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Abstract—Graphs are quickly emerging as a leading ab-
straction for the representation of data. One important appli-
cation domain originates from an emerging discipline called
“connectomics”. Connectomics studies the brain as a graph;
vertices correspond to neurons (or collections thereof) and edges
correspond to structural or functional connections between them.
To explore the variability of connectomes—to address both basic
science questions regarding the structure of the brain, and
medical health questions about psychiatry and neurology—one
can study the topological properties of these brain-graphs. We
define multivariate glocal graph invariants: these are features
of the graph that capture various local and global topological
properties of the graphs. We show that the collection of features
can collectively be computed via a combination of daisy-chaining,
sparse matrix representation and computations, and efficient
approximations. Our custom open-source Python package serves
as a back-end to a Web-service that we have created to enable
researchers to upload graphs, and download the corresponding
invariants in a number of different formats. Moreover, we built
this package to support distributed processing on multicore
machines. This is therefore an enabling technology for network
science, lowering the barrier of entry by providing tools to
biologists and analysts who otherwise lack these capabilities. As
a demonstration, we run our code on 120 brain-graphs, each
with approximately 16M vertices and up to 90M edges.

I. INTRODUCTION

A wide range of naturally occurring phenomena can be ac-
curately depicted as graphs. Subsequently, graph visualization
and analysis is of ubiquitous interest in industry and academia
alike—with many applications such as social network analysis
[1], and recently, human brain mapping [2]. Functional and
diffusion Magnetic Resonance Imaging (MRI) techniques have
proven to be valuable tools for the creation of high-resolution
brain-graphs [3], referred to as connectomes. These brain-
graphs have great potential to unlock physiological, functional,
and structural unknowns within the human brain; thereby
advancing fields of study like psychiatry and neurology,
by extracting biologically-relevant characterizations. Utilizing
brain-graphs as biomarkers requires extracting information
from the graphs that is potentially informative with regard to
the covariates of interest. However, to date, no biomarkers have
been useful for clinical diagnoses for any psychiatric disease
category [4].

We hypothesize this lack of efficacy of contemporary
biomarkers may be due to two factors. First, most analy-
ses operate on region-wise graphs, rather than voxel-wise
graphs, which reduces the number of vertices from O(107) to
O(102). This is a substantial dimensionality reduction which

almost certainly imposes severe biases and discards valuable
information. Second, even given these relatively small graphs,
the graph-derived features typically used are relatively simple
properties of the graphs. The chosen features, therefore, may
further discard clinically useful information. The reduction
is largely due to computational reasons: computing graph
features can be computationally daunting, exact computations
often being super-exponential in the number of vertices. Ex-
isting frameworks such as igraph [5], networkx [6], and BCT
[7] do not scale well to large graphs.

To address these computational deficiencies, we formally
define multivariate glocal graph invariants. These graph-
derived features capture a variety of local and global properties
of the graphs. By utilizing sparse matrix representations and
computations, in conjunction with certain approximations,
we can daisy-chain computations to efficiently compute all
of these glocal invariants on large graphs. All our code is
implemented in an open-source Python package. Additionally,
we provide Web-services with both programmatic and point-
and-click interfaces to enable investigators or analysts who
lack graph analytics expertise or resources to benefit from
graph processing. Finally, we provide modules to build and
compute invariants specifically for connectivity brain-graphs
(i.e. connectomes) given fiber tractography streamline input
data.

II. MULTIVARIATE INVARIANTS

Computing graph invariants provides a uniform platform
upon which network connectivity across graphs of varying
composition may be analyzed. Let G be the set of all graphs,
where G = (VG, EG) ∈ G, and VG is the set of n vertices
v for graph G, and EG = {u ∼ v : u, v ∈ VG} is the set
of m edges amongst V . Let A = (auv) and A′ = (a′uv)
correspond to the adjacency matrix representation for graphs
G and G′, respectively; that is auv = 1 if and only if
u ∼ v ∈ EG. Let G,G′ ∈ G be isomorphic to one another
whenever ∃ such a π : auv = a′π(u)π(v) for all u, v ∈ V;
where π : V → V is a permutation function (bijection).
Let G = π(G′) denote that G and G′ are isomorphic to
one another. Let l(u, v) be the minimum number of edges
required to traverse between vertices u, v ∈ V . Let the j-hop
neighborhood of a graph G around vertex v be denoted by
Nj [v;G], where Nj [v;G] = {u ∈ V : l(u, v) ≤ j}. Let Ω(V ′)
denote the induced subgraph of V ′ ⊆ V , that is the graph
containing vertices in V ′ and all edges amongst them. Let



size(G) = m denote the number of edges in the graph, and
let [n] = {1, 2, . . . , n}.

A global invariant is a function of a graph that is invariant
to permutations, that is, Φ = {φ : G → Rd s.t. φ(G) = φ(G′)
whenever G = π(G′)}. Examples include number of vertices
and edges, as well as max-degree, average path length, etc. A
local (vertex-based) invariant is a function of a graph indexed
by a vertex that is invariant to local permutations, Ψj = {ψj :
G × V → Rp s.t. ψ(Ω(Nj [v;G])) = ψ(Ω(Nj [v;G′])). For
example, the degree of a vertex is a local invariant. A glocal
invariant is the collection of local invariants for all vertices,
Ξj = {ξj : G → Rd×n s.t. each n-dimensional vector is a local
invariant as defined above}. We will give several examples
below. The invariants we compute are primarily selected due
to their utility in revealing underlying network features [8].
They are arranged to vaguely reflect the degree of topological
complexity they incorporate.

Degree Vector Deg ∈ [n]n is an n-dimensional vector where
each element is an integer less than or equal to the number
of vertices n. The degree of a vertex is defined as the number
of edges incident to it, so we can compute Deg via a simple
matrix vector multiply operation: Deg(v,G) = A1, where 1
is an n-dimensional vector of ones.

Scan Statistic-i Vector SS-i ∈ [n]n is another n-dimensional
vector where each element is the scan statistic of a particular
vertex [8]. A vertex scan statistic counts the number of
edges in the subgraph induced by its i-hop neighborhood:
size (Ω(Ni[υ;G])). SS-j is the vector of these local invariants.
These can be computed in an embarrassingly parallel fashion
using only very local graph properties whenever i is small
enough. For the brain-graphs of interest, the graphs are suf-
ficiently connected such that we can only efficiently compute
SS-1 at this time.

Number of Local 3-Cliques Vector NL-3 ∈ [
(
n
3

)
]n While Deg

and SS-1 only consider pairwise interactions, NL-j considers
j-way interactions. NL-j counts the number of j-cliques in
which each vertex participates. Tsourakakis [9] demonstrated
that an eigendecomposition of the adjacency matrix of the
graph can be used to compute NL-j for j = 3 (also called
triangles). This approximation, however, does not work with
modification for 4-cliques. Thus, although number of local j-
cliques would be an interesting multivariate glocal invariant,
we could not design an efficient algorithm to approximate it
at this time. For NL-3 however, in experiments, we achieved
99.9% accuracy on graphs with 3,000 vertices and ∼4 million
edges, using only 1 eigen-pair. The main computation is
NL-3(v,G) ≈ 1

2

∑K
k=1 λ

3
k(G)x2vk(G) where, xvk(G) is the

vth entry of the kth eigenvector of A, and λk(G) is the
kth eigenvalue, K is the number of eigen-pairs used in the
approximation.

Clustering Coefficient Vector CC ∈ [
(
n
3

)
]n combines Deg

and NL-3 to assess the relative amount of connectivity as
compared to the potential total amount of connectivity for
each vertex. To efficiently compute CC we utilize the previous

computations, thus obtaining this additional glocal invari-
ant is essentially free [10]. For each vertex, we compute
CC(v,G) = 2×NL-3(v,G)/(Deg(v,G)(Deg(v,G)− 1)).

Latent Position Matrix LP-k ∈ Rk×n is a k-dimensional
estimate of the latent positions of each vertex [11]. Latent
position random graph models are elegant statistical models
of random graphs with many desirable properties. In short,
associated with each vertex is a latent position vector xv ∈ Rk,
and the probability of an edge between vertex u and v is
a function of the dissimilarity between the latent positions
κ(xu, xv). It has been shown that an eigendecomposition of
the adjacency matrix of a graph yields universally consistent
estimators for various parameters of a certain general class
of latent position models [12]. Thus, this multivariate glocal
invariant utilizes global topological properties, rather than
just j-neighborhoods as in the previous glocal invariants.
For efficiency, we calculate the first k eigenvectors via the
Lanczos algorithm [13]. Moreover, since we estimate NL-3
via the eigendecomposition, our NL-3 approximation becomes
essentially free after computing LP-1.

Thus, the total collection of all multivariate glocal graph
invariants are available after an eigendecomposition, a couple
of local searches, and a few matrix vector multiply operations.

III. SOFTWARE TOOLS

We have developed novel tools to compute multivariate
invariants on large scale graphs, including voxel-wise brain-
graphs. The tools we have developed are designed to run on
the CPU with as little as one core and a minimum of 8 GB
of RAM. These software tools can be publicly accessed via a
stand-alone Python Package or our Web-Services.

A. Stand-alone Package

The package, written in Python 2.7, provides users with
the ability to download, utilize and freely modify the existing
implementations of invariant calculations. Additionally, we
developed a set of command-line tools (CLTs), via executable
scripts; these provide a high-level and simple way to safely
interact with the actual data processing scripts. These CLTs are
appropriate for, and have been successfully deployed [14] in,
distributed environments for the parallel processing of graphs.
Finally, we provide scripts to build MRI fiber streamline
graphs. This requires two inputs: (i) a fiber streamline file,
in MRI Studio DAT format, and (ii) a mask composed of two
files that together describe the regions of interest (ROIs), in
XML and RAW format. Any voxels outside these ROIs are
excluded when creating graph edges.

The resulting brain-graph is stored as a sparse, com-
pressed, and symmetric square matrix. We further elab-
orate on the methodology for building these connectome
graphs in Section IV. This open-source package is download-
able from https://github.com/openconnectome/
MR-connectome/tree/stand-alone. The distribution
also includes several example scripts.



B. Web-services

Our Web-services are accessible at http:
//openconnecto.me/graph-services/, run on
our own data-intensive cluster. These Web-services can be
invoked through a graphical user interface via web browser,
or programmatically via the command line. Both modes
permit multiple-subject jobs, enabling the processing of
several graphs with a single action. Programmatic interface
functionality is well documented on the website with several
example Python scripts and command line calls to each
service. The Web-services actively use our stand-alone
package as the data processing back-end for graph building
and invariant calculations. Available Web-services include:
(i) computing invariants on dense or compressed sparse
column (CSC) square matrices in MATLAB (MAT) format,
(ii) conversion of invariant and graph files between MAT,
NPY and CSV formats, and (iii) building connectome graphs
from diffusion MRI data.

IV. EXPERIMENTS

To demonstrate how our software can be used, we program-
matically computed the invariants of 120 subjects’ connectome
graphs using our Web-services (see Figure 1).

A. Computational Methodology

To generate the brain-graphs, we begin with derivative data
in the form of fiber tractography streamlines and a mask.
These fiber streamlines, and the mask are by-products of
MIGRAINE, a pipeline for efficiently computing large brain-
graphs from raw multimodal magnetic resonance imaging data
[14]. MIGRAINE ingests the raw structural and diffusion MRI
scans. The mask—which may describe ROIs, brain masks
or grey matter—is applied to the data to exclude voxels
outside the masked region from the brain-graph. Based on fiber
tracing, we allocate edges to each pair of remaining voxels that
are connected by fibers. The count of fibers between a pair of
connected voxels yields a weight for each graph edge. These
edge weights are later thresholded and binarized because we
compute only unweighted invariants.
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Fig. 1: Pipeline showing data transformation phases where we
extract the LCC prior to brain-graph binarization and invariant
computation.

As depicted in Figure 1 we extract a subset of the full brain-
graph by taking the Largest Connected Component (LCC)
[15]. Our implementation includes a flag that enables operating
on the LCC for the following reasons:
• The LCC is by definition a connected graph, thus eigen-

vector embeddings of it are especially interesting due to
their theoretical properties [16], [17].

• The LCC is of particular interest in many applications—
thus computed invariants on the LCC are useful to a wide
variety of researchers [18].

• The LCC discards isolates and other vertices that are
potentially “noisy”. Graph size is reduced from O(107)
to (105) vertices while graph order is marginally affected
with >99% of edges remaining. This substantially de-
creases processing time by 94% to under 2 hours per
graph.

B. Results

By extrapolating the measured empirical accuracy of smaller
graphs, we estimate that given 100 eigen-pairs, the NL-3
algorithm has an accuracy of nearly 94% on graphs of the LCC
containing O(105) vertices and O(107) edges. Note that Deg
and SS-1 are unaffected by the number of eigen-pairs, whereas
NL-3 and subsequently CC are affected. Figure 2 depicts
all invariants computed on all subjects, with color indicating
gender. This is an example of how our tools might be used: the
invariants may be used as features to discover individual brain
differences as a function of phenotype, including psychiatric
diagnosis and aptitude.

Fig. 2: Multivariate invariants of 120 subjects superimposed
over one another.

V. COMPUTING PERFORMANCE

To quantify performance we averaged measures such as I/O
rates, RAM/CPU usage, for the 120 graphs that we processed
(Figure 2). One of the goals of the computational package
is that it be compatible with hardware constraints of modern



TABLE I: ANALYSIS OF ALGORITHMS USED AND EXPERIMENTAL
TIME (MEAN AND STANDARD DEVIATION PER VERTEX PER CORE)
USING A SINGLE 4 CORE, 2.4 GHZ PROCESSOR LINUX SERVER
WITH 16 GB OF RAM.

Invariant Time Complexity Wall Time
Clustering Coefficient O(n+ k) 0.59 (±2.4) µs

Number of Local 3-Cliques O(n+ k) 48.51 (±0.9) µs
Degree O(n) 66.64 (±1.8) µs

Scan Statistic-1 O(nm) 0.47 (±0.2) ms
Latent Position-100 O(100(m+ n)) 45.41 (±0.1) µs

laptops. Thus, we performed all experiments on a single core,
never exceeding 6.5 GB of RAM usage (see Figure 3).

For computational efficiency, our implementations are a
close-knit merger and coalesced series of invariants. For
example, our CC estimate uses our NL-3 estimate which uses
our eigendecomposition. Thus, we compute the collection of
multivariate glocal invariants both daisy-chaining appropriate
functions and performing each independently. To facilitate
benchmarking against other graph processing packages, Table
I depicts the computational load for each invariant.

Total compute time for all invariants is ∼2.9 hour per graph,
per core, when computed separately. Note that we include
the time taken to compute the invariant in addition to any
prerequisite computations necessary. Total compute time upon
appropriately daisy-chaining is ∼1.8 h per graph, per core, a
speedup of approximately 60%.
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Fig. 3: Performance of each invariant, computed serially and
independently of any non-dependent invariants on an 4 core,
2.4 GHz processor Linux server with 16 GB of RAM.

VI. FUTURE WORK

We have already incorporated some of this functionality
into igraph [5] and MIGRAINE [14], with plans to also
incorporate it into neuroimaging specific packages such as
the Configurable Pipeline for the Analysis of Connectomes
(CPAC) [19].

Moreover, we will extend the back-end to take advantage of
faster/multithreaded eigensolvers, including GPU implemen-
tations. In order to maximize utility to researchers, we will
continue to develop our software suite by computing other
network-elucidating invariants such as Scan Statistic-2 [8],
graph diameter, clique number, and more. Finally, we will
utilize these invariants to develop biomarkers for a variety of
neuropsychiatric and psychological conditions [4].
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[10] Saramäki, J., Kivelä, M., Onnela, J.-P., Kaski, K., and Kertész, J. Gen-
eralizations of the clustering coefficient to weighted complex networks.
Physical Review E75(2), 027105 February (2007).

[11] Hoff, P. D., Raftery, A. E., and Handcock, M. S. Latent Space
Approaches to Social Network Analysis. Journal of the American
Statistical Association97(460), 1090–1098 December (2002).

[12] Sussman, D. L., Tang, M., and Priebe, C. E. Universally Consistent
Latent Position Estimation and Vertex Classification for Random Dot
Product Graphs. arXiv preprint 1212.1182.

[13] Lanczos, C. An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators. Journal of Research
of the National Bureau of Standards45(4), 255 October (1950).

[14] Gray, R. W., Koterba, Z. H., Mhembere, D., Kleissas, D. M., Vogelstein,
J. T., Burns, R., and Vogelstein, R. J. MRI Graph Analysis and Inference
for Connectomics ( MIGRAINE ). (Accepted) (2013).

[15] Jones, E., Oliphant, T., Peterson, P., and Al, E. Scipy: Open source
scientific tools for Python, (2001).

[16] Sussman, D. L., Tang, M., and Priebe, C. E. Universally Consistent
Latent Position Estimation and Vertex Classification for Random Dot
Product Graphs. arXiv preprint arXiv:1212.1182 July (2012).

[17] Fishkind, D. E., Sussman, D. L., Tang, M., Vogelstein, J. T., and
Priebe, C. E. Consistent adjacency-spectral partitioning for the stochastic
block model when the model parameters are unknown. Journal of the
American Statistical Association107, 1119–1128 May (2012).
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