)− µ̃τ,`,k(t))/σ̃τ,`,k(t) (4)

where

µ̃τ,`,k(t) =
1

`

∑̀

s=1

Mτ,k(t−s), σ̃τ,`,k(t) = 1{τ≤1}+1{τ>1}

√√√√ 1

`− 1

∑̀

s=1

(Mτ,k(t− s)− µ̃τ,`,k(t))2.Normalization
⌧ = 1
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Figure 2: An example to differentiate the calculation of J̃t∗;τ,k(v) with varying underlying
statistics (Ψt;k or Φt,t′;k) and order distances (k = 0 or k = 1).

3. Limiting Theory and Experiment

Theorem Under both H0 and HA, the limiting S1,0,0(t; Ψ), S1,0,0(t; Φ), S1,0,1(t; Ψ) and
S1,0,1(t; Φ) are the maxima of random variables which, under proper normalizations, fol-
low a standard Gumbel G(0, 1) distribution in the limit.
Corollary Let β· be the power of the test statistic S1,0,k(t; ·) for t = t∗. As
n → ∞, neither β· dominates when k = 0 and βΦ ≥ βΨ when k = 1.
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Figure 3: A comparison, using the limiting properties of S1,0,0(t; Ψ) and S1,0,0(t; Φ), of
βΨ − βΦ for different null and alternative hypotheses pairs as parametrized by h and
q(= p + δ). The blue-colored region correspond to values of h and q(= p + δ) for which
βΨ < βΦ while the red-colored region correspond to values of h and p + δ with βΨ > βΦ.
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Figure 4: Sτ,`,k(t; Ψ)(sea green) and Sτ,`,k(t; Φ)(orange), the temporally-normalized stan-
dardized scan statistics using τ = ` = 20 with varing k, in time series of Enron email-graphs
from August 1999 to June 2002. In the case k = 0, both S20,20,0(t; Ψ) and S20,20,0(t; Φ)
show detections (Sτ,`,k(t; ·) > 5) at (1) and (2); in the case k = 1, both S20,20,1(t; Ψ) and
S20,20,1(t; Φ) show detections at (1), S20,20,1(t; Ψ) also indicates an anomaly at (2); in the
case k = 2, S20,20,2(t; Ψ) detects anomalies at (2) and (3) but S20,20,2(t; Φ) captures anoma-
lies at (1) and (4). Detailed analyses on each observation are provided in [4].

4. Future Work

Locality statistics based on Ψ can be readily computed in a real-time streaming data en-
vironment, in contrast to those based on Φ. Thus, discovering approximations of locality
statistics based on Φ which simultaneously maintain better power characteristics and are
amenable to streaming graphs is of interest.
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