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Scene Understanding: Machines vs. Humans

Interpreting scenes is effortless and instantaneous for people, even generating rich
semantic annotations (“telling a story”).

Machines lag very far behind in understanding images, and building a description
machine remains a fundamental A.I. challenge.

Office Dining Room Farm
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Deep Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have received a flurry of interest in the past
few years due to their superior performance.

Deep neural networks are loosely inspired by how the brain works.

Deep networks are computationally demanding and require large datasets for
efficient training.

Our understanding of the visual system seems to be roughly consistent with
convolutional networks without benefiting from visual selective attention and
top-down contextual feedback connections.
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Perfect “plate” detections by CNNs
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Poor “plate” detections by CNNs

E. Jahangiri (JHU) Information/Entropy Pursuit April 20, 2017 8 / 82



“glass” detections by CNNs
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Contextually inconsistent detections
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Scene Understanding and Context

Two ways to incorporate context:

Based on common expert knowledge via pre-defined rules:

1973: Fischler and Elschlager [2]

1978: Hanson and Riseman [3]

Based on a statistical model:

2006: Jin and Geman [4]

2010: Porway et. al. [5]

2010: Torralba et. al. [6]

2012: Choi et. al. [1]
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Bayesian Approach

The Bayesian approach provides a natural framework to integrate contextual
relations and the evidence E collected using classifiers.

P(Y | E) =
P(Y,E)

P(E)
∝ P(Y)︸ ︷︷ ︸

Prior

× P(E | Y)︸ ︷︷ ︸
based on Data Model

We use a Bayesian approach called “Information/Entropy Pursuit”, where top-down
contextual information are incorporated using a prior model.
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Motivation

Humans exploit two key strategies in searching spaces:

Divide-and-Conquer:

The divide-and-conquer strategy is often used in parlor games such as the “20
Questions Game”.

We ask the right questions in the right order - for computational efficiency by
prioritizing what to do next.

Selective Attention:

We capture selective attention by selecting potential targets (focusing) and ignoring
others.

We acquire evidence from various locations and at different resolutions, usually
coarse-to-fine, and integrate it coherently by updating likelihoods.

Coarse-to-fine investigation is a natural byproduct of information/entropy pursuit.
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Goal

To study the stepwise evolution of multi-category object recognition when
contextual information are incorporated.

To show that we can achieve almost the same detection accuracy by processing only
a fraction of patches from the input image.

As proof of concept we evaluated our approach for detecting objects in table-setting
scenes.
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IKEA Smart Kitchen Concept for 2025

More than just a table:
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Annocell Hierarchy

Information Pursuit (IP) operates over a pre-defined collection of partial
interpretation units defined based on an annocell hierarchy and the object categories
of interest C.

The Annocell Hierarchy is a partitioning of the input image at different levels of
resolution (coarse-to-fine).
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Interpretation Units: Annobits and Annoints

A: hierarchy of image patches (sub-windows).

Interpretation units:

Annobit: we define an annobit for every object category of interest c ∈ C and every
patch from A. An annobit is a high-level “yes-no” question about the scene that is
basically the presence indicator of an object from a specific category inside the patch.

Annoint: an annoint is a composite interpretation unit determined by grouping a set of
|C| annobits corresponding to the same image patch but associated with different
categories.

YA: an interpretation unit answering “What is going on in A?” for A ∈ A. For
example, for C = {plate, bottle, glass, utensil}, an annoint indicates which categories
have instances fully inside A.

YA can take 2|C| values.

Our objective is to recover the ground-truth interpretation units using our
information/entropy pursuit approach.
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Information Pursuit

Information Pursuit (IP) is an adaptive and stepwise search strategy.

Entropy Pursuit (EP) is a special case of IP under an approximation.

We attempt to recover the ground-truth interpretation units by collecting evidence
about the scene in an optimal order guided by the principle of uncertainty reduction.
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Sequential Testing Strategy

qk = {q1, ..., qk} ⊂ Q: k previously asked questions.

Ek = {Xq1 (I ) = x1, . . . ,Xqk (I ) = xk}: evidence acquired after running k classifiers.

YQ: collection of all interpretation units.

Information Pursuit:

qk = arg max
q∈Q

I(Xq,YQ|Ek−1).

Second Interpretation:

qk = arg min
q∈Q

H(YQ|Xq,Ek−1).

Note: I(Xq,YQ|Ek−1) = H(YQ|Ek−1)− H(YQ|Xq,Ek−1).

Key Assumption: All classifiers have unit cost (met for CNNs).
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Understanding Selection Criterion

Returning to the interpretation of the selection criterion:

qk = arg max
q∈Q

I(Xq,YQ|Ek−1) = arg max
q∈Q

{
H(Xq|Ek−1)− H(Xq|YQ,Ek−1)

}
.

This implies that the next question is selected such that:

H(Xq|Ek−1) is large, so that its answer is as unpredictable as possible given the
current evidence, and

H(Xq|YQ,Ek−1) is small, so that Xq is predictable given the ground truth i.e., Xq is
a good classifier.

The two criteria are balanced so that one could accept a relatively poor classifier if it is
(currently) highly unpredictable.
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Some Assumption for Simplifications

The selection criterion can be simplified if one makes two independence assumptions:

The classifiers are conditionally independent given YQ.

The classifier Xq is conditionally independent of YQ\q given Yq, i.e., the distribution
of Xq depends on YQ only through Yq.

The selection criterion term:

I(Xq,YQ|Ek−1) = H(Xq|Ek−1)− H(Xq|YQ,Ek−1).

Turns into: the entropy of a mixture distribution minus a mixture of entropies
(namely mixture of H(Xq|Yq = yq)) with mixture weights P(Yq = yq|Ek−1).

Consequently: given an explicit data model, the IP criterion can be easily computed
from the posterior distribution.

E. Jahangiri (JHU) Information/Entropy Pursuit April 20, 2017 24 / 82



Some Assumption for Simplifications

The selection criterion can be simplified if one makes two independence assumptions:

The classifiers are conditionally independent given YQ.

The classifier Xq is conditionally independent of YQ\q given Yq, i.e., the distribution
of Xq depends on YQ only through Yq.

The selection criterion term:

I(Xq,YQ|Ek−1) = H(Xq|Ek−1)− H(Xq|YQ,Ek−1).

Turns into: the entropy of a mixture distribution minus a mixture of entropies
(namely mixture of H(Xq|Yq = yq)) with mixture weights P(Yq = yq|Ek−1).

Consequently: given an explicit data model, the IP criterion can be easily computed
from the posterior distribution.

E. Jahangiri (JHU) Information/Entropy Pursuit April 20, 2017 24 / 82



Some Assumption for Simplifications

The selection criterion can be simplified if one makes two independence assumptions:

The classifiers are conditionally independent given YQ.

The classifier Xq is conditionally independent of YQ\q given Yq, i.e., the distribution
of Xq depends on YQ only through Yq.

The selection criterion term:

I(Xq,YQ|Ek−1) = H(Xq|Ek−1)− H(Xq|YQ,Ek−1).

Turns into: the entropy of a mixture distribution minus a mixture of entropies
(namely mixture of H(Xq|Yq = yq)) with mixture weights P(Yq = yq|Ek−1).

Consequently: given an explicit data model, the IP criterion can be easily computed
from the posterior distribution.

E. Jahangiri (JHU) Information/Entropy Pursuit April 20, 2017 24 / 82



Approximation

A possible simplification is to make the approximation of neglecting the error rates
of Xq at the selection stage, therefore replacing Xq by Yq:

qk = arg max
q∈Q\{q1,...,qk−1}

H(Yq|Ek−1).

Hence, pursuing questions whose (true) answers are highly unpredictable.

One would not ask “Is it an urban scene?” after already having got a positive
response to “Is there a skyscraper?” nor would one ask if there is an object instance
from category c in patch “A” if we already know it is highly likely that there is an
object instance from category c in patch “B”, a subset of “A”.

We may ask questions in batch.
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Relying on Prior and Data Model

We choose an interpretation unit at step (k + 1) whose marginal posterior
P(Yq = yq|Ek) has maximum entropy.

Posterior:

P(Y | Ek) ∝ P(Y)× P(Ek | Y).

A Bayesian approach relies on a suitable prior and data model:

P(Y): Prior Model,

P(X | Y ): Data Model.

Instead of designing the prior model in 2D we design in 3D i.e., world coordinate
system.

We project samples from the 3D model to the image coordinate system via
perspective projection; then, aggregate the evaluated interpretation units for these
samples to estimate p(Yq|Ek) required by the IP/EP query engine.
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Big Picture

IP/EP query engine needs P(Y|E).

P(Y | E) =
P(Y,E)

P(E)
∝ P(Y)︸ ︷︷ ︸

Hard to Learn Directly

× P(E | Y)︸ ︷︷ ︸
Calculated using Data Model

3D Model Classifiers X

Data
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JHU Table Setting Dataset

≈ 3000 annotated images.

More than 30 object categories.

Collected from multiple sources such as Google, Flickr, Altavista etc.

Three annotators over a period of about ten months (LabelMe).
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JHU Table Setting Dataset (Cont’d)

The Homography matrixes are manually (visually) estimated.

The homography enables us to undo the perspective effect.

The homography matrixes are scaled appropriately such that the distance of objects
in the table’s coordinate system, in meters, can be computed.
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Table Setting Scene Renderer

Inputs:

Camera’s calibration parameters, including
focal length and pixel length (2 parameters),

Rotation and translation of the camera (6
parameters),

Table length and width (2 parameters),

3D object poses in the table coordinate
system,

and outputs the corresponding table setting scene.
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Quote by George Box

“Remember that all models are wrong; the practical question is how wrong do they
have to be to not be useful.”

George E. P. Box
(18 October 1919 - 28 March 2013)

Box, G. E. P., and Draper, N. R., (1987), Empirical Model Building and Response
Surfaces, John Wiley Sons, New York, NY. (p. 74)
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Prior Model

We design a generative prior model in the world coordinate system based on
attributed graphs with random structure.

The generative attributed graph (GAG) model is at the level of objects encoding
favored relationships among instances from a distinguished family of object
categories.

The GAG model has interpretable parameters and can be learned efficiently from
limited number of annotated images; however, it suffers from slow conditional
inference.

To achieve faster inference we designed a second model based on MRF whose
parameters are learned from the GAG model samples.

Each sample from the GAG/MRF model is a 3D scene describing a table-setting.
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Joint Prior Distribution

Joint Prior Distribution

P( ξV︸︷︷︸
2D poses

, g︸︷︷︸
attributed graph

, W︸︷︷︸
homography free variables

, T︸︷︷︸
table geometry

).

Chain rule:

P(ξV , g ,W,T ) = P(ξV | g ,W)︸ ︷︷ ︸
Deterministic

× P(g | T )

︸ ︷︷ ︸
GAG model

× P(W)

︸ ︷︷ ︸
Hom. Param. Dist.

× P(T )

︸ ︷︷ ︸
Table Geom Dist.

The relationship between ξV , g and W is deterministic via perspective projection
(homography).

P(ξV | g ,W) is a degenerate distribution but included anyways to make the point that
samples from the 3D GAG model are projected onto the 2D image coordinate system.
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samples from the 3D GAG model are projected onto the 2D image coordinate system.
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Joint Prior Distribution
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Homography

The homography matrix H is a deterministic function of the camera’s extrinsic and
intrinsic parameters i.e. H = H(W), where

W = ( φx , φy , φz︸ ︷︷ ︸
angular variables

, tx , ty , tz︸ ︷︷ ︸
translation vector

, f︸︷︷︸
focal length

, sx , sy︸ ︷︷ ︸
pixel size

, ẋ0, ẏ0︸ ︷︷ ︸
image center

).

(ẋ0, ẏ0): the point on the image (in pixels) where the camera’s principal axis meets the image plane. In case that the image is not cropped

ẋ0 =
#of image columns

2
and ẏ0 =

#of image rows
2

.

Xu

Zu

xu
yu

zu

CO
Image plane

T
zyx tttOO ),,(tCW 



Tyx ),(

WO Yu

TZYX )0,,( 

We choose a coordinate whose origin is at the center of the table, whose X and Y axes are on the table, and whose Z axis is orthogonal to the table.
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Specifying Distributions

Prior model:

P(ξV , g ,W,T ) = P(ξV | g ,W)︸ ︷︷ ︸
Deterministic

× P(g | T )

︸ ︷︷ ︸
Gen. Attrib. Graph model

× P(W)

︸ ︷︷ ︸
Hom. Param. Dist.

× P(T )

︸ ︷︷ ︸
Table Geom Dist.
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Assumptions

Assumptions:

1 Motivated by our application to table-settings scenes we assume that the scene
contains a dominant world plane (the table plane) where different objects lie
(spoons, plates, cups, etc.)

2 The height of objects is small relative to their distance to the camera (planar
objects).

Many human-created scenes are composed of parallel supporting surfaces where
different objects lie.
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Overview of the GAG Prior Model

A scene is described as a collection of object instances from different categories at
different poses.

Each object instance is associated with a vertex v ∈ V of a base graph g0 ∈ G0

which captures contextual relationships among object instances.

The underlying base graph is a forest of directed trees in special case.

An attributed graph is a triple g = (g0, cV , θV ), where:

cV = {cv , v ∈ V }: category labels,
θV = {θv , v ∈ V }: 3D poses of objects.

Pose of an object can be represented by its fitting ellipse:
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Generative Attributed Graph model

1
2

3
4

6

5

8

18

9

710

12
11

13
20

14

15

16
17

19

plate glass utensil
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13
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14
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15 16 17

1 2 4 5 6

Removing the undirected edges (dashed
lines) leads to a Bayesian tree.

The Generative Attributed Graph (GAG) model:

p(g |T ) = p(g0, cV |T )× p(θV |g0, cV ,T )

= p(0)(n(0,1), · · · , n(0,|C|)|T )︸ ︷︷ ︸
Poisson Dist.

p(θV0 |cV0 ,T )×

∏
v∈V\VT

p(cv )(n(v,1), · · · , n(v,|C|))︸ ︷︷ ︸
Multi-type Branching Process

×p(θch(v)|cch(v), cv , θv ,T ).
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Learning the GAG Model (Details Skipped)

We used stochastic Expectation-Maximization to learn the GAG model.

After only a few iterations (< 10) the MCEM algorithm for parameter learning
converged.
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Samples from the dataset vs samples from the GAG model

samples from JHU-Dataset samples from GAG model
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GAG Model Conditional Sampling

Even though conditional sampling from p(g |T ,X ) is not a necessary building block
in the process of our application it was still studied.

Conditional MCMC sampling based on Metropolis-Hastings with moves including:

1 Birth and Death of Nodes,
2 Edge Deletion/Addition,
3 Pose Change.

Conditional sampling from a distribution on graphs with random structure is
interesting (yet difficult) and could be applied to other problems e.g., a model-based
Visual Turing Test (see Geman et al., 2015 in PNAS).

“My personal bet: we may need to understand visual cortex (and
the brain!) to achieve scene understanding at human level, and
thereby develop systems that pass a full Turing test.”

Tomaso Poggio
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Specifying Distributions

Prior model:

P(ξV , ω,W,T ) = P(ξV | ω,W)︸ ︷︷ ︸
Deterministic

× P(ω | T )

︸ ︷︷ ︸
Replaced by MRF model

× P(W)

︸ ︷︷ ︸
Hom. Param. Dist.

× P(T )

︸ ︷︷ ︸
Table Geom Dist.
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MRF Model

Samples from p(g |T ) were used to generate statistics required to learn the Markov
Random Field (MRF) Model.

MRF model:

pλ(ω) =
1

Z(λ)
exp
(
λT .f(ω)

)
,

f(ω) = [f1(ω), f2(ω), · · · , fM(ω)]>: feature functions (all binary),

λ = [λ1, λ2, · · · , λM ]>: weights (model parameters).
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MRF features

d

Fine-level singleton

Middle-level singleton Singleton OR Conjunction

Coarse-level singleton

The singleton feature functions are incorporated to preserve the overall empirical
statistics on the existence of an object category at a particular location on the table.

The conjunction feature functions are aimed to incorporate the contextual relations
between different object categories.
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MRF Learning
(DETAILS SKIPPED)

We took advantage of the symmetry in table-settings (“Invariance Property”) to
lower the number of parameters.

We learned 10 MRF models for 10 different table sizes using an accelerated version
of the stochastic gradient descent (SGD), by iteratively minimizing the KL
divergence between the Gibbs and empirical distribution (equivalent to ML for the
exponential family).

t-2
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t
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Posterior Sampling
(DETAILS SKIPPED)

Posterior sampling was carried out in three nested loops:
Outer Loop: sampling table size (Metropolis-Hastings)

Middle Loop: sampling homography (Metropolis-Hastings)
Inner Loop: sampling MRF model (Gibbs sampling)

CHAPTER 4. MARKOV RANDOM FIELD MODEL

Algorithm 1: Posterior Sampling

Initialize Tcur,Wcur, and ωcur.
for i← 1 to NT do

Propose a table geometry Ttry and compute the acceptance ratio:

πT = min

(
1,

QT (Ttry, Tcur)× pλ(ω
try | Ttry)× p(Ttry)×

∏k−1
i=1 p(Xqi |ctry

V , ξtry
V )

QT (Tcur, Ttry)× pλ(ωcur | Tcur)× p(Tcur)×
∏k−1

i=1 p(Xqi |ccur
V , ξcur

V )

)
.

Accept the proposed table geometry Tcur = Ttry with probability πT and reject Tcur = Tcur with
probability (1− πT ).
for n← 1 to NW do

Propose new camera parametersWtry, and compute the acceptance probability:

πW = min

(
1,

QW(Wtry,Wcur)× p(Wtry)×
∏k−1

i=1 p(Xqi |ctry
V , ξtry

V )

QW(Wcur,Wtry)× p(Wcur)×
∏k−1

i=1 p(Xqi |ccur
V , ξcur

V )

)

Accept the proposed homographyWcur =Wtry with probability πW and rejectWcur =Wcur
with probability (1− πW).

for t← 1 to Nω do
Sample the conditional Gibbs model for the current camera parameters and table
geometry according to the following probabilities:

pλ(ωj = 0|ek−1, {ωl , ∀l \j}) =
p0

p0 + p1
, pλ(ωj = 1|ek−1, {ωl , ∀l \j}) =

p1
p0 + p1

,

where p0 and p1 are calculated based on (4.9). Update ωcurrent, project the sample to the
image coordinate system, compute the corresponding annobits, and update the
estimated annobit posteriors p̂(Y | ek−1) accordingly.

end
end

end

on the “current” camera parameters Wcur, whereas in (4.13) they are calculated using the

homography projection based on the “try” camera parameters Wtry. Again, accepting the

proposed camera parameters setsWcurrent =Wtry and rejecting it setsWcurrent =Wcurrent.

Algorithm 1 summarizes the previous two subsections in three nested loops. We pro-

posed a way to sample p(ξV , ω, T,W | ek−1). We can simply evaluate annobits for each

drawn sample to estimate the marginal annobit posteriors {p(Yi | ek−1)}Ki=1 required by EP.

90
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Big Picture

IP/EP query engine needs p(Y|E).

P(Y | E) =
P(Y,E)

P(E)
∝ P(Y)︸ ︷︷ ︸

Hard to Learn Directly

× P(E | Y)︸ ︷︷ ︸
Calculated using Data Model

3D Model X Classifiers X

Data X
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CNN Classifiers

We trained three deep CNNs, all based on the VGG-16 network (up to layer 15):

CatNet: for category classification,
ScaleNet: to estimate the scale of detected object instances (skipped),
TableNet: to detect the table surface area in a given image (skipped).

The last fully-connected layer (16-th weight layer) and the following softmax layer of
these three CNNs are modified to accommodate the design needs.
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CatNet

The CatNet is a CNN with a 5-way softmax output layer used to predict the
ground-truth annoint associated with the input patch, with:

OUTPUT 1: estimating “No Object” proportion,
OUTPUT 2: estimating “Plate” proportion,
OUTPUT 3: estimating “Bottle” proportion,
OUTPUT 4: estimating “Glass” proportion,
OUTPUT 5: estimating “Utensil” proportion.
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CatNet: Training/Test Patch Examples

Color coded categories: “No Object”, “Plate”, “Bottle”, “Glass”, and “Utensil”.
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CatNet Testing

CNN output proportions are processed to obtain binary classification per category.

We define two parameters (k,Sg ) for considering the top-k scores with less than Sg

consecutive score gap (distance).

Suppose k = 3 with score gap Sg = 0.2, and the CatNet outputs are:

(s1 = 0.05, s2 = 0.45, s3 = 0.05, s4 = 0.1, s5 = 0.35)

since (s2 − s5) < Sg but (s5 − s4) ≮ Sg , then categories “2” and “5” are declared as
positive detections.
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CNN detection examples
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CNN detection examples
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CNN detection examples
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CNN detection examples
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Table detection examples by TableNet
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Homography Samples Consistent with Detected Table
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Dirichlet Data Model

The Dirichlet distribution is a density on probability vectors x ∈ [0, 1]K .

p(x) ∼ Dir(α1, ..., αK ) =
Γ(
∑

k αk)∏
k Γ(αk)

∏
k

xαk−1
k .

We learned 16 conditional CatNet data models (MLE) (i.e., 16 Dirichlet models) for
the 16 possible configurations of object categories.

The training data are obtained by running the CNNs on patches with matching
configuration.

Similarly for ScaleNet.
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Stacked-Bar Samples

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Categories Present = { }

No Object Plate Bottle Glass Utensil

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Categories Present = { }

No Object Plate Bottle Glass Utensil

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Categories Present = {Utensil}

No Object Plate Bottle Glass Utensil

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Categories Present = {Utensil}

No Object Plate Bottle Glass Utensil

Left: CNN on patches with matching configs. Right: Dirichlet model samples.
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Stacked-Bar Samples
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Great Expectations

Does coarse-to-fine search emerge naturally from IP/EP?

Can a fraction of the classifiers do as well as all of them?
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IP questions (steps 1-4)
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IP questions (steps 51-54)
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IP questions (steps 81-84)
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Questions

EP vs. IP
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EP questions (steps 1-4)
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EP questions (steps 51-54)
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EP questions (steps 81-84)
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Mutual Information and Entropy of IP Questions
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Great Expectations

Does coarse-to-fine search emerge naturally from IP/EP?
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Precision-Recall Curves
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Conclusion

Does coarse-to-fine search emerge naturally from IP/EP? YES

Can a fraction of the classifiers do as well as all of them? YES
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Q/A

Questions?
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