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Abstract

Background

Estimating the rate constants of a biochemical reaction system with known stoichiometry from noisy time

series measurements of molecular concentrations is an important step for building predictive models of

cellular function. Inference techniques currently available in the literature may produce rate constant

values that defy necessary constraints imposed by the fundamental laws of thermodynamics. As a result,

these techniques may lead to biochemical reaction systems whose concentration dynamics could not

possibly occur in nature. Therefore, development of a thermodynamically consistent approach for

estimating the rate constants of a biochemical reaction system is highly desirable.

Results

We introduce a Bayesian analysis approach for computing thermodynamically consistent estimates of the

rate constants of a closed biochemical reaction system with known stoichiometry given experimental data.

Our method employs an appropriately designed prior probability density function that effectively integrates

fundamental biophysical and thermodynamic knowledge into the inference problem. Moreover, it takes

into account experimental strategies for collecting informative observations of molecular concentrations

through perturbations. The proposed method employs a maximization-expectation-maximization algorithm

that provides thermodynamically feasible estimates of the rate constant values and computes appropriate

measures of estimation accuracy. We demonstrate various aspects of the proposed method on synthetic data

obtained by simulating a subset of a well-known model of the EGF/ERK signaling pathway, and examine

its robustness under conditions that violate key assumptions. Software, coded in MATLABr, which

implements all Bayesian analysis techniques discussed in this paper, is available free of charge at

http://www.cis.jhu.edu/∼goutsias/CSS%20lab/software.html.

Conclusions

Our approach provides an attractive statistical methodology for estimating thermodynamically feasible

values for the rate constants of a biochemical reaction system from noisy time series observations of

molecular concentrations obtained through perturbations. The proposed technique is theoretically sound

and computationally feasible, but restricted to quantitative data obtained from closed biochemical reaction

systems. This necessitates development of similar techniques for estimating the rate constants of open

biochemical reaction systems, which are more realistic models of cellular function.
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Background

Biochemical reaction systems are popular models of cellular function. These models are extensively used

to represent the inter-connectivity and functional relationships among molecular species in cells and, most

often, they provide accurate description of cellular behavior. Inferring a biochemical reaction system from

experimental data is an important step towards building mathematical and computational tools for the

analysis of cellular systems. This step requires both structure (stoichiometry) identification as well as

parameter (rate constant) estimation [1–4]. Due however to the large combinatorial complexity of

determining the stoichiometry of a biochemical reaction system, solving this problem requires large

amounts of high quality experimental data and substantial computational resources, which are not usually

available in practice.

Recently, several approaches have been proposed in the literature for addressing a simpler problem, known

as model calibration. The objective of model calibration is to adjust the kinetic parameters of a

biochemical reaction system with given stoichiometry in order to obtain a sufficiently good match between

simulated and observed dynamics; e.g. see [2, 5–11].

Among known model calibration techniques, the ones based on Bayesian analysis [7, 10, 11] are perhaps

the most versatile. Bayesian analysis allows us to effectively incorporate biophysical knowledge into the

problem at hand and naturally draw statistical conclusions about the unknown kinetic parameters. This is

done by employing a probability density function that encapsulates prior information about the rate

constants of a biochemical reaction system and by deriving a posterior probability density function over the

kinetic parameters after experimental data have been collected. By taking into account the experimental

data and the information contained in the prior, the posterior density summarizes all knowledge available

about the unknown kinetic parameters and quantifies uncertainty about their true values [12,13]. Moreover,

the posterior allows us to quantify our confidence about estimation accuracy, compute probabilities over

alternative calibrations, and design additional experiments to improve inference.

Most published model calibration techniques do not take into account constraints on the reaction rate

constants imposed by the fundamental laws of thermodynamics. If these constraints, known as

Wegscheider conditions [14, 15], are not explicitly considered by a model calibration technique, then the

method will spend most time examining impossible kinetic parameter sets and will most probably produce
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a biochemical reaction system that is not physically realistic [16]. This issue has been recently recognized

in the literature, and new modeling formalisms have been suggested in an effort to address it [17–20]. The

proposed formalisms describe a biochemical reaction system by well-defined thermodynamic parameters

whose values always guarantee that the reaction rate constants satisfy the Wegscheider conditions. For

example, in [19, 20], a biochemical reaction system is parameterized in terms of molecular capacities and

reaction resistances, by using a thermodynamic kinetic modeling (TKM) formalism that enjoys a number

of advantages over the ones suggested in [17, 18].

We believe that parameterizing a biochemical reaction system in terms of capacities and resistances is

unnecessary and, in certain instances, problematic. It has been pointed out in [19] that different choices for

the TKM parameters can lead to the same concentration dynamics. As a consequence, the TKM

parameters cannot be determined uniquely from concentration measurements. A way to address this

problem is to take the capacities to be the equilibrium concentrations (which is always possible in closed

biochemical reaction systems), in which case the capacities are constrained by conservation relationships

imposed by the system stoichiometry. Then, parameter estimation in the TKM formalism may be possible

by arbitrarily fixing a subset of capacity values and estimating the remaining capacities and resistances.

However, this approach can be very cumbersome when dealing with molecular perturbations (as we do in

this paper) or when merging estimated TKM models, since, in both cases, the capacities may not refer to

compatible equilibrium concentrations. It has been suggested in [19] that a way to merge two models using

the TKM formalism is to first convert the capacities and resistance to the rate parameters, merge the two

models, and then convert back to the TKM formalism. However, this approach seems to be overly

complicated, especially in view of the model calibration methodology presented here.

In this paper, we introduce a thermodynamically consistent Bayesian analysis approach to model

calibration that does not require reparametrization. Our approach relies on statistically modeling the

reaction rate constants of the forward reactions as well as the equilibrium constants of individual reactions.

We restrict our attention to closed systems (or systems that can be approximately considered to be closed),

since thermodynamic analysis of such systems is easier to handle than open systems. The proposed

approach controls thermodynamic consistency of the reaction rate constants by employing well-defined

relationships between the kinetic parameters of a biochemical reaction system, imposed by the

Wegscheider conditions. By embedding these relationships within an iterative algorithm that finds the
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mode of the posterior density, we arrive at a thermodynamically consistent Bayesian estimate for the rate

constants.

Bayesian analysis can be appreciably influenced by the choice of the prior probability density functions.

This is particularly true in systems biology problems in which only a small number of observations is

usually available. It is therefore important to focus our effort on constructing appropriate prior densities for

the unknown rate constants of the forward reactions and the equilibrium constants of individual reactions.

Although a number of choices may be possible, it is imperative to use fundamental biophysical and

thermodynamic principles to derive informative prior densities that effectively encapsulate such principles.

By using the classical Arrhenius formula of chemical kinetics [21], we construct an appropriate prior

density for the log-rate constants of the forward reactions. To do so, we assume that the prefactor and

activation energy associated with the Arrhenius formula are both random variables following log-normal

and exponential distributions, respectively. This approach takes into account unpredictable changes in

biochemical conditions affecting the structure of the reactant molecules and the probability of reaction

after collision. On the other hand, by exploiting the thermodynamic relationship between rate constants,

equilibrium concentrations, and stoichiometric coefficients, we derive an analytical expression for the joint

prior density of the logarithms of the equilibrium constants. This expression depends on steady-state

concentration measurements and on the stoichiometry of the biochemical reaction system under

consideration.

Another important issue associated with the inference problem considered in this paper is the need to

collect an informative set of measurements that can lead to sufficiently accurate parameter estimation. It

has been increasingly recognized in the literature that a powerful approach to accomplish this goal in

problems of systems biology is to selectively perturb key molecular components and measure the effects of

these perturbations on the underlying concentrations [22–24]. We follow this strategy here and assume that

we can selectively perturb, one at a time, the initial concentrations of a selected number of molecular

species in a biochemical reaction system, by increasing or decreasing their values without altering the

underlying stoichiometry. This can be achieved by a variety of experimental techniques, such as RNA

interference (RNAi), transfection, or molecular injection. Therefore, our approach combines Bayesian

analysis with current experimental practices, thus bridging the gap between statistical inference approaches

and experimental design.
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The Bayesian analysis technique discussed in this paper requires numerical evaluation of a number of

statistical summaries of the posterior density. Although several methods are available to deal with this

problem (e.g., see [25, 26]), we employ here a maximization-expectation-maximization (MEM) strategy

that calculates a thermodynamically consistent estimate of the reaction rate constants as well as Monte

Carlo estimates of posterior summaries used to evaluate the quality of inference. This strategy is based on

sequentially combining a powerful stochastic optimization technique, known as simultaneous perturbation

stochastic approximation (SPSA) [27], with Markov chain Monte Carlo (MCMC) sampling [25]. Our

experience with extensive synthetic experiments, based on data obtained by simulating a subset of a

well-known model of the EGF/ERK signaling pathway, indicates that the proposed algorithm is robust,

producing excellent estimation results even in cases of high measurement errors and limited time

measurements.

This paper is structured as follows. In the “Methods” section, we provide a brief overview of biochemical

reaction systems, discuss how to model perturbations, and present a standard statistical model for the

measurements. We then outline our Bayesian analysis approach to model calibration and present our

choices for the prior and posterior densities. By emphasizing the fact that the prior density must assign

zero probability over the thermodynamically infeasible region of the parameter space, and by employing an

encompassing prior approach to Bayesian analysis, we derive an appropriate posterior density that satisfies

this condition. We finally outline our proposed methodology for computing thermodynamically consistent

Bayesian estimates of the kinetic parameters and for assessing estimation accuracy.

In the “Results/Discussion” section, we provide simulation results, based on a subset of a well-established

model of the EGF/ERK signal transduction pathway. These results illustrate key aspects of the proposed

model calibration methodology and show its potential for producing sufficiently accurate

thermodynamically consistent estimates of a biochemical reaction system from noisy time-series

measurements of molecular concentrations.

Finally, in the “Conclusions” section, we discuss a key statistical advantage of the proposed model

calibration methodology, viewed from a bias-variance tradeoff perspective. Moreover, we provide

suggestions for further research to address a number of practical issues associated with model calibration,

such as estimating the initial concentrations and their perturbations, dealing with partially observed or

missing data, and extending the proposed technique to the case of open biochemical reaction systems.
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Extensive mathematical and computational details are required to rigorously formulate, derive, and

understand various aspects of the proposed approach. We provide these details in three Additional files

accompanying this paper. In Additional file 1, we present a detailed exposition of the underlying theory,

whereas, in Additional file 2, we carefully discuss computational implementation. Finally, in Additional

file 3, we provide all necessary details pertaining the biochemical reaction system we use in our

simulations. Well-documented software, coded in MATLABr, which implements all Bayesian analysis

techniques discussed in this paper, is available to interested readers free of charge at

http://www.cis.jhu.edu/∼goutsias/CSS%20lab/software.html.

Methods

Biochemical reaction systems

In this paper, we consider a biochemical reaction system comprised of N molecular species X1, X2, . . .,

XN that interact through M coupled reactions of the form:

N∑
n=1

νnmXn

k2m−1

�
k2m

N∑
n=1

ν ′nmXn, m ∈ M := {1, 2, . . . ,M}. (1)

The parameters k2m−1 and k2m are the rate constants of the forward and reverse reactions, whereas, νnm,

ν ′nm ≥ 0 are the stoichiometries of the reactants and products. Note that k2m−1, k2m > 0, for all m ∈ M,

since irreversible reactions are thermodynamically not possible in a closed biochemical reaction

system [19]. We will assume that the system is well-mixed (homogeneous) with constant temperature and

volume. We will also assume that the molecular concentrations evolve continuously as a function of time

and that all reactions can be sufficiently characterized by the mass action rate law. In this case, we can

describe the dynamic evolution of the molecular concentrations in the system by the following chemical

kinetic equations:
dx

(p)
n (t)

dt
=
∑
m∈M

snmρ
(p)
m (t), t ∈ T , n ∈ N , p ∈ P, (2)

initialized by

x(p)n (0) =

{
cp + πp , if n = p ̸= 0

cn , if p = 0 or n ̸= p ̸= 0 ,
(3)

where ρ(p)m (t) is the net flux of the mth reaction at time t, given by

ρ(p)m (t) = k2m−1

∏
i∈N

[x
(p)
i (t)]νim − k2m

∏
i∈N

[x
(p)
i (t)]ν

′
im , (4)
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snm is the net stoichiometry coefficient of the nth molecular species associated with the mth reaction,

defined by snm := ν ′nm − νnm, and T := [0, tmax] is an observation time window of interest.

Equations (2)–(4) are based on the assumption that we can selectively perturb, one at a time, the

concentrations of molecular species in a set P , by increasing or decreasing their values at time t = 0

without altering the underlying stoichiometry. For notational convenience, we include 0 in P and assign

p = 0 to the original unperturbed system. In this case, x(0)n (t) is the concentration of the nth molecular

species in the unperturbed system at time t, whereas, x(p)n (t), for p ̸= 0, is the concentration of the nth

molecular species at time t, obtained by perturbing the initial concentration of the pth species. In (3),

πp ≥ −cp quantifies the perturbation applied on the initial concentration cp of the pth molecular species at

time t = 0. When −cp ≤ πp < 0, the initial concentration of the pth molecular species is reduced, a

situation that can be achieved by a variety of experimental techniques, such as RNA interference (RNAi).

On the other hand, when πp > 0, the initial concentration of the pth molecular species is increased, a

situation that can be achieved by transfection or molecular injection.

Due to the enormous complexity of biological reaction networks, (1) is used to model a limited number of

molecular interactions embedded within a larger and more complex system. Mass flow between the

biochemical reaction system given by (1) and its surroundings complicates modeling. As a matter of fact,

some molecular concentrations in the system may be influenced by unknown reactions, not modeled by (1),

or by partially known reactions with reactants regulated by unknown biochemical mechanisms. To address

this problem, we will assume that there is no appreciable mass transfer between the biochemical reaction

system and its surroundings during the observation time interval T = [0, tmax]. As a consequence, we can

assume that (1) characterizes a closed biochemical reaction system within T . Moreover, we will assume

that the system reaches quasi-equilibrium at some time t∗ ≤ tmax, after which its thermodynamic properties

do not appreciably change for t∗ < t ≤ tmax. Note however that the quasi-equilibrium assumption does not

necessarily imply that the biochemical reaction system will be at thermodynamic equilibrium after

time tmax, since mass transfer may take place at some time t > tmax. Although we may be able to satisfy

these assumptions by appropriately designed synthetic or in vitro biological experiments, the assumptions

are certainly not satisfied in vivo. For this reason, we believe that future research must be focused on

extending the approaches and techniques discussed in this paper to the case of open biochemical reaction

systems.
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Measurements

We will now specify an appropriate model for the available measurements. We will assume that, by an

appropriately designed experiment, we can obtain noisy measurements yyy := {y(p)n (tq), n ∈ N , p ∈ P ,

q ∈ Q} and yyy := {y(p)n (tQ+1), n ∈ N , p ∈ P} of the concentrations of all molecular species in the

unperturbed and perturbed systems at a limited number of distinct time points t1 < t2 < · · · < tQ < tQ+1

in T , where Q := {1, 2, . . . , Q}. We will also assume that these measurements are related to the true

concentrations x(p)n (tq) by

y(p)n (tq) = ln
[
ϵ(p)n (tq) x

(p)
n (tq)

]
= lnx(p)n (tq) + η(p)n (tq), n ∈ N , p ∈ P, (5)

for q = 1, 2, . . . , Q+ 1, where ϵ(p)n (tq) is a multiplicative random error factor and η(p)n (tq) := ln ϵ
(p)
n (tq).

The assumption of multiplicative errors is common in most data acquisition procedures, such as DNA

microarray-based genomics and mass spectrometry-based proteomics [28–30], whereas, the logarithm is

used to obtain a convenient additive error model for the measurements.

In the following, we will assume that the biochemical reaction system, and all its perturbed versions, is

sufficiently close to steady-state at time point tQ+1. We can justify this assumption by taking

t∗ ≤ tQ+1 ≤ tmax and by recalling our previous assumption that the biochemical reaction system is at

thermodynamic quasi-equilibrium at times t∗ ≤ t ≤ tmax. Our Bayesian analysis approach is based on

data yyy, whereas, we use the steady-state measurements yyy to derive a joint probability density function for

the logarithms {ln(k2m−1/k2m),m ∈ M} of the equilibrium constants of the reactions needed for

specifying the posterior density.

Finally, we will assume that the error components η(p)n (tq) are statistically independent zero-mean

Gaussian random variables. The Gaussian assumption is quite common in genomic problems and has been

experimentally verified in some cases; e.g., see [31]. This assumption is usually justified by the central

limit theorem and the premise that the errors are due to a large number of independent multiplicative error

sources. We may attempt to justify the independence assumption between measurement errors by arguing

that an error occurred in a particular measurement may only be due to the acquisition process used to

obtain that measurement and, hence, it may not affect the error values of other measurements. In general,

however, this is only a mathematically convenient assumption that may not be realistic. We experimentally

demonstrate later that, at least for the example considered in this paper, the proposed estimation

methodology is quite effective even in the case of non-Gaussian and correlated measurement errors. For
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simplicity, we finally assume equal error variances; i.e., we will assume that var[η(p)n (tq)] = σ2, for every

n, p, and q. This assumption is not crucial to our approach and can be relaxed if necessary.

Bayesian model calibration

In this paper, we deal with the following problem: Given noisy concentration measurements yyy and yyy, we

want to calculate thermodynamically consistent estimates of the log-rate constants κκκ :=

{κ2m−1 := ln k2m−1, κ2m := ln k2m,m ∈ M} of a closed biochemical reaction system, such that (2),

initialized by (3), produce molecular concentrations x(p)n (t) that “best” match (in some well-defined sense)

the available measurements.

We should note here that it is convenient to estimate the logarithms of the rate constants instead of the

constants themselves. By focusing on the logarithms, we can reduce the dynamic range of rate constant

values and make their estimation numerically easier. To simplify our developments, we will assume that

the initial concentrations {cn, n ∈ N} and perturbations {πp, p ∈ P} are known or have been estimated by

an appropriate experimental procedure. When this is not true, these quantities must be treated as unknown

parameters and estimated from data, together with the rate constants, provided that a sufficient amount of

data is available to allow reliable estimation.

Given data yyy, the objective of Bayesian analysis is to evaluate the posterior probability density function

p(κκκ | yyy), which summarizes our belief about the log-rate constants κκκ after the data yyy have been collected. It

can be shown [see Equations (S-1.4) and (S-1.5) in Additional file 1] that

p(κκκ | yyy) ∝ p(yyy | κκκ)
∫
p(κκκ | zzz)p(zzz)dzzz, (6)

where p ∝ q denotes that p is proportional to q, and

p(yyy | κκκ) =
∫
p(yyy | κκκ, σ2)p(σ2 | κκκ)dσ2, (7)

with zzz = {zm,m ∈ M} being the set of log-equilibrium constants of the reactions, defined by

zm := ln
k2m−1

k2m
= κ2m−1 − κ2m, for m ∈ M. (8)

Note that the prior density of the log-rate constants κκκ depends on zzz. For this reason, we view zzz as a set of

random hyperparameters (in Bayesian analysis, parameters used to specify prior densities are known as

hyperparameters), specified by means of the prior density p(zzz).
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The posterior density p(κκκ | yyy) takes into account our prior belief about the rate constant values and the data

formation process, summarized by the prior density p(zzz) of the log-equilibrium constants, the conditional

prior density p(κκκ | zzz) of the log-rate constants given the log-equilibrium constants, the conditional

probability density p(σ2 | κκκ) of the error variance given the log-rate constants, and the likelihood

p(yyy | κκκ, σ2). However, the posterior density is hard to interpret, especially in high-dimensional problems

that involve many parameters, such as the problem we are dealing with here. As a consequence, the main

objective of Bayesian analysis is to produce numerical information that can be effectively used to

summarize the posterior density and simplify the task of statistical inference to the extent possible. Typical

summaries include measures of location and scale of the posterior, which are used to produce estimates for

the parameter values and to evaluate the accuracy of such estimates, respectively.

It is clear from (6) that, to evaluate the posterior p(κκκ | yyy), we need to compute the “effective” prior density∫
p(κκκ | zzz)p(zzz)dzzz as well as the “effective” likelihood

∫
p(yyy | κκκ, σ2)p(σ2 | κκκ)dσ2. To do so, we must

specify the aforementioned densities p(σ2 | κκκ), p(zzz), p(κκκ | zzz), and p(yyy | κκκ, σ2). We discuss this problem

next.

Prior density of error variance

In general, it is difficult to derive an informative prior probability density function p(σ2 | κκκ) for the error

variance. To deal with this problem, we assume here that the error variance is independent of the rate

constants; i.e., we assume that p(σ2 | κκκ) = p(σ2). Moreover, we assume that σ2 follows an inverse gamma

distribution, in which case

p(σ2) =
ba

Γ(a)
(σ2)−(a+1) e−b/σ2

, (9)

for two parameters a, b > 0.

The independence assumption between σ2 and κκκ is reasonable, in view of the fact that the errors are mainly

due to the experimental methodology used to obtain the measurements, whereas, the rate constants are due

to biophysical principles underlying the biochemical reaction system. On the other hand, the choice given

by (9) has been well-justified in Bayesian analysis. In fact, the inverse gamma distribution is the conjugate

prior for the variance of additive Gaussian errors [13]. Conjugate priors are common in Bayesian analysis,

since they often lead to attractive analytical and computational simplifications. Note that E[σ2] = b/(a− 1)

and var[σ2] = {E[σ2]}2/(a− 2) = b2/[(a− 1)2(a− 2)], for a > 2. Therefore, the parameters a, b control
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the location and scale of the inverse gamma distribution given by (9). We illustrate this prior in

Figure S-1.3 of Additional file 1. In the following, we treat a and b as hyperparameters with known values.

For a practical method to determine these values, the reader is referred to Additional file 1.

Prior density of log-equilibrium constants

Before we consider the problem of specifying a prior density for the log-equilibrium constants zzz, we first

investigate how much information about zzz can be extracted from measurements.

It is a direct consequence of thermodynamic analysis that, at steady-state, the net flux of each reaction in a

closed biochemical reaction system must be zero. This implies that

k2m−1

∏
n∈N

[x(p)n ] νnm = k2m
∏
n∈N

[x(p)n ] ν
′
nm , for all m ∈ M, p ∈ P, (10)

by virtue of (4), where {x(p)n > 0, n ∈ N} are the stationary concentrations when the initial concentration

of the pth molecular species is perturbed (thermodynamic analysis dictates that these concentrations must

be nonzero, provided that the initial concentrations are nonzero). As a matter of fact, (10) is equivalent to

the following constraints on the reaction rate constants (see Additional file 1):∏
m∈M

(
k2m−1

k2m

)rm
= 1, for all rrr ∈ null(S), (11)

known as Wegscheider conditions [14, 15], where rm is the mth element of the M × 1 vector rrr, S is the

N ×M stoichiometry matrix of the biochemical reaction system with elements snm, and null(S) is the null

space of S. As a consequence, for a biochemical reaction system to be physically realizable, it is required

that the reaction rates satisfy the thermodynamically imposed Wegscheider conditions.

From (8) and (10), note that

zm =
1

P + 1

∑
p∈P

∑
n∈N

snm lnx(p)n , for all m ∈ M. (12)

By employing (5) and (12), we can show that zm = ỹm − η̃m, where

ỹm :=
1

P + 1

∑
p∈P

∑
n∈N

snmy
(p)
n (tQ+1) and η̃m :=

1

P + 1

∑
p∈P

∑
n∈N

snmη
(p)
n (tQ+1). (13)

Using this result and some straightforward algebra (see Additional file 1), we can show that, given

ỹyy := {ỹm,m ∈ M}, which can be calculated from the measurements yyy = {y(p)n (tQ+1), n ∈ N , p ∈ P} of

12



the steady-state molecular concentrations and (13), we can construct the posterior density p(zzz | ỹyy) of zzz by

p(zzz | ỹyy) ∝
[

2b

P + 1
+ (zzz − ỹyy)TH−1(zzz − ỹyy)

]−(M/2+a)

, (14)

where H is an M ×M matrix with elements hmm′ =
∑

n∈N snmsnm′ , and a, b are the two

hyperparameters associated with the prior density of the measurement variance, given by (9).

The previous result suggests that we may be able to use p(zzz | ỹyy) as an informative prior for the

log-equilibrium constants zzz; i.e., we may be able to replace p(zzz) by p(zzz | ỹyy) in (6). At a first glance, this

idea may not seem appropriate. However, it perfectly agrees with the fact that, in Bayesian analysis,

hyperparameters are often estimated directly from data [13]. Since we have shown here that steady-state

measurements can be effectively used to construct the entire posterior probability density function of zzz, it

seems reasonable to use this posterior as a prior density for zzz. Note however that, by replacing p(zzz) with

p(zzz | ỹyy) in (6), we must make sure that ỹyy is independent of yyy (see Additional file 1). Otherwise, our choice

for p(zzz) may not lead to a proper posterior density p(κκκ | yyy) (i.e., it may not lead to a density that is finite

for all yyy). Note that the independence of ỹyy and yyy is assured by the independence between the measurement

errors {η(p)n (tQ+1), n ∈ N , p ∈ P} and {η(p)n (tq), n ∈ N , p ∈ P, q ∈ Q}.

An important observation here is that evaluation of p(zzz | ỹyy), given by (14), may not be possible, since the

matrix H may not be invertible. We can address this problem by decorrelating zzz using the singular value

decomposition (SVD) of matrix H. As a consequence, we obtain H = U0D0UT
0 , where D0 is an invertible

diagonal matrix containing the nonzero singular values of H, and U0 is an appropriately constructed matrix

(see Additional file 1 for details). In this case, instead of using (14) for p(zzz | ỹyy), we must use

p(zzz | ỹyy) ∝
[

2b

P + 1
+ (zzz − ỹyy)TU0D−1

0 UT
0 (zzz − ỹyy)

]−a

, (15)

which we can always evaluate, since matrix D0 is invertible.

Prior density of log-rate constants

To specify the (conditional) prior density p(κκκ | zzz) of the log-rate constants of a biochemical reaction

system, we will first derive a prior probability density function p(κ2m−1) for the log-rate constant of the

mth forward reaction. To do so, we use the well-known Arrhenius formula of chemical kinetics [21] and set

k2m−1 = αm exp{−Em/kBT}, where αm is the prefactor, Em is the activation energy of the reaction, kB

is the Boltzmann constant (kB = 1.3806504× 10−23J/K), and T is the temperature. Unfortunately, we
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cannot predict the values of the prefactor and activation energy precisely. To deal with this problem, we set

αm = α0
m exp{gm} and Em = E0

m + Um, where α0
m, E0

m are the predictable portions of the prefactor and

activation energy, respectively, and gm, Um are two random variables that model the unpredictable portions

of these quantities. In the Additional file 1, we argue that it is reasonable to model gm as a zero-mean

Gaussian random variable with standard deviation λm, and Um is an exponential random variable with

mean and standard deviation kBT ∗
m, where T ∗

m is a temperature larger than T . As a consequence, we obtain

the following prior density for the log-rate constant κ2m−1 of the mth forward reaction [see Equation

(S-1.31) in Additional file 1]:

p(κ2m−1) =
eλ

2
m/2τ2m

2τm
erfc
[

1√
2

(
λm
τm

+
κ2m−1 − κ0m

λm

)]
e(κ2m−1−κ0

m)/τm , (16)

where τm := T ∗
m/T > 1, κ0m := lnα0

m − E0
m/kBT , and erfc[·] is the complementary error function. We

illustrate this prior in Figure S-1.1 of Additional file 1.

Basic thermodynamic arguments (see Additional file 1) imply that zm, defined by (8), is a constant

characteristic to the mth reaction. Since κ2m = κ2m−1 − zm, this implies that the rate constants κ2m and

κ2m−1 are two dependent random variables, given zm, with joint probability density

p(κ2m, κ2m−1 | zm) = δ(κ2m − κ2m−1 + zm)p(κ2m−1), where δ(·) is the Dirac delta function [see

Equation (S-1.37) in Additional file 1]. By assuming that the reaction rate constants of different reactions

are mutually independent given the z’s (which is reasonable if we assume that all common factors affecting

these rates, such as temperature and pressure, are kept fixed), we obtain

p(κκκ | zzz) =
∏

m∈M
δ(κ2m − κ2m−1 + zm)p(κ2m−1). (17)

Equations (16) and (17) provide an analytical form for the prior density of the log-rate constants. To use

this expression, we must determine appropriate values for ϕϕϕ := {κ0m, τm, λm,m ∈ M}, which can be

treated as hyperparameters. Although we could treat ϕϕϕ as random, we will choose here known values for

these parameters. This is motivated by the fact that ϕϕϕ determines the location and scale of the prior

densities of the forward rate constants; see Figure S-1.1 in Additional file 1. In certain problems of interest,

there might be enough information to determine possible ranges for the forward rate constant values. As a

consequence, we can use this information, together with an appropriate procedure, to effectively determine

values for ϕϕϕ. The reader is referred to Additional file 1 for details on how to do so.
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Effective likelihood

Calculating the effective likelihood p(yyy | κκκ), given by (7), is straightforward. From (5), (7), and (9), we can

show that

p(yyy | κκκ) ∝
∫

1

σN(P+1)Q+2(a+1)
exp

{
−φ(κ

κκ,yyy)

2σ2

}
dσ2, (18)

where

φ(κκκ,yyy) := 2b+
∑
n∈N

∑
p∈P

∑
q∈Q

[y(p)n (tq)− lnx(p)n (tq)]
2. (19)

By setting ξ = φ(κκκ,yyy)/2σ2 in (18), we obtain

p(yyy | κκκ) ∝ [φ(κκκ,yyy)]−a−N(P+1)Q/2

∫
ξa+N(P+1)Q/2−1e−ξdξ

∝ [φ(κκκ,yyy)]−a−N(P+1)Q/2. (20)

Note that evaluating φ(κκκ,yyy) at given values of κκκ and yyy requires integration of the system of ordinary

differential equations (2).

Posterior density

Our previous developments lead finally to an analytical formula for the posterior density p(κκκ | yyy) of the

log-rate constants. Indeed, (6), (15), (17), (19), and (20), lead to

p(κκκ | yyy) ∝ ω(κκκ)

[ψ(κκκ,yyy)]a[φ(κκκ,yyy)]β
, (21)

with

ω(κκκ) =
∏

m∈M
erfc
[

1√
2

(
λm
τm

+
κ2m−1 − κ0m

λm

)]
eκ2m−1/τm

ψ(κκκ,yyy) =
2b

P + 1
+
∑
m∈M

∑
m′∈M

θmm′(κ2m−1 − κ2m − ỹm)(κ2m′−1 − κ2m′ − ỹm′)

φ(κκκ,yyy) = 2b+
∑
n∈N

∑
p∈P

∑
q∈Q

[y(p)n (tq)− lnx(p)n (tq)]
2

β = a+N(P + 1)Q/2 ,

(22)

where θmm′ are the elements of matrix U0D−1
0 UT

0 obtained from the SVD decomposition of STS, and ỹm is

given by (13).

Note that the posterior density of the log-rate constants is a compromise between the prior and the

likelihood. The prior terms ω(κκκ) and ψ(κκκ,yyy) penalize log-rate values that do not fit well with available
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a-priori information, whereas, the likelihood term φ(κκκ,yyy) penalizes log-rate values that produce

concentration dynamics which deviate appreciably from measurements. As the number N(P + 1)Q of

available measurements increases, this compromise is controlled to a greater extent by the data through the

factor φ(κκκ,yyy).

A problem arises with the posterior density p(κκκ | yyy), given by (21) and (22), since nonzero probabilities

may be assigned to thermodynamically infeasible log-rate constants. A Bayesian analyst might argue that

we have correctly done our job by formulating the problem as we did and that it is the data which will rule

out the possibility that our biochemical reaction system can be characterized by thermodynamically

infeasible parameters. However, we choose to trust thermodynamics far more than we would trust noisy

data and appropriately modify the posterior density based on our knowledge that the kinetic parameters

must satisfy the Wegscheider conditions given by (11).

By using the Wegscheider conditions, we can decompose the 2M log-rate constants κκκ into two mutually

exclusive sets: M +M1 “free” log-rate constants κκκf and M −M1 “dependent” log-rate constants κκκd,

where M1 = rank(S) (see Additional file 1). Although parameters κκκf can take any value, parameters κκκd

must be equal to Wκκκf for the Wegscheider conditions to be satisfied, where W is an appropriately defined

matrix. One way to incorporate the constraint κκκd = Wκκκf into our Bayesian analysis problem is to treat it

as prior information and apply it on the prior density of the unconstrained problem. This principle forms

the basis of an attractive strategy for incorporating constraints into Bayesian analysis, known as

encompassing prior approach (EPA) [32]. By following EPA, we can replace the previously discussed

encompassing “effective” prior density
∫
p(κκκ | zzz)p(zzz)dzzz by the following probability density function:

pW (κκκf ,κκκd) :=

δ(κκκd −Wκκκf )

∫
p(κκκf ,κκκd | zzz)p(zzz)dzzz∫ ∫ ∫

δ(κκκd −Wκκκf )p(κκκf ,κκκd | zzz)p(zzz)dzzzdκκκfdκκκd
, (23)

where δ is the Dirac delta function. Clearly, this density assigns zero probability to kinetic parameters that

do not satisfy the Wegscheider conditions, since δ(κκκd −Wκκκf ) = 0, if κκκd ̸= Wκκκf . Note now that the

log-rate constants κκκd are of no immediate interest, since their values can be determined as soon as the

values of the log-rate constants κκκf have been estimated. As a consequence, we can treat κκκd as “nuisance”

parameters and integrate them out of the problem [13]. This integration, together with the updated prior
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density we presented above, leads to the following marginal posterior density of the log-rate constants κκκf :

pW (κκκf | yyy) ∝
∫
δ(κκκd −Wκκκf )p(κκκf ,κκκd | yyy)dκκκd = p(κκκf ,Wκκκf | yyy). (24)

Clearly, the values of the marginal posterior pW (κκκf | yyy) are proportional to the corresponding values of the

original posterior density p(κκκf ,κκκd | yyy) over the thermodynamically feasible region of the parameter space,

given by the hyperplane κκκd = Wκκκf . In the following, we will base our Bayesian analysis approach on

pW (κκκf | yyy).

Computing the posterior mode

In a Bayesian setting, we use the location of the posterior density over the parameter space to provide an

estimate of the unknown parameter values. Typically, two measures of location are employed, namely the

mode and the mean of the posterior. The posterior mean minimizes the mean-square error between the

estimated and true parameters, whereas, the posterior mode is more likely to produce dynamics that closely

resemble the true dynamics (see Additional file 1 for why this is true). We note here that the main objective

of parameter estimation in biochemical reaction systems is not necessarily to determine parameter values

that are “close” to the true values (e.g., in the mean square sense) but to obtain appropriate values for the

rate constants so that the resulting molecular concentration dynamics closely reproduce the dynamics

observed in the true system [33]. As a consequence, we choose the posterior mode as our parameter

estimator.

The posterior log-density lnpW (κκκf | yyy) is usually not concave, especially when a limited amount of highly

noisy data yyy is available. As a consequence, there is no optimization algorithm that can find the posterior

mode in a finite number of steps. A method to address this problem would be to randomly sample the

parameter space at a predefined (and usually large) number of points and use these points to initialize an

optimization algorithm, such as the simultaneous perturbation stochastic approximation (SPSA) algorithm

discussed in the Additional file 2. We can then calculate the parameters and the associated values of

lnpW (κκκf | yyy) obtained by each initialization after a set number of optimization steps, and declare the

parameters associated with the highest log-posterior value as being the desired mode estimates.

Unfortunately, SPSA (and as a matter of fact any other appropriate optimization algorithm) is

computationally costly, especially in the case of large biochemical reaction systems. Therefore, using

SPSA in the previous multi-seed strategy may result in a computationally prohibitive approach for finding
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the posterior mode. In order to reduce computations, we may choose only a small number of initial points

that we believe are sufficiently proximal to the posterior mode. Two such points might be the prior and

posterior means. As a matter of fact, as the data sample size tends to infinity, we expect that the posterior

mean will coincide with the posterior mode, since, under suitable regularity conditions, the posterior

density converges asymptotically to a Gaussian distribution [12, 34]. This simple idea leads to the

sequential maximization-expectation-maximization (MEM) algorithm we discuss in the Additional file 2.

According to this algorithm, we perform a relatively small number of SPSA iterations, initialized by the

prior mode, to obtain a posterior mode estimate κ̂κκmode
f,1 . We then use an MCMC algorithm, initialized by

κ̂κκmode
f,1 , to obtain an estimate of the posterior mean κ̂κκmean

f . Subsequently, we perform another set of SPSA

iterations, initialized by κ̂κκmean
f , to obtain the posterior mode estimate κ̂κκmode

f,2 . We finally set κ̂κκmode
f to be the

log-rate constants that produce the maximum posterior value during all SPSA and MCMC iterations, and

set the optimal estimate κ̂κκ of the log-rate constants κκκ equal to {κ̂κκmode
f ,Wκ̂κκmode

f }.

Estimation accuracy

One way to quantify the accuracy of the posterior mode estimate κ̂mode
f of a “free” log-rate constant κf is to

calculate and report the root mean square error (RMSE), given by

ϵRMSE(κ̂
mode
f ) =

√
E[(κf − κ̂mode

f )2 | yyy] =
{∫

(κf − κ̂mode
f )2pW (κκκf | yyy)dκκκf

}1/2

. (25)

A small value of ϵRMSE provides us with confidence that the estimated value of that constant is accurate. On

the other hand, the estimate may be perceived as inaccurate if ϵRMSE is exceedingly large.

Another useful metric for evaluating estimation accuracy is D := ln det[V]/(M +M1), where det[V] is

the determinant of the posterior covariance matrix V = E[(κκκf − κ̂κκmode
f )(κκκf − κ̂κκmode

f )T | yyy]. Note that D is the

average of the log-eigenvalues of V and is related to the well-known D-optimal criterion used in

experimental design [27]. We can use D to quantify the overall accuracy of a model calibration result, with

smaller values of D indicating better overall accuracy.

Note that the RMSE’s ϵRMSE can be computed from the diagonal elements of V. It turns out the we can

approximate ϵRMSE and D from an estimate V̂ of the posterior covariance matrix V obtained during the

second (MCMC) phase of the proposed MEM algorithm (see Additional file 2 for details).
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When the true values κκκtrue of the log-rate constants are known (which is the case when we use simulated

data to evaluate the performance of the proposed Bayesian analysis approach, as we do in this paper), we

can provide a more direct evaluation of estimation performance. As we have mentioned previously,

calculating a measure of “closeness” (such as the square error) between the estimated and true parameter

values may not be quite appropriate here. Since, in reality, our objective is to estimate the rate constant

values so that the biochemical reaction system produces dynamics that closely match the true molecular

dynamics, it may be more appropriate to use, as measures of estimation performance, the following median

and maximum absolute error criteria:

ϵMED-AE = med
n∈N, p∈P


∫
T

∣∣∣x̂(p)n (t)− x(p)n (t)
∣∣∣ dt∫

T
x(p)n (t)dt


ϵMAX-AE = max

n∈N, p∈P


∫
T

∣∣∣x̂(p)n (t)− x(p)n (t)
∣∣∣ dt∫

T
x(p)n (t)dt

 ,

(26)

where {x(p)n (t), t ∈ T } and {x̂(p)n (t), t ∈ T } are the true and estimated dynamics of the nth molecular

species under the pth perturbation, produced by the biochemical reaction system with log-rate constants

κκκtrue and κ̂κκ = {κ̂κκmode
f ,Wκ̂κκmode

f }, respectively. Clearly, ϵMED-AE and ϵMAX-AE provide measures of closeness

between the estimated molecular responses {x̂(p)n (t), t ∈ T , n ∈ N , p ∈ P} and the true molecular

responses {x(p)n (t), t ∈ T , n ∈ N , p ∈ P}, normalized by the corresponding true integrated responses

{
∫
T x

(p)
n (t)dt, n ∈ N , p ∈ P}. Normalization is required in order to make sure that no one species

dominates the error values more than any other. Finally, note that half of the normalized absolute errors

will be between 0 and ϵMED-AE, whereas, the remaining half will be between ϵMED-AE and ϵMAX-AE.

Results/Discussion

To illustrate key aspects of the previous Bayesian analysis methodology, we now consider a numerical

example based on a subset of a well-established model of the EGF/ERK signal transduction pathway

proposed by Schoeberl et al. [35]. This model corresponds to an open biochemical reaction system, since it

contains irreversible reactions as well as reactions governed by Michaelis-Menten kinetics that involve

molecular species not included in the model. We extract a closed subset of the Schoeberl model by

choosing the largest connected section that contains only reversible reactions governed by mass action

kinetics. The resulting biochemical reaction system is depicted in Figure 1 and is comprised of N = 13

19



molecular species that interact through M = 9 reversible reactions. Of course, we could attempt to

generate a closed biochemical reaction system for the entire EGF/ERK signaling pathway, by including all

relevant molecular species not considered by the Schoeberl model (e.g., ADP, ATP, intermediate forms in

catalyzed reactions, etc.). However, since we are only interested in demonstrating the potential and key

properties of our Bayesian analysis methodology, we found this to be unnecessary. We feel that the

biochemical reaction system depicted in Figure 1 leads to a sufficiently rich numerical example that serves

the main purpose of this section well.

In specifying the model depicted in Figure 1, we must provide three sets of physically reasonable values:

true rate constant values, initial concentrations, and experimentally feasible perturbations to the initial

concentrations. Published values for the reaction rate constants associated with our example are given in

Equation (S-3.1) of Additional file 3. However, these values do not correspond to a thermodynamically

feasible biochemical reaction system, since they do not satisfy the Wegscheider conditions, given by (11).

We should point out here that this is a common problem in systems biology. Reaction rate values are

usually amalgamated from various independent sources in the literature, so it is highly unlikely that these

values will correspond to a thermodynamically feasible biochemical reaction system. As a consequence, it

is desirable to develop a method that uses published values for the reaction rate constants and calculates an

appropriate set of thermodynamically feasible values that can be considered as the “true” parameter values.

In Additional file 3, we calculate “true” values for the log-rate constants by using a linear least squares

approach to project the published values onto the thermodynamically feasible hyperplane. The resulting

“true” values are given in Equation (S-3.3) of Additional file 3.

Regarding the initial concentrations, we use the values specified in [35, 36], with two minor modifications.

First, molecular species with zero initial concentrations are modified to have a small number of molecules

present. We do this to accommodate the fact that, in a real cellular system, these molecular species are

constitutively expressed. The second modification comes from the fact that we are no longer modeling the

entire EGF/ERK signaling cascade and, therefore, we must account for the upstream EGF stimulus. To

take this into account, we increase the initial concentration of the most upstream molecular species in our

model, namely (EGF-EGFR*)2-GAP. The initial concentrations used are given by Equation (S-3.4) in

Additional file 3.
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To specify appropriate perturbations to the initial molecular concentrations, note that molecular complexes,

such as dimers, trimers, etc., are far more difficult to perturb than simple monomeric molecular species.

For this reason, we focus our perturbation efforts on Shc∗, Grb2, and Sos. Since Shc∗ is commercially

available in a purified and quantified form, we will assume that we can increase its initial concentration by

a factor of 100 using molecular injection. We will also assume that we can perturb Grb2 and Sos by RNAi,

resulting in a decrease in their initial concentrations by a factor of 100. Thus, we set π1 = 99c1,

π2 = −.99c2, and π4 = −.99c4.

To avoid specifying different hyperparameter values for the prior densities of the forward log-rate

constants, we assume here that all densities share the same known values {κ0, τ, λ}, where κ0 = −5.1010,

τ = 1.8990, and λ = 0.7409, whereas, we set a = 3 and b = 1 for the hyperparameters of the prior density

of the variance σ2 of the measurement errors. These choices correspond to the prior densities depicted in

Figure S-1.2(a) and Figure S-1.3(a) in Additional file 1. We implement our Bayesian analysis approach

using the MEM algorithm described in Additional file 2, with I = 5,000 SPSA iterations in each

maximization step and a total of L = 50,000 MCMC iterations in the expectation step. Finally, we observe

the biochemical reaction system within a time period of 1 min.

In Figure 2, we depict a typical result obtained by the proposed Bayesian analysis algorithm. In this figure,

we compare the estimated log-rate values (blue) with the thermodynamically consistent true log-rate values

(red) as well as the corresponding concentration dynamics of selected molecular species in the unperturbed

biochemical reaction system. We have obtained these results by measuring the concentration dynamics in

the unperturbed and perturbed systems at Q = 6 logarithmically-spaced time points (green circles), with

the measurements being corrupted by independent and identically distributed (i.i.d.) zero-mean Gaussian

noise with standard deviation σ = 0.3. Moreover, we summarize the estimated posterior RMSE values,

given by (25), in Table 1. Finally, the calculated median and maximum absolute error values, given by (26),

are 3.03× 10−2 and 1.68× 10−1, respectively.

The concentration dynamics produced by the estimated rate constant values match well the dynamics

produced by the true values. As a matter of fact, the calculated median and maximum absolute error values

imply that half of the relative integrated absolute error values between the estimated and true concentration

dynamics (across all molecular species and all applied perturbations) are smaller than 3.03%, whereas, the

remaining values are between 3.03% and 16.8%. On the other hand, the estimated posterior RMSE values
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summarized in Table 1 indicate a high probability that, given the concentration measurements, the log-rate

values will lie within a relatively small region around the corresponding posterior mode values.

We expect that, in general, by selecting appropriate perturbations and by increasing the number of

concentration data collected during an experiment, we can improve estimation accuracy. However, how can

one know if the right perturbations have been applied on the biochemical reaction system and if enough

data has been collected in a practical situation? Inspection of RMSE values can provide an answer to these

important questions. If the estimated RMSE values of the log-rate constants of many reactions are large, it

may be worth collecting additional data by increasing P and Q. Additional data can improve estimation

accuracy by shrinking the RMSE values to a size that indicates an acceptable degree of uncertainty.

However, if the biochemical reaction system is insensitive to a given kinetic parameter, then the RMSE

associated with that reaction may remain large even as the quality of data improves. Therefore, additional

data should only be collected when the RMSE values are large and sensitivity analysis indicates that the

values of the rate constants associated with these RMSE values appreciably affect the system dynamics.

The RMSE values do not provide a global measure of estimation accuracy, since some parameters may

have small RMSE values and some may have large values. To address this problem, we may instead

employ the D-optimal criterion as a measure of estimation accuracy. As a matter of fact, we can effectively

use the D-optimal criterion as a guide for selecting appropriate perturbations and for determining the data

sampling scheme we must use in order to increase estimation accuracy. In Table 2, for example, we

summarize estimated values of D, for the case of uniform and logarithmic sampling, calculated for

different values of Q. Clearly, the sampling scheme used may appreciably affect estimation performance.

For each value of Q, uniform sampling results in higher values of D than logarithmic sampling. As a

consequence, we must use logarithmic sampling over uniform sampling, since the former may produce

better estimation accuracy than the latter. This is expected, since uniform sampling may result in measuring

steady-state concentrations much more often than (short-lived) transient concentrations. On the other hand,

logarithmic sampling may be used to gather valuable information about the transient behavior of a

biochemical reaction system while placing less emphasis on its steady-state dynamics (which only provide

information about the equilibrium constants of the underlying reactions). The results depicted in Table 2

also suggest an appropriate value for Q. If our goal is to find the smallest value Q∗ of Q (an objective

dictated by the high cost of experimentally measuring molecular concentrations) which results in a value

of D that is no less than, say 5%, of the value obtained when Q = Q∗ − 1, then we must set Q∗ = 6.
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In Table 3, we summarize the estimated values of D obtained from seven different perturbation experiments

(logarithmic sampling is used with Q = 6). Moreover, we report the D values obtained by repeating an

experiment that does not use molecular perturbations. Experimental replication may be an effective

approach to obtain additional data, especially when molecular perturbations are costly or difficult to apply.

Our formulation allows us to consider this scenario by setting πp = 0, for every p ∈ P . The data collected

this way correspond to repeating the same experiment P + 1 times, where P is the number of elements

in P . The maximum experimental replication considered in Table 3 uses P = 3, which corresponds to

repeating the same experiment four times. This produces the same amount of data as the data obtained by

perturbing the initial concentrations of Shc∗, Grb2, and Sos, one at a time. The values depicted in Table 3

suggest that perturbing the initial concentrations of Shc∗, Grb2, and Sos may be the right thing to do, since

this produces the lowest value of D and, thus, it may result in better estimation performance as compared to

perturbing the initial concentrations of one or two of these molecular species. In this case, however, it may

also be acceptable to replicate an experiment that does not use molecular perturbations, since the minimum

value of D is only 9.31% lower than the D value obtained by repeating the experiment four times.

One of the underlying assumptions associated with the proposed Bayesian analysis algorithm is that the

measurement errors are statistically independent, following a zero-mean Gaussian distribution with

standard deviation σ. To assess the adequacy of this assumption and evaluate its implication on estimation

performance, we depict in Table 4 calculated median and maximum absolute error values obtained when

the measurement errors η(p)n in (5) are i.i.d. zero-mean Gaussian with standard deviation σ, i.i.d. zero-mean

uniform within the interval [−
√
3σ,

√
3σ], with standard deviation σ, and correlated zero-mean stationary

Gaussian with autocorrelation E[η(p)n (t1)η
(p)
n (t2)] = σ2 exp{−|t1 − t2|}. We consider different values for

the standard deviation, namely σ = 0.1, 0.2, 0.3, 0.4, 0.5, and measure the concentration dynamics in the

unperturbed and perturbed systems at Q = 6 logarithmically spaced time points. Table 4 shows clearly that

violation of the i.i.d. Gaussian assumption may lead to reduction in estimation accuracy, especially when

the measurement errors are correlated, due to an increase in the maximum absolute error values. However,

the calculated median absolute error values indicate that the proposed algorithm is relatively robust to the

statistical behavior of the measurement errors, producing reasonable estimates for at least half of the

concentration dynamics. In Figure 3, we depict results obtained by the proposed Bayesian analysis

algorithm when measuring the concentration dynamics in the unperturbed and perturbed systems at Q = 6

logarithmically-spaced time points (green circles), with the measurements being corrupted by correlated
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zero-mean stationary Gaussian errors with standard deviation σ = 0.3. These results compare favorably to

the ones depicted in Figure 2. In this case, the calculated median absolute error value is 1.48× 10−2,

which is 62.8% smaller that the value obtained when the errors are i.i.d. zero-mean Gaussian, whereas, the

calculated maximum absolute error value is 7.32× 10−2, which is 31.7% larger that the value obtained

when the errors are i.i.d. zero-mean Gaussian.

Conclusions

In this paper, we have introduced a novel Bayesian analysis technique for estimating the kinetic parameters

(rate constants) of a closed biochemical reaction system from time measurements of noisy concentration

dynamics. The proposed procedure enjoys a clear advantage over other published estimation techniques:

the estimated kinetic parameters satisfy the Wegscheider conditions imposed by the fundamental laws of

thermodynamics. As a consequence, it always leads to physically plausible biochemical reaction systems.

From a statistical perspective, there are additional advantages for thermodynamically restricting the kinetic

parameters of a biochemical reaction system to satisfy the Wegscheider conditions. This may be seen

through the well-known bias-variance tradeoff in estimation [27]. The mean squared error of a given

estimator can be decomposed into a bias term and a variance term. In general, imposing constraints on the

estimator may increase its bias but decrease its variance (hence the tradeoff). However, if the true

parameter values satisfy the constraints, then the variance may decrease without increasing the bias

term [27]. Since the true values of the kinetic parameters must lie on the thermodynamically feasible

manifold in the parameter space, confining the Bayesian estimator to this manifold (which is of lower

dimension than the parameter space itself) may lead to lower mean squared error due to a smaller variance.

Since the thermodynamically feasible manifold is of lower dimension than the parameter space, gains in

variance (and hence improvements in the mean squared error) are expected to be large. This may be seen

through the “curse of dimensionality,” which refers to the exponential increase in the volume of the

parameter space as its dimension grows, making estimation exponentially harder in higher dimensional

spaces (in our example, the unconstrained parameter space has 12.5% more dimensions than the

thermodynamically feasible subspace). The Wegscheider conditions reduce the dimensionality of the

parameter space to a feasible region in which estimation may be easier. Thus, the proposed Bayesian

analysis procedure improves on other estimation techniques by producing a statistically superior, physically

meaningful and plausible estimate for the kinetic parameters of a closed biochemical reaction system.
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The Bayesian analysis methodology discussed in this paper has been formulated by assuming that all initial

concentrations and perturbations are precisely known and that concentration measurements can be obtained

by directly sampling all system dynamics. However, current experimental practices in quantitative systems

biology restrict the amount and type of data that can be collected from living cells. As a consequence,

further research is needed to develop approaches that can accommodate this important issue and make a

Bayesian analysis approach to parameter estimation better applicable to systems biology problems.

If the initial concentrations and the perturbations applied on these concentrations are not known, then we

may try to estimate them together with the unknown kinetic parameters. Although formulation of this

problem is similar to the one considered in this paper, the additional computational burden will be

substantial. Moreover, while quantitative biochemical techniques are improving, the vast majority of data

available in problems of systems biology are obtained by measuring ratios of molecular concentrations

(e.g., by using techniques such as SILAC [37]). Estimation of the rate constants of a biochemical reaction

system from concentration measurements available as ratios relative to a reference system requires special

consideration and extensive modification of the proposed Bayesian analysis procedure. Finally, it is very

important to address the problem of missing observations. This is a common problem in systems biology,

since it is not possible to monitor and measure the concentrations of all molecular species present in the

system. Although appropriate modifications to the proposed algorithm can lead to a Bayesian analysis

approach that can handle missing data, we think that development of a practically effective way to address

this problem is challenging. Our future plan is to expand and improve the Bayesian analysis procedure

discussed in this paper in order to provide practical solutions to the previous problems.

It is worth noting here that the estimation procedure suggested in this paper applies only to closed

biochemical reaction systems (or to approximations of closed systems embedded in a larger open system).

However, a cell is an open system, since it effectively interacts with its environment. If we include the

cell’s environment into our system and monitor the combined system until steady-state (i.e., until cell

death), then we would have the necessary closed system. Unfortunately, this is clearly an unrealistic

scenario. As a consequence, there is also a need to develop a theoretical and computational approach for

dealing with thermodynamically consistent parameter estimation in open biochemical reaction systems.

To conclude, it has been argued in a recent paper [33] that most models of computational systems biology

are “sloppy,” in the sense that many parameters of such models do not appreciably alter system behavior.
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A key conclusion of this paper is that collective fitting procedures (such as the Bayesian analysis technique

presented in the present paper) are far more desirable than piecewise construction of a biochemical reaction

system model from individual parameter estimates (which is how most models are constructed when

investigators scour the literature for individual rate constant values). Moreover, it has been pointed out

in [33] that using a method to obtain precise parameter values may be difficult, even with an unlimited

amount of data, since the behavior of a sloppy model is insensitive to the values of most parameters. As a

consequence, the authors suggest that, instead of focusing on the quality of parameter estimation, it will be

more wise to focus on the quality of prediction achieved by an estimated model (as we have also argued in

this paper).

To a certain extent, our Bayesian analysis approach addresses some of the issues raised in [33]. By

imposing the Wegscheider conditions on the kinetic parameters of a biochemical reaction system, we can

effectively constrain these parameters to a thermodynamically feasible manifold in the parameter space,

thus reducing sloppiness. Moreover, we can effectively use the RMSE values and the D-optimal criterion

to determine an appropriate experimental design and distinguish those estimated values that can be trusted

from those that cannot. For example, if the RMSE value associated with a kinetic parameter is small, then

we may trust these values. On the other hand, a large RMSE value may indicate high uncertainty in the

estimated parameter values, which may be untrustworthy. As we mentioned before, if a sensitivity analysis

approach, such as the one proposed in [38], indicates that the kinetic parameters associated with large

RMSE values are influential parameters, then we must reduce these RMSE values to an acceptable level of

uncertainty by adopting a new and more effective experimental design approach. On the other hand, if

these parameters correspond to a non-influential reaction, then we can accept the estimated values with no

further consideration, since high uncertainty in the exact values of these parameters will not affect the

predicted concentration dynamics.
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Figure legends

Figure 1: A subset of the EGF/ERK signal transduction pathway model proposed in [35]. The biochemical

reaction system is comprised of N = 13 molecular species that interact through M = 9 reactions.

Bayesian analysis is focused on estimating the values of the 18 rate constants associated with the reactions.

Figure 2: True (red) vs. estimated (blue) log-rate values and selected molecular dynamics in the

unperturbed biochemical reaction system depicted in Figure 1. The results are based on measuring the

dynamics in the unperturbed and perturbed systems at Q = 6 logarithmically-spaced time points (green

circles). Perturbations are applied on the initial concentrations of Shc∗, Grb2, and Sos, one at a time. The

measurement errors are i.i.d. zero-mean Gaussian with standard deviation σ = 0.3.

Figure 3: True (red) vs. estimated (blue) log-rate values and selected molecular dynamics in the

unperturbed biochemical reaction system depicted in Figure 1. The results are based on measuring the

dynamics in the unperturbed and perturbed systems at Q = 6 logarithmically-spaced time points (green

circles). Perturbations are applied on the initial concentrations of Shc∗, Grb2, and Sos, one at a time. The

measurement errors are correlated zero-mean Gaussian with standard deviation σ = 0.3.
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Tables

Table 1: Estimated posterior RMSE values for the case of i.i.d. zero-mean Gaussian errors with standard
deviation σ = 0.3. Logarithmic sampling is used with Q = 6. The log-rate constants κ8 and κ14 are

“dependent” variables. Therefore, no RMSE values are reported for these variables.

κ1 κ3 κ5 κ7 κ9 κ11 κ13 κ15 κ17
0.2414 0.1578 0.1838 0.2950 0.1426 0.1683 0.0968 0.4474 0.1484
κ2 κ4 κ6 κ8 κ10 κ12 κ14 κ16 κ18

0.2594 0.2095 0.1704 – 0.2124 0.2136 – 0.5093 0.0494

Table 2: Estimated values of the D-optimal criterion for uniform and logarithmic sampling schemes.
The measurement errors are i.i.d. zero-mean Gaussian with standard deviation σ = 0.3.

Q uniform logarithmic % change
2 −1.7697 −2.3500 −
3 −2.0030 −3.4287 45.90%
4 −2.3752 −3.7432 9.17%
5 −2.6115 −4.1173 9.99%
6 −2.3492 −4.1039 −0.33%

Table 3: Estimated values of the D-optimal criterion for different replications and perturbations.
The measurement errors are i.i.d. zero-mean Gaussian with standard deviation σ = 0.3.

Logarithmic sampling is used with Q = 6.

Perturbation D

NO: 1 replication −3.0123
NO: 2 replications −3.4950
NO: 3 replications −3.7544

YES: Shc∗ −3.1398
YES: Grb2 −3.0747
YES: Sos −3.4531
YES: Shc∗, Grb2 −3.9279
YES: Shc∗, Sos −3.7716
YES: Grb2, Sos −3.6363
YES: Shc∗, Grb2, Sos −4.1039
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Table 4: Median and maximum absolute error values under a variety of measurement error conditions.
Logarithmic sampling is used with Q = 6.

mean = 0 i.i.d. Gaussian i.i.d. Uniform correlated Gaussian

σ = 0.1 3.98× 10−3 8.64× 10−3 1.48× 10−2

5.56× 10−2 4.81× 10−2 7.32× 10−2

σ = 0.2 1.01× 10−2 1.78× 10−2 3.09× 10−2

8.29× 10−2 1.30× 10−1 1.89× 10−1

σ = 0.3 3.03× 10−2 1.78× 10−2 3.05× 10−2

1.68× 10−1 1.30× 10−1 2.46× 10−1

σ = 0.4 2.19× 10−2 2.56× 10−2 1.04× 10−1

2.27× 10−1 1.41× 10−1 3.67× 10−1

σ = 0.5 2.67× 10−2 3.86× 10−2 6.43× 10−2

2.48× 10−1 3.32× 10−1 3.10× 10−1
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Additional files provided with this submission

Additional file 1: addfile-1.pdf, 224K

In this document, we provide theoretical details necessary to understand the Bayesian analysis approach

introduced in the Main text.

Additional file 2: addfile-2.pdf, 82K

This document contains a detailed description of the computational algorithms used for implementing

various steps of the proposed Bayesian analysis approach.

Additional file 3: addfile-3.pdf, 80K

In this document, we list the biochemical reactions associated with our numerical example and provide

thermodynamically consistent values for the rate constants as well as appropriate values for the initial

molecular concentrations.
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In this document, we provide theoretical details necessary to understand the Bayesian analysis approach

introduced in the Main text. We start by deriving a general formula for the posterior density associated

with our Bayesian analysis approach. We then discuss the Wegscheider conditions and their implications

on the reaction rate constants of a closed biochemical reaction system. Subsequently, we derive appropriate

prior probability density functions for the log-equilibrium constants as well as for the log-rate constants,

and discuss a practical method for determining the hyperparameters associated with these priors. Finally,

we present mathematical arguments to support our belief that the posterior mode should be a more

preferable estimator of the kinetic parameters of a biochemical reaction system than the posterior mean.
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Bayesian analysis

To develop a Bayesian analysis approach for estimating the kinetic parameters (rate constants) of a

biochemical reaction system, we take the log-rate constants κκκ and the error variance σ2 to be random

variables. Note however that the probability density function of κκκ we consider in this paper depends on the

log-equilibrium constants zzz = {zm,m ∈ M}, where zm := ln(k2m−1/k2m), which we treat as

hyperparameters (details to follow). Since we do not know the exact values of these hyperparameters, we

take them to be random variables as well. By following this approach, we can write the posterior joint

density of κκκ, zzz, and σ2, given data yyy, as1

p(κκκ,zzz, σ2 | yyy) = p(σ2 | κκκ,yyy)p(κκκ | zzz,yyy)p(zzz | yyy) . (S-1.1)

Since our main objective is to estimate κκκ, we are interested in evaluating the posterior density p(κκκ | yyy). To

do so, we must integrate the log-equilibrium constants zzz and the error variance σ2 out of the posterior joint

density p(κκκ,zzz, σ2 | yyy). In this case,

p(κκκ | yyy) =
∫ ∫

p(κκκ,zzz, σ2 | yyy)dσ2dzzz =
∫
p(κκκ | zzz,yyy)p(zzz | yyy)dzzz, (S-1.2)

by virtue of (S-1.1). On the other hand,

p(κκκ | zzz,yyy) = p(yyy | κκκ)p(κκκ | zzz)p(zzz)
p(zzz | yyy)p(yyy)

. (S-1.3)

As a consequence of (S-1.2) and (S-1.3), we have that

p(κκκ | yyy) =
p(yyy | κκκ)
p(yyy)

∫
p(κκκ | zzz)p(zzz)dzzz

∝ p(yyy | κκκ)
∫
p(κκκ | zzz)p(zzz)dzzz, (S-1.4)

where p ∝ q denotes that p is proportional to q, whereas,

p(yyy | κκκ) =
∫
p(yyy | κκκ, σ2)p(σ2 | κκκ)dσ2. (S-1.5)

The term p(yyy | κκκ) is simply the average of the likelihood p(yyy | κκκ, σ2) over the conditional prior density

p(σ2 | κκκ) of σ2 given the values of the log-rate constants κκκ. We refer to p(yyy | κκκ) as the “effective”

likelihood. Moreover, we refer to
∫
p(κκκ | zzz)p(zzz)dzzz as the “effective” prior, since this term contains the

prior information about the log-rate constants κκκ after the prior information about the log-equilibrium

constants is integrated out of the problem.
1It is clear that zzz can be directly calculated from κκκ. Consequently, conditioning on both κκκ and zzz is equivalent to conditioning

only on κκκ. Therefore, p(σ2 | κκκ,zzz,yyy) = p(σ2 | κκκ,yyy) and p(yyy | κκκ,zzz) = p(yyy | κκκ).
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Wegscheider conditions

As we mentioned in the Main text, the thermodynamic constraints given by Equation (10) are equivalent to

the Wegscheider conditions given by Equation (11). To show this fact, let us first assume that Equation (10)

is satisfied. Then, for every rrr = {rm,m ∈ M} ∈ null(S),

ln
∏

m∈M

(
k2m−1

k2m

)rm
=
∑
m∈M

rm ln
k2m−1

k2m

=
∑
m∈M

rm ln

∏
n∈N [x

(p)
n ]ν

′
nm∏

n∈N [x
(p)
n ]νnm

=
∑
m∈M

rm ln
∏
n∈N

[x(p)n ]snm

=
∑
n∈N

( ∑
m∈M

snmrm

)
lnx(p)n

= 0,

where {x(p)n , n ∈ N} are the stationary concentrations in the system when the initial concentration of the

pth molecular species is perturbed. This shows Equation (11).

On the other hand, if Equation (11) is satisfied, then

∑
m∈M

rm ln
k2m−1

k2m

∏
n∈N [x

(p)
n ]νnm∏

n∈N [x
(p)
n ]ν′nm

=
∑
m∈M

ln

(
k2m−1

k2m

)rm
−
∑
m∈M

rm ln
∏
n∈N

[x(p)n ]snm

=
∑
m∈M

ln

(
k2m−1

k2m

)rm
−
∑
n∈N

( ∑
m∈M

snmrm

)
lnx(p)n

=
∑
m∈M

ln

(
k2m−1

k2m

)rm
= 0, (S-1.6)

for every rrr ∈ null(S). We can take the mth element rm of rrr to be

rm = k2m−1

∏
n∈N

[x(p)n ]νnm − k2m
∏
n∈N

[x(p)n ]ν
′
nm ,

since, from Equations (2) and (4) in the Main text, we have Srrr = 0, which implies that rrr ∈ null(S). Note

now that ∑
m∈M

(
k2m−1

∏
n∈N

[x(p)n ]νnm − k2m
∏
n∈N

[x(p)n ]ν
′
nm

)
ln
k2m−1

k2m

∏
n∈N [x

(p)
n ]ν

′
nm∏

n∈N [x
(p)
n ]νnm

= 0,
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by virtue of (S-1.6). However, each term in the previous sum is nonnegative. Hence, for the sum to be

equal to zero, each term must be zero, which implies the steady-state thermodynamic constrains given by

Equation (10) in the Main text.

We will now show that the Wegscheider conditions are satisfied for all rrr ∈ null(S) so long as they are

satisfied for M2 =M −M1 basis vectors {rrr(j), j = 1, 2, . . . ,M1} of the null space of S, where

M1 = rank(S). Note that, for any rrr ∈ null(S),

rrr =

M2∑
j=1

ajrrr(j),

for some scalar coefficients αj , j = 1, 2, . . . ,M2. As a consequence, and from Equations (8) and (11) in

the Main text, we have that

ln
∏

m∈M

(
k2m−1

k2m

)rm
=
∑
m∈M

rm ln
k2m−1

k2m

=
∑
m∈M

rmzm

=
∑
m∈M

M2∑
j=1

ajrm(j)

 zm
=

M2∑
j=1

aj
∑
m∈M

zmrm(j)

=

M2∑
j=1

aj
∑
m∈M

rm(j) ln
k2m−1

k2m

=

M2∑
j=1

aj ln
∏

m∈M

(
k2m−1

k2m

)rm(j)

= 0,

for every rrr = {rm,m ∈ M} ∈ null(S), since the Wegscheider conditions are assumed to be satisfied by

the basis vectors of the null space of S. This shows that the Wegscheider conditions are also satisfied for

every rrr ∈ null(S).

Let us now rearrange the columns and rows of the stoichiometry matrix S (by appropriately relabeling the

molecular species and reactions) so that the first M1 columns are linearly independent, whereas, the
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remaining M2 columns are linearly dependent on the first columns. In this case, we can write the

stoichiometry matrix S in the following block matrix form:

S =

[
S11 S12
S21 S22

]
,

where S11 is an invertible M1 ×M1 matrix, whereas, S12, S21, and S22 are M1 ×M2, (N −M1)×M1,

and (N −M1)×M2 matrices, respectively. It is a well-known fact (e.g., see [1]) that the general solution

of Srrr = 0 is given by rrr′ = −S−1
11 S12rrr′′, for an arbitrary rrr′′, where rrr′, rrr′′ are M1 × 1 and M2 × 1 vectors,

respectively, such that

rrr =

[
rrr′

rrr′′

]
.

This implies that the columns of matrix

B =

[
−S−1

11 S12
IM2

]
,

where IM2 is the M2 ×M2 identity matrix, form a basis for the null space of S. As a consequence of this

result and the fact that the Wegscheider conditions are satisfied so long they are satisfied by a basis vector

of null(S), we can conclude that the Wegscheider conditions, given by Equation (11) in the Main text, are

equivalent to the following conditions [2]:

κ2m′ = κ2m′−1 +
∑

m∈M1

[S−1
11 S12]m,m′ (κ2m − κ2m−1) , for every m′ ∈ M2, (S-1.7)

where M1 = {1, 2, . . . ,M1}, M2 = {M1 + 1,M1 + 2, . . . ,M}, and [S−1
11 S12]m,m′ is the element of the

mth row and the m′th column of matrix S−1
11 S12.

Equation (S-1.7) allows us to specify arbitrary values for the forward and reverse log-rate constants

{κ2m−1,m ∈ M}, {κ2m,m ∈ M1}, and calculate the reverse log-rate constants {κ2m,m ∈ M2} so that

the Wegscheider conditions are satisfied. If we denote by κκκf the (M +M1) “free” log-rate constants

{κ2m−1,m ∈ M, κ2m,m ∈ M1} and by κκκd the M2 “dependent” log-rate constants {κ2m,m ∈ M2},

then we can write (S-1.7) in the following compact form:

κκκd = Wκκκf , (S-1.8)

where W is the (M −M1)× (M +M1) matrix implementing the right hand side of (S-1.7), given by

W =
[
−(S−1

11 S12)
T | IM2 | (S−1

11 S12)
T
]
. (S-1.9)

Thus, for any arbitrary κκκf , we can construct a thermodynamically feasible set of kinetic parameters by

determining the dependent parameters κκκd according to (S-1.8), and by setting κκκ = {κκκf ,κκκd}.
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Prior density of log-equilibrium constants

From Equations (8) and (10) in the Main text, we have that

zm =
∑
n∈N

snm lnx(p)n , for all p ∈ P,

where snm = ν ′nm − νnm is the net stoichiometry coefficient and {x(p)n , n ∈ N} are the stationary

concentrations when the initial concentration of the pth molecular species is perturbed. Therefore,

zm =
1

P + 1

∑
p∈P

∑
n∈N

snm lnx(p)n , for all m ∈ M. (S-1.10)

On the other hand, Equation (5) in the Main text gives∑
p∈P

∑
n∈N

snm lnx(p)n (tq) =
∑
p∈P

∑
n∈N

snmy
(p)
n (tq)−

∑
p∈P

∑
n∈N

snmη
(p)
n (tq). (S-1.11)

If we assume that the biochemical reaction system and all its perturbed versions are sufficiently close to

steady-state at some time point tQ+1, then (S-1.10) and (S-1.11) approximately imply that

zm = ỹm − η̃m, (S-1.12)

where

ỹm :=
1

P + 1

∑
p∈P

∑
n∈N

snmy
(p)
n (tQ+1), (S-1.13)

and

η̃m :=
1

P + 1

∑
p∈P

∑
n∈N

snmη
(p)
n (tQ+1).

To proceed, note that

p(zzz | yyy) = p(zzz | ỹyy,yyy)

=

∫
p(zzz, σ2 | ỹyy,yyy)dσ2

=

∫
p(zzz | σ2, ỹyy,yyy)p(σ2 | ỹyy,yyy)dσ2

=

∫
p(zzz | σ2, ỹyy)p(σ2 | yyy)dσ2. (S-1.14)

This is due to the fact that ỹyy := {ỹm,m ∈ M} can be calculated from yyy := {y(p)n (tQ+1), n ∈ N , p ∈ P}

by means of (S-1.13), in which case p(zzz | ỹyy,yyy) = p(zzz | yyy) and p(σ2 | ỹyy,yyy) = p(σ2 | yyy). Moreover, since
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zm = ỹm − η̃m, yyy does not provide further information about zzz, given σ2 and ỹyy, in which case

p(zzz | σ2, ỹyy,yyy) = p(zzz | σ2, ỹyy).

Equation (S-1.14) implies that, in order to calculate the probability density function p(zzz | yyy), we must

determine the probability density functions p(zzz | σ2, ỹyy) and p(σ2 | yyy). Note that, given σ2 and ỹyy, the

log-equilibrium constants zzz follow a multivariate Gaussian distribution with means and covariances

E[zm | σ2, ỹyy] = ỹm and cov[zm, zm′ | σ2, ỹyy] = σ2

P + 1

∑
n∈N

snmsnm′ .

This implies that

p(zzz | σ2, ỹyy) = (P + 1)M/2

(2π)M/2σM |H|1/2
exp

{
−P + 1

2σ2
(zzz − ỹyy)TH−1(zzz − ỹyy)

}
, (S-1.15)

where H is an M ×M matrix with elements hmm′ =
∑

n∈N snmsnm′ . Note that H = STS, where S is the

N ×M stoichiometry matrix of the biochemical reaction system with elements snm.

To determine the probability density function p(σ2 | yyy) of the error variance, note that

p(xxx, σ2 | yyy) = p(yyy | xxx, σ2)p(xxx, σ2)
p(yyy)

, (S-1.16)

where xxx := {lnx(p)n , n ∈ N , p ∈ P} are the stationary concentrations when the initial concentration of the

pth molecular species is perturbed. Moreover,

p(xxx, σ2 | yyy) = p(xxx | σ2, yyy)p(σ2 | yyy). (S-1.17)

As a consequence of (S-1.16) and (S-1.17), we have

p(σ2 | yyy) =
p(xxx, σ2 | yyy)
p(xxx | σ2, yyy)

=
p(yyy | xxx, σ2)p(xxx, σ2)
p(xxx | σ2, yyy)p(yyy)

=
p(yyy | xxx, σ2)p(xxx)p(σ2)
p(xxx | σ2, yyy)p(yyy)

∝ p(yyy | xxx, σ2)
p(xxx | σ2, yyy)

p(σ2) ,

where we use the fact that xxx and σ2 are statistically independent (since xxx is determined from κκκ and we have

assumed in the Main text that κκκ and σ2 are statistically independent). It is now not difficult to see that
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p(yyy | xxx, σ2) = p(xxx | σ2, yyy), due to the statistical independence and Gaussianity of the error terms η(p)n in

Equation (5) of the Main text. Therefore,

p(σ2 | yyy) = p(σ2) =
ba

Γ(a)
(σ2)−(a+1) e−b/σ2

, (S-1.18)

which does not depend on yyy, by virtue of Equation (9) in the Main text.

As a consequence of (S-1.14) and (S-1.18), we now have that

p(zzz | yyy) = p(zzz | ỹyy,yyy) = p(zzz | ỹyy). (S-1.19)

Finally, from (S-1.14), (S-1.15), (S-1.18), and (S-1.19), and after some straightforward, albeit tedious,

algebraic manipulations, we can show that

p(zzz | ỹyy) ∝
∫

1

σ2(a+1)+M
exp

{
−P + 1

2σ2
(zzz − ỹyy)TH−1(zzz − ỹyy)− b

σ2

}
dσ2

∝
[

2b

P + 1
+ (zzz − ỹyy)TH−1(zzz − ỹyy)

]−(M/2+a)

. (S-1.20)

A problem associated with the previous formulation is that it may not be possible to evaluate the prior

density p(zzz | ỹyy) of the log-equilibrium constants, given by (S-1.20), since the matrix H may not be

invertible. Indeed, if rrr is a (nonzero) vector in the null space of the N ×M stoichiometry matrix S (i.e., if

S rrr = 0), then rrrTH rrr = rrrTSTS rrr = 0, which shows that matrix H is positive semi-definite and, hence, not

necessarily invertible.

To address the previous problem, we will follow a well-known technique known as decorrelation or

whitening that allows us to transform the dependent random variables zzz into the statistically independent

zero-mean random variables zzz0 and obtain a form of matrix H that is always invertible. Subsequently, this

will allow us to derive a form for the probability density function p(zzz | ỹyy) that we can always evaluate.

Let us consider an (M −M0)-dimensional zero-mean Gaussian random vector zzz0 with identity covariance

matrix, where M0 in the number of zero eigenvalues of H. Our first objective is to determine an

M × (M −M0) matrix H0, such that

zzz = H0zzz0 + ỹyy . (S-1.21)

Note that E[zzz | σ2, ỹyy] = ỹyy, as expected from (S-1.12), whereas, H = [(P + 1)/σ2]H0 HT
0 . We can use

singular value decomposition (SVD) [3] to decompose matrix H = STS into H = UDUT , form the
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(M −M0)× (M −M0) diagonal matrix D0 by removing the last M0 zero singular values from D and the

M × (M −M0) submatrix U0 of U by removing the last M0 columns of U. Then, H = U0D0UT
0 , which

implies H0 = σ U0D
1/2
0 /

√
P + 1. Note now that UT

0U0 = I, where I denotes the identity matrix. As a

consequence, given vectors zzz and ỹyy, (S-1.21) has a unique solution, given by

zzz0 =

√
P + 1

σ
D−1/2
0 UT

0 (zzz − ỹyy) . (S-1.22)

This formula transforms the dependent random variables zzz into the statistically independent zero-mean

random variables zzz0.

Note now that

p(zzz | σ2, ỹyy) =

∫
p(zzz,zzz0 | σ2, ỹyy) dzzz0

=

∫
p(zzz | zzz0, σ2, ỹyy)p(zzz0) dzzz0

=
1

(2π)(M−M0)/2

∫
δ(zzz −H0zzz0 − ỹyy) exp

{
−1

2
zzzT
0zzz0

}
dzzz0

=

∫
δ(zzz −H0zzz0 − ỹyy)dzzz0

(2π)(M−M0)/2
exp

{
−P + 1

2σ2
(zzz − ỹyy)TU0D−1

0 UT
0 (zzz − ỹyy)

}

=

∫
δ(H0zzz0) dzzz0

(2π)(M−M0)/2
exp

{
−P + 1

2σ2
(zzz − ỹyy)TU0D−1

0 UT
0 (zzz − ỹyy)

}
,

by virtue of (S-1.21) and (S-1.22), where δ(·) is the Dirac delta function. This result shows that

p(zzz | σ2, ỹyy) ∝ exp

{
−P + 1

2σ2
(zzz − ỹyy)TU0D−1

0 UT
0 (zzz − ỹyy)

}
,

which leads to [compare with (S-1.20)]:

p(zzz | ỹyy) ∝
∫

1

σ2(a+1)
exp

{
−P + 1

2σ2
(zzz − ỹyy)TU0D−1

0 UT
0 (zzz − ỹyy)− b

σ2

}
dσ2

∝
[

2b

P + 1
+ (zzz − ỹyy)TU0D−1

0 UT
0 (zzz − ỹyy)

]−a

.

Note that we can always evaluate this form of p(zzz | ỹyy), since the diagonal matrix D0 is invertible.
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If we now replace p(zzz) by p(zzz | ỹyy) in Equation (6) of the Main text, we have∫
p(κκκ | yyy)dκκκ =

1

p(yyy)

∫ ∫
p(yyy | κκκ)p(κκκ | zzz)p(zzz | ỹyy)dκκκdzzz

=
1

p(yyy)

∫ ∫
p(yyy | κκκ,zzz)p(κκκ | zzz)p(zzz | ỹyy)dκκκdzzz

=
1

p(yyy)

∫
p(yyy | zzz)p(zzz | ỹyy)dzzz

=
1

p(yyy)

∫
p(yyy | zzz, ỹyy)p(zzz | ỹyy)dzzz

= 1, for all yyy,

since p(yyy | κκκ,zzz) = p(yyy | κκκ) (see footnote 1), provided that ỹyy is statistically independent of yyy, in which case

p(yyy | zzz, ỹyy) = p(yyy | zzz) and p(yyy | ỹyy) = p(yyy). Clearly, the independence between ỹyy and yyy is a sufficient

condition for the posterior density p(κκκ | yyy) to be proper [i.e., for p(κκκ | yyy) to be finite for every yyy].

Prior density of log-rate constants

Let us consider a bimolecular reaction X1 +X2 → X3. For this reaction to occur, two events must take

place: one molecule of X1 must collide with one molecule of X2 and, given that the two molecules have

collided, the reaction must take place. Using basic probabilistic arguments and the well-known hard-sphere

collision theory [4], it has been shown in [5] that the probability of a randomly selected pair of molecules

X1 and X2 at time t to react during an infinitesimal time interval [t, t+ dt) is given by cdt. Here, c is

known as the specific probability rate constant and is given by

c =
π(r1 + r2)

2

V

√
8kBT

πµ∗
γ, (S-1.23)

where V is the volume of the biochemical reaction system, T is the temperature, kB is the Boltzmann

constant (kB = 1.3806504× 10−23J/K), and γ is the probability that a randomly selected pair of colliding

molecules X1 and X2 will react. This formula is based on the assumption that each molecule Xn is a hard

sphere of radius rn and mass µn. In (S-1.23), µ∗ = µ1µ2/(µ1 + µ2).

The rate constant k of the previous bimolecular reaction is associated to the specific probability rate

constant c by means of k = AVc (for a reaction with different reactants; see [6]), where A is the Avogadro

constant (A = 6.0221415× 1023mol−1). If we assume that a pair X1 and X2 of molecules react only after
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collision with impact energy greater than E, then γ = exp(−E/kBT ) [5]. In this case,

k = αe−E/kBT , (S-1.24)

where

α := Aπ(r1 + r2)
2

√
8kBT

πµ∗
. (S-1.25)

Equation (S-1.24) is the well-known Arrhenius formula for the rate constant of a bimolecular reaction, and

holds for other types of reactions (e.g., monomolecular and trimolecular) as well. The coefficient α is

usually referred to as the pre-exponential factor, or simply the prefactor, whereas, E is referred to as the

activation energy of the reaction. In the following, we use (S-1.24) to derive a probabilistic model for the

log-rate constants of a biochemical reaction system that leads to an appropriate prior density p(κκκ | zzz) for

the parameters κκκ.

According to (S-1.24), the rate constant of the mth forward reaction is given by

k2m−1 = αme
−Em/kBT . (S-1.26)

Equation (S-1.25) provides a theoretical expression for the prefactor αm, assuming the ideal situation of

both reactant molecules being perfect hard spheres. In reality, however, the situation is much more

complex, and we can use (S-1.25) to predict only a portion of the true prefactor value (provided that the

masses and radiuses of the reactant molecules are known). As a consequence, we can decompose the

prefactor αm into a predictable part α0
m and an unpredictable part ωm, so that αm = α0

mωm. This implies

that lnαm = lnα0
m + gm, where gm := lnωm is a random additive component. The multiplicative factor

ωm can also be used to model unpredictable changes in biochemical conditions or changes in the structure

of the reactant molecules, which may also affect the probability of particle collision and thus αm.

Therefore, we will be using the following expression for the prefactor of the mth forward reaction:

αm = α0
me

gm . (S-1.27)

We will assume that gm is a zero-mean Gaussian noise component with standard deviation λm. In this

case, αm is a random variable characterized by the log-normal distribution

p(αm) =
1

αmλm
√
2π

exp

{
−
(

1√
2λm

ln
αm

α0
m

)2
}
,
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with parameters lnα0
m and λm. It has been pointed out in [7] that log-normal distributions are very natural

for modeling biochemical processes and are a direct consequence of the thermodynamic behavior of

biochemical reaction systems.

Unpredictable changes in biochemical conditions can also affect the probability of reaction after collision,

or equivalently, the activation energy Em. We may consider Em to be a random variable that is

decomposed into two terms: a deterministic term E0
m and a random additive term Um, so that

Em = E0
m + Um, (S-1.28)

where E0
m, Um ≥ 0. This is known as the (static) random activation energy (RAE) model [8]. A commonly

used probability law for the random energy component Um is the Maxwell-Boltzmann (exponential)

distribution [8]:

p(Um) =
1

kBT ∗
m

exp

{
− Um

kBT ∗
m

}
, Um ≥ 0, (S-1.29)

at some temperature T ∗
m > T .2

As a consequence of (S-1.26), (S-1.27), and (S-1.28), we have that

κ2m−1 = κ0m + gm − wm, wm ≥ 0, (S-1.30)

where

κ0m := lnα0
m − E0

m

kBT
and wm :=

Um

kBT
.

Moreover, (S-1.29) implies that the probability density function of wm is given by the following

exponential distribution:

p(wm) =
1

τm
e−wm/τm , wm ≥ 0, τm > 0,

where τm := T ∗
m/T > 1. Note that the expected value of wm equals its standard deviation, with

E[wm] = sd[wm] = τm. In the following, we will assume that, for all m ∈ M, wm is statistically

independent of gm. This is a reasonable assumption, considering the fact that these two random variables

result from two different biophysical mechanisms, namely molecular collision and molecular reaction,

which we may consider to be statistically independent.
2It has been suggested in the literature (e.g., in [8]) that T ∗

m must be larger than the system temperature T .
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The previous modeling steps lead to the following prior probability density function p(κ2m−1) for the

log-rate constant of the mth forward reaction:

p(κ2m−1) =
eλ

2
m/2τ2m

2τm
erfc
[

1√
2

(
λm
τm

+
κ2m−1 − κ0m

λm

)]
e(κ2m−1−κ0

m)/τm , (S-1.31)

where erfc[·] is the complementary error function [9]. To derive this result, consider a random variable

y = c+ g − w, (S-1.32)

where c is a constant and w, g are two statistically independent random variables so that

pw(w) =
1

τ
e−w/τ (exponential) and pg(g) =

1√
2πλ

e−g2/2λ2
(Gaussian).

If we set u = w − g, then y = c− u and

py(y) = pu(c− y). (S-1.33)

Moreover, since w and g are statistically independent, we have [9]

pu(u) =

∫ ∞

−∞
pw(x)pg(x− u)dx

=

∫ ∞

0

1

τ
e−x/τ 1√

2πλ
e−(x−u)2/2λ2

dx

=
1√
2πλτ

∫ ∞

0
e−(τx2−2τux+τu2+2λ2x)/2λ2τdx

=
1√
2πλτ

∫ ∞

0
e−(x+λ2/τ−u)2/2λ2

e[(λ
2/τ−u)2−u2]/2λ2

dx

=
1

τ

[
1√
2πλ

∫ ∞

λ2/τ−u
e−ξ2/2λ2

dξ

]
e[(λ

2/τ−u)2−u2]/2λ2
(by setting ξ = x+ λ2/τ − u)

=
eλ

2/2τ2

2τ
erfc
[

1√
2

(
λ

τ
− u

λ

)]
e−u/τ . (S-1.34)

Finally, by combining (S-1.33) and (S-1.34), we obtain

py(y) =
eλ

2/2τ2

2τ
erfc
[

1√
2

(
λ

τ
+
y − c

λ

)]
e(y−c)/τ , (S-1.35)

which provides an analytical expression for the probability density function of y. Equation (S-1.31) is now

a direct consequence of (S-1.30), (S-1.32), and (S-1.35).
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Let us now focus our attention on the log-rate constant κ2m of the mth reverse reaction. Basic

thermodynamic arguments imply that

k2m−1 = k2m
∏
n∈N

ϕsnm
n , (S-1.36)

where k2m−1 and k2m are the rate constants of the mth forward and reverse reactions, respectively, ϕn is

the capacity of the nth molecular species, and snm is the stoichiometry coefficients of the nth molecular

species associated with the mth reaction. The capacity is a thermodynamic quantity characteristic to a

molecular species and depends on the standard chemical potential of that species (see [10] for details). As

a consequence, the log-equilibrium constant zm of the mth reaction depends only on the stoichiometry of

the biochemical reaction system and the capacities of the underlying molecular species, since Equation (8)

in the Main text and (S-1.36) imply that

zm =
∑
n∈N

snm lnϕn, for all m ∈ M.

Therefore, zm is a constant characteristic to the mth reaction.

From Equation (8) in the Main text, note that

κ2m = κ2m−1 − zm, for all m ∈ M,

which implies that κ2m and κ2m−1 are two dependent random variables, given zm. Their joint probability

density function satisfies

p(κ2m, κ2m−1 | zm) = p(κ2m | zm, κ2m−1)p(κ2m−1 | zm)

= δ(κ2m − κ2m−1 + zm)p(κ2m−1), (S-1.37)

where δ(·) is the Dirac delta function. Clearly, zm is a hyperparameter, since it characterizes the prior joint

density p(κ2m, κ2m−1) of the log-rate constants of the mth reaction. We will assume here that, given

zzz = {z1, z2, . . . , zM}, the reaction rate constants of different reactions are mutually independent. Then, the

prior density of the log-rate constants will be given by

p(κκκ | zzz) =
∏

m∈M
p(κ2m, κ2m−1 | zm) =

∏
m∈M

δ(κ2m − κ2m−1 + zm)p(κ2m−1),

by virtue of (S-1.37).
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A practical method for determining the hyperparameters ϕϕϕ, a, b

In practice, prior information about the rate constants of a biochemical reaction system may be available

from which we may be able to estimate their minimum, maximum, and average values. Moreover, some

prior information might be available about the error processes η(p)n in Equation (5) of the Main text, which

may allow us to estimate the average value and spread of their variance. In this subsection, we show how to

use these values to determine the hyperparameters ϕϕϕ = {κ0m, τm, λm,m ∈ M} associated with the prior

densities p(κ2m−1) of the forward log-rate constants and the hyperparameters a, b associated with the prior

density p(σ2) of the measurement errors.

From (S-1.30), we have that

E[κ2m−1] = κ0m − τm and sd[κ2m−1] =
√
λ2m + τ2m , (S-1.38)

by virtue of our assumption that gm and wm are statistically independent. Clearly, the parameter κ0m

controls the location of p(κ2m−1), whereas, τm controls both location and scale. Moreover, the parameter

λm controls the scale of p(κ2m−1), without affecting its location. We illustrate this behavior in

Figure S-1.1.

Let κmin, κmax and κavg be the minimum, maximum, and average values of a forward log-rate constant κ.

Our objective is to determine the hyperparameters of the prior density p(κ), given by (S-1.31), so that

E[κ] = κavg and p(κ) ≃ 0, for κ ≤ κmin, κ ≥ κmax.

Since E[κ] = κavg, we must have

κ0 − τ = κavg, (S-1.39)

by virtue of (S-1.38). Moreover, since we want p(κ) ≃ 0, for κ ≤ κmin, we can impose the condition

e(κ−κ0)/τ ≤ τϵ e−λ2/2, for κ ≤ κmin,

for a sufficiently small ϵ > 0, which implies that p(κ) < ϵ, for κ ≤ κmin, by virtue of (S-1.31) and the facts

that τ > 1 and erfc(x) ≤ 2. Since e(κ−κ0)/τ is monotonically increasing in κ, it suffices to set

e(κ
min−κ0)/τ = τϵ∗, where

ϵ∗ := ϵ e−λ2/2, (S-1.40)

which, together with (S-1.39), implies that

τ ln τ + (1 + ln ϵ∗)τ = κmin − κavg. (S-1.41)
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Figure S-1.1: The prior density p(κ2m−1) of the forward log-rate constant, given by (S-1.31), when:
(a) κ0m = −2, τm = 2, λm = 0.6, (b) κ0m = −2, τm = 2, λm = 3, (c) κ0m = −8, τm = 2, λm = 0.6,
and (d) κ0m = −2, τm = 6, λm = 3. Note that κ0m controls the location of p(κ2m−1), whereas, τm controls
both location and scale. Moreover, the parameter λm controls the scale of p(κ2m−1), without affecting its
location.

Finally, since we want p(κ) ≃ 0, for κ ≥ κmax, we can impose the condition

erfc
[

1√
2

(
λ

τ
+
κ− κ0

λ

)]
≤ 2τϵ e−λ2/2 e−(κ−κ0)/τ , for κ ≥ κmax,

which implies that p(κ) ≤ ϵ, for κ ≥ κmax, by virtue of (S-1.31) and the fact that τ > 1. Since

erfc[(λτ + κ−κ0

λ )/
√
2] is monotonically decreasing in κ, it suffices to set

erfc
[

1√
2

(
λ

τ
+
κmax − κ0

λ

)]
= 2τϵ∗e−(κmax−κ0)/τ ,
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which, together with (S-1.39), implies

τ + λ

(
r
√
2− λ

τ

)
= κmax − κavg, (S-1.42)

where

r := erfc−1
[
2τϵ∗e−(κmax−κavg−τ)/τ

]
.

Given κmin, κmax, and κavg, we may be able to determine the values of the hyperparameters κ0, τ , and λ by

simultaneously solving (S-1.39), (S-1.41), and (S-1.42). Unfortunately, (S-1.41) and (S-1.42) are nonlinear

and they both depend on τ and λ. Hence, finding a solution to these equations is a rather difficult

problem [3]. In the following, we discuss a simple approach for determining the values of the

hyperparameters, which works quite well.

Equation (S-1.41) depends on λ only through ϵ∗ [see (S-1.40)]. We can remove this dependence by

setting ϵ∗ to a sufficient small fixed value, such as 0.001. Then, we are left with a nonlinear equation for τ ,

which we can solve by employing an appropriate numerical method, such as Newton-Raphson [3]. Note

that we must choose ϵ∗ so that the resulting value of τ is greater than one.

Using the value of τ calculated in the previous step, we can calculate the value of λ by solving (S-1.42), in

which case

λ =

√
2 rτ

2
± 1

2

√
2(r2 + 2)τ2 − 4τ(κmax − κavg) . (S-1.43)

If τ < 2(κmax − κavg)/(r2 + 2), we have no real-valued solution for λ. This indicates that we cannot find

an appropriate prior density that satisfies the required specifications (i.e., E[κ] = κavg and p(κ) ≃ 0, for

κ ≤ κmin, κ ≥ κmax). On the other hand, (S-1.43) may produce two different nonnegative values for λ. In

this case, we can use both values of λ to evaluate the corresponding prior densities p(κ). Then, we can pick

the value that leads to a prior density that best satisfies the condition p(κmin) = p(κmax) = 0.

After calculating λ by (S-1.43), we must use ϵ∗ and (S-1.40) to determine the value of ϵ. If the resulting

value is sufficiently close to zero, then we can accept the hyperparameter values. Otherwise, we must

decrease ϵ∗ [note from (S-1.40) that ϵ ≥ ϵ∗] and repeat the previous procedure. Finally, having computed

the values of τ and λ, we can calculate the value of κ0 by setting

κ0 = κavg + τ. (S-1.44)
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Figure S-1.2: The prior density p(κ2m−1) of the forward log-rate constant, given by (S-1.31), when κ0m =
−5.1010, τm = 1.8990, and (a) λm = 0.7409, (b) λm = 5.3849. Note that, contrary to our expectations,
p(−17) ̸≃ 0 and p(−3) ̸≃ 0 in (b).

As an example, let us take κmin = −17, κmax = −3, and κavg = −7 (these are values we consider in the

numerical example), and set ϵ∗ = 0.001. Then, (S-1.41) becomes τ ln τ − 5.9τ = −10, which is satisfied

with τ = 1.8990. Subsequently, (S-1.43) results in λ = 0.7409 or λ ≃ 5.3849, whereas, (S-1.44) gives

κ0 = −5.1010. The resulting prior density with λ = 0.7409 is depicted in Figure S-1.2(a). In this case,

ϵ = 0.0013, which is sufficiently close to zero. The resulting prior density with λ = 5.3849 is depicted in

Figure S-1.2(b). Clearly, this prior is not acceptable, since it turns out that p(κmin) = p(−17) ̸≃ 0 and

p(κmax) = p(−3) ̸≃ 0.

When the average value, avg, and the spread, sd, of the variance σ2 of the measurement errors are known,

we can uniquely determine the hyperparameters a, b associated with the prior error density p(σ2), given by

Equation (9) in the Main text. This is due to the fact that E[σ2] = b/(a− 1) and var[σ2] =

{E[σ2]}2/(a− 2) = b2/[(a− 1)2(a− 2)], for a > 2, which imply that

a = 2 +
(avg

sd

)2
b = avg · (a− 1).

For example, if avg = sd = 0.5, then a = 3 and b = 1, whereas, if avg = 0.2 and sd = 0.1, then a = 6 and

b = 1. The resulting prior densities are depicted in Figure S-1.3.
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Figure S-1.3: The prior error variance density p(σ2), given by Equation (9) in the Main text, with: (a) a = 3,
b = 1, and (b) a = 6, b = 1. In the first case, E[σ2] = 0.5 and var[σ2] = 0.25, whereas, in the second case,
E[σ2] = 0.2 and var[σ2] = 0.01.

Posterior mode vs. posterior mean

We have mentioned in the Main text that the posterior mode should be a more preferable estimator of the

kinetic parameters of a biochemical reaction system than the posterior mean. To see why this is true,

suppose that, so long as |κf,m − κtrue
f,m| < ϵm, for m = 1, 2, ...,M +M1, the parameters {κκκf ,Wκκκf}

reproduce the concentration dynamics of the biochemical reaction system faithfully. Note that a small ϵm

corresponds to a rate constant that appreciably affects the concentration dynamics, whereas, a large ϵm

corresponds to a rate constant whose value has little or no effect on the dynamics. If c(κκκf ,κκκtrue
f ) is the cost

of estimating the true log-rate constants κκκtrue
f by κκκf , then we can set

c(κκκf ,κκκ
true
f ) =

{
0, if |κf,m − κtrue

f,m| < ϵm, for m = 1, 2, ...,M +M1

1, otherwise .
(S-1.45)

As a consequence, we would like to find the optimal estimator κ̂κκf of κκκtrue
f by minimizing the mean posterior

cost E[c(κκκf ,κκκtrue
f ) | yyy] with respect to κκκf . Note that (S-1.45) implies that

E[c(κκκf ,κκκtrue
f ) | yyy] = 1− Pr({|κf,m − κtrue

f,m| < ϵm, for m = 1, 2, ...,M +M1} | yyy). (S-1.46)

Hence, we can find the optimal estimator κ̂κκf by maximizing the probability

Pr({|κf,m−κtrue
f,m| < ϵm, for m = 1, 2, ...,M +M1} | yyy) =

∫ κf,1+ϵ1

κf,1−ϵ1

· · ·
∫ κM+M1

+ϵM+M1

κf,M+M1
−ϵM+M1

pW (κκκ′ |yyy)dκκκ′ ,

with respect to κκκf .
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Clearly, the optimal solution is the center of a hypercube with edge lengths {2ϵ1, 2ϵ2, ..., 2ϵM+M1} with

the highest probability given by (S-1.46). When all ϵm’s are small (i.e., when all parameters appreciably

affect the system dynamics), the hypercube will be small as well. In this case, κ̂κκf will approximately be the

point in the parameter space with the highest posterior probability and, therefore, κ̂κκf = κ̂κκmode
f .

When a parameter does not appreciably affect the system dynamics, the hypercube grows along the

corresponding dimension. In this case, the skewness of the posterior density pW (κκκf | yyy) may draw the

optimal estimator away from the posterior mode along the direction of growth. This however is an

acceptable loss of optimality, since the parameter does not appreciably affect the concentration dynamics

and finding its optimal value is inconsequential.
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The posterior mode and posterior covariance matrix cannot be calculated analytically. For this reason, we

need to develop appropriate computational techniques for their numerical evaluation. It turns out that we

can effectively compute the posterior mode by employing an optimization algorithm based on stochastic

approximation, and estimate the posterior covariance by sampling the posterior density pW (κκκf | yyy), given

by Equation (24) in the Main text, using an appropriately designed Monte Carlo method. In this document,

we provide a detailed discussion on how to do this.
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Computing the prior mode

Evaluating the posterior mode via optimization requires an initial value κκκf (0) for the “free” log-rate

constants κκκf . A good choice for such value can be obtained by maximizing the “effective”

thermodynamically consistent prior density

pW (κκκf ,κκκd) ∝ δ(κκκd −Wκκκf )

∫
p(κκκf ,κκκd | zzz)p(zzz)dzzz,

given by Equation (23) in the Main text. As a consequence of Equation (17) in the Main text and the fact

that we replace p(zzz) by the conditional density p(zzz | ỹyy), given by Equation (15) in the Main text, we set

κκκ(0) = argmax
κκκ

pW (κκκ)

= argmax
κκκ∈W

∫
p(κκκ | zzz)p(zzz)dzzz

= argmax
κκκ∈W

[∏
m∈M

p(κ2m−1)
] ∫ [∏

m∈M
δ(κ2m − κ2m−1 + zm)

]
p(zzz | ỹyy)dzzz

= argmax
κκκ∈W

[∏
m∈M

p(κ2m−1)
]
p({zm = κ2m−1 − κ2m,m ∈ M} | ỹyy),

where κκκ = {κκκf ,κκκd} and W is the thermodynamically consistent region of the parameter space, given by

the hyperplane κκκd = Wκκκf . The solution to this problem consists of finding the forward log-rate constants

{κ2m−1(0),m ∈ M} that maximize the first term
∏

m∈M p(κ2m−1), calculating thermodynamically

consistent log-equilibrium constants {zm(0),m ∈ M} that maximize the second term p(zzz | ỹyy), and setting

κ2m(0) = κ2m−1(0)− zm(0), for m ∈ M. Note that the Wegscheider conditions, given by Equation (11)

in the Main text, are equivalent to the following conditions:

zm′ =
∑

m∈M1

[S−1
11 S12]m,m′zm, for every m′ ∈ M2, (S-2.1)

by virtue of Equation (8) in the Main text and Equation (S-1.7) in Additional file 1, where

M1 = {1, 2, . . . ,M1} and M2 = {M1 + 1,M1 + 2, . . . ,M}, with M1 = rank(S).

To compute the initial forward log-rate constants {κ2m−1(0), m ∈ M}, we must find, for each m ∈ M,

the value that maximizes the prior density p(κ2m−1), given by Equation (16) in the Main text. This

problem can be easily solved by a grid search approach that calculates p(κ2m−1) on a finely spaced

uniform grid of points and by detecting the maximum value [1].
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To compute a thermodynamically consistent value zzz(0) that maximizes the conditional density p(zzz | ỹyy),

given by Equation (15) in the Main text, note that

zzz = Gzzz(1),

by virtue of (S-2.1), where zzz(1) = {zm,m ∈ M1} and

G =

[
IM1

(S−1
11 S12)T

]
,

with IM1 being the M1 ×M1 identity matrix. Maximizing p(zzz | ỹyy) with respect to zzz is now equivalent to

maximizing p(Gzzz(1) | ỹyy) with respect to zzz(1). This maximization problem leads to solving the system

UT
0Gzzz(1) = UT

0 ỹyy of linear equations with respect to zzz(1). A least-squares solution to this problem leads to

zzz(1)(0) = (UT
0G)†UT

0 ỹyy, where A† denotes the Moore-Penrose pseudoinverse of matrix A. As a

consequence, we have that zzz(0) = G(UT
0G)†UT

0 ỹyy.

Finding the posterior mode

It is clear from Equations (21), (22), and (24) in the Main text that, in order to evaluate the mode κ̂κκmode
f , we

need an algorithm for solving the following nonlinear optimization problem:

κ̂κκmode
f = argmax

κκκf

C(κκκf | yyy),

where C(κκκf | yyy) := D(κκκf ,Wκκκf | yyy), with

D(κκκf ,κκκd | yyy) =
∑
m∈M

κ2m−1

τm
+ ln

(
erfc
[

1√
2

(
λm
τm

+
κ2m−1 − κ0m

λm

)])

−a ln
[ 2b

P + 1
+
∑
m∈M

∑
m∈M′

θmm′(κ2m−1 − κ2m − ỹm)(κ2m′−1 − κ2m′ − ỹm′)
]

− [a+NQ(P + 1)/2] ln
(
2b+

∑
n∈N

∑
q∈Q

∑
p∈P

[y(p)n (tq)− lnx(p)n (tq)]
2
)
. (S-2.2)

Although a number of different optimization approaches can be employed to solve this problem, we will

use here a method based on simultaneous perturbation stochastic approximation (SPSA) [2]. SPSA is a

gradient-free ascent algorithm, which estimates the gradient using a finite difference of the objective

function evaluated at random perturbations around the current parameter values. The most attractive

features of this method are robustness to noise, computational efficiency, and scalability.
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The SPSA recursion is given by

κκκf (i+ 1) = κκκf (i) + γi gggi(κκκf (i)), for i = 0, 1, . . .,

where {γi, i = 0, 1, . . .} is a decreasing sequence of nonnegative numbers and {gggi(κκκf ), i = 0, 1, . . .} is a

sequence of estimators of the gradient of the objective function C(κκκf | yyy) at point κκκf . The gradient

estimator gggi is a 2M × 1 random vector with elements gi,m, given by

gi,m(κκκf ) =
C(κκκf + δiϵϵϵi | yyy)− C(κκκf − δiϵϵϵi | yyy)

2δiϵi,m
, m = 1, 2, . . . , 2M, (S-2.3)

where ϵϵϵi is a 2M × 1 random vector with statistically independent random elements ϵi,m that follow a ±1

Bernoulli distribution with equal success and failure probabilities, and {δi, i = 0, 1, . . .} is a decreasing

sequence of nonnegative numbers. Parameters γi and δi should be chosen based on standard guidelines

provided in [2]. By following these guidelines, we set

γi =
γ

(i+ 1 +A)0.602
and δi =

δ

(i+ 1)0.101
. (S-2.4)

We take the value of A to be 1/10 of the total number of SPSA iterations. Parameter δ can be set at a level

that is approximately equal to the standard deviation of the noise in measuring the objective function C. In

our case, this standard deviation is directly related to the error tolerance associated with the ODE integrator

we use to integrate Equation (2) in the Main text (see also our discussion below). For this reason, we take

the value of δ to be the same as the ODE error tolerance. Finally, we choose γ to satisfy the following

equation:
γ

(1 +A)0.602
E[||ggg0(κκκf (0))||] = s0||κκκf (0)||,

where ||xxx|| denotes the magnitude of vector xxx. This guarantees that, on the average, the initial SPSA step

yields log-rate values within a sufficiently large neighborhood around the initial point κκκf (0), measured by

the initial search size s0.

The algorithm for finding the posterior mode proceeds as follows:

Initialization

1. Select values for the hyperparameters {κ0m, λm, τm,m ∈ M}, associated with the prior densities

p(κm) of the forward log-rate constants, and values for the hyperparameters {a, b}, associated with

the prior density of the error variance. A practical method for determining these values was

discussed in the Additional file 1.
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2. Select a desirable number I of SPSA iterations, a desirable level tol of ODE error tolerance, and an

initial search size s0 (we set tol = 1× 10−3 and s0 = 0.01).

3. Calculate an initial guess κκκf (0) for the “free” log-rate constants by following the approach discussed

in the previous section.

4. In (S-2.4), set A = I/10, δ = tol, and

γ =
s0||κκκf (0)||(1 +A)0.602

1

L0

L∑
l=1

||ggg(l)0 (κκκf (0))||

,

where {ggg(l)0 (κκκf (0)), l = 1, 2, . . . , L0} are statistically independent realizations of the initial gradient

estimator ggg0(κκκf (0)), and L0 is a sufficiently large integer, so that the denominator in the previous

formula provides a sufficiently good approximation of the average initial gradient E[||ggg0(κκκf (0))||]

(we take L0 = 10).

Iteration

For i = 0, 1, . . . , I − 1:

5. Draw 2M statistically independent samples {ϵi,m,m = 1, 2, . . . , 2M} from a ±1 Bernoulli

distribution with equal success and failure probabilities.

6. By using (S-2.3) and (S-2.4), calculate the 2M gradient values {gi,m(κκκf (i)),m = 1, 2, . . . , 2M}

and use them to calculate new log-rate constant values κκκf (i+ 1) = κκκf (i) + γigggi(κκκf (i)).

Each iteration of the previous optimization algorithm requires computation of the response of the

biochemical reaction system under consideration 2(P + 1) times [for evaluating the objective function

twice]. If parallel computation is available, the system evaluations required by Step 6 can be done

independently. If only serial implementation is available, then an effort should be made to reduce the time

it takes to integrate the system ODE’s.

An important computational trick, which we have implemented with large performance gains, comes from

the fact that SPSA enjoys superior performance with noisy objective function evaluations. However, our

biochemical reaction system is characterized by deterministic ODE’s, which can lead to error-free

objective function evaluation, provided that exact integration of these ODE’s is possible. We can take

advantage of the fact that most ODE integrators have a built-in error tolerance setting that controls the
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accuracy of integration. Small error tolerances improve integration accuracy at the expense of increasing

computations, whereas, large error tolerances dramatically decrease computations but produce less

accurate integrations. Therefore, we can effectively reduce the required computational time by relaxing the

ODE error tolerance at the expense of adding “noise” to the evaluation of the objective function. It is

expected however that a reasonable amount of “noise” will not appreciably affect the performance of SPSA

due to its robustness against inaccurate objective function evaluations [2].

It is a common practice to consider the mode estimator as being the final product κκκf (I) of the previous

SPSA iterations. However, the value of the objective function C at κκκf (I) may not be the largest value

obtained during the course of SPSA, due to the fact that SPSA is a stochastic optimization algorithm.

An alternative is to consider the mode estimator as being the point in the parameter space at which the

value of the objective function becomes maximum during the SPSA iterations, i.e.,

κ̂κκmode
f = argmax {C(κκκf (i) | yyy), i = 0, 1, . . . , I} .

However, implementation of this equation requires computation of C at each SPSA iteration, which in turn

requires an additional number of I + 1 system evaluations.

To address this problem, note that evaluation of the gradient gggi(κκκf (i)), for i = 0, 1, . . . , I − 1, requires

computation of the objective function C at points κκκf (i)± δiϵϵϵi, which are proximal to κκκf (i). We can

therefore approximate the value of the objective function at κκκf (i), for i = 0, 1, . . . , I − 1, by averaging the

two values C(κκκf (i)± δiϵϵϵi | yyy); i.e., we can set

C(κκκf (i) | yyy) ≃
C(κκκf (i) + δiϵϵϵi | yyy) + C(κκκf (i)− δiϵϵϵi | yyy)

2
, for i = 0, 1, . . . , I − 1.

Extensive simulations indicate that this modification consistently outperforms the standard SPSA

algorithm presented above without requiring additional cost function evaluations.

Estimating the posterior mean and covariance matrix

A potential technique for estimating the posterior mean and covariance matrix is Monte Carlo sampling.

This method can be used to estimate posterior expectations of the form E[f(κκκf ) | yyy] by generating a large

number L of independent and identically distributed (i.i.d.) samples {κκκf (1),κκκf (2), . . . ,κκκf (L)}, drawn

from the posterior distribution pW (κκκf | yyy), and by setting

E[f(κκκf ) | yyy] =
∫
f(κκκf )pW (κκκf | yyy)dκκκf ≃ 1

L

L∑
l=1

f(κκκf (l)) . (S-2.5)
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Since the samples are i.i.d., the law of large numbers dictates that an arbitrary degree of estimation

accuracy can be achieved by using a sufficiently large number of samples [3].

Unfortunately, this framework is overly restrictive for our problem, since drawing i.i.d. samples from the

posterior distribution is a very difficult, if not an impossible, task. An alternative is to use a Markov chain

Monte Carlo (MCMC) method, which uses dependent samples generated from an ergodic Markov chain

converging to pW (κκκf | yyy), to estimate the integral in (S-2.5). Indeed, by constructing an appropriate

ergodic Markov Chain that generates dependent samples {κκκf (1),κκκf (2), . . . ,κκκf (L)}, we can guarantee that

the sum in (S-2.5) will converge (usually in a mean-square or an almost sure sense) to the posterior mean

of f(κκκf ), as L→ ∞ [3].

Although there are several methods for constructing an ergodic MCMC sampling approach, we utilize here

the Metropolis algorithm (MA), primarily due to its ease of implementation and known effectiveness in a

Bayesian setting. This algorithm proceeds as follows. Given parameters κκκf (l) at step l, a new “tentative”

set of parameters κκκ′f (l) is proposed, drawn from a symmetric probability distribution q(κκκ′f | κκκf (l)),

satisfying the condition q(κκκ′f | κκκf ) = q(κκκf | κκκ′f ), for every κκκ′f and κκκf , known as the proposal distribution.

Then, if pW (κκκ′f (l) | yyy) ≥ pW (κκκf (l) | yyy), we accept κκκ′f (l) as being the new parameters [i.e., we set

κκκf (l + 1) = κκκ′f (l)]; otherwise, we accept κκκ′f (l) with probability pW (κκκ′f (l) | yyy)/pW (κκκf (l) | yyy) and reject

κκκ′f (l) [i.e., we set κκκf (l + 1) = κκκf (l)] with probability 1− pW (κκκ′f (l) | yyy)/pW (κκκf (l) | yyy).

Note that evaluation of the acceptance/rejection probability requires knowledge of the posterior distribution

only up to a constant. This is one reason why MA-MCMC is favorable in a Bayesian setting where it is

usually impossible to calculate the proportionality factor associated with the posterior distribution. Another

attractive feature is that the proposal distribution can be any symmetric distribution, although choosing this

distribution wisely can ensure faster convergence. We can improve the convergence rate if we choose a

proposal distribution that results in moderate acceptance rates [2].

Another point worth mentioning here is the burn-in period associated with MCMC sampling. The burn-in

period is the initial number of MCMC iterations during which the Markov chain has not yet converged to

its stationary distribution pW (κκκf | yyy). Theoretically speaking, all samples produced by MCMC can be used

in (S-2.5). It is however customary to ignore samples during the burn-in period from the computation,

hoping that the sum in (S-2.5) will converge faster to the expected value if only samples drawn from the

posterior distribution are used.
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Unfortunately, it is not easy to accurately determine the burn-in period. Moreover, a large burn-in period

may substantially and unnecessarily increase the overall computational effort. Therefore, it would be more

attractive if we could initialize the MCMC algorithm with parameters κκκf (1) drawn from the posterior

distribution pW (κκκf | yyy), in which case the burn-in period would be zero, since the Markov chain would be

stationary for every l = 1, 2, . . . , L. Of course, this is not possible. However, we can choose κκκf (1) to be

the posterior mode, in which case we can approximately consider κκκf (1) as being a sample drawn from the

posterior distribution with the highest probability. This of course will be a good approximation in the ideal

case when κκκf (1) is indeed the posterior mode and the posterior distribution is tightly clustered around the

mode. In practice however the posterior distribution is spread out and we do not know the posterior mode,

so κκκf (1) is only a local maximum of the posterior distribution found by optimization. Our experience

indicates that, by initializing the MCMC sampling algorithm with a local maximum of the posterior

distribution obtained by SPSA, we can substantially reduce the number of MCMC iterations required to

obtain sufficiently accurate estimates of the posterior mean and covariance matrix.

As a result of the previous discussion, we will adopt the following algorithm for estimating the posterior

mean and covariance matrix:

Initialization

1. Select a desirable number L of MA-MCMC iterations.

2. Set κκκf (1) = κ̂κκmode
f , where κ̂κκmode

f is obtained after I iterations of the SPSA algorithm discussed in the

previous subsection.

3. Set ξ = 0.1. Take the proposal distribution q(κκκ′f | κκκf ) to be the uniform distribution over the

hypercube [κκκf − ξeee,κκκf + ξeee] centered around κκκf , where eee is a vector with all of its elements being

equal to one and ξ is a parameter that controls the size of the hypercube in order to achieve a

desirable acceptance rate.

Iteration

For l = 1, 2, . . . , L:

4. Draw 2M statistically independent samples ϵϵϵ(l) = {ϵm(l),m = 1, 2, . . . , 2M} from the uniform

distribution over [−1,+1] and set κκκ′f (l) = κκκf (l) + ξϵϵϵ(l).

5. Use (S-2.2) to calculate C(κκκ′f (l) | yyy) and C(κκκf (l) | yyy) and set ρ := pW (κκκ′f (l) | yyy)/pW (κκκf (l) | yyy) =

exp{C(κκκ′f (l) | yyy)− C(κκκf (l) | yyy)}.
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6. Generate a uniformly distributed random number u over [0, 1].

7. If ρ ≥ u, set κκκf (l + 1) = κκκ′f (l); otherwise, set κκκf (l + 1) = κκκf (l).

Estimation

8. Set

κ̂κκmean
f =

1

L

L∑
l=1

κκκf (l)

V̂ =
1

L

L∑
l=1

[
κκκf (l)− κ̂κκmode

f

] [
κκκf (l)− κ̂κκmode

f

]T
.

Computing the posterior mode

The objective function C(κκκf | yyy) is usually not concave, especially when a limited amount of highly noisy

data yyy is available. As a consequence, there is no optimization algorithm that can find the posterior mode in

a finite number of steps. However, the following algorithm, which we refer to as

maximization-expectation-maximization (MEM) algorithm, performs quite well in our simulations.

Maximization

1. Calculate an initial guess κκκf (0) for the log-rate constants by using the previously discussed

approach.

2. Perform I SPSA iterations, initialized by κκκf (0), to obtain the posterior mode estimate κ̂κκmode
f,1 .

Expectation

3. Perform L MA-MCMC iterations, initialized with κ̂κκmode
f,1 , to obtain the posterior mean estimate κ̂κκmean

f .

Maximization

4. Perform I SPSA iterations, initialized by κ̂κκmean
f , to obtain the posterior mode estimate κ̂κκmode

f,2 .

Final Mode Estimate

5. Set κ̂κκmode
f = argmax

{
C(κ̂κκmode

f,1 | yyy), C(κ̂κκmode
f,2 | yyy)

}
.

A variation of the previous algorithm, which we found to be effective, is to keep track of all objective

function evaluations C(κκκf (l) | yyy), l = 2, 3, . . . , L, during the MA-MCMC (expectation) step, and take

κ̂κκmode
f = argmax

{
C(κ̂κκmode

f,1 | yyy), C(κκκf (l) | yyy), l = 2, 3, . . . , L, C(κ̂κκmode
f,2 | yyy)

}
.
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The advantage of this strategy is that it does not waste the objective values evaluated during the

MA-MCMC iterations and accounts for the possibility that MA-MCMC may produce parameter values at

some iteration that are closer to the actual posterior mode than the parameters obtained by the two SPSA

steps.
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In this document, we list the reactions associated with the biochemical reaction system depicted in Figure 1

of the Main text and provide thermodynamically consistent “true” values for the associated rate constants,

as well as appropriate values for the initial concentrations. The example is based on a subset of a

well-established model of the EGF/ERK signal transduction pathway proposed by Schoeberl et al. [1]. We

have obtained published values for the rate constants and initial concentrations from the BioModels

database [2].
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Model details

The biochemical reaction system depicted in Figure 1 of the Main text is comprised of the following

N = 13 molecular species:

X1 : Shc∗

X2 : Grb2

X3 : Shc∗-Grb2

X4 : Sos

X5 : Shc∗-Grb2-Sos

X6 : Grb2-Sos

X7 : (EGF-EGFR∗)2-GAP

X8 : (EGF-EGFR∗)2-GAP-Grb2

X9 : (EGF-EGFR∗)2-GAP-Grb2-Sos

X10 : Ras-GDP

X11 : (EGF-EGFR∗)2-GAP-Grb2-Sos-Ras-GDP

X12 : Ras-GTP∗

X13 : (EGF-EGFR∗)2-GAP-Grb2-Sos-Ras-GTP ,

which interact by means of the following M = 9 reversible association-dissociation reactions:

X1 +X2
k1

k2

X3

X3 +X4
k3

k4

X5

X2 +X4
k5

k6

X6

X1 +X6
k7

k8

X5

X2 +X7
k9

k10

X8

X4 +X8
k11

k12

X9

X6 +X7
k13

k14

X9

X9 +X10
k15

k16

X11

X9 +X12
k17

k18

X13 .
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Published values for the rate constants can be found in the BioModels database [2]. In particular,

k1 = 1.0000× 10−3 k2 = 33.0000
k3 = 3.0000× 10−3 k4 = 3.8400
k5 = 4.5000× 10−4 k6 = 0.0900
k7 = 2.1000× 10−3 k8 = 12.0000
k9 = 1.0000× 10−3 k10 = 16.5000
k11 = 1.0000× 10−3 k12 = 3.6000
k13 = 4.5000× 10−4 k14 = 1.8000
k15 = 1.5000× 10−3 k16 = 78.0000
k17 = 2.1000× 10−4 k18 = 24.0000

(S-3.1)

where the forward reaction rates (i.e., the reaction rates with odd subscripts) are measured in

cell/(molecules · min), whereas, the reverse reaction rates (i.e., the reaction rates with even subscripts) are

measured in 1/min. Unfortunately, these values do not correspond to a thermodynamically feasible

biochemical reaction system, since they do not satisfy the Wegscheider conditions, given by Equation (11)

in the Main text.

To determine the Wegscheider conditions associated with the previous model [i.e., to determine matrix W

in Equation (S-1.8) of Additional file 1], we must focus on the stoichiometry matrix S, given by

S =



−1 0 0 −1 0 0 0 0 0
−1 0 −1 0 −1 0 0 0 0
1 −1 0 0 0 0 0 0 0
0 −1 −1 0 0 −1 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 −1 0 0 −1 0 0
0 0 0 0 −1 0 −1 0 0
0 0 0 0 1 −1 0 0 0
0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1



.

We want to find an M ×M permutation matrix PM and an N ×N permutation matrix PN , such that

PNS PM =

[
S11 S12
S21 S22

]
,

where S11 is an M1 ×M1 invertible matrix, as we have discussed in Additional File 1, with M1 = rank(S).

Clearly, these permutation matrices are not unique. To find appropriate PM and PN , we first use the reduced

row echelon form of the stoichiometry matrix S and discover that the M1 = 7 columns {1, 2, 3, 5, 6, 8, 9}
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are linearly independent, whereas, the remaining two columns {4, 7} linearly dependent on the

independent columns of S. Therefore, we are looking for a permutation matrix PM to rearrange S so that

the first M1 columns of the resulting matrix are linearly independent. To do so, we must set

PM =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0


.

By following a similar procedure on the rows of S PM , we find

PN =



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1



.

As a consequence, we can show that

(S−1
11 S12)

T =

[
1 1 −1 0 0 0 0

0 0 −1 1 1 0 0

]
,

which, together with Equations (S-1.8) and (S-1.9) in Additional file 1, implies the Wegscheider conditions

κκκf = Wκκκd, where the “free” log-rate constants are given by κκκf = {κ1, κ3, κ5, κ9, κ11, κ15, κ17, κ7, κ13,

κ2, κ4, κ6, κ10, κ12, κ16, κ18}, the “dependent” log-rate constants are given by κκκd = {κ8, κ14}, and

W =

[
−1 −1 1 0 0 0 0 1 0 1 1 −1 0 0 0 0

0 0 1 −1 −1 0 0 0 1 0 0 −1 1 1 0 0

]
. (S-3.2)

Since the rate constant values in (S-3.1) are not thermodynamically feasible, we do not use them as the

“true” values. Instead, we would like to find thermodynamically feasible parameter values that produce a
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dynamic behavior that is similar to the one produced by the published infeasible values. The simplest

solution would be to use the published values for κκκf and calculate new values for κκκd = {k8, k14} by means

of κκκd = Wκκκf , with W given by (S-3.2). Unfortunately, this leads to molecular dynamics that are very

different from the dynamics produced by the published system. Since the published values produce

dynamics that have been validated on experimental data, we must find a more accurate way for determining

thermodynamically feasible rate constant values from a set of infeasible published values.

We can address the previous problem by finding a set of free parameters κκκf such that[
IM+M1

W

]
κκκf =

[
κκκ

pub
f

κκκ
pub
d

]
,

where IM+M1
is the (M +M1)× (M +M1) identity matrix, whereas, κκκpub

f ,κκκ
pub
d are the published “free”

and “dependent” log-rate constant values, respectively. Unfortunately, no such κκκf exists since we know

that the published values are thermodynamically infeasible. However, we can calculate the best solution to

this problem, in a least-squares sense, given by

κκκtrue
f =

[
IM+M1

W

]† [
κκκ

pub
f

κκκ
pub
d

]
,

where A† is the Moore-Penrose pseudoinverse of matrix A, and compute the remaining “dependent” values

by setting κκκtrue
d = Wκκκtrue

f . As a result, we obtain the following thermodynamically feasible values for the

reaction rate constants:
k1 = 1.4018× 10−3 k2 = 23.5420
k3 = 4.2053× 10−3 k4 = 2.7394
k5 = 2.0388× 10−4 k6 = 0.1987
k7 = 1.4981× 10−3 k8 = 16.8210
k9 = 1.5746× 10−3 k10 = 10.4790
k11 = 1.5746× 10−3 k12 = 2.2863
k13 = 2.8579× 10−4 k14 = 2.8343
k15 = 1.5000× 10−3 k16 = 78.0000
k17 = 2.1000× 10−4 k18 = 24.0000

(S-3.3)

which we treat as the “true” values.

In Fig. S-3.1, we depict the dynamics of selected molecular species obtained by the published (red curves)

and thermodynamically feasible rate values (blue curves). Note that the dynamics do not match perfectly,

nor would we expect them to, since the published parameters produce thermodynamically impossible

concentration dynamics that a physical system could never produce.
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Figure S-3.1: Published (red) vs. thermodynamically feasible (blue) log-rate values and selected molecular
dynamics. Since the published rate values are thermodynamically infeasible, we expect they will result in
molecular dynamics that could not be possibly produced by a real biological system. As a consequence, we
do not expect perfect match between the “red” and “blue” curves.
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Published values for the initial concentrations of the molecular species can also be found in [2]. Based on

these values, we set

c1 = 10
c2 = 11,000
c3 = 10
c4 = 26,300
c5 = 10
c6 = 40,000
c7 = 1,000
c8 = 10
c9 = 10
c10 = 72,000
c11 = 10
c12 = 10
c13 = 10 ,

(S-3.4)

measured in molecules/cell. To compensate for the fact that our biochemical reaction system does not

model the entire EGF/ERK signaling cascade, we must account for the upstream EGF stimulus. To do so,

we increase the initial concentration of the most upstream molecular species in our model, namely

X7 = (EGF-EGFR*)2-GAP, from 0 in [2] to 1,000 molecules/cell. Finally, we increase the initial

concentrations of X1, X3, X5, X8, X9, X11, X12, and X13 from 0 in [2] to 10, to take into account that, in

a real cellular system, these molecular species are constitutively expressed.
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