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Abstract
A core challenge in computer vision is to develop generative models of the
world that capture rich contextual relationships among scene entities. Such
models are broadly applicable in scene understanding, computer graphics,
and robotics, including serving as prior models in a Bayesian framework,
constructing model-based visual Turing tests, robotic manipulation, etc. This
paper proposes a new probabilistic, generative model of 3D scenes consist-
ing of multiple objects lying on a plane. The proposed model is a probability
distribution over random attributed graphs that can encode favored layouts
while accounting for variations in the number and relative poses of objects.
Each graph node corresponds to an object instance that is labeled with a
category and a 3D pose in the world coordinate system, while relationships
among nodes reflect the generative process. Finally, we illustrate how to
learn the model parameters from annotated images of dinning room tables.

1 Introduction
In the past decade there have been considerable advances in building mod-
els for object categorization, mostly aimed at discriminative learning and at
reasoning primarily in 2D [2, 3, 11]. Recently, several attempts have been
made at building models that reason about 3D surfaces of scenes and the in-
teraction of objects with the supporting surfaces [1, 6, 7, 8, 9, 10]. However,
such models are not generative and to the best of our knowledge do not
encode contextual relations among objects on supporting surfaces beyond
their coplanarity. Many man-made scenes are composed of multiple parallel
supporting surfaces upon which instances from different object categories
are placed [1], often with considerable structure. In this paper, we focus
on modeling the 3D arrangement of objects on one supporting plane. Our
3D world model is at the level of objects and allows for encoding expected
properties and multi-object relationships among a distinguished family of
objects, including the numbers and relative poses of scene objects.

Such models can serve scene understanding in several ways. For one,
they can be coupled with data models to complete a conventional Bayesian
framework and thereby "regularize" the output from image descriptors; at a
semantic level, the descriptors might be discriminatively trained classifiers
for detecting and localizing object instances and the prior model integrates
these results with expected relationships among objects. Another applica-
tion is to generate sequences of unpredictable queries for testing computer
vision systems; such a visual Turing test was described in [4], where the
likelihoods of answers were estimated empirically from labeled data, re-
lying on heuristics to address data fragmentation. Having an appropriate
model would allow one to identify longer streams and more accurate es-
timates of unpredictability by sampling from the scene model conditional
on oracle answers (in effect perfect classifiers). However, the focus of this
paper is primarily in the design and learning of such a prior model.

The underlying graph in the model is a forest of directed trees which
captures a natural generative process in which objects are placed down on
the surface in stages; the number of root nodes (e.g., a place setting instance)
refers to the conditional placement of an object instance relative to the size
and geometry of the scene; an edge from a parent (e.g., a plate instance) to
a child (e.g., a utensil instance) refers to the conditional placement of the
child relative to the parent; and so forth (see Figure 1). Moreover, edges
are only allowed between certain types of object categories and these re-
strictions are imposed by a "Master Graph". Designing 3D models which
encode favored relationships but still accommodate real-world variability
is not straightforward. In particular, given purely object-annotated image
data, learning is complicated because the graph structure is hidden. An-
other challenge is conditional sampling: whereas simulating from the full
model is simple and feedforward, applications to Bayesian inference and
constructing query streams require generating samples of attributed graphs
under multiple constraints on object instances and relationships.
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Figure 1: A table-setting scene and its corresponding category-labeled base graph
where the categories (plate, bottle, glass, and utensil) are color-coded in the graph.
Root nodes V0 initialize the generative process; here there are six. The terminal nodes
for this instance are VT = {6,8,9,10,11,14,15,16,17,18,19,20}. According to the
base graph n(0,plate) = 4, n(0,bottle) = 0, n(0,glass) = 0, and n(0,utensil) = 2. Removing
the undirected edges (dashed lines) leads to a Bayesian tree.

2 Proposed Model
In the proposed model, a scene is described as a collection of object in-
stances from different categories at different poses. Each object instance is
associated with a vertex v ∈V of a base graph g0 ∈ G0 which captures con-
textual relationships among object instances. An attributed graph is a triple
g = (g0,cV ,θV ), where cV = {cv,v ∈ V} and θV = {θv,v ∈ V} denote the
set of category labels and 3D poses of objects, respectively. The categories
are restricted to a set C of size K. The root nodes are denoted by V0 ⊂V , the
terminal nodes by VT ⊂ V , the parent of node v by pa(v) and the set of its
children by ch(v). The model is a probability distribution p(g|T ), g ∈ G on
the space of attributed graphs G conditioned on the environment’s geometric
properties T . The model is specified by four sets of distributions:

(1) p(0)(n(0,1), · · · ,n(0,K)|T ): the conditional joint distribution of the
number of root nodes {n(0,k)}K

k=1 from each object category k given the
geometric properties T of the supporting surface.

(2) {p(c)(n1, · · · ,nK), c ∈ C}: the joint distribution of the number of
children {nk}K

k=1 from each object category k of a parent from category c.
(3) p(θV0 |cV0 ,T ): the conditional joint distribution of the poses of the

root nodes given their corresponding category labels.
(4) {p(θch(v)|cch(v),cv,θv,T ), v ∈ V\VT}: the conditional joint distri-

bution of the poses of the children of v given their parent’s pose and the
corresponding category labels.

The category-labeled base graph distribution is:
p(g0,cV |T ) = p(0)(n(0,1), · · · ,n(0,K)|T )×∏

v∈V
p(cv)(n(v,1), · · · ,n(v,K)), (1)

where, n(v,k) denotes the number of children from the k-th category of vertex
v. The full model is:

p(g|T ) = p(g0,cV |T )× p(θV |g0,cV ,T )

= p(0)(n(0,1), · · · ,n(0,K)|T ) p(θV0 |cV0 ,T )×

∏
v∈V\VT

p(cv)(n(v,1), · · · ,n(v,K))× p(θch(v)|cch(v),cv,θv,T ). (2)



Assuming the children are conditionally independent given the corre-
sponding category labels, the pose of their parent, and the geometric prop-
erties of the supporting surface, the graph reduces to the standard Bayesian
forest structure. Otherwise, we will have a hybrid graph with both directed
and undirected edges. Figure 1 illustrates an example scene and its corre-
sponding base graph.

Obviously, some category pairs have stronger expected contextual rela-
tionships than others, and it is reasonable to assume p(ci)(n1, . . . ,nK) = 0
for configurations with n j > 0 for certain pairs ci and c j. To capture these
preferred relationships, we define a directed Master graph, GM = (VM ,EM),
over the set of object categories C; this constrains the branching probabil-
ities p(c)(·). Every vertex in GM corresponds to one object category in C
and every edge (ci → c j) ∈ EM indicates existence of a considerable con-
textual relation (not necessarily causal) between categories ci and c j . A
vertex of category ci will not generate a vertex of category c j if there is no
directed edge from ci to c j in the master graph GM i.e., if (ci → c j) /∈ EM .
An undirected version of the master graph can be computed by thresholding
the fully-connected context graph over the set of object categories whose
edge weights are proportional to the local co-occurrence of the correspond-
ing categories. We then give direction to the edges usually from landmark
(larger) objects to more peripheral (smaller) objects. The master graph can
be fully or partially user-determined.

3 Model Learning
Assume we have a data set of J annotated scenes from which we obtain
object attributes, namely we can get D = {cV [ j],θV [ j]}J

j=1. However, D
is not a sufficient statistic for learning the model parameters since the set of
corresponding base graphs M= {g0[ j]}J

j=1 is missing. We normally do not
directly observe the set of corresponding base graphs from annotated scenes.
Therefore, we are facing a learning-from-incomplete-data problem where D
is given and M is missing. The combination of missing and incomplete data
constitutes the complete data composed of attributed graphs for each scene
D+ = 〈D,M〉= {g[ j] = (g0[ j],cV [ j],θV [ j])}J

j=1. We propose a parameter
learning method based on the stochastic Expectation-Maximization (EM)
algorithm. According to the proposed learning strategy, we sample the con-
ditional base graph distribution given the object attributes using Gibbs sam-
pling to complete D and estimate the parameters by iteratively maximizing
the complete data likelihood over the parameters.

Let Φ denote the set of all the parameters in the model including the
parameters of the four sets of distributions summarized earlier, we iteratively
estimate the parameters until convergence according to:

Φ
t+1 = argmax

Φ

J

∑
j=1

∑
g0[ j]

p(g0[ j] | cV [ j],θV [ j],Φt)× log p(g[ j] |Φ), (3)

which is obtained assuming that the base graphs for different images are in-
dependent given their corresponding object attributes. Note that we dropped
T for notational convenience in (3). Also, note that the parameters of p(g|T )
should be learned from annotated scenes whose environment’s geometric
properties roughly match T . We are not describing sampling of data com-
pletion distribution in the interest of space but let g(l)0 [ j] denote a base graph
sample for the j-th annotated scene from p(g0[ j] | cV [ j],θV [ j],Φt) and N is
a sufficiently large number of such samples, then using Monte-Carlo inte-
gration we have:

Φ
t+1 ≈ argmax

Φ

J

∑
j=1

N

∑
l=1

log p(g(l)[ j] = (g(l)0 [ j],cV [ j],θV [ j]) |Φ). (4)

4 The JHU Table-Setting Dataset
We applied the proposed attributed graph model to table-setting scenes in
the world with four object categories including plates, bottles, glasses, and
utensils. We learned the model from a fully-annotated in-house data set of
about 3000 table-setting scene images. Figure 2 shows a snapshot of this
data set. The left hand side photo in Figure 3 shows a sample annotated
image from the data set. Each annotation is represented by a polygon con-
taining the object and its corresponding category label. We represent the 2D
pose of an object in the image by an enclosing ellipse to its corresponding
polygon vertices. We assume that objects are planar which is reasonable if

Figure 2: A snapshot of the JHU table-setting data set.

Figure 3: A sample from the JHU table-setting data set. On the left is an annotated
image and on the right is its corresponding top-view after back-projection.

the heights of objects are small relative to their distances from the camera.
To estimate the pose of objects in the 3D world coordinate system for every
image, namely θV , we back-projected the 2D fitting ellipses onto the table
(world) coordinate system using the corresponding manually-estimated ho-
mography matrix. The homography matrix for every image in the dataset is
manually estimated and scaled appropriately (using objects’ typical size in
real world) such that after back-projection all distances can be measured in
meters. The right hand side photo in Figure 3 shows a top-view of the table-
setting on the left after back-projection using the corresponding manually-
estimated homography.

According to the pinhole camera model, the world model samples from
p(g|T ) can be projected to the image coordinate system given camera’s in-
trinsic and extrinsic parameters. Such a “projected model" could in principle
be used for 2D scene understanding. However, in applications such as 3D
scene understanding and robotics the 3D world model is directly used [5].
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