
SPARSE MODELING FOR HIGH-DIMENSIONAL

MULTI-MANIFOLD DATA ANALYSIS

by

Ehsan Elhamifar

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

October, 2012

c© Ehsan Elhamifar 2012

All rights reserved



Abstract

High-dimensional data are ubiquitous in many areas of science and engineering,

such as machine learning, signal and image processing, computer vision, pattern recog-

nition, bioinformatics, etc. Often, high-dimensional data are not distributed uni-

formly in the ambient space; instead they lie in or close to a union of low-dimensional

manifolds. Recovering such low-dimensional structures in the data helps to not only

significantly reduce the computational cost and memory requirements of algorithms

that deal with the data, but also reduce the effect of the high-dimensional noise in

the data and improve the performance of inference and learning tasks.

There are three fundamental tasks related to the multi-manifold data: clustering,

dimensionality reduction, and classification. While the area of machine learning has

seen great advances in these areas, the applicability of current algorithms are limited

due to several challenges. First, in many problems, manifolds are spatially close or

even intersect, while existing methods work only when manifolds are sufficiently sep-

arated. Second, most algorithms require to know the dimensions or the number of

manifolds a priori, while in real-world problems such quantities are often unknown.

ii



ABSTRACT

Third, most existing algorithms have difficulty in effectively dealing with data nui-

sances, such as noise, outliers, and missing entries, as well as manifolds of different

intrinsic dimensions.

In this thesis, we present new frameworks based on sparse representation tech-

niques for the problems of clustering, dimensionality reduction and classification of

multi-manifold data that effectively address the aforementioned challenges. The key

idea behind the proposed algorithms is what we call the self-expressiveness property

of the data. This property states that in an appropriate dictionary formed from the

given data points in multiple manifolds, a sparse representation of a data point corre-

sponds to selecting other points from the same manifold. Our goal is then to search

for such sparse representations and use them in appropriate frameworks to cluster,

embed, and classify multi-manifold data. We propose sparse optimization programs

to find such desired representations and develop theoretical guarantees for the success

of the proposed algorithms. By extensive experiments on synthetic and real data, we

demonstrate that the proposed algorithms significantly improve the state-of-the-art

results.

iii



Dedication

To my mother, Effat, for her endless love, patience, support and encouragement.

iv



Contents

Abstract ii

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Multi-manifold data . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1.1 Subspace clustering . . . . . . . . . . . . . . . . . . . 5

1.1.1.2 Nonlinear manifold clustering . . . . . . . . . . . . . 6

1.1.2 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Clustering in a union of subspaces . . . . . . . . . . . . . . . . 11

v



CONTENTS

1.2.2 Clustering and embedding in a union of

nonlinear manifolds . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Classification in a union of subspaces . . . . . . . . . . . . . . 14

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Background Material 17

2.1 Vector and matrix norms . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Sparse representation theory . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Recovery of sparse signals . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Recovery of block-sparse signals . . . . . . . . . . . . . . . . . 23

2.3 Manifold clustering and embedding . . . . . . . . . . . . . . . . . . . 31

2.3.1 Laplacian eigenmaps and spectral clustering . . . . . . . . . . 32

2.3.2 Locally linear embedding and clustering . . . . . . . . . . . . 34

3 Sparse Subspace Clustering 37

3.1 A review of subspace clustering

algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Iterative/algebraic methods . . . . . . . . . . . . . . . . . . . 39

3.1.2 Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 Spectral clustering-based methods . . . . . . . . . . . . . . . . 41

3.2 Sparse subspace clustering algorithm . . . . . . . . . . . . . . . . . . 42

3.2.1 Sparse optimization program . . . . . . . . . . . . . . . . . . . 44

vi



CONTENTS

3.2.2 Clustering using sparse coefficients . . . . . . . . . . . . . . . 46

3.3 Practical extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Noise and sparse outlying entries . . . . . . . . . . . . . . . . 51

3.3.2 Missing entries . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 Affine subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Solving the sparse optimization

programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Subspace-sparse recovery theory . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Independent subspace model . . . . . . . . . . . . . . . . . . . 66

3.5.2 Disjoint subspace model . . . . . . . . . . . . . . . . . . . . . 68

3.5.3 Geometric interpretation . . . . . . . . . . . . . . . . . . . . . 74

3.6 Graph connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7 Experiments with synthetic data . . . . . . . . . . . . . . . . . . . . . 79

3.7.1 Subspace angle and data distribution effect . . . . . . . . . . . 79

3.7.2 Effect of different numbers, dimensions, and

models of subspaces . . . . . . . . . . . . . . . . . . . . . . . . 82

3.7.3 Dealing with incomplete data . . . . . . . . . . . . . . . . . . 88

3.7.4 Dealing with sparse outlying entires . . . . . . . . . . . . . . . 88

3.8 Experiments with real data . . . . . . . . . . . . . . . . . . . . . . . 90

3.8.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . 90

3.8.2 Datasets and some statistics . . . . . . . . . . . . . . . . . . . 92

vii



CONTENTS

3.8.3 Motion segmentation . . . . . . . . . . . . . . . . . . . . . . . 94

3.8.3.1 Effect of the regularization parameter . . . . . . . . 99

3.8.3.2 Effect of the affine constraint . . . . . . . . . . . . . 99

3.8.4 Motion segmentation with missing data and outlying entries . 101

3.8.5 Face clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.8.5.1 Applying RPCA separately on each subject . . . . . 104

3.8.5.2 Applying RPCA simultaneously on all subjects . . . 106

3.8.5.3 Using original data points . . . . . . . . . . . . . . . 109

3.8.5.4 Computational time comparison . . . . . . . . . . . . 110

3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.10.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . 113

4 Sparse Manifold Clustering & Embedding 116

4.1 A review of manifold clustering and embedding algorithms . . . . . . 119

4.1.1 Manifold embedding . . . . . . . . . . . . . . . . . . . . . . . 119

4.1.2 Manifold clustering . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 Sparse manifold clustering and

embedding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2.1 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . 125

4.2.2 Clustering and dimensionality reduction . . . . . . . . . . . . 128

4.2.3 Advantages of SMCE . . . . . . . . . . . . . . . . . . . . . . . 131

viii



CONTENTS

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.3.1 Experiments with synthetic data . . . . . . . . . . . . . . . . 133

4.3.2 Experiments with real data . . . . . . . . . . . . . . . . . . . 138

4.3.2.1 Clustering and embedding of faces . . . . . . . . . . 138

4.3.2.2 Clustering and embedding of digits . . . . . . . . . . 143

4.3.2.3 Motion segmentation experiments . . . . . . . . . . . 144

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5 Classification of Multi-Manifold Data via Block-Sparse Recovery 149

5.1 Problem settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.2 A review of sparse representation-based classification . . . . . . . . . 152

5.3 Challenges of multi-manifold data

classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.4 Classification via block-sparse

representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.4.1 Block-sparse representation via P`q/`0 . . . . . . . . . . . . . . 157

5.4.2 Block-sparse representation via P ′`q/`0 . . . . . . . . . . . . . . 158

5.5 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.5.1 Problem settings and definitions . . . . . . . . . . . . . . . . . 159

5.5.2 Uniqueness of block-sparse representations . . . . . . . . . . . 164

5.5.3 Block-sparse recovery via P`q/`1 . . . . . . . . . . . . . . . . . 168

5.5.4 Block-sparse recovery via P ′`q/`1 . . . . . . . . . . . . . . . . . 175

ix



CONTENTS

5.5.5 Correcting sparse outlying entries . . . . . . . . . . . . . . . . 178

5.6 Experiments with synthetic data . . . . . . . . . . . . . . . . . . . . . 180

5.7 Experiments with real data . . . . . . . . . . . . . . . . . . . . . . . 185

5.7.1 Face recognition: uncorrupted data . . . . . . . . . . . . . . . 185

5.7.2 Face recognition: robustness to random

corruptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.7.3 Face recognition: robustness to random

block occlusion . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.7.4 Face recognition: robustness to disguise . . . . . . . . . . . . . 192

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.9.1 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . 194

5.9.2 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . 194

5.9.3 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . 195

5.9.4 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . 196

5.9.5 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . 197

6 Conclusions 200

Bibliography 202

Vita 220

x



List of Tables

1.1 Considering all pairs of subjects in the Extended Yale B face dataset,
the table shows the average percentage of images whose K nearest
neighbors contain images from another subject. Note that for 6.0% of
images, the nearest neighbor comes from another subject. . . . . . . . 7

3.1 Clustering error (%) of different algorithms on synthetic noise-free data
for different dimensions and number of subspaces as well as different
subspace models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Clustering error (%) of different algorithms on synthetic noisy data
for different dimensions and number of subspaces as well as different
subspace models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3 Clustering error (%) of different algorithms on the Hopkins 155 dataset
with the 2F -dimensional data points. . . . . . . . . . . . . . . . . . . 96

3.4 Clustering error (%) of different algorithms on the Hopkins 155 dataset
with the 4n-dimensional data points obtained by applying PCA. . . . 96

3.5 Clustering error (%) of the SSC algorithm on the Hopkins 155 dataset
for 2F -dimensional and 4n-dimensional data points obtained by apply-
ing PCA, for the two cases of not using (Linear) and using (Affine) the
affine constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.6 Clustering error (%) of different algorithms for 12 real motion sequences
with missing data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.7 Clustering error (%) of different algorithms for 12 real motion sequences
with corrupted trajectories. . . . . . . . . . . . . . . . . . . . . . . . 103

3.8 Clustering error (%) of different algorithms on the Extended Yale B
dataset after applying RPCA separately to the data points in each
subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.9 Clustering error (%) of different algorithms on the Extended Yale B
dataset after applying RPCA simultaneously to all the data in each trial.107

3.10 Clustering error (%) of different algorithms on the Extended Yale B
dataset without pre-processing the data. . . . . . . . . . . . . . . . . 109

xi



LIST OF TABLES

4.1 Clustering errors (%) of LLE and LEM as a function of K and of SMCE
as a function of λ, for the example of the two trefoil-knots shown in
Figure 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.2 Percentage of face images in the two subjects of the Extended YaleB
face database whose K nearest neighbors contain points from the other
subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.3 Clustering errors (%) of LLE, LEM and SMCE on the Extended YaleB
dataset as a function of the number of subjects (clusters). . . . . . . . 142

4.4 Clustering errors (%) of linear and nonlinear manifold clustering al-
gorithms on the Hopkins 155 dataset with the 2F -dimensional data
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.1 Recognition rates on the AR database for robustness to disguise. . . . 193

xii



List of Figures

1.1 Left: a manifold is in general a mapping from a low-dimensional la-
tent space to the high-dimensional ambient space. Right: In many
problems, data across multiple classes lie in a union of manifolds. . . 3

2.1 In an underdetermined dictionaryB ∈ RD×N , there are infinitely many
representations c for a given y. Sparse representation refers to a c that
has only a few nonzero elements. . . . . . . . . . . . . . . . . . . . . 20

2.2 Top: a block-sparse vector is not necessarily sparse. In this example, 2
nonzero blocks out of 100 blocks correspond to 200 nonzero elements
out of 298 elements. Bottom: a sparse vector is not necessarily block-
sparse. In this example, all 100 blocks are nonzero each having one
nonzero element. However, this gives rise to only 50 nonzero elements
out of 5,000 elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 To build a neighborhood graph, one connects each node to itsK nearest
neighbors or to the nodes that are inside an ε-ball centered at node. . 31

3.1 Motion segmentation: given feature points on multiple rigidly moving
objects tracked in multiple frames of a video (top), the goal is to sep-
arate the feature trajectories according to the moving objects (bottom). 38

3.2 Face clustering: given face images of multiple subjects (top), the goal
is to find images that belong to the same subject (bottom). . . . . . . 38

3.3 Three subspaces in R3 with 10 data points in each subspace, ordered
such that the fist and the last 10 points belong to S1 and S3, respec-
tively. The solution of the `q-minimization program in (3.3) for yi lying
in S1 for q = 1, 2,∞ is shown. Note that as the value of q decreases, the
sparsity of the solution increases. For q = 1, the solution corresponds
to choosing two other points lying in S1. . . . . . . . . . . . . . . . . 45

xiii



LIST OF FIGURES

3.4 Left: the three 1-dimensional subspaces are independent as they span
the 3-dimensional space and the summation of their dimensions is also
3. Right: the three 1-dimensional are disjoint as any two subspaces
intersect at the origin. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Left: for any nonzero x in the intersection of S1 and S2 ⊕ S3, the
polytope αP1 reaches x for a smaller α than αP−1, hence, subspace-
sparse recovery holds. Middle: when the subspace angle decreases, the
polytope αP−1 reaches x for a smaller α than αP1. Right: when the
distribution of the data in S1 becomes nearly degenerate, in this case
close to a line, the polytope αP−1 reaches x for a smaller α than αP1.
In both cases, in the middle and right, the subspace-sparse recovery
does not hold for points at the intersecion. . . . . . . . . . . . . . . . 75

3.6 Coefficient matrix obtained from the solution of (3.57) for data points
in two subspaces. Left: λr = 0. Right: λr = 10. Increasing λr results
in concentration of the nonzero elements in a few rows of the coefficient
matrix, hence choosing a few common data points. . . . . . . . . . . 78

3.7 Left: three 1-dimensional subspaces in R2 with normalized data points.
Middle: C1 corresponds to the solution of (3.57) for λr = 0. The
similarity graph ofC1 has three components corresponding to the three
subspaces. Right: C2 corresponds to the solution of (3.57) for λr →
+∞ and θ ∈ (0, 4π

10
). The similarity graph ofC2 has only one connected

component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.8 Subspace-sparse recovery error (left) and subspace clustering error (right)

for three disjoint subspaces. Increasing the number of points or small-
est principal angle decreases the errors. . . . . . . . . . . . . . . . . . 81

3.9 Average clustering errors of different subspace clustering algorithms as
a function of the noise level, σ, for independent subspace model (left)
and disjoint subspace model (right). . . . . . . . . . . . . . . . . . . . 87

3.10 Average clustering errors of different subspace clustering algorithms
as a function of the percentage of the missing entries in the data, for
independent subspace model (left) and disjoint subspace model (right). 89

3.11 Average clustering errors of the SSC algorithm as a function of the
percentage of the corrupted data points and the percentage of the
corrupted entries for independent (left) and disjoint (right) subspace
model for different magnitudes of corruption, σ ∈ {0.1, 0.3}. . . . . . 91

3.12 Left: percentage of pairs of subspaces whose smallest principal angle
is smaller than a given value. Right: percentage of data points in pairs
of subspaces whose K nearest neighbors contain points from the other
subspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xiv



LIST OF FIGURES

3.13 Left: singular values of several motions in the Hopkins 155 dataset.
Each motion corresponds to a subspace of dimension at most 4. Right:
singular values of several faces in the Extended Yale B dataset. Each
subject corresponds to a subspace of dimension around 9. . . . . . . . 95

3.14 Boxplots of motions segmentation algorithms on the Hopkins 155 Dataset.
Top: clustering errors (%) for two motions (left) and three motions
(right) using 2F -dimensional data. Bottom: clustering errors (%) for
two motions (left) and three motions (right) using 4n-dimensional data. 98

3.15 Clustering error (%) of SSC as a function of αz in the regularization
parameter λz = αz/µz for the two cases of clustering of 2F -dimensional
data and 4n-dimensional data obtained by PCA. . . . . . . . . . . . . 100

3.16 Example frames from three video sequences with incomplete or cor-
rupted trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.17 Boxplots for face clustering results on the Extended Yale B Dataset
using face image data in D = 2, 016-dimensional space after apply-
ing RPCA to each trial. Top: clustering errors (%) for two subjects
(left) and three subjects (right). Bottom: clustering errors (%) for five
subjects (left) and eight subjects (right). . . . . . . . . . . . . . . . . 108

3.18 Boxplots for face clustering results on the Extended Yale B Dataset
using raw face image data in D = 2, 016-dimensional space. Top:
clustering errors (%) for two subjects (left) and three subjects (right).
Bottom: clustering errors (%) for five subjects (left) and eight subjects
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.19 Average computational time (sec.) of the algorithms on the Extended
Yale B dataset as a function of the number of subjects. . . . . . . . . 112

4.1 Subspace clustering, in general, cannot deal with nonlinear manifolds.
Top: 200 data points in two 1-dimensional nonlinear manifolds embed-
ded in R100. Data points are ordered such that the first 100 points are
in the first manifolds and the next 100 points are in the second mani-
fold. Middle: similarity matrices obtained by LSA and LRR. Bottom:
similarity matrix obtained by SSC is shown in the left plot. Similarity
matrix obtained by SMCE, proposed in this chapter, is shown in the
right plot. Note that the three subspace clustering methods obtain
nonzero weights between points in different manifolds, while SMCE
obtains zero weights between points in different manifolds. . . . . . . 117

4.2 For y1 ∈ M1, the smallest neighborhood containing points from M1

also contains points from M2. However, the minimum number of
points in this neighborhood whose affine span passes close to y1 corre-
sponds to the two data points from M1. . . . . . . . . . . . . . . . . 124

xv



LIST OF FIGURES

4.3 Top row: A punctured sphere embedded in R100, the 2-D embeddings
and the msc vectors obtained by SMCE for different values of λ.
Middle and bottom rows: embeddings obtained by the state-of-the-art
nearest neighbor-based algorithms for K = 5 and K = 20, respectively. 134

4.4 Clustering and embedding for a trefoil-knot with non-uniform sampling
and a plane with a hole. Left: original manifolds. Middle: embedding
and msc vectors obtained using SMCE. Right: clustering and embed-
ding using LLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.5 Top row: two trefoil-knots embedded in R100 and the clustering, em-
beddings andmsc vectors obtained by SMCE. Bottom row: clustering
and embeddings obtained by LLE and LEM. . . . . . . . . . . . . . . 136

4.6 2-D embedding of the Frey face dataset obtained by SMCE. . . . . . 138
4.7 Top: clustering errors (%) of LLE and LEM for two subjects in the Ex-

tended YaleB dataset as a function of the number of nearest neighbors
(K). Bottom: clustering error (%) of SMCE for two subjects in the
Extended YaleB dataset as a function of the regularization parameter λ.140

4.8 Top: 2-D embeddings obtained by LLE, LEM and SMCE for the face
data of two subjects in the Extended YaleB dataset. Bottom: the
weights associated to a data point from subject 1 obtained by each
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.9 Clustering, embedding, and msc vectors obtained by SMCE for the
face data of two subjects in the Extended YaleB dataset. . . . . . . . 141

4.10 Clustering and embedding of five digits from the MNIST dataset us-
ing SMCE. Left: 2-D embedding of all the data points from digits
{0, 3, 4, 6, 7}. Middle: 2-D embedding of the data points in the first
cluster that corresponds to the digit 3. Right: 2-D embedding of the
data points in the second cluster that corresponds to the digit 6. . . . 143

4.11 Top: clustering errors (%) of LLE and LEM algorithms on the Hop-
kins 155 dataset as a function of the number of the nearest neighbors,
K, for two motions (left) and three motions (right). Bottom: cluster-
ing errors (%) of SMCE algorithm on the Hopkins 155 dataset as a
function of the exponent, α, of the weights in (4.5), for two different
values of λ, for two motions (left) and three motions (right). . . . . . 145

4.12 Boxplots for the motion segmentation errors of nonlinear manifold clus-
tering algorithms on the Hopkins 155 dataset using 2F -dimensional
data points. Left: clustering errors (%) for two motions. Right: clus-
tering errors (%) for three motions. . . . . . . . . . . . . . . . . . . . 147

5.1 In the face recognition problem, the dictionary has a block structure
where the training images of each subject form a few blocks of the
dictionary and lie in a union of subspaces. . . . . . . . . . . . . . . . 150

xvi



LIST OF FIGURES

5.2 Left: sparsest representation of a test example does not necessarily
come from the correct class. y can be written as a linear combination of
one data point from S2 and one from S3 as well as a linear combination
of two data points from S1. Right: training data in a class might be
separated into several blocks. Thus, a test example can be written as
a linear combination of a few blocks in each class. . . . . . . . . . . . 156

5.3 Four one-dimensional subspaces in a two-dimensional space. S1 and S2

are orthogonal to S3 and S4, respectively. . . . . . . . . . . . . . . . . 163
5.4 Errors of the convex programs on synthetic data with n = 40, D = 100.

Reconstruction error (top left), block-contribution error (top right)
and coefficient recovery error (bottom) for non-redundant blocks with
m = d = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.5 Errors of the convex programs on synthetic data with n = 40, D =
100. Reconstruction error (left) and block-contribution error (right)
for redundant blocks with m = 2d = 8. . . . . . . . . . . . . . . . . . 184

5.6 First row: sample face images from three subjects in the Extended
Yale B dataset. Middle and bottom rows: classification rates for the
convex programs on the Extended Yale B database with n = 38 and
D = 132 as a function of the number of training data in each class for
using eigen-faces, random projections, and down-sampling. . . . . . . 188

5.7 Recognition results on the Extended Yale B database as a function of
the percentage of corruption. . . . . . . . . . . . . . . . . . . . . . . . 190

5.8 Recognition results on the Extended Yale B database as a function of
the percentage of block occlusion. . . . . . . . . . . . . . . . . . . . . 192

xvii



Chapter 1

Introduction

1.1 Multi-manifold data

High-dimensional data are ubiquitous in many areas of science and engineering,

such as machine learning, signal and image processing, computer vision, pattern recog-

nition, bioinformatics, etc. Images consist of billions of pixels, videos can have millions

of frames, text and web documents are associated with tens of thousands of features,

and DNA microarray data represent the expression levels of thousands of genes. This

high-dimensionality of the data not only increases the computational time and mem-

ory requirements of algorithms, but also adversely affects their performance due to

the effect of the noise and insufficient number of samples with respect to the ambient

space dimension, hence, the so called the “curse of dimensionality” [9].

However, high-dimensional data are not often distributed uniformly in the ambient

1



CHAPTER 1. INTRODUCTION

space, instead they lie in or close to low-dimensional manifolds. This is mainly due to

the fact that real data are often generated or captured by processes or physical systems

that have only a few degrees of freedom. For instance, images of an object or a face

captured under varying illumination can be characterized by a few degrees of freedom

of the light source, or videos of a static scene captured by a moving camera can be

characterized by a few degrees of freedom corresponding to the motion parameters

of the camera. In fact, recovering such low-dimensional structures in the data helps

to not only significantly reduce the computational cost and memory requirements of

algorithms that deal with the data, but also reduce the effect of the high-dimensional

noise in the data and improve the performance of inference, learning, and recognition

tasks.

In many real-world problems, we are dealing with high-dimensional data across

multiple classes or categories where the data in each class lie in or close to a manifold.

As a result, the collection of data points lie in a union of low-dimensional manifolds.

Images of multiple classes of objects or scenes, videos of different activities, text and

web data of different subjects, and biomedical data corresponding to different diseases

can be modeled as lying in a union of manifolds. Roughly speaking, each manifold can

be characterized by a mapping from a low-dimensional input space (latent space) to a

high-dimensional output space (ambient space), see Figure 1.1. This mapping can be

in general nonlinear leading to nonlinear manifolds, but it can also be linear leading

to flat manifolds or subspaces. In fact, subspaces correspond to an important class of

2



CHAPTER 1. INTRODUCTION

Rd

RD

f(·)

Rd Rd′

RD

f(·) f ′(·)

Figure 1.1: Left: a manifold is in general a mapping from a low-dimensional latent
space to the high-dimensional ambient space. Right: In many problems, data across
multiple classes lie in a union of manifolds.

manifolds that model well the distribution of the data in many real-world problems.

Feature trajectories of multiple moving objects in a video [102], face images of multiple

subjects captured under varying illumination [6], multiple instances of hand-written

digits with different rotations, translations, and thicknesses [61], and human body

sensor measurements corresponding to different activities [119] can be well modeled

as lying in a union of low-dimensional subspaces of the ambient space.

There are three fundamental tasks related to the multi-manifold data: clustering,

dimensionality reduction (embedding), and classification. While the area of machine

learning has seen great advances in these areas, the applicability of current algorithms

are limited due to several challenges. First, in many problems, manifolds are spatially

close or even intersect, while current methods work only when manifolds are suffi-

ciently separated. Second, most existing methods require to know the dimensions or

the number of manifolds a priori, while in real-world problems such quantities are

often unknown. Third, most existing algorithms have difficulty in effectively dealing

with data nuisances, such as noise, outliers, and missing entries, as well as manifolds

3



CHAPTER 1. INTRODUCTION

of different intrinsic dimensions.

The goal of this thesis is to develop theoretically correct efficient algorithms for

clustering, dimensionality reduction, and classification of multi-manifold data that

can effectively address the aforementioned challenges. Next, we describe each of the

three tasks and discuss existing approaches and their limitations.

1.1.1 Clustering

Given a collection of data points lying in multiple manifolds, the goal of clustering

is to separate the data according to their underlying manifolds. In fact, clustering is

one of the most fundamental problems in data analysis that serves as the first step

for many important tasks such as learning, classification, recognition and inference.

For instance, once we separate the data according to the manifolds they lie in, we can

reduce the dimension of the data in each manifold (dimensionality reduction), recover

the underlying mapping of each manifold (manifold learning), find the underlying

manifold of a given query (classification), or perform other tasks that take advantage

of the structural relationships of the data in a single manifold.

Depending on whether data lie in linear or nonlinear manifolds, clustering ap-

proaches are different in general.

4



CHAPTER 1. INTRODUCTION

1.1.1.1 Subspace clustering

Clustering of data in multiple subspaces, referred to as subspace clustering, is an

important problem that finds numerous applications in image processing, e.g., image

representation and compression [63], and computer vision, e.g., image segmentation

[120], motion segmentation [25, 66], and temporal video segmentation [111]. As data

in a subspace can be distributed arbitrarily and not around a centroid, standard

central clustering methods [34] that take advantage of the spatial proximity of data

in each cluster are not applicable in general to subspace clustering.

In fact, a variety of algorithms have been proposed for clustering of data in mul-

tiple subspaces [109] that are based on algebraic, statistical, or spectral clustering

approaches (see Chapter 3 for a review). However, such methods often cannot ef-

fectively deal with important real-world situations, such as subspaces that intersect

or have different dimensions, data points that are corrupted by noise and outliers or

have missing entries. In addition, most existing algorithms require to know a priori

the dimensions or the number of subspaces.

Spectral clustering-based approaches are among the most successful classes of

subspace clustering algorithms. Such methods try to build a similarity graph whose

nodes correspond to data points and whose edge weights represent similarity values

between data points. The key problem is then to find a good similarity measure

between data points such that points in the same subspace have high similarities and

points in different subspaces have low similarities. Clustering of data into subspaces

5



CHAPTER 1. INTRODUCTION

is then obtained by finding groups of nodes (components) in the similarity graph that

have high inter-component and low intra-component similarities.

Local spectral clustering-based approaches [55,118,122,124] use local information

around each point to compute a similarity between pairs of points. However, they have

difficulties dealing with data points near the intersection of two subspaces, because

the neighborhood of a point can contain points from different subspaces. In addition,

they are sensitive to the right choice of the neighborhood size for computing the

local information at each point. On the other hand, global spectral clustering-based

approaches such as [22] try to resolve these issues by building better similarities

between data points using global information. However, they often need to know a

priori the number and the dimensions of the subspaces and typically assume that the

subspaces have the same dimension. More importantly, their complexity of computing

similarities grows exponentially as the dimensions of the subspaces increase.

1.1.1.2 Nonlinear manifold clustering

In general, data may lie in a union of nonlinear manifolds. Since in this case, there

is no global linear relationship among the data points in the same subspace, standard

subspace clustering algorithms are not in general applicable. In fact, manifolds can

be very close to each other and they can have arbitrary dimensions, curvature and

sampling, which make the manifold clustering problem be very challenging.

To cluster data in multiple manifolds, most existing algorithms assume that man-

6



CHAPTER 1. INTRODUCTION

Table 1.1: Considering all pairs of subjects in the Extended Yale B face dataset,
the table shows the average percentage of images whose K nearest neighbors contain
images from another subject. Note that for 6.0% of images, the nearest neighbor
comes from another subject.

K 1 2 3 4 5 6 7 8 9 10
6.0% 13.4% 22.5% 30.9% 38.9% 46.6% 53.8% 59.4% 64.2% 68.2%

ifolds are densely sampled and sufficiently separated [2, 55, 56, 87]. They build a

similarity graph by connecting each point to its few nearest neighbors. As a result,

ideally, the points in the same manifold get connected to each other while there are no

connections among points in different manifolds. Hence, clustering of data is obtained

by separating the components of the graph.

However, it is not often the case that manifolds are densely sampled or well sepa-

rated. For instance, in a real dataset of face images of multiple subjects, it is often the

case that some or all of the nearest neighbors of a face image of a particular subject

come from face images of other subjects, see Table 1.1. Moreover, choosing the right

number of the nearest neighbors of a point is critical for successfully separating the

data using the obtained similarity graph. However, most existing methods assume

that the right number of nearest neighbors is initially provided to the algorithm.

Thus, their performance greatly depends on a good choice of this quantity.

1.1.2 Dimensionality reduction

Once we separate the data into their underlying manifolds, a subsequent fun-

damental task is to recover a low-dimensional representation for the data in each

7



CHAPTER 1. INTRODUCTION

manifold. Such low-dimensional representations can reduce not only the computa-

tional cost and memory requirements of algorithms for processing the data, but also

the effect of noise and corruption in the data, hence improving the performance of

such algorithms.

In general, dimensionality reduction techniques can be divided into two main

categories of linear and nonlinear methods. Linear dimensionality reduction methods

such as Principal Component Analysis (PCA) [65], Probabilistic PCA (PPCA) [101],

Factor Analyzer (FA) [69], and Random Projections (RP) [4], reduce the dimension of

the data using a linear mapping from the ambient space to a lower dimensional latent

space. When the data lie in a subspace, one can use linear dimensionality reduction

techniques to effectively find the low-dimensional representations of the data.

Nonlinear dimensionality reduction (NLDR) techniques, on the other hand, try

to reduce the dimension of the data via nonlinear embedding techniques. A variety

of NLDR algorithms have been proposed, most of which use the following three step

procedure [7,24,91–93,98,114]. In the first step, they build a nearest neighbor graph

by connecting each point to its few nearest neighbors. Second, they learn a set of

weights for the edges of the graph that capture the similarities and dissimilarities

between data points. Third, they embed data points into a lower-dimensional space

such that the similarities and dissimilarities between low-dimensional representations

are well-preserved.

Different NLDR algorithms have different schemes for learning the weights. How-

8



CHAPTER 1. INTRODUCTION

ever, they all share the same first step, which is to build the nearest neighbor graph.

As a result, such algorithms often have difficulties in selecting the right neighbor-

hood size that captures well the manifold geometry. This comes from the fact that a

suitable choice of the neighborhood size requires prior knowledge about the intrinsic

dimension of the manifold, which is not typically known in real-world problems. As

a result, the performance of NLDR methods greatly depends on the proper choice of

the neighborhood graph.

1.1.3 Classification

In data classification problems in which each class corresponds to a different man-

ifold, a fundamental task is to classify a given query and determine the manifold,

i.e., the class, it belongs to. Depending on how the manifolds are modeled and how

the data are distributed in each manifold, different classification schemes have been

proposed.

When the manifolds of different classes are well sampled, i.e., there are sufficiently

many training samples from each manifold, Nearest Neighbor (NN) classification al-

gorithms [34] assign a test sample to the class of its nearest neighbor or in general to

the dominating class of its K nearest neighbors. However, in practice, it is not often

the case that there are sufficiently many training samples from each class. Nearest

Subspace (NS) algorithm [62] models the data in a manifold by a low-dimensional

subspace and, instead of assigning a test example to the class of its nearest neigh-

9



CHAPTER 1. INTRODUCTION

bor, assigns the test sample to the class of its closest subspace. While NS does not

require many samples from each class, it only works well when the manifold of a

class corresponds to a single low-dimensional subspace. In addition, the classification

performance can be sensitive to the choice of the dimension of the subspace that one

fits to the training data in each class.

The Sparse Representation-based Classification (SRC) algorithm [117], on the

other hand, uses directly the training data across all classes at the same time in

order to classify a given query. More precisely, SRC assumes that a test sample

can be represented linearly in terms of all training data across all classes. However,

a sparse representation would correspond to a linear combination of a few training

samples from the right class. Thus, a sparse representation can be used to determine

the class of a given query. While SRC works quite well in practical problems, there

is no theoretical understanding of the modeling assumptions and conditions on the

data and the manifolds under which the algorithm succeeds. Moreover, in practical

problems, there are often structural relationships among the data in each class, which

are not used in the SRC model.

1.2 Thesis contributions

In this thesis, we present new frameworks for the problems of clustering, dimen-

sionality reduction and classification of multi-manifold data. We propose algorithms

10



CHAPTER 1. INTRODUCTION

based on sparse representation techniques to effectively address these problems. The

key idea behind the proposed algorithms is what we call the self-expressiveness prop-

erty of the data, which is that in an appropriate dictionary formed from the given

data points in multiple manifolds, a sparse representation of a data point corresponds

to selecting other data points from the same manifold. Our goal is then to search for

such sparse representations and use them in appropriate frameworks to cluster, em-

bed, and classify multi-manifold data. We propose sparse optimization programs to

find such desired sparse representation techniques and develop theoretical guarantees

for the success of the proposed algorithms.

1.2.1 Clustering in a union of subspaces

In the first part of the thesis, we propose and study an algorithm based on sparse

representation techniques, called Sparse Subspace Clustering (SSC), to cluster a col-

lection of data points lying in a union of low-dimensional subspaces [40, 41, 45]. The

underlying idea behind the algorithm is the self-expressiveness property of the data,

which is that each data point in a union of subspaces can be efficiently represented as

a linear or an affine combination of other points. Such a representation is not unique

in general because there are infinitely many ways a data point can be expressed as a

combination of other points. The key observation is that a sparse representation of a

data point ideally corresponds to a combination of a few points from its own subspace.

This motivates solving a global sparse optimization program whose solution is used

11



CHAPTER 1. INTRODUCTION

in a spectral clustering framework to obtain the clustering of the data. As a result,

we can overcome the problems of local spectral clustering-based algorithms, such as

choosing the right neighborhood size and dealing with points near the intersection of

subspaces, since, for a given data point, the sparse optimization program automati-

cally selects a few points that are not necessarily close to it but belong to the same

subspace.

Since the sparse optimization program is in general NP-hard, we consider a convex

relaxation. We show that, under mild conditions on the arrangement of subspaces

and data distribution, the proposed convex minimization program recovers the desired

solution, guaranteeing the success of the algorithm. Our theoretical analysis extends

the sparse representation theory to the multi-subspace setting where the number of

points in a subspace is arbitrary, possibly much larger than its dimension.

The proposed convex minimization program can be solved efficiently using convex

programming tools [10, 14] and does not require initialization. Our algorithm can

directly deal with data corruptions such as noise, sparse outlying entries, and missing

entries as well as the more general class of affine subspaces by modifying the sparse op-

timization program to incorporate the corruption and the subspace model. Through

experimental results, we show that our algorithm outperforms the state-of-the-art

subspace clustering methods on two real-world problems of motion segmentation and

face clustering.

12



CHAPTER 1. INTRODUCTION

1.2.2 Clustering and embedding in a union of

nonlinear manifolds

In the second part of the thesis, we consider the more general problem of clus-

tering and dimensionality reduction of data lying in a union of nonlinear manifolds.

We propose an algorithm based on sparse representation techniques, called Sparse

Manifold Clustering and Embedding (SMCE), for simultaneous clustering and em-

bedding of data [43]. Unlike conventional methods that first build a neighborhood

graph and then learn a set of weights for it, our method simultaneously builds the

neighborhood graph and learns its weights. This leads to successful results even in

challenging situations where the manifolds are spatially close to each other.

More specifically, we use the geometrically motivated assumption that for each

data point there exists a small neighborhood in which only the points that come

from the same manifold lie approximately in a low-dimensional affine subspace. We

propose a sparse optimization program to select a few neighbors of each data point

that span a low-dimensional affine subspace passing near that point. As a result,

a few nonzero elements of the solution indicate the points that are on the same

manifold. Hence, they can be used for clustering. In addition, the weights associated

with the chosen neighbors indicate their similarities to the given data point, which

can be used for dimensionality reduction. Clustering and embedding of the data into

lower dimensions follows by taking the eigenvectors of the matrix of weights and its

13



CHAPTER 1. INTRODUCTION

submatrices, which are sparse, and hence can be stored and be operated on efficiently.

Thanks to the sparse representation framework employed by SMCE, we do not

need to specify the number of nearest neighbors a priori. In fact, the optimization

program selects the neighbors of each point automatically, where the number of neigh-

bors of a data point depends on the local intrinsic dimensionality of the manifold at

that point. Finally, SMCE has only one free parameter that, for a large range of val-

ues, results in a stable clustering and embedding, as we will show in the experimental

results. To the best of our knowledge, SMCE is the only algorithm proposed to date

that allows robust automatic selection of neighbors and simultaneous clustering and

dimensionality reduction in a unified manner.

1.2.3 Classification in a union of subspaces

In the last part of the thesis, we consider the classification of multi-manifold data,

where the training data in each class lie in a manifold characterized by a union of

low-dimensional subspaces. We show that instead of looking for the sparsest repre-

sentation of a test example in the dictionary of all the training data, a better criterion

for classification is to look for a representation of the test example that involves the

minimum number of blocks from the dictionary [42]. As a result, we study the prob-

lem of block-sparse recovery and consider two classes of block-sparse optimization

programs to address the problem. We study conditions under which each class of the

convex programs can recover the desired solution [42,44].

14



CHAPTER 1. INTRODUCTION

To evaluate the classification performance of the two classes of convex programs,

we consider synthetic experiments as well as the problem of automatic face recog-

nition. By extensive experiments, we show that the methods based on block-sparse

representation improve the state-of-the-art face recognition results for classifying both

uncorrupted and corrupted data. More specifically, we show that the proposed convex

programs improve face recognition results by 10% when the number of training data

in each class is as small as the dimension of the face subspace. In addition, we show

that the algorithms can efficiently handle corruptions and occlusions.

1.3 Thesis outline

The rest of the thesis is outlined as follows. In Chapter 2, we review the sparse

representation theory for recovering sparse and group-sparse representations of sig-

nals/vectors in a given dictionary. We also review some of the most important mani-

fold clustering and embedding techniques. In Chapter 3, we present our work for clus-

tering of data in a union of subspaces based on sparse representation techniques. We

study the theoretical guarantees of the proposed method and evaluate it on synthetic

data as well as the real-world problems of motion segmentation and face clustering. In

Chapter 4, we generalize the result to clustering and dimensionality reduction of data

in a union of nonlinear manifolds. We present an algorithm that can deal well with

spatially close manifolds as well as manifolds with non-uniform sampling and holes.

15



CHAPTER 1. INTRODUCTION

We demonstrate the effectiveness of the proposed algorithm on several synthetic and

real examples. In Chapter 5, we present our work for classification of multi-manifold

data where the manifold of each class is modeled as a union of low-dimensional sub-

spaces. We study two classes of convex optimization programs whose solutions are

used in order to classify a given query. We investigate the theoretical guarantees of

the convex programs and evaluate them on synthetic data as well as the real-world

problem of face recognition. Finally, we summarize the conclusions of this work in

Chapter 6.

16



Chapter 2

Background Material

Throughout this thesis, we denote vectors by boldface lowercase letters, such as a,

and denote matrices by boldface uppercase letters, such as A. Moreover, throughout

the thesis, we assume that vectors and matrices consist of real valued elements. a ∈

Rm indicates a column vector that consists of m real-valued elements, and A ∈

Rm×n indicates a matrix with m rows and n columns that consists of real-valued

elements. The transposition operator is denoted by [ · ]>. Specifically, A> ∈ Rn×m is

the transpose of A ∈ Rm×n, where the element at each row i and each column j of

A> is equal to the element at the row j and the column i of A.

We denote by 1m ∈ Rm a vector whose elements are all equal to one and denote

by Im the identity matrix in Rm×m, i.e., a diagonal matrix whose diagonal entries are

all equal to one. We drop the subscript and use 1 and I whenever the dimensions

are clear from the context.

17



CHAPTER 2. BACKGROUND MATERIAL

2.1 Vector and matrix norms

Consider a vector a =

[
a1 · · · am

]>
∈ Rm, which consists of m real valued

elements, ai. The `q-norm of a, for q > 0, is defined as

‖a‖q , (
m∑

i=1

|ai|q )1/q. (2.1)

`∞-norm is defined by taking a limit as q → ∞. It can be shown that `∞-norm is

equal to the maximum absolute value of the elements of a, i.e.,

‖a‖∞ = max
i
|ai|. (2.2)

For the specific case of q = 0, the `0-norm of a, denoted by ‖a‖0
1, is defined as the

number of nonzero elements of a, i.e.,

‖a‖0 =
n∑

i=1

I(|ai| > 0), (2.3)

where I(·) denotes the indicator function whose value is equal to one when its argu-

ment is true and equal to zero otherwise. The `0-norm can also be considered as the

limit of the `q-norm of a when q approaches zero.

Given a matrix A ∈ Rm×n, the `q-norm of A, for q > 0, is defined as the `q-norm

of a vector that consists of all the elements of A, i.e.,

‖A‖q = (
m∑

i=1

n∑

j=1

|aij|q)1/q, (2.4)

1Note that ‖a‖0 is not in fact a real norm, since it does not satisfy the properties of a norm
function. However, it is commonly referred to as a norm in the literature.

18



CHAPTER 2. BACKGROUND MATERIAL

where aij denotes the element at the row i and the column j of A. For example, ‖A‖1

is the sum of the absolute values of the elements of A. ‖A‖2, known as the Frobenius

norm and denoted also by ‖A‖F , is the square root of the sum of the squared elements

of A.

For p, q > 0, the mixed `p/`q-norm of A =

[
a1 · · · an

]
∈ Rm×n is defined as

‖A‖p,q = (
n∑

i=1

‖ai‖pq)1/p. (2.5)

For example, ‖A‖∞,2 corresponds to the maximum `2-norm of the columns of A.

2.2 Sparse representation theory

In this section, we review the sparse representation theory as well as some of the

main theoretical results, which we will make connection to later in this thesis.

2.2.1 Recovery of sparse signals

Sparse signal recovery has drawn increasing attention in many areas such as sig-

nal and image processing, computer vision, machine learning, and bioinformatics (see

e.g., [20, 35, 86, 116] and the references therein). The key assumption behind sparse

signal recovery is that an observed signal y ∈ RD can be written as a linear combi-

nation of a few atoms of a given dictionary B ∈ RD×N . More formally, consider an

underdetermined system of linear equations of the form y = Bc, where y lies in the

19



CHAPTER 2. BACKGROUND MATERIAL

y 2 RD B 2 RD⇥N

c 2 RN

Figure 2.1: In an underdetermined dictionary B ∈ RD×N , there are infinitely many
representations c for a given y. Sparse representation refers to a c that has only a
few nonzero elements.

range-space ofB that has more columns than rows (N > D), hence allowing infinitely

many solutions for y (see Figure 2.1). Sparsity of the desired solution arises in many

problems and can be used to restrict the set of possible solutions. In principle, the

problem of finding the sparsest representation of a given signal can be cast as the

following optimization program

P`0 : min ‖c‖0 s. t. y = Bc. (2.6)

We say that a vector c is k-sparse if it has at most k nonzero elements. While

finding the sparse representation of a given signal using P`0 is in general NP-hard [1],

the pioneering work of Donoho [33] and Candes [21] showed that, under appropriate

conditions, this problem can be solved efficiently as

P`1 : min ‖c‖1 s. t. y = Bc. (2.7)

20



CHAPTER 2. BACKGROUND MATERIAL

Since then, there has been an outburst of research articles investigating conditions

under which the two optimization programs, P`1 and P`0 , are equivalent.

Nullspace property. The work of [30,58] derives necessary and sufficient conditions

for the recovery of sparse signals. More specifically, Let Λk denote a set of k different

indices from {1, . . . , N} and Λk̂ denote the remaining N − k indices. Let BΛk ∈

RD×k and BΛk̂
∈ RD×N−k be submatrices of B whose columns are selected from B

according to Λk and Λk̂, respectively. The nullspace property states that P`1 and P`0

are equivalent and recover the k-sparse representation of any given signal if and only

if

∀ck 6= 0,∀ck̂ 6= 0 such that BΛkck = BΛ
k̂
ck̂ =⇒ ‖ck‖1 < ‖ck̂‖1. (2.8)

In other words, for every nonzero vector x that lives in the range-space of both BΛk

and BΛ
k̂
, the `1-norm of the representation of x in BΛk must be strictly smaller than

the `1-norm of any representation of x in BΛ
k̂
.

While the null-space property provides necessary and sufficient conditions for the

equivalence of P`1 and P`0 , it is not possible to check the above condition for every Λk

and for every x in the intersection of the ranges-spaces of BΛk and BΛ
k̂
. Moreover,

the condition above does not explicitly characterize the relationships among the atoms

of the dictionary under which P`1 and P`0 are equivalent. This has motivated inves-

tigating a series of sufficient conditions based on the notions of mutual/cumulative

coherence [31, 104] and the restricted isometry property [17, 21], which we describe

next. Throughout the section, we assume that the columns of B have unit Euclidean

21



CHAPTER 2. BACKGROUND MATERIAL

norm.

Mutual/Cumulative coherence. The mutual coherence of a dictionary B is

defined as

µ , max
i 6=j
|b>i bj|, (2.9)

where bi denotes the i-th column of B of unit Euclidean norm. [104] and [31] show

that if the sufficient condition

(2k − 1)µ < 1 (2.10)

holds, then the optimization programs P`1 and P`0 are equivalent and recover the

k-sparse representation of a given signal. While µ can be easily computed, it does not

characterize a dictionary very well since it measures the most extreme correlations in

the dictionary.

To better characterize a dictionary, cumulative coherence measures the maximum

total coherence between a fixed atom and a collection of k other atoms. Specifically,

the cumulative coherence associated with a positive integer k [104] is defined as

ζk , max
Λk

max
i/∈Λk

∑

j∈Λk

|b>i bj|, (2.11)

where Λk denotes a set of k different indices from {1, . . . , N}. Note that for k = 1, we

have ζ1 = µ. Although cumulative coherence is, in general, more difficult to compute

than mutual coherence, it provides sharper results for the equivalence of P`1 and P`0 .

In particular, [104] shows that if

ζk + ζk−1 < 1, (2.12)

22



CHAPTER 2. BACKGROUND MATERIAL

then the optimization programs P`1 and P`0 are equivalent and recover the k-sparse

representation of a given signal. Using the definitions, one can verify that ζk ≤ kµ

for all integers k ≥ 1. As a result, (2.12) provides a weaker condition than (2.10) for

sparse recovery of signals.

Restricted isometry property. An alternative sufficient condition for the equiv-

alence between P`1 and P`0 is based on the so-called restricted isometry property

(RIP) [17, 21]. For a positive integer k, the restricted isometry constant of a dictio-

nary B is defined as the smallest constant δk for which

(1− δk)‖c‖2
2 ≤ ‖Bc‖2

2 ≤ (1 + δk)‖c‖2
2 (2.13)

holds for all k-sparse vectors c. [17] shows that if δ2k <
√

2− 1, then P`1 and P`0 are

equivalent. The bound in this result has been further improved and [48] shows that

if δ2k < 0.4652, then P`1 and P`0 are equivalent.

2.2.2 Recovery of block-sparse signals

Recently, there has been growing interest in recovering sparse representations

of signals in a union of a large number of subspaces, under the assumption that

the signals live in the direct sum of only a few subspaces. Such a representation

whose nonzero elements appear in a few blocks is called a block-sparse representation.

Block sparsity arises in various applications such as reconstructing multi-band signals

[80, 81], measuring gene expression levels [86], face/digit/speech recognition [42, 52,

23



CHAPTER 2. BACKGROUND MATERIAL

m1 = 100 m2 = 100 m3 = m4 = · · · = m100 = 1

m1 = 50 m2 = 50 m3 = 50 m99 = 50 m100 = 50

Figure 2.2: Top: a block-sparse vector is not necessarily sparse. In this example,
2 nonzero blocks out of 100 blocks correspond to 200 nonzero elements out of 298
elements. Bottom: a sparse vector is not necessarily block-sparse. In this example,
all 100 blocks are nonzero each having one nonzero element. However, this gives rise
to only 50 nonzero elements out of 5,000 elements.

53, 117], clustering of data on multiple subspaces [40, 41, 45], finding exemplars in

datasets [39], multiple measurement vector recovery [23,26,70,108], etc.

The recovery of block-sparse signals involves solving a system of linear equations

of the form

y = Bc =

[
B[1] · · · B[n]

]
c, (2.14)

where B ∈ RD×m consists of n blocks B[i] ∈ RD×mi and m =
∑n

i=1mi. The main

difference with respect to classical sparse recovery is that the desired solution of (2.14)

corresponds to a few nonzero blocks rather than a few nonzero elements of B. We

say that a vector c> =

[
c[1]> · · · c[n]>

]
is k-block-sparse, if at most k blocks

c[i] ∈ Rmi are different from zero. Note that, in general, a block-sparse vector is not

necessarily sparse and vice versa, as shown in Figure 2.2.

The problem of finding a representation of a signal y that uses the minimum

24



CHAPTER 2. BACKGROUND MATERIAL

number of blocks of B can be cast as the following optimization program

P`q/`0 : min
n∑

i=1

I(‖c[i]‖q) s. t. y = Bc, (2.15)

where q ≥ 0 and I(·) is the indicator function, which is zero when its argument is

zero and is one otherwise. In fact, the objective function in (2.15) counts the number

of nonzero blocks of a solution. However, solving (2.15) is in general an NP-hard

problem [1] as it requires searching exhaustively over all choices of a few blocks of B

and checking whether they span the observed signal. The `1 relaxation of P`q/`0 has

the following form

P`q/`1 : min
n∑

i=1

‖c[i]‖q s. t. y = Bc. (2.16)

For q ≥ 1, the optimization program P`q/`1 is convex and can be solved efficiently

using convex programming tools [14].

Remark 1 For q = 1, the convex program P`1/`1 is the same as P`1 in (2.7) used

for sparse recovery. In other words, while the `1 optimization program, under some

conditions, can recover a sparse representation of a signal, it can also recover a block-

sparse representation, under appropriate conditions, as we will discuss in the thesis.

The work of [36,37,96] study conditions under which for the special case of q = 2,

P`2/`1 and P`2/`0 are equivalent. These conditions are based on generalizations of

the null-space property, mutual coherence and restricted isometry property, as we

describe next.

25



CHAPTER 2. BACKGROUND MATERIAL

Block-nullspace property. The block-nullspace property provides necessary and

sufficient conditions for the equivalence of the two optimization programs P`2/`1 and

P`2/`0 [96]. More specifically, Let Λk denote a set of k different indices from {1, . . . , n}

and Λk̂ denote the remaining n − k indices. Let BΛk and BΛk̂
be submatrices of

B whose blocks are selected from B according to Λk and Λk̂, respectively. The

block-nullspace property states that P`2/`1 and P`2/`0 are equivalent and recover the

k-block-sparse representation of any given signal if and only if

∀ck 6= 0,∀ck̂ 6= 0 such that BΛkck = BΛ
k̂
ck̂ =⇒

k∑

i=1

‖ck[i]‖2 <
n−k∑

i=1

‖ck̂[i]‖2.

(2.17)

In other words, for every nonzero vector x that lies in the range-space of both BΛk

and BΛ
k̂
, the mixed `2/`1-norm of the representation of x in BΛk must be strictly

smaller than the mixed `2/`1-norm of any representation of x in BΛ
k̂
.

In practice, it is not possible to check the condition above for every Λk and for

every x in the intersection of the range-spaces of BΛk and BΛ
k̂
. Moreover, the

condition above does not explicitly characterize the relationships among the atoms

and the blocks of the dictionary under which P`2/`1 and P`2/`0 are equivalent. This has

motivated investigating sufficient conditions based on generalizations of the mutual

coherence and restricted isometry property in the conventional sparse recovery.

Block-coherence. The work of [36] assumes that the blocks have linearly inde-

pendent columns and are of the same length d, i.e., for each i, rank(B[i]) = mi = d.

26



CHAPTER 2. BACKGROUND MATERIAL

Under these assumptions, [36] defines the block-coherence of a dictionary B as

µB , max
i 6=j

σ1(B[i]>B[j]), (2.18)

where σ1(·) denotes the largest singular value of the given matrix. Also, the subco-

herence of B is defined as ν , maxi µi where µi denotes the mutual coherence for the

i-th block. [36] shows that if

(2k − 1)µB < 1− (d− 1)ν, (2.19)

then P`2/`1 and P`2/`0 are equivalent and recover the k-block-sparse representation of

a given signal. Note that when d = 1, (2.19) reduces to (2.10).

Block-RIP. [37] assumes that the blocks have linearly independent columns, al-

though their lengths need not be equal. Under this assumption, [37] defines the block

restricted isometry constant of B as the smallest constant δB,k such that

(1− δB,k)‖c‖2
2 ≤ ‖Bc‖2

2 ≤ (1 + δB,k)‖c‖2
2 (2.20)

holds for every k-block-sparse vector c. Analogous to the conventional sparse recovery

results, [37] shows that if δB,2k <
√

2− 1, then P`2/`1 and P`2/`0 are equivalent.

The work of [96] proposes an alternative analysis framework for block-sparse recov-

ery using P`2/`1 in the special case of Gaussian dictionaries. By analyzing the nullspace

of the dictionary, it shows that if the blocks have linearly independent columns, per-

fect recovery is achieved with high probability as the length of the signal, D, grows

to infinity.

27



CHAPTER 2. BACKGROUND MATERIAL

An alternative approach to recover the block-sparse representation of a given signal

is to solve the optimization program

P ′`q/`0: min
n∑

i=1

I(‖B[i]c[i]‖q) s. t. y = Bc, (2.21)

for q ≥ 0. Notice that the solution to this problem coincides with that of P`q/`0

for blocks with linearly independent columns since ‖B[i]c[i]‖q > 0 if and only if

‖c[i]‖q > 0. Nevertheless, P ′`q/`0 is an NP-hard problem. In the case of q ≥ 1, the

following `1 relaxation

P ′`q/`1 : min
n∑

i=1

‖B[i]c[i]‖q s. t. y = Bc, (2.22)

is a convex program and can be solved efficiently. The work of [50] studies conditions

under which, for the special case of q = 2, P ′`2/`1 and P ′`2/`0 are equivalent. The

conditions are based on the notion of mutual subspace incoherence, as described

next.

Mutual subspace coherence. The work of [50] introduces the notion of mutual

subspace coherence of B, which is defined as

µS = max
i 6=j

max
x∈Si,z∈Sj

|x>z|
‖x‖2‖z‖2

, (2.23)

where Si = span(B[i]). Under the assumption that the blocks have linearly indepen-

dent columns and the subspaces spanned by each block are disjoint, [50] shows that

P ′`2/`1 and P ′`2/`0 are equivalent if

(2k − 1)µS < 1. (2.24)

28



CHAPTER 2. BACKGROUND MATERIAL

As mentioned above, the state-of-the-art block-sparse recovery methods [11, 36,

37, 50, 96] consider dictionaries whose blocks consist of linearly independent vectors

which we refer to as non-redundant blocks. However, in signal/image processing,

machine learning, and computer vision problems such as face recognition [42, 117]

and motion segmentation [40, 88], blocks of a dictionary consist of data points and

often the number of data points in each block exceeds the dimension of the underlying

subspace. For example, in automatic face recognition, the number of training images

in each block of the dictionary is often more than the dimension of the face subspace,

known to be 9 under a fixed pose and varying illumination [6]. In fact, having more

data in each block helps to better capture the underlying distribution of the data in

each subspace, and hence increases the performance of tasks such as classification.

However, to the best of our knowledge, existing theoretical results have not addressed

recovery in dictionaries whose blocks have linearly dependent atoms, which we refer to

as redundant blocks. Moreover, theoretical analysis for the equivalence between P`q/`1

and P`q/`0 as well as the equivalence between P ′`q/`1 and P ′`q/`0 has been restricted to

only q = 2. Nevertheless, empirical studies in some applications [126], have shown

better block-sparse recovery performance for q 6= 2. Therefore, there is a need for

analyzing the performance of each class of convex programs for arbitrary q ≥ 1.

Remark 2 Another line of research that considers the problem of block-sparse recov-

ery is the work of [3, 64, 85]. However, the modeling assumption on the dictionary is

different from what we have reviewed so far and what we are interested in this thesis.

29



CHAPTER 2. BACKGROUND MATERIAL

Specifically, [3, 64, 85] consider the regularized least-squares problem of

min
c

1

2
‖y −Bc‖2

2 + λΩ(c), (2.25)

where Ω(c) is a block-sparsity inducing norm on the coefficient vector c. However,

they make assumptions about the rows of the matrix B, while [36, 37] and the work

in this thesis make assumptions about the columns of B. In fact, the assumptions in

[3,64,85] almost never hold in the setting considered in this thesis. More precisely, the

assumption A2 in [3] or the result of Proposition 1 and Theorem 6 in [64] require the

empirical covariance matrix formed by the rows of B to be full-rank. Similarly, [85]

assumes that the rows of B are drawn in an i.i.d. manner from a zero mean Gaussian

distributions with a positive definite covariance matrix. However, such assumptions

are easily violated when the columns of B are drawn from a union of subspaces.

For example, when the columns of B are drawn from a one-dimensional line, the

covariance matrix formed by the rows of B is always rank deficient (is of rank one).

As a result, neither the work of [3,64] nor our work is a special case of the other and

the obtained conditions in our work cannot be compared with the conditions in [3,64]

and vice versa.

The work of [121] also considers the optimization program in (2.25) where the

blocks of B consist of orthonormal columns. However, in our work, we consider the

constraint optimization program in (2.16) instead of the unconstraint optimization in

(2.25) and we study the more general case where the blocks of B can consist of linearly

dependent columns.

30



CHAPTER 2. BACKGROUND MATERIAL

yi

yj

wij

Figure 2.3: To build a neighborhood graph, one connects each node to its K nearest
neighbors or to the nodes that are inside an ε-ball centered at node.

2.3 Manifold clustering and embedding

In this section, we review some of the most important algorithms for clustering

and dimensionality reduction of data in manifolds. Given N data points {yi ∈ RD}Ni=1

that lie in a union of n manifolds {M`}n`=1, the problem of manifold clustering refers

to the problem of separating the data into their underlying manifolds. In other

words, we would like to find a partition {Λ`}n`=1 for the set {1, 2, . . . , N} such that

data points indexed by Λ` belong to the same manifold M`. Once we cluster the

data, the dimensionality reduction (embedding) problem aims at finding compact

representations {xi ∈ Rd`}i∈Λ` for the data in each manifold, where d` < D denotes

the embedding dimension of the data in cluster `.

The majority of manifold clustering and embedding algorithms relies on building

a neighborhood graph whose nodes represent the data points and whose edge weights

encode information that can be used for clustering and embedding, see Figure 2.3.

31



CHAPTER 2. BACKGROUND MATERIAL

Such algorithms often follow the following three step procedure:

1. Build a neighborhood graph with N nodes representing the N data points.

Connect each point to its K nearest neighbors or to points that are inside an

ε-ball centered at that point.

2. Learn a set of weights {wij} describing the similarity between a node i and any

node j, using the neighborhood graph.

3. Find clustering and low-dimensional representations for the data using the

learned weights.

Most algorithms assume that a good value of K or ε is given, hence a good

neighborhood graph is available. The main difference among algorithms is in their

procedures for learning the weights.

2.3.1 Laplacian eigenmaps and spectral clustering

The Laplacian eigenmaps (LEM) algorithm [7] is motivated by the geometric idea

that data points that are close in the high-dimensional space should remain close

to each other in the low-dimensional embedding. As a result, LEM learns weights

between a point and its neighbors and tries to preserve these weights in the low-

dimensional representation of the data points. LEM proposes two approaches to

choose the weights for the edges of the neighborhood graph:

32



CHAPTER 2. BACKGROUND MATERIAL

• [Simple-minded] set wij = 1 if nodes i and j are connected by an edge in the

neighborhood graph, otherwise set wij = 0.

• [Heat kernel] given a parameter t > 0, set wij = e−
‖yi−yj‖

2
2

t if nodes i and j are

connected by an edge in the neighborhood graph, otherwise set wij = 0.

Once the weights are learned, the last step is to find low-dimensional representa-

tions {xi ∈ Rd}Ni=1 for the data such that xi and xj are close if yi and yj are close,

i.e., if nodes i and j are connected in the neighborhood graph. Such low-dimensional

representations are obtained by finding the bottom eigenvectors of the normalized

Laplacian matrix of the graph. More specifically, denoting the weight matrix as

W = [wij] ∈ RN×N , LEM forms the normalized Laplacian matrix of the graph as

L = I −D−1W , (2.26)

where D = diag(d1, . . . , dN) is a diagonal matrix whose i-th element is equal to the

sum of the weights of the edges connected to the node i, i.e., di =
∑N

j=1wij. The

Laplacian matrix is symmetric positive semidefinite [7]. Collecting the d eigenvectors

of L corresponding to its second to the (d + 1)-th smallest eigenvalues in a matrix

V ∈ RN×d, the d-dimensional representation of the N data points are then given by

the rows of V .

When the data lie in n manifolds, under the assumption that the points in dif-

ferent manifolds are well-separated from each other, the graph will have n connected

components, each component corresponding to a manifold. In such a case, one can

33



CHAPTER 2. BACKGROUND MATERIAL

use the normalized Laplacian matrix of the graph, defined in (4.11), and find the

components of the graph by applying the Kmeans algorithm [34] to the rows of a

matrix V ∈ RN×n, which is composed of the n eigenvectors of L corresponding to its

smallest eigenvalues. Once the data are separated into their underlying manifolds, in

order to find a low-dimensional representation of the data in each manifold, one has

to apply the LEM algorithm separately to the data points in each cluster.

2.3.2 Locally linear embedding and clustering

The Locally Linear Embedding (LLE) algorithm [91] uses the geometric idea that

each point and its nearest neighbors lie in or close to a locally linear patch of the

manifold. Thus, each data point, yi, can be approximately reconstructed using the

affine combination of its nearest neighbors, {yj}j∈Ni , where Ni represents the indices

of the neighbors of yi, suggesting to solve

min
{wij}j∈Ni

∥∥∥∥∥yi −
∑

j∈Ni

wijyj

∥∥∥∥∥

2

2

s. t.
∑

j∈Ni

wij = 1. (2.27)

It is shown in [91] that the obtained weights are invariant with respect to rotations

and global translation of the data. Hence, the leaned weights {wij} reflect intrinsic

geometric properties of the data.

LLE then tries to reconstruct a neighborhood preserving mapping such that the

low-dimensional representations of data points preserve the geometric relationships of

the data in the high-dimensional space. More precisely, in the low-dimensional space,

34



CHAPTER 2. BACKGROUND MATERIAL

one expects that xi can be efficiently reconstructed from {xj}j∈Ni using the learned

weights. This suggests looking for xi that minimize

∥∥∥∥∥xi −
∑

j∈Ni

wijxj

∥∥∥∥∥

2

2

, (2.28)

using the learned weights. Collecting xi as the columns of a matrix X ∈ Rd×N ,

and building the weight matrix W = [wij], the LLE algorithm finds the embedding

vectors by solving the minimization program

min
X
‖X −XW>‖2

F s. t. X1 = 0,
1

N
XX> = I. (2.29)

The constraint X1 =
∑N

i=1 xi = 0 removes the translational degree of freedom of the

embedding vectors and centers them at the origin, while and the constraint 1
N
XX> =

1
N

∑N
i=1 xix

>
i removes the arbitrary rotational and scaling degrees of freedom of the

embedding vectors by requiring them to have unit covariance.

It turns out that the solution of the optimization program in (2.29) is given by

the bottom eigenvectors of the following matrix

M = (I −W )>(I −W ). (2.30)

More precisely, collecting the d eigenvectors of M corresponding to its second to the

(d+ 1)-th smallest eigenvalues in a matrix V ∈ RN×d, the d-dimensional representa-

tion of the N data points are given by the rows of V .

When data lie in n ≥ 2 manifolds that are sufficiently separated such that the

points from different manifolds are not connected to each other in the neighborhood

35



CHAPTER 2. BACKGROUND MATERIAL

graph, the dimension of the nullspace of M is at least n [87]. The work of [87]

uses the bottom eigenvectors of M to find the components of the graph, i.e., the

manifolds. However, the drawback of this approach is that there is no guarantee

that the dimension of the nullspace can be in general greater than the umber of

components of the graph, hence not all vectors in the nullspace of M are informative

about the memberships of the data to the manifolds. [55] tries to resolve this issue in

the case of flat manifolds by analyzing the variance of the vectors in the nullspace of

M , however, the presented result is not theoretically correct.

36



Chapter 3

Sparse Subspace Clustering

In this section, we consider the problem of clustering a collection of data points

that lie in a union of subspaces. We propose an algorithm, called Sparse Subspace

Clustering (SSC), to address this problem [40, 41, 45]. The key idea is that, among

infinitely many possible representations of a data point in terms of other points, a

sparse representation corresponds to selecting a few points from the same subspace.

This motivates solving a sparse optimization program whose solution is used in a

spectral clustering framework to infer the clustering of data into subspaces.

Since solving the sparse optimization program is in general NP-hard, we consider

a convex relaxation and show that, under appropriate conditions on the arrangement

of the subspaces and the distribution of data, the proposed minimization program

succeeds in recovering the desired sparse representations. The proposed algorithm can

be solved efficiently and can handle data points near the intersections of subspaces.

37



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Figure 3.1: Motion segmentation: given feature points on multiple rigidly moving
objects tracked in multiple frames of a video (top), the goal is to separate the feature
trajectories according to the moving objects (bottom).

Figure 3.2: Face clustering: given face images of multiple subjects (top), the goal is
to find images that belong to the same subject (bottom).

Another key advantage of the proposed algorithm with respect to the state of the

art (see Section 3.1 for a brief review) is that it can deal with data nuisances, such

as noise, sparse outlying entries, and missing entries, directly by incorporating the

model of the data into the sparse optimization program. Moreover, it does not need

to know the dimensions of the subspaces a priori. We demonstrate the effectiveness

of the proposed algorithm through experiments on synthetic data as well as the two

real-world problems of motion segmentation (Fig. 3.1) and face clustering (Fig. 3.2).

Before presenting the proposed framework, we review the existing methods for

38



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

subspace clustering.

3.1 A review of subspace clustering

algorithms

Existing subspace clustering algorithms can be divided into three main categories:

iterative/algebraic, statistical, and spectral clustering-based methods.

3.1.1 Iterative/algebraic methods

Iterative approaches, such as K-subspaces [15, 106] and median K-flats [123] al-

ternate between assigning points to subspaces and fitting a subspace to each cluster.

The main drawbacks of such approaches are that they generally require to know the

number and dimensions of subspaces, and that they are sensitive to initialization.

Factorization-based approaches such as [25, 51, 66] find an initial segmentation by

thresholding the entries of a similarity matrix built from the factorization of the data

matrix. These methods are provably correct when the subspaces are independent,

but fail when this assumption is violated. In addition, they are sensitive to noise and

outliers in the data.

Algebraic approaches such as Generalized Principal Component Analysis (GPCA)

[78, 111], fit the data with a polynomial whose gradient at a point gives the normal

39



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

vector to the subspace containing that point. While GPCA can deal with subspaces of

different dimensions, it is sensitive to noise and outliers, and its complexity increases

exponentially in terms of the number and the dimensions of the subspaces.

3.1.2 Statistical methods

Iterative statistical approaches, such as Mixtures of Probabilistic PCA (MP-

PCA) [100], Multi-Stage Learning (MSL) [97], or [59], assume that the distribution

of the data inside each subspace is Gaussian and alternate between data clustering

and subspace estimation by applying the Expectation Maximization (EM) algorithm.

The main drawbacks of these methods are that they generally need to know the num-

ber and dimensions of the subspaces, and that they are sensitive to initialization.

Robust statistical approaches, such as Random Sample Consensus (RANSAC) [47],

fit a subspace of dimension d to randomly chosen subsets of d points until the number

of inliers is large enough. The inliers are then removed, and the process is repeated

to find a second subspace, and so on. RANSAC can deal with noise and outliers,

and does not need to know the number of subspaces. However, the dimensions of the

subspaces must be known and equal. In addition, the complexity of the algorithm

increases exponentially in the dimension of the subspaces.

Information-theoretic statistical approaches, such as Agglomerative Lossy Com-

pression (ALC) [89], look for the segmentation of the data that minimizes the coding

length needed to fit the points with a mixture of degenerate Gaussians up to a given

40



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

distortion. As this minimization problem is NP-hard, a suboptimal solution is found

by first assuming that each point forms its own group, and then iteratively merging

pairs of groups to reduce the coding length. ALC can handle noise and outliers in

the data. While, in principle, it does not need to know the number and dimensions

of the subspaces, the number of subspaces found by the algorithms is dependent on

the choice of a distortion parameter. In addition, there is no theoretical proof for the

optimality of the agglomerative algorithm.

3.1.3 Spectral clustering-based methods

Local spectral clustering-based approaches such as Local Subspace Affinity (LSA)

[118], Locally Linear Manifold Clustering (LLMC) [55], Spectral Local Best-fit Flats

(SLBF) [124], and [122] use local information around each point to build a similarity

between pairs of points. The segmentation of the data is then obtained by applying

spectral clustering [84, 113] to the similarity matrix. These methods have difficulties

dealing with points near the intersection of two subspaces, because the neighborhood

of a point can contain points from different subspaces. In addition, they are sensitive

to the right choice of the neighborhood size to compute the local information at each

point.

Global spectral clustering-based approaches try to resolve these issues by building

better similarities between data points using global information. Spectral Curvature

Clustering (SCC) [22] uses multi-way similarities that capture the curvature of a col-

41



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

lection of points within an affine subspace. SCC can deal with noisy data but requires

to know the number and dimensions of subspaces and assumes that subspaces have

the same dimension. In addition, the complexity of building the multi-way similar-

ity grows exponentially with the dimensions of the subspaces, hence, in practice, a

sampling strategy is employed to reduce the computational cost. Using advances in

sparse [21,33,99] and low-rank [18,19,90] recovery algorithms, Sparse Subspace Clus-

tering (SSC) [40,41,94], Low-Rank Recovery (LRR) [75–77], and Low-Rank Subspace

Clustering (LRSC) [46] algorithms pose the clustering problem as finding a sparse or

low-rank representation of the data in the dictionary of the data itself. The solution

of the corresponding global optimization algorithm is then used to build a similarity

graph from which the segmentation of the data is obtained. The advantages of these

methods with respect to most state-of-the-art algorithms are that they can handle

noise and outliers in data, and that they do not need to know the dimensions and, in

principle, the number of subspaces a priori.

3.2 Sparse subspace clustering algorithm

In this section, we introduce the sparse subspace clustering (SSC) algorithm for

clustering a collection of multi-subspace data using sparse representation techniques.

We motivate and formulate the algorithm for data points that perfectly lie in a union

of linear subspaces. In the next section, we generalize the algorithm to deal with data

42



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

nuisances such as noise, sparse outlying entries, and missing entries as well as the

more general class of affine subspaces.

Let {S`}n`=1 be an arrangement of n linear subspaces of RD of dimensions {d`}n`=1.

Consider a given collection of N noise-free data points {yi}Ni=1 that lie in the union

of the n subspaces. Denote the matrix containing all the data points as

Y ,

[
y1 . . . yN

]
=

[
Y 1 . . . Y n

]
Γ, (3.1)

where Y ` ∈ RD×N` is the matrix of the N` > d` points that lie in S` and Γ ∈ RN×N is

an unknown permutation matrix. We assume that we do not know a priori the bases

of the subspaces nor do we know which data points belong to which subspace. The

subspace clustering problem refers to the problem of finding the number of subspaces,

their dimensions, a basis for each subspace, and the segmentation of the data from

Y .

To address the subspace clustering problem, we propose an algorithm that consists

of two steps. In the first step, for each data point, we find a few other points that

belong to the same subspace. To do so, we propose a global sparse optimization

program whose solution encodes information about the memberships of data points

to the underlying subspace of each point. In the second step, we use this information

in a spectral clustering framework to infer the clustering of the data.

43



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

3.2.1 Sparse optimization program

Our algorithm takes advantage of what we refer to as the self-expressiveness prop-

erty of the data, i.e., each data point in a union of subspaces can be efficiently recon-

structed by a combination of other points in the dataset. More precisely, yi ∈ S` can

be written as

yi = Y ci, cii = 0, (3.2)

where ci ,

[
ci1 ci2 . . . ciN

]>
and the constraint cii = 0 eliminates the trivial

solution of writing a point as a linear combination of itself. In other words, the

matrix of data points Y is a self-expressive dictionary with respect to which each

point can be written as a linear combination of other points.

Notice that the representation of yi in the dictionary Y is not unique in general.

This comes from the fact that the number of data points in a subspace is assume be

to be greater than its dimension, i.e., N` > d`. As a result, each Y `, and consequently

Y , has a non-trivial nullspace giving rise to infinitely many representations of each

data point.The key observation in our proposed algorithm is that among all solutions

of (3.2), there exists a sparse representation, ci, whose nonzero elements correspond

to data points from the same subspace as that of yi. We refer to such a representation

as a subspace-sparse representation.

More specifically, a data point yi that lies in the d`-dimensional subspace S` can be

written as a linear combination of d` other points in general directions from S`. As

a result, ideally, a sparse representation of a data point finds points from the same

44



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

S1

S2

S3

yi

0 5 10 15 20 25 30

ï0.05

0

0.05

0.1
q = '

0 5 10 15 20 25 30

ï0.1

ï0.05

0

0.05

0.1

0.15
q = 2

0 5 10 15 20 25 30

ï0.2

0

0.2

0.4

q = 1

Figure 3.3: Three subspaces in R3 with 10 data points in each subspace, ordered such
that the fist and the last 10 points belong to S1 and S3, respectively. The solution of
the `q-minimization program in (3.3) for yi lying in S1 for q = 1, 2,∞ is shown. Note
that as the value of q decreases, the sparsity of the solution increases. For q = 1, the
solution corresponds to choosing two other points lying in S1.

subspace where the number of the nonzero elements corresponds to the dimensionality

of the underlying subspace.

For a system of equations such as (3.2) with infinitely many solutions, one can

restrict the set of solutions by minimizing an objective function such as the `q-norm

of the solution1 as

min ‖ci‖q s. t. yi = Y ci, cii = 0. (3.3)

Different choices of q have different effects in the obtained solution. Typically, by

decreasing the value of q from infinity toward zero, the sparsity of the solution in-

1Recall that the `q-norm of ci ∈ RN is defined as ‖ci‖q , (
∑N
j=1 |cij |q)

1
q .

45



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

creases, as shown in Figure 3.3. The extreme case of q = 0 corresponds to the general

NP-hard problem [1] of finding the sparsest representation of the given point, as the

`0-norm counts the number of nonzero elements of the solution. Since we are inter-

ested in efficiently finding a non-trivial sparse representation of yi in the dictionary

Y , we consider minimizing the tightest convex relaxation of the `0-norm, i.e.,

min ‖ci‖1 s. t. yi = Y ci, cii = 0, (3.4)

which can be solved efficiently using convex programming tools [13, 14, 68] and is

known to prefer sparse solutions [21,33,99]. We can also rewrite the sparse optimiza-

tion program (3.4) for all data points in the matrix form as

min ‖C‖1 s. t. Y = Y C, diag(C) = 0, (3.5)

where C ∈ RN×N is the matrix of the sparse coefficients whose i-th column corre-

sponds to the sparse representation of yi, i.e., C ,

[
c1 c2 . . . cN

]
, and diag(C) ∈

RN is the vector of the diagonal elements of C.

In Section 3.5, we study conditions under which the solution of (3.5) corresponds

to a subspace-sparse representation of each data point. Next, assuming that C is

subspace-sparse, we use C to infer the clustering of the data.

3.2.2 Clustering using sparse coefficients

After solving the proposed optimization program in (3.5), we obtain a sparse rep-

resentation for each data point whose nonzero elements ideally correspond to points

46



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

from the same subspace. The next step of the algorithm is to infer the segmentation

of the data into different subspaces using the sparse coefficients.

To address this problem, we build a weighted graph G = (V , E ,W ), where V

denotes the set of N nodes of the graph, which corresponds to the N data points,

and E ⊆ V × V denotes the set of the edges between the nodes. W ∈ RN×N is a

symmetric non-negative similarity matrix representing the weights of the edges, i.e.,

node i is connected to node j by an edge whose weight is equal to wij. An ideal

similarity matrix W , hence an ideal similarity graph G, is one in which nodes that

correspond to points from the same subspace are connected to each other and there

are no edges between nodes that correspond to points in different subspaces.

Note that the sparse optimization program ideally recovers to a subspace-sparse

representation of each point, i.e., a representation whose nonzero elements correspond

to points from the same subspace of the given data point. This provides an immediate

choice of the similarity matrix as W = |C| + |C|>. In other words, each node i

connects itself to a node j by and edge whose weight is equal to |cij| + |cji|. The

reason for the symmetrization is that, in general, a data point yi ∈ S` can write

itself as a linear combination of some points including yj ∈ S`. However, yj may

not necessarily choose yi in its sparse representation. By this particular choice of the

weight, we make sure that nodes i and j get connected to each other if either yi or

yj is in the sparse representation of the other.

The similarity graph built in this way has ideally n connected components corre-

47



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

sponding to the n subspaces, i.e.,

W =




W 1 · · · 0

...
. . .

...

0 · · · W n




Γ, (3.6)

where W ` is the similarity matrix of data points in S`. Clustering of data into sub-

spaces follows then by applying the spectral clustering of [84] to G. More specifically,

we first compute the degree matrix of the graph asD = diag(
∑N

j=1 w1j, . . . ,
∑N

j=1wNj).

We then form the symmetric normalized Laplacian matrix of the graph as L =

I −D−1/2WD−1/2and find the n eigenvectors of L associated to its smallest eigen-

values. Denoting the i-th bottom eigenvector as vi, we form the matrix V =
[
v1 · · · vn

]
∈ RN×n, normalize the rows of V to have unit Euclidean norms, and

finally obtain the clustering of the data into n subspaces by applying the Kmeans

algorithm [34] to V .

Remark 3 (Normalization of sparse coefficients) An optional step that often

improves the spectral clustering result is to normalize the sparse coefficients as ci ←

ci/‖ci‖∞ prior to building the similarity graph. This helps to better deal with differ-

ent norms of data points. More specifically, if a data point with a large Euclidean

norm selects a few points with small Euclidean norms, then the values of the nonzero

coefficients will generally be large. On the other hand, if a data point with a small

Euclidean norm selects a few points with large Euclidean norms, then the values of

the nonzero coefficients will generally be small. Since spectral clustering puts more

48



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Algorithm 1 : Sparse Subspace Clustering (SSC)

Input: A set of points {yi}Ni=1 lying in a union of n linear subspaces {Si}ni=1.

1: Solve the sparse optimization program:

C∗ = argminC ‖C‖1 s. t. Y = Y C, diag(C) = 0.

2: Normalize the columns of C∗ as c∗i ← c∗i
‖c∗i ‖∞

.

3: Form a similarity graph with N nodes representing the data points. Set the

weights on the edges between the nodes by W = |C∗|+ |C∗|>.

4: Apply the spectral clustering algorithm of [84] to the similarity graph with weights

W .

Output: Segmentation of the data: Y 1,Y 2, . . . ,Y n.

emphasis on keeping the stronger connections in the graph, by the normalization step

we make sure that the largest edge weights for all the nodes are of the same scale.

In summary, the SSC algorithm for clustering of data points that perfectly lie

in a union of linear subspaces is shown in Algorithm 1. Note that an advantage of

spectral clustering, which will be shown in the experimental results, is that it provides

robustness with respect to a few errors in the sparse representations of data points. In

other words, as long as edges between points in different subspaces are weak, spectral

clustering can find the correct segmentation of the data.

Remark 4 In principle, SSC does not need to know the number of subspaces. More

specifically, under the conditions of the theoretical results in Section 3.5, in the simi-

49



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

larity graph there will be no connections between points in different subspaces. Thus,

one can determine the number of subspaces by finding the number of connected compo-

nents of the graph G, which is given by n = dim(ker(L)), as shown in [113]. However,

when there are connections between points in different subspaces, other model selection

techniques should be employed (see e.g., [16]).

3.3 Practical extensions

In real-world problems, data are often corrupted by noise and sparse outlying en-

tries due to measurement/process noise and ad-hoc data collection techniques, hence,

do not lie perfectly in a union of subspaces. For instance, in the motion segmenta-

tion problem, because of the malfunctioning of the tracker, feature trajectories can

be corrupted by noise or can have entries with large errors [89]. Similarly, in clus-

tering of human faces, images can be corrupted by errors due to specularities, cast

shadows, and occlusions [117]. On the other hand, data points may have missing

entries, e.g., when the tracker loses tracks of some feature points in a video due to

occlusions [110]. Finally, data may lie in a more general class of a union of affine

subspaces, which includes linear subspaces as a special case.

In this section, we generalize the SSC algorithm, which we introduced in the

previous section for clustering of data lying perfectly in a union of linear subspaces,

to deal with the aforementioned challenges. Unlike state-of-the-art methods, which

50



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

require to run a separate algorithm first to correct the errors in the data [89, 110],

we deal with these problems in a unified framework by incorporating a model for the

corruption into the sparse optimization program. Thus, the sparse coefficients again

encode information about the membership of the data to the subspaces, which are

used in a spectral clustering framework, as before.

3.3.1 Noise and sparse outlying entries

In this section, we consider clustering of data points that are contaminated with

sparse outlying entries and noise. Let

yi = y0
i + e0

i + z0
i (3.7)

be the i-th data point that is obtained by corrupting an error-free point y0
i , which

perfectly lies in a subspace, with a vector of sparse outlying entries e0
i ∈ RD that has

only a few large nonzero elements, i.e., ‖e0
i ‖0 ≤ k for some integer k, and with a noise

z0
i ∈ RD whose norm is bounded as ‖z0

i ‖2 ≤ ζ for some ζ > 0. Since error-free data

points perfectly lie in a union of subspaces, using the self-expressiveness property, we

can reconstruct y0
i ∈ S` in terms of other error-free points as

y0
i =

∑

j 6=i

cijy
0
j . (3.8)

51



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Rewriting y0
i using (3.7) in terms of the corrupted point yi, the sparse outlying entries

vector e0
i , and the noise vector z0

i and substituting it into (3.8), we obtain

yi =
∑

j 6=i

cijyj + ei + zi, (3.9)

where the vectors ei ∈ RD and zi ∈ RD are defined as

ei , e0
i −

∑
j 6=i cije

0
j , (3.10)

zi , z0
i −

∑
j 6=i cijz

0
j . (3.11)

Notice that (3.9) has still a sparse solution ci, because y0
i ∈ S` can be expressed

as a linear combination of {y0
j}j 6=i with at most d` nonzero entries, i.e., ‖ci‖0 ≤ d`.

Moreover, ei is also sparse, because ‖e0
i ‖0 ≤ k and ‖ci‖0 ≤ max` d`, hence using

(3.10), ‖ei‖0 ≤ k(1+max` d`), which we assume to be much smaller than N . Similarly,

zi is a vector of noise since it is linear combination of at most 1+max` d` noise vectors

in (3.11).

Collecting ei and zi as columns of matrices E and Z, respectively, we can rewrite

(3.9) in the matrix form as

Y = Y C +E +Z, diag(C) = 0. (3.12)

Our objective is then to find a solution (C,E,Z) for (3.12), where C corresponds

to a sparse coefficient matrix, E corresponds to a matrix of sparse outlying entries,

and Z is a noise matrix. To do so, we propose to solve the following optimization

52



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

program

min
(C,E,Z)

‖C‖1 + λe‖E‖1 +
λz
2
‖Z‖2

F

s. t. Y = Y C +E +Z, diag(C) = 0,

(3.13)

where the `1-norm promotes sparsity of the columns of C and E while the Frobenius

norm promotes having small entries in the columns of Z. The two parameters λe >

0 and λz > 0 balance the three terms in the objective function. Note that the

optimization program in (3.13) is convex with respect to the optimization variables

(C,E,Z), hence, can be solved using convex programming tools (see Section 3.4 for

implementation details).

When data are corrupted only by noise, we can eliminate E from the optimization

program in (3.13). On the other hand, when the data are corrupted only by sparse

outlying entries, we can eliminate Z in (3.13). In practice, however, E can also deal

with small errors due to noise. The following proposition suggests setting λz = αz/µz

and λe = αe/µe, where αz, αe > 1 and

µz , min
i

max
j 6=i
|y>i yj|, µe , min

i
max
j 6=i
‖yj‖1. (3.14)

The proof of the following proposition is provided in the appendix of this chapter.

Proposition 1 Consider the optimization program (3.13). Without the term Z, if

λe ≤ 1/µe, then there exists at least one data point y` for which in the optimal solution

we have (c`, e`) = (0,y`). Also, without the term E, if λz ≤ 1/µz, then there exists

at least one data point y` for which (c`, z`) = (0,y`).

53



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

After solving the proposed optimization programs (see Section 3.4 for details), we

use C to build a similarity graph and infer the clustering of the data using spectral

clustering. Thus, by incorporating the data corruption model into the sparse opti-

mization program, we can deal with clustering of corrupted data, as before, without

explicitly running a separate algorithm to correct the errors in the data [89,110].

3.3.2 Missing entries

We consider now the clustering of incomplete data, where some of the entries

of a subset of data points are missing. Note that when only a small fraction of

entries of each data point is missing, clustering of incomplete data can be cast as

clustering of data with sparse outlying entries. More precisely, one can fill in the

missing entries of each data point with random values, hence obtain data points with

sparse outlying entries. Then clustering of data follows by solving (3.13) and applying

spectral clustering to the graph built using the obtained sparse coefficients. However,

the drawback of this approach is that it disregards the fact that we know the locations

of the missing entries in the data matrix.

It is possible, in some cases, to cast the clustering of data with missing entries as

clustering of complete data. To see this, consider a collection of data points {yi}Ni=1

in RD. Let Ji ⊂ {1, . . . , D} denote indices of the known entries of yi and define

J ,
⋂N
i=1 Ji. Thus, for every index in J , all data points have known entries. When

the size of J , denoted by |J |, is not small relative to the ambient space dimension,

54



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

D, we can project the data, hence, the original subspaces, into a subspace spanned

by the columns of the identity matrix indexed by J and apply the SSC algorithm to

the obtained complete data. In other words, we can only keep the rows of Y indexed

by J , obtain a new data matrix of complete data Ȳ ∈ R|J |×N , and solve the sparse

optimization program (3.13). We can then infer the clustering of the data by applying

spectral clustering to the graph built using the sparse coefficient matrix.

Note that the approach described above is based on the assumption that J is

nonempty. Addressing the problem of subspace clustering with missing entries when

J is empty or has a small size is the subject of the future research.

3.3.3 Affine subspaces

In some real-world problems, data lie in a union of affine rather than linear sub-

spaces. For instance, the motion segmentation problem involves clustering of data

that lie in a union of 3-dimensional affine subspaces [102, 110]. However, most sub-

space clustering algorithms deal with this problem as if the data lie in a union of

4-dimensional linear subspaces. This comes from the fact that a d`-dimensional affine

subspace S` can be considered as a subset of a (d` + 1)-dimensional linear subspace

that includes S` and the origin. However, this has the drawback of increasing the

dimension of the possible intersection of subspaces, which in some cases can result

in indistinguishability of subspaces from each other. For example, two different lines

x = −1 and x = +1 in the x-y plane form the same 2-dimensional linear subspace

55



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

after including the origin, hence become indistinguishable.

To directly deal with affine subspaces, we use the fact that any data point yi in

an affine subspace S` of dimension d` can be written as an affine combination of d`+1

other points from S`. In other words, a sparse solution of

yi = Y ci, 1>ci = 1, cii = 0, (3.15)

corresponds to d`+1 other points that belong to S`. Thus, to cluster data points lying

close to a union of affine subspaces and contaminated by noise and sparse outlying

entries as in (3.9), we propose to solve the sparse optimization program

min ‖C‖1 + λe‖E‖1 +
λz
2
‖Z‖2

F

s. t. Y = Y C +E +Z, 1>C = 1>, diag(C) = 0.

(3.16)

Notice that, in comparison to (3.13) for the case of linear subspaces, the optimization

program in (3.16) includes additional linear equality constraints, namely 1>C = 1>.

Notice also that (3.16) can deal with linear subspaces as well since a linear subspace

is also an affine subspace. In the next section, we address the implementation of the

proposed optimization programs (3.13) and (3.16).

56



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

3.4 Solving the sparse optimization

programs

Note that the convex programs, introduced in the previous sections, can be solved

using generic convex solvers such as CVX2. However, since we need to solve for O(PN)

number of variables with P ∈ {N,N + D} depending on the optimization program,

generic solvers will have high computational costs as they do not scale well with the

dimension, D, and the number of data points, N .

In this section, we study efficient implementations of the proposed sparse optimiza-

tions using an Alternating Direction Method of Multipliers (ADMM) method [13,49].

We fist consider the most general optimization program

min
(C,E,Z)

‖C‖1 + λe‖E‖1 +
λz
2
‖Z‖2

F

s. t. Y = Y C +E +Z, C>1 = 1, diag(C) = 0,

(3.17)

and present an ADMM algorithm to solve it. We then derive implementations of

other practical sparse optimizations, considered in the experiments in Section 3.8,

using the presented algorithm.

First, note that using the equality constraint in (3.17), we can eliminate Z from

2CVX is a Matlab-based software for convex programming and can be downloaded from
http://cvxr.com.

57



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

the optimization program and equivalently solve

min
(C,E)

‖C‖1 + λe‖E‖1 +
λz
2
‖Y − Y C −E‖2

F

s. t. C>1 = 1, diag(C) = 0.

(3.18)

The overall procedure of the ADMM algorithm is to introduce appropriate auxiliary

variables into the optimization program, augment the constraints into the objective

function, and iteratively minimize the Lagrangian with respect to the primal variables

and maximize it with respect to the Lagrange multipliers. With an abuse of notation,

throughout this section, we denote by diag(C) both a vector whose elements are the

diagonal entries of C and a diagonal matrix whose diagonal elements are the diagonal

entries of C.

To start, we introduce an auxiliary matrix A ∈ RN×N and consider the optimiza-

tion program

min
(C,E,A)

‖C‖1 + λe‖E‖1 +
λz
2
‖Y − Y A−E‖2

F

s. t. A>1 = 1, A = C − diag(C).

(3.19)

whose solution for (C,E) coincides with the solution of (3.18). As we will see shortly,

introducing A helps to obtain efficient updates on the optimization variables. Next,

using a parameter ρ > 0, we add to the objective function of (3.19) two penalty terms

corresponding to the constraints A>1 = 1 and A = C − diag(C) and consider the

58



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

following optimization program

min
(C,E,A)

‖C‖1 + λe‖E‖1 +
λz
2
‖Y − Y A−E‖2

F +
ρ

2
‖A>1− 1‖2

2

+
ρ

2
‖A− (C − diag(C))‖2

F

s. t. A>1 = 1, A = C − diag(C).

(3.20)

Note that adding the penalty terms to (3.19) does not change its optimal solution,

i.e., both (3.19) and (3.20) have the same solutions, since for any feasible solution of

(3.20) that satisfies the constraints, the penalty terms vanishes. However, adding the

penalty terms makes the objective function strictly convex in terms of the optimiza-

tion variables (C,E,A), which allows using the ADMM approach.

Introducing a vector δ ∈ RN and a matrix ∆ ∈ RN×N of Lagrange multipliers for

the two equality constraints in (3.20), we can write the Lagrangian function of (3.20)

as

L(C,A,E, δ,∆) = ‖C‖1 + λe‖E‖1 +
λz
2
‖Y − Y A−E‖2

F +
ρ

2
‖A>1− 1‖2

2

+
ρ

2
‖A− (C − diag(C))‖2

F + δ>(A>1− 1) + tr(∆>(A−C + diag(C))), (3.21)

where tr(·) denotes the trace operator of a given matrix. The ADMM approach

is an iterative procedure that proceeds as follows. Denote by (C(k),E(k),A(k)) the

optimization variables at iteration k, and by (δ(k),∆(k)) the Lagrange multipliers at

iteration k. These variables are updated as:

• Obtain A(k+1) by minimizing L with respect to A, while (C(k),E(k), δ(k),∆(k))

are fixed. Note that computing the derivative of L with respect toA and setting

59



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

it to zero, we obtain

(λzY
>Y +ρI+ρ11>)A(k+1) = λzY

>(Y −E(k))+ρ(11>+C(k))−1δ(k)>−∆(k).

(3.22)

In other words, A(k+1) is obtained by solving an N ×N system of linear equa-

tions. When N is not very large, one can use matrix inversion to obtain A(k+1)

from (3.22). For large values of N , more efficient approaches such as the con-

jugate gradient method [14] should be employed to solve for A(k+1).

• Obtain C(k+1) by minimizing L with respect to C, while (A(k),E(k), δ(k),∆(k))

are fixed. Note that the update on C also has a closed-form solution given by

C(k+1) = J − diag(J), where J , T 1
ρ
(A(k+1) + ∆(k)/ρ), (3.23)

where Tη(·) is the shrinkage-thresholding operator acting on each element of the

given matrix, and is defined as

Tη(v) = (|v| − η)+ sgn(v). (3.24)

The operator (·)+ returns its argument if it is non-negative and returns zero

otherwise.

• ObtainE(k+1) by minimizing L with respect toE, while (C(k+1),A(k+1), δ(k),∆(k))

are fixed. The update on E can also be computed in closed-form as

E(k+1) = T λe
λz

(Y A(k+1) − Y ), (3.25)

60



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

• Having (C(k+1),A(k+1),E(k+1) fixed, perform a gradient ascent update with the

step size of ρ on the Lagrange multipliers as

δ(k+1) = δ(k) + ρ (A(k+1)>1− 1), (3.26)

∆(k+1) = ∆(k) + ρ (A(k+1) −C(k+1)). (3.27)

These three steps are repeated until convergence is achieved or the number of itera-

tions exceeds a maximum iteration number. Convergence is achieved when we have

‖A(k)>1−1‖∞ ≤ ε, ‖A(k)−C(k)‖∞ ≤ ε, ‖A(k)−A(k−1)‖∞ ≤ ε and ‖E(k)−E(k−1)‖∞ ≤

ε, where ε denotes the error tolerance for the primal and dual residuals. In practice,

the choice of ε ∈ {10−4, 10−3} works well in real experiments. In summary, Algorithm

2 shows the updates for the ADMM implementation of the optimization program

(3.17).

In some applications, we may need to solve a smaller version of the optimization

program (3.17). For example, in the motion segmentation problem, which we discuss

in details in the experiments, data are only corrupted by noise and there are no sparse

outlying entries in the data. Hence, we do not need to have E in the optimization

program and we will need to solve

min
(C,Z)

‖C‖1 +
λz
2
‖Z‖2

F

s. t. Y = Y C +Z, C>1 = 1, diag(C) = 0.

(3.28)

In that case, the ADMM updates can be obtained from the previous derivations by

simply eliminating the term E and its updating step in Algorithm 2. Also, in the face

61



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Algorithm 2 : Solving (3.17) via an ADMM Algorithm

Initialization: Set maxIter = 104, k = 0, and Terminate ← False. Initialize

C(0),A(0),E(0), δ(0), and ∆(0) to zero.

1: while (Terminate == False) do

2: update A(k+1) by solving the following system of linear equations

(λzY
>Y +ρI+ρ11>)A(k+1) = λzY

>(Y −E(k))+ρ(11>+C(k))−1δ(k)>−∆(k),

3: update C(k+1) as C(k+1) = J − diag(J), where J , T 1
ρ
(A(k+1) + ∆(k)/ρ),

4: update E(k+1) as E(k+1) = T λe
λz

(Y − Y A(k+1)),

5: update δ(k+1) as δ(k+1) = δ(k) + ρ (A(k+1)>1− 1),

6: update ∆(k+1) as ∆(k+1) = ∆(k) + ρ (A(k+1) −C(k+1)),

7: k ← k + 1,

8: if (‖A(k)>1 − 1‖∞ ≤ ε and ‖A(k) − C(k)‖∞ ≤ ε and ‖A(k) − A(k−1)‖∞ ≤ ε

and ‖E(k) −E(k−1)‖∞ ≤ ε or (k ≥ maxIter) then

9: Terminate ← True

10: end if

11: end while

Output: Optimal sparse coefficient matrix C∗ = C(k).

clustering problem, which we will discuss in details in the experiments, faces lie in a

linear subspace and there is no need for the affine constraint of C>1 = 1. Moreover,

since the data are corrupted by sparse outlying entries, we need to have the term

62



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

E in the optimization program, which in practice also deals with noise in the data.

Thus, we will need to solve

min
(C,E)

‖C‖1 + λe‖E‖1

s. t. Y = Y C +E, diag(C) = 0.

(3.29)

Using derivations similar to the case of solving (3.17) we can obtain the updates for

solving the optimization program (3.29), summarized in Algorithm 3.

3.5 Subspace-sparse recovery theory

The underlying assumptions for the success of the SSC algorithm are that 1)

the proposed optimization program recovers a subspace-sparse representation of each

data point, i.e., a representation whose nonzero elements correspond to the subspace

of the given point, and 2) the subspace-sparse representations are such that all the

points in the same subspace form a connected component of the similarity graph. We

defer the issue of connectedness of the points within each subspace to Section 3.6 and

investigate, in this section, conditions under which, for data points that lie in a union

of linear subspaces, the sparse optimization program in (3.4) recovers subspace-sparse

representations of data points. We investigate recovery conditions for two classes of

subspace arrangements: independent and disjoint subspace models [41].

Definition 1 A collection of subspaces {Si}ni=1 is said to be independent if dim(⊕ni=1Si)

=
∑n

i=1 dim(Si), where ⊕ denotes the direct sum operator.

63



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Algorithm 3 : Solving (3.29) via an ADMM Algorithm

Initialization: Set maxIter = 104, k = 0, and Terminate ← False. Initialize

C(0),A(0),E(0),∆
(0)
1 , and ∆

(0)
2 to zero.

1: while (Terminate == False) do

2: update A(k+1) by solving the following system of linear equations

(Y >Y + ρI)A(k+1) = Y >(Y −E(k) + ∆
(k)
1 /ρ) + ρC(k) −∆

(k)
2 ,

3: update C(k+1) as C(k+1) = J − diag(J), where J , T 1
ρ
(A(k+1) + ∆

(k)
2 /ρ),

4: update E(k+1) as E(k+1) = Tλe
ρ

(Y − Y A(k+1) + ∆1/ρ),

5: update ∆
(k+1)
1 as ∆

(k+1)
1 = δ(k) + ρ (Y − Y A(k+1) −E(k+1)),

6: update ∆
(k+1)
2 as ∆

(k+1)
2 = ∆

(k)
2 + ρ (A(k+1) −C(k+1)),

7: k ← k + 1,

8: if (‖A(k) −C(k)‖∞ ≤ ε and ‖A(k) −A(k−1)‖∞ ≤ ε and ‖E(k) −E(k−1)‖∞ ≤ ε

or (k ≥ maxIter) then

9: Terminate ← True

10: end if

11: end while

Output: Optimal sparse coefficient matrix C∗ = C(k).

As an example, the three 1-dimensional subspaces shown in Figure 3.4 (left) are

independent since they span the 3-dimensional space and the summation of their

dimensions is also 3. On the other hand, the subspaces shown in Figure 3.4 (right)

64



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

S1

S2

S3

S3

S1

S2

Figure 3.4: Left: the three 1-dimensional subspaces are independent as they span
the 3-dimensional space and the summation of their dimensions is also 3. Right: the
three 1-dimensional are disjoint as any two subspaces intersect at the origin.

are not independent since they span a 2-dimensional space while the summation of

their dimensions is 3.

Definition 2 A collection of subspaces {Si}ni=1 is said to be disjoint if every pair of

subspaces intersect only at the origin. In other words, for every pair of subspaces we

have dim(Si ⊕ Sj) = dim(Si) + dim(Sj).

As an example, both subspace arrangements shown in Figure 3.4 are disjoint since

each pair of subspaces intersect at the origin. As a result, based on the above defini-

tions, the notion of disjointness is weaker than independence because an independent

subspace model is always disjoint while the converse is not necessarily true.

An important notion that characterizes the relationship of two disjoint subspaces

is the smallest principal angle, defined as follows.

Definition 3 The smallest principal angle between two subspaces Si and Sj, denoted

65



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

by θij, is defined as

cos(θij) , max
vi∈Si,vj∈Sj

v>i vj
‖vi‖2‖vj‖2

. (3.30)

Note that two disjoint subspaces intersect at the origin, hence their smallest principal

angle is greater than zero and cos(θ) ∈ [0, 1).

3.5.1 Independent subspace model

In this section, we consider data points that lie in a union of independent sub-

spaces, which is the underlying model of many subspace clustering algorithms. We

show that the `1-minimization program in (3.4) and more generally the `q-minimization

in (3.3) for q < ∞ always recover subspace-sparse representations of data points.

More specifically, we show the following result.

Theorem 1 Consider a collection of data points drawn from n independent sub-

spaces {Si}ni=1 of dimensions {di}ni=1. Let Y i denote Ni data points in Si, where

rank(Y i) = di, and let Y −i denote data points in all subspaces except Si. Then, for

every Si and every nonzero y in Si, the `q-minimization program



c∗

c∗−


 = argmin

∥∥∥∥∥∥∥∥



c

c−




∥∥∥∥∥∥∥∥
q

s. t. y = [Y i Y −i]



c

c−


 , (3.31)

for q <∞, recovers a subspace-sparse representation, i.e., c∗ 6= 0 and c∗− = 0.

66



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Proof. For the sake of contradiction assume that c∗− 6= 0. It follows from (3.31)

that

y − Y ic
∗ = Y −ic

∗
−. (3.32)

Note that the left hand side of equation (3.32) corresponds to a point in the sub-

space Si, while the right hand side of (3.32) corresponds to a point in the subspace

⊕j 6=iSj. By the independence assumption, the two subspaces Si and ⊕j 6=iSj are also

independent hence disjoint and intersect only at the origin. Thus, from (3.32) we

must have Y −ic
∗
− = 0 and we obtain y = Y ic

∗. In other words,

[
c∗> 0>

]>
is a

feasible solution of the optimization problem (3.31). Finally, from the assumption

that c∗− 6= 0, we have ∥∥∥∥∥∥∥∥



c∗

0




∥∥∥∥∥∥∥∥
q

<

∥∥∥∥∥∥∥∥



c∗

c∗−




∥∥∥∥∥∥∥∥
q

, (3.33)

which contradicts the optimality of

[
c∗> c∗−

]>
. Thus, we must have c∗ 6= 0 and

c∗− = 0, obtaining the desired result.

Note that the subspace-sparse recovery holds without any assumption on the

distribution of the data points in each subspace other than rank(Y i) = di. This

comes at the price of having a more restrictive model for the subspace arrangements,

i.e., an independent subspace model. Next, we will show that for the more general

class of disjoint subspaces, under appropriate conditions on the relative configuration

of the subspaces as well as the distribution of the data in each subspace, the `1-

minimization in (3.4) recovers subspace-sparse representations of the data points.

67



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

3.5.2 Disjoint subspace model

We consider now the more general class of disjoint subspaces and investigate con-

ditions under which the optimization program in (3.4) recovers a subspace-sparse

representation of each data point. To that end, we consider a vector x in the inter-

section of Si with ⊕j 6=iSj and let the optimal solution of the `1-minimization when

we restrict the dictionary to data points from Si be

ai = argmina ‖a‖1 s. t. x = Y i a. (3.34)

We also let the optimal solution of the `1-minimization when we restrict the dictionary

to points from all subspaces except Si be3

a−i = argmina ‖a‖1 s. t. x = Y −i a. (3.35)

We show that if for every nonzero x in the intersection of Si with ⊕j 6=iSj, the `1-norm

of the solution of (3.34) is strictly smaller than the `1-norm of the solution of (3.35),

i.e.,

∀x ∈ Si ∩ (⊕j 6=iSj),x 6= 0 =⇒ ‖ai‖1 < ‖a−i‖1, (3.36)

then the SSC algorithm recovers subspace-sparse representations of all the data points

in Si. More precisely, we show the following result.

Theorem 2 Consider a collection of data points drawn from n disjoint subspaces

{Si}ni=1 of dimensions {di}ni=1. Let Y i denote Ni data points in Si, where rank(Y i) =

3Notice that ai and a−i depend on x, Y i, and Y −i. Since this dependence is clear from the
context, we drop the arguments in ai(x,Y i) and a−i(x,Y −i).

68



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

di, and let Y −i denote data points in all subspaces except Si. The `1-minimization



c∗

c∗−


 = argmin

∥∥∥∥∥∥∥∥



c

c−




∥∥∥∥∥∥∥∥
1

s. t. y = [Y i Y −i]



c

c−


 , (3.37)

recovers a subspace-sparse representation of every nonzero y in Si, i.e., c∗ 6= 0 and

c∗− = 0, if and only if (3.36) holds.

Proof. (⇐=) We prove the result using contradiction. Assume c∗− 6= 0 and define

x , y − Y ic
∗ = Y −ic

∗
−. (3.38)

Since y lies in Si and Y ic
∗ is a linear combination of points in Si, from the first

equality in (3.38) we have that x is a vector in Si. Let ai be the solution of (3.34)

for x. We have

x = y − Y ic
∗ = Y iai =⇒ y = Y i(c

∗ + ai). (3.39)

On the other hand, since Y −ic
∗
− is a linear combination of points in all subspaces

except Si, from the second equality in (3.38) we have that x is a vector in ⊕j 6=iSj.

Let a−i be the solution of (3.35) for x. We have

x = Y −ic
∗
− = Y −ia−i =⇒ y = Y ic

∗ + Y −ia−i. (3.40)

Note that the left hand side of (3.40) together with the fact that a−i is the optimal

solution of (3.35) imply that

‖a−i‖1 ≤ ‖c∗−‖1. (3.41)

69



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

From (3.39) and (3.40) we have that



c∗ + ai

0


 and



c∗

a−i


 are feasible solutions of

the original optimization program in (3.37). Thus, we have
∥∥∥∥∥∥∥∥



c∗ + ai

0




∥∥∥∥∥∥∥∥
1

≤‖c∗‖1 + ‖ai‖1 < ‖c∗‖1 + ‖a−i‖1 ≤

∥∥∥∥∥∥∥∥



c∗

c∗−




∥∥∥∥∥∥∥∥
1

, (3.42)

where the first inequality follows from the triangle inequality, the second strict in-

equality follows from the sufficient condition in (3.36), and the last inequality follows

from (3.41). This contradicts the optimality of

[
c∗> c∗>−

]>
for the original optimiza-

tion program in (3.37), hence proving the desired result.

(⇐=) We prove the result using contradiction. Assume the condition in (3.36) does

not hold, i.e., there exists a nonzero x in the intersection of Si and ⊕j 6=iSj for which

we have ‖a−i‖1 ≤ ‖ai‖1. As a result, for y = x, a solution of the `1-minimization

program (3.37) corresponds to selecting points from all subspaces except Si, which

contradicts the subspace-sparse recovery assumption.

While the necessary and sufficient condition in (3.36) guarantees a successful

subspace-sparse recovery via the `1-minimization program, it does not explicitly show

the relationship between the subspace arrangements and the data distribution for the

success of the `1-minimization program. To establish such a relationship, we show

that ‖ai‖1 ≤ βi, where βi depends on the singular values of the data points in Si,

and β−i ≤ ‖a−i‖1, where β−i depends on the subspace angles between Si and other

subspaces. Then, the sufficient condition βi < β−i establishes the relationship be-

70



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

tween the subspace angles and the data distribution under which the `1-minimization

recovers subspace sparse representations of the data points in Si, since it implies

‖ai‖1 ≤ βi < β−i ≤ ‖a−i‖1, (3.43)

i.e., the condition of Theorem 2 holds.

Remark 5 For independent subspaces, the intersection of a subspace with the direct

sum of other subspaces is the origin, hence, the condition in (3.36) always holds.

As a result, from Theorem 2, the `1-minimization always recovers subspace-sparse

representations of data points in independent subspaces.

Theorem 3 Consider a collection of data points drawn from n disjoint subspaces

{Si}ni=1 of dimensions {di}ni=1. Let Wi be the set of all full-rank submatrices Ỹ i ∈

RD×di of Y i, where rank(Y i) = di. If the condition

max
Ỹ i∈Wi

σdi(Ỹ i) >
√
di ‖Y −i‖∞,2 max

j 6=i
cos(θij) (3.44)

holds, then for every nonzero y in Si, the `1-minimization in (3.37) recovers a subspace-

sparse solution, i.e., c∗ 6= 0 and c∗− = 0.4

Proof. We prove the result in two steps. In step 1, we show that ‖ai‖1 ≤ βi. In

step 2, we show that β−i ≤ ‖a−i‖1. Then, the sufficient condition βi < β−i establishes

the result of the theorem, since it implies (3.43), i.e., the condition of Theorem 2 holds.

4Recall that ‖Y −i‖∞,2 denotes the maximum `2-norm of the columns of Y −i.

71



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Step 1: upper bound on the `1-norm of (3.34). Let Wi be the set of all submatrices

Ỹ i ∈ RD×di of Y i that are full column rank. We can write the vector x ∈ Si∩(⊕j 6=iSj)

x = Ỹ iã =⇒ ã = (Ỹ
>
i Ỹ i)

−1Ỹ
>
i x. (3.45)

Using vector and matrix norm properties, we have

‖ã‖1 ≤
√
di‖ã‖2 =

√
di ‖(Ỹ

>
i Ỹ i)

−1Ỹ
>
i x‖2

≤
√
di ‖(Ỹ

>
i Ỹ i)

−1Ỹ
>
i ‖2,2‖x‖2 =

√
di

σdi(Ỹ i)
‖x‖2, (3.46)

where σdi(Ỹ i) denotes the di-th largest singular value of Ỹ i. Thus, for the solution

of the optimization problem in (3.34), we have

‖ai‖1 ≤ min
Ỹ i∈Wi

‖ã‖1 ≤ min
Ỹ i∈Wi

√
di

σdi(Ỹ i)
‖x‖2 , βi, (3.47)

which established the upper bound on the `1-norm of the solution of the optimization

program in (3.34).

Step 2: lower bound on the `1-norm of (3.35) For the solution of (3.35) we have

x = Y −ia−i. If we multiply both sides of this equation from left by x>, we get

‖x‖2
2 = x>x = x>Y −ia−i. (3.48)

Applying the Holder’s inequality (|u>v| ≤ ‖u‖∞‖v‖1) to the above equation, we

obtain

‖x‖2
2 ≤ ‖Y >−ix‖∞‖a−i‖1. (3.49)

72



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

By recalling the definition of the smallest principal angle between two subspaces, we

can write

‖x‖2
2 ≤ max

j 6=i
cos(θij) ‖Y −i‖∞,2 ‖x‖2 ‖a−i‖1, (3.50)

where θij is the first principal angle between Si and Sj. We can rewrite (3.50) as

β−i ,
‖x‖2

maxj 6=i cos(θij) ‖Y −i‖∞,2
≤ ‖a−i‖1 (3.51)

which establishes the lower bound on the `1 norm of the solution of the optimization

program in (3.35).

Loosely speaking, the sufficient condition in Theorem 3 states that if the smallest

principal angle between each Si and any other subspace is above a certain value

that depends on the data distribution in Si, then the subspace-sparse recovery holds.

Notice that this bound can be rather high when the norms of data points are oddly

distributed, e.g., when the maximum norm of data points in Si is much smaller than

the maximum norm of data points in all other subspaces. Since the segmentation

of data does not change when data points are scaled, we can apply SSC to linear

subspaces after normalizing data points to have unit Euclidean norms. In this case,

the sufficient condition in (3.44) reduces to

max
Ỹ i∈Wi

σdi(Ỹ i) >
√
di max

j 6=i
cos(θij). (3.52)

Remark 6 The condition in (3.36) is closely related to the nullspace property in the

sparse recovery literature [27, 70, 96, 108]. The key difference, however, is that we

73



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

only require the inequality in (3.36) to hold for the optimal solutions of (3.34) and

(3.35) instead of any feasible solution. Thus, while the inequality can be violated

for many feasible solutions, it can still hold for the optimal solutions, guaranteeing

successful subspace-sparse recovery from Theorem 2. Thus, our result can be thought

of as a generalization of the nullspace property to the multi-subspace setting where the

number of points in each subspace is arbitrary.

3.5.3 Geometric interpretation

In this section, we provide a geometric interpretation of the subspace-sparse recov-

ery conditions in (3.36) and (3.44). To do so, it is necessary to recall the relationship

between the `1-norm of the optimal solution of

min ‖a‖1 s. t. x = Ba, (3.53)

and the symmetrized convex polytope of the columns of B [32]. More precisely, if we

denote the columns of B by bi and define the symmetrized convex hull of the columns

of B by

P , conv(±b1,±b2, · · · ), (3.54)

then the `1-norm of the optimal solution of (3.53) corresponds to the smallest α > 0

such that the scaled polytope αP reaches x [32]. Let us denote the symmetrized

convex polytopes of Y i and Y −i by Pi and P−i, respectively. Then the condition in

(3.36) has the following geometric interpretation: subspace-sparse recovery in Si holds

74



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

S1

S2 S3

xO

P1

P−1

S1

S2 S3

xO

P1

P−1

S1

S2 S3

xO

P1

P−1

Figure 3.5: Left: for any nonzero x in the intersection of S1 and S2⊕S3, the polytope
αP1 reaches x for a smaller α than αP−1, hence, subspace-sparse recovery holds. Mid-
dle: when the subspace angle decreases, the polytope αP−1 reaches x for a smaller α
than αP1. Right: when the distribution of the data in S1 becomes nearly degenerate,
in this case close to a line, the polytope αP−1 reaches x for a smaller α than αP1. In
both cases, in the middle and right, the subspace-sparse recovery does not hold for
points at the intersecion.

if and only if for any nonzero x in the intersection of Si and ⊕j 6=iSj, αPi reaches x

for a smaller α than αP−i.

As shown in the left plot of Figure 3.5, for x in the intersection of S1 and S2⊕S3,

the polytope αP1 reaches x for a smaller α than αP−1, hence the subspace-sparse

recovery condition holds. On the other hand, when the principal angles between S1

and other subspaces decrease, as shown in the middle plot of Figure 3.5, the subspace-

sparse recovery condition does not hold since the polytope αP−1 reaches x sooner than

αP1 does. Also, as shown in the right plot of Figure 3.5, when the distribution of the

data in S1 becomes nearly degenerate, in this case close to a 1-dimensional subspace

orthogonal to the direction of x, then the subspace-sparse recovery condition does

not hold since αP−1 reaches x sooner than αP1. Note that the sufficient condition in

(3.44) translates the relationship between the polytopes, mentioned above, explicitly

in terms of relationship between the subspace angles and the singular values of the

75



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

data.

3.6 Graph connectivity

In the previous section, we studied conditions under which the proposed `1-

minimization program recovers subspace-sparse representations of data points in a

union of subspaces. As a result, in the similarity graph, the points that lie in differ-

ent subspaces do not get connected to each other. On the other hand, our extensive

experimental results on synthetic and real data show that data points in the same

subspace always form a connected component of the graph, hence, for n subspaces the

similarity graph has n connected components. [83] has theoretically verified the con-

nectivity of points in the same subspace for 2 and 3 dimensional subspaces. However,

it has shown that, for subspaces of dimensions greater than or equal to 4, under odd

distribution of the data, it is possible that points in the same subspace form multiple

components of the graph.

In this section, we consider a regularization term in the sparse optimization pro-

gram that promotes connectivity of points in each subspace.5 We use the idea that

if data points in each subspace choose a few common points from the same subspace

in their sparse representations, then they form a single component of the similarity

5Another approach to deal with the connectivity issue is to analyze the subspaces corresponding
to the components of the graph and merge the components whose associated subspaces have a small
distance from each other, i.e., have a small principal angle. However, the result can be sensitive to
the choice of the dimension of the subspaces to fit to each component as well as the threshold value
on the principal angles to merge the subspaces.

76



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

graph. Thus, we add to the sparse optimization program the regularization term

‖C‖r,0 ,
N∑

i=1

I(‖ci‖2 > 0), (3.55)

where I(·) denotes the indicator function and ci denotes the i-th row of C. Hence,

minimizing (3.55) corresponds to minimizing the number of nonzero rows of C [39,

64,105], i.e., choosing a few common data points in the sparse representation of each

point (see [38, 39] for closely related applications of row-sparsity for the problem of

finding exemplars in datasets). Since a minimization problem that involves (3.55) is

in general NP-hard, we consider its convex relaxation as

‖C‖r,1 ,
N∑

i=1

‖ci‖2. (3.56)

Thus, to increase the connectivity of data points from the same subspace in the

similarity graph, we propose to solve

min ‖C‖1 + λr‖C‖r,1 s. t. Y = Y C, diag(C) = 0, (3.57)

where λr > 0 sets the trade-off between the sparsity of the solution and the connec-

tivity of the graph. Figure 3.6 shows how adding this regularization term promotes

selecting common points in sparse representations. The following example gives a rea-

son for using the row-sparsity term as a regularizer but not as an objective function

instead of the `1-norm.

Example 1 Consider the three 1-dimensional subspaces in R2, shown in Figure 3.7,

where data points have unit Euclidean norms and the angle between S1 and S2 as

77



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

 

 

0

0.2

0.4

0.6

0.8

1

1.2

 

 

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.6: Coefficient matrix obtained from the solution of (3.57) for data points in
two subspaces. Left: λr = 0. Right: λr = 10. Increasing λr results in concentration
of the nonzero elements in a few rows of the coefficient matrix, hence choosing a few
common data points.

well as S1 and S3 is equal to θ. Note that in this example, the sufficient condition in

(3.44) holds for all values of θ ∈ (0, π
2
). As a result, the solution of (3.57) with λr = 0

recovers a subspace-sparse representation for each data point, which in this example

is uniquely given by C1 shown in Figure 3.7. Hence, the similarity graph has exactly

3 connected components corresponding to the data points in each subspace. Another

feasible solution of (3.57) is given by C2, shown in Figure 3.7, where the points in

S1 choose points from S2 and S3 in their representations. Hence, the similarity graph

has only one connected component. Note that for a large range of subspace angles

θ ∈ (0, 4π
10

) we have

‖C2‖r,1 =
√

16 + 2/ cos2(θ) < ‖C1‖r,1 = 6. (3.58)

As a result, for large values of λr, i.e., when only the second term of the objective

function in (3.57) is minimized, we cannot recover subspace-sparse representations of

data points. This suggests using the row-sparsity regularizer with a small value of λr.

78



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

θ
θ

S2

S3

S1 y1y2

y3

y4 y5

y6

C1 =




0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 0 −1 0 0
0 0 −1 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0




C2 =




0 0 0 0 0 0
0 0 0 0 0 0

+ 1
4 cos θ − 1

4 cos θ 0 −1 0 0

− 1
4 cos θ + 1

4 cos θ −1 0 0 0
+ 1

4 cos θ − 1
4 cos θ 0 0 0 −1

− 1
4 cos θ + 1

4 cos θ 0 0 −1 0




Figure 3.7: Left: three 1-dimensional subspaces in R2 with normalized data points.
Middle: C1 corresponds to the solution of (3.57) for λr = 0. The similarity graph
of C1 has three components corresponding to the three subspaces. Right: C2 corre-
sponds to the solution of (3.57) for λr → +∞ and θ ∈ (0, 4π

10
). The similarity graph

of C2 has only one connected component.

3.7 Experiments with synthetic data

In this section, we consider synthetic data and verify the effect of the subspace

angles and the data distribution on the success of SSC. Moreover, we evaluate the

performance of SSC for dealing with different numbers and classes of subspaces with

different dimensions.

3.7.1 Subspace angle and data distribution effect

In Section 3.5, we showed that the success of the `1-minimization for subspace-

sparse recovery depends on the principal angles between subspaces and the distri-

bution of data in each subspace. In this section, we verify this relationship through

experiments on synthetic data.

We consider three disjoint subspaces {Si}3
i=1 of the same dimension d embedded

in the D-dimensional ambient space. To make the problem hard enough so that every

data point in a subspace can also be reconstructed as a linear combination of points in

79



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

other subspaces, we generate subspace bases {U i ∈ RD×d}3
i=1 such that each subspace

lies in the direct sum of the other two subspaces, i.e., rank(

[
U 1 U 2 U 3

]
) = 2d. In

addition, we generate the subspaces such that the smallest principal angles θ12 and

θ23 are equal to θ. Thus, we can verify the effect of the smallest principal angle in

the subspace-sparse recovery by changing the value of θ.

To investigate the effect of the data distribution in subspace-sparse recovery, we

generate the same number of data points, Ng, in each subspace at random and change

the value of Ng. Typically, as the number of data points in a subspace increases, the

probability of the data being close to a degenerate subspace decreases.6

After generating three d-dimensional subspaces associated to (θ,Ng), we solve the

`1-minimization program in (3.4) for each data point and measure two different errors.

First, denoting the sparse representation of yi ∈ Ski by c>i ,

[
c>i1 c>i2 c>i3

]
, with cij

corresponding to points in Sj, we measure the subspace-sparse recovery error by

ssr error =
1

3Ng

3Ng∑

i=1

(1− ‖ciki‖1

‖ci‖1

) ∈ [0, 1], (3.59)

where each term inside the summation indicates the fraction of the `1-norm of ci that

comes from points in other subspaces. The error being zero corresponds to yi choosing

points only in its own subspace, while the error being equal to one corresponds to

yi choosing points from other subspaces. Second, after building the similarity graph

using the sparse coefficients and applying spectral clustering, we measure the subspace

6To remove the effect of different scalings of data points, i.e., to consider only the effect of the
principal angle and number of points, we normalize the data points.

80



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Ng

e 
(d

eg
re

e)
SubspaceïSparse Recovery Error

 

 

12 25 38 51 64 77 89 102 115

57

51

45

40

34

29

23

17

12

6

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Ng

e 
(d

eg
re

e)

Subspace Clustering Error

 

 

12 25 38 51 64 77 89 102 115

57

51

45

40

34

29

23

17

12

6
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 3.8: Subspace-sparse recovery error (left) and subspace clustering error (right)
for three disjoint subspaces. Increasing the number of points or smallest principal
angle decreases the errors.

clustering error by

subspace clustering error =
# of misclassified points

total # of points
. (3.60)

In our experiments, we set the dimension of the ambient space to D = 50. We

change the smallest principal angle between subspaces as θ ∈ [6, 60] degrees and

change the number of points in each subspace asNg ∈ [d+1, 32d]. For each pair (θ,Ng)

we compute the average of the errors in (3.59) and (3.60) over 100 trials (randomly

generated subspaces and data points). The results for d = 4 are shown in Figure 3.8.

Note that when either θ or Ng is small, both the subspace-sparse recovery error and

the clustering error are large, as predicted by our theoretical analysis. On the other

hand, when θ or Ng increases, the errors decrease, and for (θ,Ng) sufficiently large

we obtain zero errors. The results also verify that the success of the clustering relies

on the success of the `1-minimization in recovering subspace-sparse representations

81



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

of data points. Note that for small θ as we increase Ng, the subspace-sparse recovery

error is large and slightly decreases, while the clustering error increases. This is due

to the fact that increasing the number of points, the number of undesirable edges

between different subspaces in the similarity graph increases, making the spectral

clustering more difficult. Note also that, for the values of (θ,Ng) where the subspace-

sparse recovery error is zero, i.e., points in different subspaces are not connected to

each other in the similarity graph, the clustering error is also zero. This implies that,

in such cases, the similarity graph has exactly three connected components, i.e., data

points in the same subspace form a single component of the graph.

3.7.2 Effect of different numbers, dimensions, and

models of subspaces

In this section, we investigate the effect of the two classes of independent and

disjoint subspace models as well as the effect of the number and the dimensions of

subspaces on different subspace clustering methods. We compare SSC with the best

state-of-the-art subspace clustering algorithms: LSA [118], SCC [22], LRR [76], and

LRSC [46].

For the state-of-the-art algorithms, we use the codes provided by their authors.

Note that the LRR algorithm according to [76], similar to SSC, applies spectral clus-

tering to a similarity graph built directly from the solution of its proposed optimiza-

82



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

tion program. However, the code of the algorithm applies a heuristic post-processing

step, similar to [71], to the low-rank solution prior to building the similarity graph,

as also discussed in [75]. Thus, to compare the effectiveness of sparse versus low-

rank objective function and to investigate the effect of the post-processing step of

LRR, we report the results for both cases of without (LRR) and with (LRR-H) the

post-processing step.

As LSA and SCC need to know the number of subspaces a priori and also esti-

mating the number of subspaces from the eigenspectrum of the graph Laplacian in

the noisy setting is often unreliable, in order to have a fair comparison, we provide

the number of subspaces as an input to all the algorithms.

We generate random bases for independent and disjoint subspaces and randomly

generate data points in each subspaces. We consider subspaces with the same di-

mensions and with different dimensions and also change the number of subspaces.

We denote by d = (d1, · · · , dn) the collection of n subspaces, where subspace i has

dimension di. We consider noise-free data as well as noisy data, where we add to

each noise-free data point, y0
i , in a subspace, a noise vector, zi, orthogonal to the

direction of the subspace such that ‖zi‖2 ≤ σ‖y0
i ‖2 for a fixed σ > 0. For each

fixed (d1, · · · , dn), a fixed subspace and a noise model (noise-free or noisy model), we

generate n random subspaces in RD and 10 di random data points in each subspace

Si. We apply different subspace clustering methods and compute the average and

median clustering errors for each algorithm over 100 random trials.

83



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Table 3.1: Clustering error (%) of different algorithms on synthetic noise-free data for
different dimensions and number of subspaces as well as different subspace models.

Algorithms LSA SCC LRR LRR-H LRSC SSC
independent subspaces
d = (3, 3, 3)

Mean 2.23 0.00 0.00 0.00 0.00 0.00
Median 2.22 0.00 0.00 0.00 0.00 0.00

d = (2, 3, 5)
Mean 2.17 0.81 0.10 0.00 0.00 0.00

Median 2.00 1.00 0.00 0.00 0.00 0.00
d = (4, 4, 4, 4, 4)

Mean 0.63 0.00 0.00 0.00 0.00 0.00
Median 0.50 0.00 0.00 0.00 0.00 0.00

d = (1, 2, 3, 4, 5)
Mean 5.57 3.78 0.83 0.00 0.17 0.00

Median 2.00 2.00 0.67 0.00 0.00 0.00
disjoint subspaces
d = (3, 3, 3)

Mean 9.77 0.00 15.09 7.38 11.41 0.97
Median 8.89 0.00 13.33 5.56 8.89 0.00

d = (2, 3, 5)
Mean 5.98 0.88 7.13 1.21 4.64 0.11

Median 6.00 1.00 4.50 0.00 4.00 0.00
d = (4, 4, 4, 4, 4)

Mean 18.98 0.00 42.73 32.03 39.46 2.46
Median 18.50 0.00 43.00 32.50 40.50 2.00

d = (1, 2, 3, 4, 5)
Mean 5.23 6.97 27.15 5.84 23.49 0.95

Median 4.67 4.33 28.33 4.67 24.33 0.00

Tables 3.1 and 3.2 show the clustering errors for the noise-free and noisy data

points, respectively, for σ = 0.1 and D = 30. From the results, we make the following

conclusions:

– The performance of LRR and LRSC depend on the subspace model. For inde-

pendent subspaces, they obtain very small clustering errors, which is expected since

84



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Table 3.2: Clustering error (%) of different algorithms on synthetic noisy data for
different dimensions and number of subspaces as well as different subspace models.

Algorithms LSA SCC LRR LRR-H LRSC SSC
independent subspaces
d = (3, 3, 3)

Mean 2.48 0.00 0.00 0.04 0.00 0.00
Median 2.22 0.00 0.00 0.00 0.00 0.00

d = (2, 3, 5)
Mean 1.76 0.21 0.36 0.00 0.03 0.02

Median 1.00 0.00 0.00 0.00 0.00 0.00
d = (4, 4, 4, 4, 4)

Mean 0.70 0.00 0.00 0.00 0.00 0.00
Median 0.50 0.00 0.00 0.00 0.00 0.00

d = (1, 2, 3, 4, 5)
Mean 0.85 27.86 1.45 0.02 0.67 0.02

Median 0.67 29.00 0.67 0.00 0.00 0.00
disjoint subspaces
d = (3, 3, 3)

Mean 9.92 0.00 13.79 7.76 9.70 0.81
Median 8.89 0.00 12.22 5.56 7.78 0.00

d = (2, 3, 5)
Mean 6.69 0.28 6.15 1.34 3.92 0.12

Median 5.00 0.00 4.00 0.00 2.00 0.00
d = (3, 3, 3, 3, 3)

Mean 19.25 0.00 42.50 31.68 38.15 5.71
Median 19.50 0.00 43.25 31.50 38.50 3.00

d = (1, 2, 3, 4, 5)
Mean 5.51 30.85 24.35 5.57 21.93 3.19

Median 5.31 33.67 24.67 4.00 22.00 0.67

these algorithms have theoretical guarantees for independent subspaces. On the other

hand, for disjoint subspaces, LRR and LRSC, which work under the low-rank coef-

ficient matrix criterion, obtain large clustering errors, suggesting that they cannot

work well beyond the independent subspace model.

– For independent subspaces, SSC obtains very small clustering errors, which is ex-

85



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

pected since SSC always works under the independent subspace model as we showed

in the theoretical analysis. For disjoint subspaces, the clustering errors of SSC slightly

increase but still are small. This is expected, since for disjoint subspaces, SSC works

under some conditions on the subspace angles and the data distribution, which can

be violated for some data points or subspaces.

– The clustering performance of SCC does not depend on the subspace models, i.e.,

being independent or disjoint. However, it depends on whether subspaces have the

same or different dimensions. More specifically, SCC obtains very low clustering errors

when the subspaces have the same or very close dimensions for both independent and

disjoint subspaces. On the other hand, the clustering error of SCC is large when

the subspaces have very different dimensions. This comes from the fact that SCC

uses the maximum dimension, dmax, of the subspaces to compute the affinity among

dmax + 2 data points. As a result, it is possible that points in different subspaces of

small dimensions obtain a large affinity, i.e., be considered by the algorithm to be

from the same subspace.

– Unlike other algorithms that obtain nearly zero clustering errors for independent

subspaces, LSA obtains larger clustering errors for both independent and disjoint

subspaces. This comes from the fact that LSA computes the affinity between pairs of

points by first fitting a local subspace to each data point and its nearest neighbors.

Since the neighborhood of a data point may contain points from different subspaces,

the locally fitted subspace may not be close to the true underlying subspace at the

86



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

2

4

6

8

10

12

Noise Level (σ)

C
lu

st
er

in
g

 E
rr

o
r 

(%
)

Independent Subspaces

 

 

LSA

SCC

LRR

LRR−H

LRSC

SSC

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

20

25

30

35

Noise Level (σ)

C
lu

st
er

in
g

 E
rr

o
r 

(%
)

Disjoint Subspaces

 

 

LSA

SCC

LRR

LRR−H

LRSC

SSC

Figure 3.9: Average clustering errors of different subspace clustering algorithms as
a function of the noise level, σ, for independent subspace model (left) and disjoint
subspace model (right).

point, hence degrading the performance of the algorithm. Moreover, for disjoint

subspaces, the probability of having points on other subspaces that are close to the

given point increases, hence, increasing the clustering error of LSA.

Figure 3.9 shows the average clustering errors of different algorithms as a function

of the noise level, σ, for independent and disjoint subspace models for d = (3, 3, 3). As

the results show, all algorithms except LSA obtain very low clustering errors for small

and moderate amount of noise for independent subspaces (the performance of SCC

degrades as the for the noise level above σ = 0.25). On the other hand, for disjoint

subspaces, only SSC and SCC obtain low clustering errors for small and moderate

amount of noise, while other algorithms obtain large errors for all levels of noise.

87



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

3.7.3 Dealing with incomplete data

We investigate now the performances of different subspace clustering algorithms

in the case of missing entries in the data. We generate n = 5 subspaces of dimensions

di = i in RD, for i ∈ {1, 2, . . . , 5}, and generate 10 di random data points in each

subspace Si. We randomly select ρ percentage of the D entries of the data points as

the missing entries. We then apply subspace clustering algorithms to the data matrix

after removing the rows corresponding to the missing entries, as described in Section

3.3.2, and compute the average clustering errors for each algorithm over 100 random

trials.

Figure 3.10 shows the clustering results of different algorithms for independent

and disjoint subspaces, for D = 30. Notice that for both models, SSC obtains very

low clustering errors when at most 70% of the entries are missing. For independent

subspace model, all methods except SCC obtain low clustering errors when at most

50% of the entries are missing. On the other hand, for disjoint subspaces, the clus-

tering errors of all algorithms except SSC increase, as we also saw in the previous

section for the case of noisy data.

3.7.4 Dealing with sparse outlying entires

Finally, we evaluate the performance of the SSC algorithm for dealing with sparse

outlying entries in the data. We investigate the effect of the subspace model, per-

88



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

Missing Entry (%)

C
lu

st
er

in
g
 E

rr
o
r 

(%
)

Independent Subspaces

 

 

LSA

SCC

LRR

LRR−H

LRSC

SSC

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

Missing Entry (%)

C
lu

st
er

in
g

 E
rr

o
r 

(%
)

Disjoint Subspaces

 

 

LSA

SCC

LRR

LRR−H

LRSC

SSC

Figure 3.10: Average clustering errors of different subspace clustering algorithms as a
function of the percentage of the missing entries in the data, for independent subspace
model (left) and disjoint subspace model (right).

centage of the corrupted data points, percentage of the corrupted entries in the data

points and the magnitude of the corruption terms. We generate n = 3 subspaces

of dimensions d1 = 2, d2 = 3 and d3 = 5 in R100 and randomly generate 10 di data

points in each subspace Si. We randomly select ρ1 percentage of the N =
∑3

i=1 10di

data points as the candidate data points to be corrupted by sparse errors. For each

candidate corrupted data point, we randomly select ρ2 percentage of its entries and

add a random Guassian error of variance σ to each selected entry. We change ρ1 and

ρ2 in {10, 20, . . . , 90} and σ ∈ {0.1, 0.3}.

Figure 3.11 shows the average clustering errors of SSC for independent and disjoint

subspace models over 100 random trials. Notice that, in all cases, SSC obtains very

low clustering error when either the percentage of the corrupted data or the percentage

of the corrupted entries are not large. When both the percentages of the corrupted

89



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

data and corrupted entries increase the clustering error increases, as expected. As

the plots show, when the magnitude of the error, σ, increases, the clustering error

increases. More specifically, the maximum clustering error increases from 2.5% to

17.7% for independent subspaces and from 4.6% to 23.3% for disjoint subspaces.

Moreover, as expected, for a fixed σ, the clustering error for the case of disjoint

subspace model is higher than the error for the case of independent subspace model.

3.8 Experiments with real data

In this section, we evaluate the performance of the SSC algorithm in dealing

with two real-world problems: segmenting multiple motions in videos (Fig. 3.1)

and clustering human face images (Fig. 3.2). We compare the performance of SSC

with the best state-of-the-art subspace clustering algorithms: LSA [118], SCC [22],

LRR [76], and LRSC [46].

3.8.1 Implementation details

We implement the SSC optimization algorithm in (3.13) using the Alternating

Direction Method of Multipliers (ADMM) framework, described in Section 3.4. For

the motion segmentation experiments, we use the noisy variation of the optimization

program (3.13), i.e., without the term E, with the affine constraint, and choose

λz = 800/µz in all the experiments (µz is defined in (3.14)). For the face clustering

90



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Corrupted Data (%)

C
o
rr

u
p
te

d
 E

n
tr

y
 (

%
)

Independent Subspaces, σ = 0.1

 

 

10 20 30 40 50 60 70 80 90

90

80

70

60

50

40

30

20

10
0

1

2

3

4

Corrupted Data (%)

C
o

rr
u
p

te
d
 E

n
tr

y
 (

%
)

Disjoint Subspaces, σ = 0.1

 

 

10 20 30 40 50 60 70 80 90

90

80

70

60

50

40

30

20

10
0

1

2

3

4

Corrupted Data (%)

C
o
rr

u
p
te

d
 E

n
tr

y
 (

%
)

Independent Subspaces, σ = 0.3

 

 

10 20 30 40 50 60 70 80 90

90

80

70

60

50

40

30

20

10

5

10

15

20

Corrupted Data (%)

C
o

rr
u

p
te

d
 E

n
tr

y
 (

%
)

Disjoint Subspaces, σ = 0.3

 

 

10 20 30 40 50 60 70 80 90

90

80

70

60

50

40

30

20

10

5

10

15

20

Figure 3.11: Average clustering errors of the SSC algorithm as a function of the
percentage of the corrupted data points and the percentage of the corrupted entries
for independent (left) and disjoint (right) subspace model for different magnitudes of
corruption, σ ∈ {0.1, 0.3}.

experiments, we use the sparse outlying entries variation of the optimization program

(3.13), i.e., without the term Z, and choose λe = 20/µe in all the experiments (µe

is defined in (3.14)). It is also worth mentioning that SSC performs better with the

ADMM approach than general interior point solvers [68], which typically return many

small nonzero coefficients, degrading the spectral clustering result.

91



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Subspace angle (degree)

Pe
rc

en
ta

ge
 o

f s
ub

sp
ac

e 
pa

irs

 

 

Hopkins 155
Extended YaleB

5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Number of nearest neighbors

Pe
rc

en
ta

ge
 o

f d
at

a 
po

in
ts

 

 

Hopkins 155
Extended YaleB

Figure 3.12: Left: percentage of pairs of subspaces whose smallest principal angle is
smaller than a given value. Right: percentage of data points in pairs of subspaces
whose K nearest neighbors contain points from the other subspace.

As LSA and SCC need to know the number of subspaces a priori and also esti-

mating the number of subspaces from the eigenspectrum of the graph Laplacian in

the noisy setting is often unreliable, in order to have a fair comparison, we provide

the number of subspaces as an input to all the algorithms.

3.8.2 Datasets and some statistics

For the motion segmentation problem, we consider the Hopkins 155 dataset [103],

which consists of 155 video sequences of 2 or 3 motions corresponding to 2 or 3 low-

dimensional subspaces in each video [12, 102]. For the face clustering problem, we

consider the Extended Yale B dataset [73], which consists of face images of 38 human

subjects, where images of each subject lie in a low-dimensional subspace [6].

Before describing each problem in detail and presenting the experimental results,

92



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

we present some statistics on the two datasets that help to better understand the

challenges of subspace clustering and the performance of different algorithms. First,

we compute the smallest principal angle for each pair of subspaces, which in the mo-

tion segmentation problem corresponds to a pair of motions in a video and in the

face clustering problem corresponds to a pair of subjects. Then, we compute the

percentage of the subspace pairs whose smallest principal angle is below a certain

value, which ranges from 0 to 90 degrees. Figure 3.12 (left) shows the corresponding

graphs for the two datasets. As shown, subspaces in both datasets have relatively

small principal angles. In the Hopkins-155 dataset, principal angles between sub-

spaces are always smaller than 10 degrees, while in the Extended Yale B dataset,

principal angles between subspaces are between 10 and 20 degrees. Second, we take

each pair of subspaces in a dataset and compute the percentage of data points that

among their K-nearest neighbors there are points from the other subspace. Figure

3.12 (right) shows the average percentages over all possible pairs of subspaces in each

dataset. As shown, in the Hopkins-155 dataset for almost all data points, their few

nearest neighbors belong to the same subspace. On the other hand, for the Ex-

tended Yale B dataset, there is a relatively large number of data points whose nearest

neighbors come from the other subspace. This percentage rapidly increases as the

number of nearest neighbors increases. As a result, from the two plots in Figure 3.12,

we can conclude that in the Hopkins 155 dataset the challenge is that subspaces have

small principal angles, while in the Extended Yale B dataset, beside the principal

93



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

angles between subspaces being small, the challenge is that data points in a subspace

are very close to other subspaces.

3.8.3 Motion segmentation

Given a video sequence of multiple rigidly moving objects, the motion segmenta-

tion problem refers to the problem of segmenting the video into multiple spatiotempo-

ral regions that correspond to different motions in the scene (Fig. 3.1). This problem

is often solved by extracting and tracking a set of N feature points {xfi ∈ R2}Ni=1

through the frames f = 1, . . . , F of the video. Each data point yi, which is also called

a feature trajectory, corresponds to a 2F -dimensional vector that consists of stacking

the feature points xfi in the video as

yi ,

[
x>1i x>2i · · · x>Fi

]>
∈ R2F . (3.61)

Motion segmentation refers to the problem of separating these feature trajectories

according to their underlying motions. Under the affine projection model, all feature

trajectories associated with a single rigid motion lie in an affine subspace of R2F of

dimension at most 3, or equivalently lie in a linear subspace of R2F of dimension at

most 4 [12,102]. Therefore, feature trajectories of n rigid motions lie in a union of n

low-dimensional subspaces of R2F . Hence, motion segmentation reduces to clustering

of data points in a union of subspaces.

In this section, we evaluate the performance of the SSC algorithm as well as that

94



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

45

50
Hopkins 155 Dataset

Si
ng

ul
ar

 v
al

ue
s o

f s
ev

er
al

 m
ot

io
ns

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4 x 104 Extended YaleB Dataset

Si
ng

ul
ar

 v
al

ue
s o

f s
ev

er
al

 su
bj

ec
ts

Figure 3.13: Left: singular values of several motions in the Hopkins 155 dataset. Each
motion corresponds to a subspace of dimension at most 4. Right: singular values of
several faces in the Extended Yale B dataset. Each subject corresponds to a subspace
of dimension around 9.

of state-of-the-art subspace clustering methods for the problem of motion segmenta-

tion. To do so, we consider the Hopkins 155 dataset [103] that consists of 155 video

sequences, where 120 of the videos have two motions and 35 of the videos have three

motions. On average, in the dataset, each sequence of 2 motions has N = 266 feature

trajectories and F = 30 frames, while each sequence of 3 motions has N = 398 fea-

ture trajectories and F = 29 frames. The left plot of Figure 3.13 shows the singular

values of several motions in the dataset. Note that the first four singular values are

nonzero and the rest of the singular values are very close to zero, corroborating the

4-dimensionality of the underlying linear subspace of each motion.7 In addition, it

shows that the feature trajectories of each video can be well modeled as data points

that almost perfectly lie in a union of linear subspaces of dimension at most 4.

7If we subtract the mean of the data points in each motion from them, the singular values drop
at 3, showing the 3-dimensionality of the affine subspaces.

95



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Table 3.3: Clustering error (%) of different algorithms on the Hopkins 155 dataset
with the 2F -dimensional data points.

Algorithms LSA SCC LRR LRR-H LRSC SSC
2 Motions

Mean 4.23 2.89 4.10 2.13 3.69 1.52
Median 0.56 0.00 0.22 0.00 0.29 0.00

3 Motions
Mean 7.02 8.25 9.89 4.03 7.69 4.40

Median 1.45 0.24 6.22 1.43 3.80 0.56
All

Mean 4.86 4.10 5.41 2.56 4.59 2.18
Median 0.89 0.00 0.53 0.00 0.60 0.00

Table 3.4: Clustering error (%) of different algorithms on the Hopkins 155 dataset
with the 4n-dimensional data points obtained by applying PCA.

Algorithms LSA SCC LRR LRR-H LRSC SSC
2 Motions

Mean 3.61 3.04 4.83 3.41 3.87 1.83
Median 0.51 0.00 0.26 0.00 0.26 0.00

3 Motions
Mean 7.65 7.91 9.89 4.86 7.72 4.40

Median 1.27 1.14 6.22 1.47 3.80 0.56
All

Mean 4.52 4.14 5.98 3.74 4.74 2.41
Median 0.57 0.00 0.59 0.00 0.58 0.00

The results of applying subspace clustering algorithms to the dataset when we

use the original 2F -dimensional feature trajectories and when we project the data

into a 4n-dimensional subspace (n is the number of subspaces) using PCA are shown

in Table 3.3 and Table 3.4, respectively. From the results, we make the following

conclusions:

– In both cases, SSC obtains a small clustering error outperforming the other al-

gorithms. This suggests that the separation of different motion subspaces in terms

96



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

of their principal angles and the distribution of the feature trajectories in each mo-

tion subspace are sufficient for the success of the sparse optimization program, hence

clustering.

– Without post-processing of its coefficient matrix, LRR has higher errors than other

algorithms. On the other hand, post-processing of the low-rank coefficient matrix

significantly improves the clustering performance (LRR-H).

– LRSC tries to find a noise-free dictionary for data while finding their low-rank

representation. This helps to improve over LRR. Also, note that the errors of LRSC

are higher than the reported ones in [46]. This comes from the fact that [46] has used

the erroneous compacc.m function from [32] to compute the errors.

– The clustering performances of each algorithm for the two cases of using the 2F -

dimensional feature trajectories and using the 4n-dimensional PCA projections are

close. This comes from the fact that the feature trajectories of n motions in a video

almost perfectly lie in a 4n-dimensional linear subspace of the 2F -dimensional ambient

space. Thus, projection using PCA onto a 4n-dimensional subspace preserves the

structure of the subspaces and the data, hence, for each algorithm, the clustering

error in Table 3.3 is close to the error in Table 3.4.

To provide a compact summary of the statistics of the errors of different algo-

rithms, we show the boxplots for the two cases of using 2F - and 4n-dimensional

motion data in Figure 3.14. Each boxplot shows, for a given set of measures, the

median value (the red line in the box), the 25% and 75% percentiles (the edges of the

97



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

LSA SCC LRR LRRH LRSC SSC

0

10

20

30

40

50

Two Motions, D = 2F
C

lu
st

er
in

g
 E

rr
o
r 

(%
)

LSA SCC LRR LRRH LRSC SSC

0

5

10

15

20

25

30

35

40

45

Three Motions, D = 2F

C
lu

st
er

in
g
 E

rr
o
r 

(%
)

LSA SCC LRR LRRH LRSC SSC

0

10

20

30

40

50

Two Motions, D = 4n

C
lu

st
er

in
g

 E
rr

o
r 

(%
)

LSA SCC LRR LRRH LRSC SSC

0

10

20

30

40

50

Three Motions, D = 4n

C
lu

st
er

in
g

 E
rr

o
r 

(%
)

Figure 3.14: Boxplots of motions segmentation algorithms on the Hopkins 155
Dataset. Top: clustering errors (%) for two motions (left) and three motions (right)
using 2F -dimensional data. Bottom: clustering errors (%) for two motions (left) and
three motions (right) using 4n-dimensional data.

box) and the maximum and minimum values not considered outliers (the endpoints of

the black whiskers that extend beyond the box). The boxplot also shows, in blue ’o’,

the outlier values that do not conform to the distribution satisfied by the majority of

the values. Finally, the boxplot also marks in red circles, the 5% confidence intervals

around the median for the distribution. Two medians are significantly different at the

5% significance level if their confidence intervals do not overlap. From Figure 3.14

one can see that SSC and SCC have a small boxplot length for two motions, showing

98



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

that most of the inliers are concentrated close to the median, which is 0. Increasing

the number of motions to three makes the clustering problem harder and the lengths

of the boxplots of all algorithms increase. However, note that SSC and SCC are least

affected by the increase in the number of motions. In all cases, however, the 5%

significance intervals of different methods have some overlap, which shows that the

performances of the algorithms are statistically close. In the next experiments on

face clustering, which has also larger number of subspaces, we will show that the SSC

algorithm obtains statistically significant improvement over the state of the art.

3.8.3.1 Effect of the regularization parameter

Figure 3.15 shows the effect of the regularization parameter value in the clustering

performance of SSC over the entire Hopkins 155 dataset, where we change αz in the

regularization parameter λz = αz/µz. Note that the clustering errors of SSC as

a function of αz for the two cases of using the 2F -dimensional data and the 4n-

dimensional data obtained by PCA follow a similar pattern. Moreover, for a large

range of αz, the clustering error is less than 2.5% for both cases.

3.8.3.2 Effect of the affine constraint

As mentioned before, for the motion segmentation experiments, we used the opti-

mization program (3.13), with the affine constraint (and without the term E since the

data do not have sparse outlying entries). The reason for using the affine constraint is

99



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

0 200 400 600 800 1000 1200 1400
2

2.5

3

3.5

_z

SS
C

 c
lu

st
er

in
g 

er
ro

r (
%

)

 

 

D = 2F
D = 4n

Figure 3.15: Clustering error (%) of SSC as a function of αz in the regularization
parameter λz = αz/µz for the two cases of clustering of 2F -dimensional data and
4n-dimensional data obtained by PCA.

that, under the affine projection model, the feature trajectories of each moving object

lie in an affine subspace of dimension at most 3. However, most motion segmentation

algorithms model the data in each moving object as lying in a linear subspace of

dimension at most 4. Table 3.5 shows the results of the SSC algorithm for the two

cases of using the 2F -dimensional and 4n-dimensional data with and without using

the affine constraint in the optimization program. From the result that incorporating

the affine model directly in to the optimization program helps to improve the seg-

mentation results. Specifically, for the 2F -dimension and 4n-dimensional data, the

affine constraint improves the average clustering error from 5.57% to 2.18% and from

5.71% to 2.41%, respectively, over the entire Hopkins 155 dataset.

100



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Table 3.5: Clustering error (%) of the SSC algorithm on the Hopkins 155 dataset for
2F -dimensional and 4n-dimensional data points obtained by applying PCA, for the
two cases of not using (Linear) and using (Affine) the affine constraint.

Algorithms Linear (2F) Affine (2F) Linear (4n) Affine (4n)
2 Motions

Mean 4.04 1.52 4.08 1.83
Median 0.00 0.00 0.00 0.00

3 Motions
Mean 10.82 4.40 11.30 4.40

Median 5.35 0.56 5.35 0.56
All

Mean 5.57 2.18 5.71 2.41
Median 0.00 0.00 0.00 0.00

3.8.4 Motion segmentation with missing data and

outlying entries

We now examine the robustness of SSC to missing data and outliers. We use

twelve sequences from [112], with nine sequences of two motions and three sequences

of three motions (see Figure 3.16). We compare the performance of SSC with the

ALC algorithm [88], which can also deal with missing and outlying entires.

For incomplete trajectories, we apply SSC and ALC to video sequences with 4%

to 35% missing entries. ALC first completes the data using the Power Factorization

(PF) method, or using an `1-minimization. Once ALC obtains the complete data,

it projects them into a lower dimensional space of dimension r. ALC uses r = 5 or

r = dsp, where dsp, known as the sparsity preserving dimension, which is obtained by

dsp = argmin d s. t. d ≥ 8 log(2F/d). (3.62)

101



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Figure 3.16: Example frames from three video sequences with incomplete or corrupted
trajectories.

Table 3.6: Clustering error (%) of different algorithms for 12 real motion sequences
with missing data.

Method PF+ ALC5 PF+ALCsp `1+ALC5 `1+ALCsp SSC

Average 1.89 10.81 3.81 1.28 0.13
Median 0.39 7.85 0.17 1.07 0.00

For SSC, we use the data points in the original 2F -dimensional ambient space without

projecting them into lower dimensions. Table 3.6 shows the results of ALC and

SSC on the 12 motion sequences with missing entries. Note that SSC achieves a

misclassification error of 0.13% improving the performance of ALC.

For corrupted trajectories, we apply SSC and ALC to video sequences between

4% and 35% of whose entries are corrupted. Our results in Table 3.7 compared with

the results of `1-based ALC indicate the robustness of SSC to outliers.

Note that in both cases of missing and outlying entries, in contrast to ALC, we

do not need to use the `1-minimization as an initialization step to complete or correct

the trajectories and then apply the segmentation algorithm. The sparse coefficients

obtained by the `1-minimization are used directly to build the similarity graph to

obtain the segmentation.

102



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Table 3.7: Clustering error (%) of different algorithms for 12 real motion sequences
with corrupted trajectories.

Method `1 + ALC5 `1 + ALCsp SSC

Average 4.15 3.02 1.05
Median 0.21 0.89 0.43

3.8.5 Face clustering

Given face images of multiple subjects, acquired with a fixed pose and varying

illumination, we consider the problem of clustering images according to their subjects

(Fig. 3.2). It has been shown that, under the Lambertian assumption, images of a

subject with a fixed pose and varying illumination lie close to a linear subspace of

dimension 9 [6]. Thus, the collection of face images of multiple subjects lie close to a

union of 9-dimensional subspaces.

In this section, we evaluate the clustering performance of SSC as well as the state-

of-the-art methods on the Extended Yale B dataset [73]. The dataset consists of

192 × 168 pixel cropped face images of n = 38 individuals, where there are Ni = 64

frontal face images for each subject acquired under various lighting conditions. To

reduce the computational cost and the memory requirements of all algorithms we

downsample the images to 48×42 pixels and treat each 2, 016-dimensional vectorized

image as a data point, hence, D = 2, 016. The right plot in Figure 3.13 shows the

singular values of data points of several subjects in the dataset. Note that the singular

value curve has a knee around 9, corroborating the approximate 9-dimensionality of

the face data in each subject. In addition, the singular values gradually decay to zero,

103



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

showing that the data are corrupted by errors. Thus, the face images of n subjects

can be modeled as corrupted data points lying close to a union of 9-dimensional

subspaces.

To study the effect of the number of subjects in the clustering performance of

different algorithms, we devise the following experimental setting: we divide the 38

subjects into 4 groups, where the first three groups correspond to subjects 1 to 10,

11 to 20, 21 to 30, and the fourth group corresponds to subjects 31 to 38. For each

of the first three groups we consider all choices of n ∈ {2, 3, 5, 8, 10} subjects and for

the last group we consider all choices of n ∈ {2, 3, 5, 8}.8 Finally, we apply clustering

algorithms for each trial, i.e., each set of n subjects.

3.8.5.1 Applying RPCA separately on each subject

As we showed in the svd plot of the face data in Figure 3.13 (right), the face

images do not perfectly lie in a linear subspace as they are corrupted by errors. In

fact, the errors correspond to the cast shadows and specularities in the face images

and can be modeled as sparse outlying entries. As a result, it is important for a

subspace clustering algorithm to effectively deal with data with sparse corruptions.

In order to validate the fact that corruption of faces is due to sparse outlying

errors and show the importance of dealing with corruptions while clustering, we start

8Note that choosing n out of 38 leads to extremely large number of trials. Thus, we have devised
the above setting in order to have a repeatable experiment with a reasonably large number of trials
for each n.

104



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Table 3.8: Clustering error (%) of different algorithms on the Extended Yale B dataset
after applying RPCA separately to the data points in each subject.

Algorithm LSA SCC LRR LRR-H LRSC SSC
2 Subjects

Mean 6.15 1.29 0.09 0.05 0.00 0.06
Median 0.00 0.00 0.00 0.00 0.00 0.00

3 Subjects
Mean 11.67 19.33 0.12 0.10 0.00 0.08

Median 2.60 8.59 0.00 0.00 0.00 0.00
5 Subjects

Mean 21.08 47.53 0.16 0.15 0.00 0.07
Median 19.21 47.19 0.00 0.00 0.00 0.00

8 Subjects
Mean 30.04 64.20 4.50 11.57 0.00 0.06

Median 29.00 63.77 0.20 15.43 0.00 0.00
10 Subjects

Mean 35.31 63.80 0.15 13.02 0.00 0.89
Median 30.16 64.84 0.00 13.13 0.00 0.31

by the following experiment. We apply the Robust Principal Component Analysis

(RPCA) algorithm [18] to remove the sparse outlying entries of the face data in each

subject. Note that in practice, we do not know the clustering of the data beforehand,

hence cannot apply the RPCA to the faces of each subject. However, as we will show,

this experiment illustrates some of the challenges of the face clustering and validates

several conclusions about the performances of different algorithms.

Table 3.8 shows the clustering error of different algorithms after applying RPCA

to the data points in each subject and removing the sparse outlying entries, i.e., after

bringing the data points back to their low-dimensional subspaces. From the results,

we make the following conclusions:

– The clustering error of SSC is very close to zero for different number of subjects

105



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

suggesting that SSC can deal well with face clustering if the face images are corruption

free. In other words, while the data in different subspaces are very close to each other,

as shown in Figure 3.12 (right), the performance of the SSC is more dependent on

the principal angles between subspaces which, while small, are large enough for the

success of SSC.

– The LRR and LRSC algorithms have also low clustering errors (LRSC obtains

zero errors) showing the effectiveness of removing sparse outliers in the clustering

performance. On the other hand, while LRR-H has a low clustering error for 2, 3,

and 5 subjects, it has a relatively large error for 8 and 10 subjects, showing that the

post processing step on the obtained low-rank coefficient matrix not always improves

the result of LRR.

– For LSA and SCC, the clustering error is relatively large and the error increases as

the number of subjects increases. This comes from the fact that, as shown in Figure

3.12 (right), for face images, the neighborhood of each data point contains points

that belong to other subjects and, in addition, the number of neighbors from other

subjects increases as we increase the number of subjects.

3.8.5.2 Applying RPCA simultaneously on all subjects

In practice, we cannot apply RPCA separately to the data in each subject because

the clustering is unknown. In this section, we deal with sparse outlying entries in the

data by applying the RPCA algorithm to the collection of all data points for each

106



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Table 3.9: Clustering error (%) of different algorithms on the Extended Yale B dataset
after applying RPCA simultaneously to all the data in each trial.

Algorithm LSA SCC LRR LRR-H LRSC SSC
2 Subjects

Mean 32.53 9.29 7.27 5.72 5.67 2.09
Median 47.66 7.03 6.25 3.91 4.69 0.78

3 Subjects
Mean 53.02 32.00 12.29 10.01 8.72 3.77

Median 51.04 37.50 11.98 9.38 8.33 2.60
5 Subjects

Mean 58.76 53.05 19.92 15.33 10.99 6.79
Median 56.87 51.25 19.38 15.94 10.94 5.31

8 Subjects
Mean 62.32 66.27 31.39 28.67 16.14 10.28

Median 62.50 64.84 33.30 31.05 14.65 9.57
10 Subjects

Mean 62.40 63.07 35.89 32.55 21.82 11.46
Median 62.50 60.31 34.06 30.00 25.00 11.09

trial prior to clustering. The results are shown in Table 3.9 from which we make the

following conclusions:

– The clustering error for SSC is low for all different number of subjects. Specifically,

SSC obtains 2.09% and 11.46% for clustering of data points in 2 and 10 subjects,

respectively.

– Applying RPCA to all data points simultaneously may not be as effective as ap-

plying RPCA to data points in each subject separately. This comes from the fact

that RPCA tends to bring the data points into a common low-rank subspace which

can result in decreasing the principal angles between subspaces and decreasing the

distances between data points in different subjects. This can explain the increase in

the clustering error of all clustering algorithms with respect to the results in Table

107



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

LSA SCC LRR LRRH LRSC SSC

0

10

20

30

40

50

Two Subjects, RPCA on Data
C

lu
st

er
in

g
 E

rr
o

r 
(%

)

LSA SCC LRR LRRH LRSC SSC

0

10

20

30

40

50

60

Three Subjects, RPCA on Data

C
lu

st
er

in
g

 E
rr

o
r 

(%
)

LSA SCC LRR LRRH LRSC SSC

0

10

20

30

40

50

60

70

Five Subjects, RPCA on Data

C
lu

st
er

in
g

 E
rr

o
r 

(%
)

LSA SCC LRR LRRH LRSC SSC
0

10

20

30

40

50

60

70

80

Eight Subjects, RPCA on Data

C
lu

st
er

in
g

 E
rr

o
r 

(%
)

Figure 3.17: Boxplots for face clustering results on the Extended Yale B Dataset
using face image data in D = 2, 016-dimensional space after applying RPCA to each
trial. Top: clustering errors (%) for two subjects (left) and three subjects (right).
Bottom: clustering errors (%) for five subjects (left) and eight subjects (right).

3.8.

Figure 3.17 shows the boxplots of the clustering errors of all the algorithms for

{2, 3, 5, 8} subjects (there are three trials for 10 subjects, thus we do not shows the

boxplot for it). From the result, one can see that, for all cases, the SSC algorithm

obtains statistically significant improvement over the state of the art, since the 5%

confidence intervals of SSC are clearly separated from and lower then those of the

other algorithms.

108



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Table 3.10: Clustering error (%) of different algorithms on the Extended Yale B
dataset without pre-processing the data.

Algorithm LSA SCC LRR LRR-H LRSC SSC
2 Subjects

Mean 32.80 16.62 9.52 2.54 5.32 1.86
Median 47.66 7.82 5.47 0.78 4.69 0.00

3 Subjects
Mean 52.29 38.16 19.52 4.21 8.47 3.10

Median 50.00 39.06 14.58 2.60 7.81 1.04
5 Subjects

Mean 58.02 58.90 34.16 6.90 12.24 4.31
Median 56.87 59.38 35.00 5.63 11.25 2.50

8 Subjects
Mean 59.19 66.11 41.19 14.34 23.72 5.85

Median 58.59 64.65 43.75 10.06 28.03 4.49
10 Subjects

Mean 60.42 73.02 38.85 22.92 30.36 10.94
Median 57.50 75.78 41.09 23.59 28.75 5.63

3.8.5.3 Using original data points

Finally, we apply the clustering algorithms to the original data points without

pre-processing the data. The results are shown in Table 3.10 from which we make

the following conclusions:

– The SSC algorithm obtains a low clustering error for all numbers of subjects,

obtaining 1.86% and 10.94% clustering error for 2 and 10 subjects, respectively. In

fact, the error is smaller than applying RPCA to all data points. This is due to

the fact that SSC directly incorporates the corruption model of the data by sparse

outlying entries into the sparse optimization program, giving it the ability to perform

clustering on the corrupted data.

– While LRR also has a regularization term to deal with the corrupted data, the

109



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

clustering error is relatively large especially as the number of subjects increases. This

can be due to the fact that there is not a clear relationship between corruption of each

data point and the LRR regularization term in general [76]. On the other hand, the

post processing step of LRR-H on the low-rank coefficient matrix helps to significantly

reduce the clustering error, although it is larger than the SSC error.

– As LRSC tries to recover error-free data points while finding their low-rank repre-

sentation, it obtains smaller errors than LRR.

– LSA and SCC do not have an explicit way to deal with corrupted data. This

together with the fact that the face images of each subject have relatively a large

number of neighbors in other subjects, as shown in Figure 3.12 (right), result in low

performances of these algorithms.

Figure 3.18 shows the boxplots for the clustering errors of all the algorithm for

{2, 3, 5, 8} subjects. From the result, one can see that, in all cases, the 5% confidence

intervals of SSC are clearly separated from and lower than those of the other algo-

rithms. Thus, the SSC algorithm obtains a statistically significant improvement over

the state of the art.

3.8.5.4 Computational time comparison

The average computational time of each algorithm as a function of the number

of subjects (or equivalently the number of data points) is shown in Figure 3.19.

Note that the computational time of SCC is drastically higher than other algorithms.

110



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

LSA SCC LRR LRRH LRSC SSC

0

10

20

30

40

50

Two Subjects, Raw Data
C

lu
st

er
in

g
 E

rr
o

r 
(%

)

LSA SCC LRR LRRH LRSC SSC

0

10

20

30

40

50

60

Three Subjects, Raw Data

C
lu

st
er

in
g

 E
rr

o
r 

(%
)

LSA SCC LRR LRRH LRSC SSC

0

10

20

30

40

50

60

70

80

Five Subjects, Raw Data

C
lu

st
er

in
g

 E
rr

o
r 

(%
)

LSA SCC LRR LRRH LRSC SSC

0

10

20

30

40

50

60

70

80

Eight Subjects, Raw Data

C
lu

st
er

in
g

 E
rr

o
r 

(%
)

Figure 3.18: Boxplots for face clustering results on the Extended Yale B Dataset
using raw face image data in D = 2, 016-dimensional space. Top: clustering errors
(%) for two subjects (left) and three subjects (right). Bottom: clustering errors (%)
for five subjects (left) and eight subjects (right).

This comes from the fact that the complexity of SCC increases exponentially in the

dimension of the subspaces, which in this case is d = 9. On the other hand, SSC,

LRR and LRSC use fast and efficient convex optimization techniques which keeps

their computational time lower than other algorithms.

111



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

2 3 5 8 10100

101

102

103

104

Number of subjects

C
om

pu
ta

tio
na

l t
im

e 
(s

ec
)

 

 

LSA
SCC
LRR
LRSC
SSC

Figure 3.19: Average computational time (sec.) of the algorithms on the Extended
Yale B dataset as a function of the number of subjects.

3.9 Conclusions

We studied the problem of clustering a collection of data points that lie in or

close to a union of low-dimensional subspaces. We proposed a subspace clustering

algorithm based on sparse representation techniques, called SSC, that finds a sparse

representation of each point in the dictionary of the other points, builds a similarity

graph using the sparse coefficients, and obtains the segmentation of the data using

spectral clustering. We showed that, under appropriate conditions on the arrange-

ment of the subspaces and the distribution of the data, the algorithm succeeds in

recovering the desired sparse representation of the data points. A key advantage

of the algorithm is its ability to directly deal with data nuisances, such as noise,

sparse outlying entries, and missing entries as well as the more general class of affine

subspaces by incorporating the corresponding models into the sparse optimization

112



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

program. Experiments on real data such as face images and motions in videos show

the effectiveness of our algorithm and its superiority over the state of the art.

3.10 Appendix

In this appendix, we provide the proof of In this section, Proposition 1. We use

the following Lemma whose proof can be found in [48].

Lemma 1 Consider the optimization program

c∗ = argminc ‖c‖1 +
λ

2
‖y −Ac‖2

2. (3.63)

For λ < ‖A>y‖∞, we have c∗ = 0.

3.10.1 Proof of Proposition 1

Note that solving the optimization program (3.13) is equivalent to solving N

optimization programs as

min ‖ci‖1 + λe‖ei‖1 +
λz
2
‖zi‖2

2

s. t. yi = Y ci + ei + zi, cii = 0,

(3.64)

where ci, ei, and zi are the i-th columns of C, E, and Z, repsectively.

(a) Consider the optimization program (3.64) without the term zi and denote the

objective function value by

cost(ci, ei) , ‖ci‖1 + λe‖ei‖1. (3.65)

113



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

Note that a feasible solution of (3.64) is given by (0, ei) for which the value of the

objective function is equal to

cost(0, ei) = λe‖yi‖1. (3.66)

On the other hand, using matrix norm properties, for any feasible solution (ci, ei) of

(3.64) we have

‖yi‖1 = ‖Y ci + ei‖1 ≤ (max
j 6=i
‖yj‖1) ‖ci‖1 + ‖ei‖1, (3.67)

where we used the fact that cii = 0. Multiplying both sides of the above inequality

by λe we obtain

cost(0,yi) = λe‖Y ‖1 ≤ (λe max
j 6=i
‖yj‖1) ‖ci‖1 + λe‖ei‖1, (3.68)

Note that if λe <
1

maxj 6=i ‖yj‖1
, then from the above equation we have

cost(0,yi) ≤ cost(ci, ei). (3.69)

In other words, (ci = 0, ei = yi) achieve the minimum cost among all feasible solu-

tions of (3.64). Hence, if λe < maxi
1

maxj 6=i ‖yj‖1
, then there exists ` ∈ {1, · · · , N} such

that in the solution of the optimization program (3.13) we have (c`, e`) = (0,y`).

(b) Consider the optimization program (3.64) without the term ei, which, using

zi = yi − Y ci, can be rewritten as

min ‖ci‖1 +
λz
2
‖yi − Y ci‖2

2 s. t. cii = 0. (3.70)

114



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

From Lemma 1 we have that, for λz <
1

maxj 6=i |yj>yi|
, the solution of (3.70) is equal

to ci = 0, or equivalently, the solution of (3.64) is given by (ci, zi) = (0,yi). As a

result, if λz < maxi
1

maxj 6=i |y>j yi|
, then there exists ` ∈ {1, · · · , N} such that in the

solution of the optimization program (3.13) we have (c`, z`) = (0,y`).

115



Chapter 4

Sparse Manifold Clustering &

Embedding

In Chapter 3, we considered the problem of clustering data that lie in a union of

subspaces. While flat manifolds (subspaces) model well the distribution of data in

several real-world problems, in general, real data lie in nonlinear manifolds. Since

there is not a global linear relationship among the data in the same nonlinear mani-

fold, subspace-based methods can not be used in general for clustering of data lying

in a union of nonlinear manifolds. Figure 4.1 illustrates this point, by showing the

similarity matrices of SSC, LRR, and LSA, studied in the previous chapter, for two 1-

dimensional nonlinear manifolds. Notice that LSA and LRR obtain large similarities

between points in different manifolds, while SSC obtains nonzero weights between

a point in a manifold and some of the points in the other manifold. Hence, these

116



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

M
1

M
2

LSA

 

 

50 100 150 200

50

100

150

200
0.4

0.5

0.6

0.7

0.8

0.9

1

LRR

 

 

50 100 150 200

50

100

150

200

0.005

0.01

0.015

0.02

0.025

SSC

 

 

50 100 150 200

50

100

150

200 0

0.1

0.2

0.3

0.4

0.5

0.6

SMCE

 

 

50 100 150 200

50

100

150

200 0

0.1

0.2

0.3

0.4

0.5

Figure 4.1: Subspace clustering, in general, cannot deal with nonlinear manifolds.
Top: 200 data points in two 1-dimensional nonlinear manifolds embedded in R100.
Data points are ordered such that the first 100 points are in the first manifolds and
the next 100 points are in the second manifold. Middle: similarity matrices obtained
by LSA and LRR. Bottom: similarity matrix obtained by SSC is shown in the left
plot. Similarity matrix obtained by SMCE, proposed in this chapter, is shown in the
right plot. Note that the three subspace clustering methods obtain nonzero weights
between points in different manifolds, while SMCE obtains zero weights between
points in different manifolds.

117



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

algorithms cannot separate the data into the underlying manifolds. As a result, there

is a need for algorithms that can effectively cluster data lying in a union of nonlinear

manifolds. On the other hand, when it comes to the problem of dimensionality reduc-

tion in nonlinear manifolds, it is often the case that linear dimensionality reduction

algorithms cannot effectively unravel the low-dimensional representation of the data.

Thus, there is a need for having methods that, by exploiting the nonlinear structure

of the manifolds, can effectively reduce the dimension of the data.

In this Chapter, we consider the problem of clustering and dimensionality reduc-

tion of data lying in a union of nonlinear manifolds. We propose an algorithm called

Sparse Manifold Clustering and Embedding (SMCE) for simultaneous clustering and

dimensionality reduction of data lying in multiple nonlinear manifolds [43]. Unlike

the SSC algorithm, studied in the previous chapter, that can select any point from the

same subspace, the SMCE algorithm promotes selecting a few data points that are

sufficiently close to the given point and span an affine subspace close to that point.

More specifically, similar to most dimensionality reduction methods, SMCE finds

a small neighborhood around each data point and connects each point to its neighbors

with appropriate weights. The key difference is that SMCE finds both the neighbors

and the weights automatically and at the same time. This is done by solving a sparse

optimization problem, which encourages selecting nearby points that lie in the same

manifold and approximately span a low-dimensional affine subspace. The optimal

solution encodes information that can be used for clustering and dimensionality re-

118



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

duction using spectral clustering and embedding. Moreover, the size of the optimal

neighborhood of a data point, which can be different for different points, provides

an estimate of the dimension of the manifold to which the point belongs. Through

experiments we demonstrate that the proposed method can effectively handle multi-

ple manifolds that are very close to each other, manifolds with non-uniform sampling

and holes, as well as estimate the intrinsic dimensions of the manifolds.

Before presenting the proposed algorithm, we review existing approaches for di-

mensionality reduction and clustering of data lying in nonlinear manifolds.

4.1 A review of manifold clustering and

embedding algorithms

4.1.1 Manifold embedding

In real-world problems, we are often confronted with high-dimensional data that lie

in or close to a manifold of intrinsically low-dimension. As discussed in Chapter 1, it is

important to perform dimensionality reduction, i.e., to find a compact representation

of the data that unravels their few degrees of freedom.

The first step of most dimensionality reduction methods is to build a neighborhood

graph by connecting each data point to a fixed number of nearest neighbors or to

all points within a certain radius of the given point (see Chapter 2 for a review).

119



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

Local methods, such as Locally Linear Embedding (LLE) [91], Hessian LLE (HLLE)

[28] and Laplacian eigenmaps (LEM) [7], try to preserve local relationships among

points by learning a set of weights between each point and its neighbors. The main

difference between these methods is in the procedures for learning these weights.

Global methods, such as ISOMAP [98], Local Tangent Space Alignment (LTSA) [125],

Maximum Variance Unfolding (MVU), [114], Minimum Volume Embedding (MVE)

[92] and Structure Preserving Embedding (SPE) [93], try to preserve local and global

relationships among all data points. For example, ISOMAP tries to preserve the

geodesic distance between any pair of points, after approximating it by the length

of the shortest path between points in the neighborhood graph. Both categories of

methods find the low-dimensional representation of the data from a few eigenvectors

of a matrix related to the learned weights between pairs of points.

For both local and global methods, a proper choice of the neighborhood size used

to build the neighborhood graph is critical. Specifically, a small neighborhood size

may not capture sufficient information about the manifold geometry, especially when

it is smaller than the intrinsic dimension of the manifold. On the other hand, a large

neighborhood size could violate the principles used to capture information about the

manifold. Moreover, the curvature of the manifold and the density of the data points

may be different in different regions of the manifold, hence using a fix neighborhood

size may be inappropriate.

120



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

4.1.2 Manifold clustering

In many real-world problems, data lie in multiple manifolds of possibly different

dimensions. Thus, to find a low-dimensional embedding of the data, one needs to

first cluster the data according to the underlying manifolds and then find a low-

dimensional representation for the data in each cluster. Since the manifolds can

be very close to each other and they can have arbitrary dimensions, curvature and

sampling, the manifold clustering and embedding problem is very challenging.

As discussed in Chapter 3, the particular case of clustering data lying in mul-

tiple flat manifolds (subspaces) is well studied and numerous algorithms have been

proposed (see e.g., the tutorial [109]). However, such algorithms take advantage of

the global linear relationships among data points in the same subspace, hence they

cannot handle nonlinear manifolds. Other methods assume that the manifolds have

different intrinsic dimensions and cluster the data according to the dimensions rather

than the manifolds themselves [5,54,60,74,82]. However, in many real-world problems

this assumption is violated. Moreover, estimating the dimension of a manifold from

a point cloud is a very difficult problem on its own.

The work of [95] develops an EM-like extension of ISOMAP for clustering multiple

nonlinear manifolds. However, this method is sensitive to a good initialization and is

not a principled EM method since it uses heuristics in the E-step to assign points to

manifolds.

When manifolds are densely sampled and sufficiently separated, existing dimen-

121



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

sionality reduction algorithms such as LLE and LEM can be extended to perform

clustering before the dimensionality reduction step [2, 8, 56, 87] (see Chapter 2 for a

review). More precisely, if the size of the neighborhood used to build the similarity

graph is chosen to be small enough not to include points from other manifolds and

large enough to capture the local geometry of the manifold, then the similarity graph

will have multiple connected components, one per manifold. Therefore, spectral clus-

tering methods can be employed to separate the data according to the connected

components. However, as we will see later, finding the right neighborhood size is

in general difficult, especially when manifolds are close to each other. Moreover, in

some cases one cannot find a neighborhood that contains only points from the same

manifold.

4.2 Sparse manifold clustering and

embedding algorithm

In this section, we propose an algorithm based on sparse representation techniques

for clustering and embedding of data in multiple nonlinear manifolds. Unlike conven-

tional methods that first build a neighborhood graph and then extract information

from it, our method simultaneously builds the neighborhood graph and obtains its

weights. This leads to successful results even in challenging situations where the

manifolds are spatially close to each other.

122



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

Assume we are given a collection of N data points {yi ∈ RD}Ni=1 lying in n different

manifolds {M`}n`=1 of intrinsic dimensions {d`}n`=1. In this section, we consider the

problem of simultaneously clustering the data according to the underlying manifolds

and obtaining a low-dimensional representation of the data points in each cluster.

We approach this problem using a spectral clustering and embedding algorithm.

Specifically, we build a similarity graph whose nodes represent the data points and

whose edges represent the similarity between the data points. The fundamental chal-

lenge is to decide which nodes should be connected and how. To do clustering, we

wish to connect each point to other points from the same manifold. To do dimension-

ality reduction, we wish to connect each point to neighboring points with appropriate

weights that reflect the neighborhood information. To simultaneously pursue both

goals, we wish to select neighboring points from the same manifold.

We address this problem by formulating an optimization algorithm based on sparse

representation. The underlying assumption behind the proposed method is that each

data point has a small neighborhood in which the minimum number of points whose

affine span passes near the given point corresponds to the data points from the same

manifold.

Assumption 1 For each data point yi ∈M` consider the smallest ball Bi ⊂ RD that

contains the d` + 1 nearest neighbors of yi from M`. Let the neighborhood Ni be the

set of all data points in Bi excluding yi. In general, this neighborhood contains points

from M` as well as other manifolds. We assume that for all i there exists ε ≥ 0 such

123



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

M1

M2

y1y2 y3

y4
y5 y6

yp

Figure 4.2: For y1 ∈ M1, the smallest neighborhood containing points from M1

also contains points from M2. However, the minimum number of points in this
neighborhood whose affine span passes close to y1 corresponds to the two data points
from M1.

that the nonzero entries of the sparsest solution of

∥∥∥∥∥
∑

j∈Ni

cij
yj − yi
‖yj − yi‖2

∥∥∥∥∥
2

≤ ε and
∑

j∈Ni

cij = 1 (4.1)

correspond to the d` + 1 neighbors of yi from M`. In other words, among all affine

subspaces spanned by subsets of the vectors { yj−yi
‖yj−yi‖2

}j∈Ni and passing near yi up to

ε error, the one that has the lowest dimension corresponds to the d` + 1 neighbors of

yi from M` and has dimension d`.

In the limiting case of densely sampled data, this affine subspace coincides with

the d`-dimensional tangent space of M` at yi. To illustrate this, consider the two

manifolds shown in Figure 4.2 and assume that points y4, y5 and y6 are closer to

y1 than y2 or y3. Then, any small ball centered at y1 ∈ M1 that contains y2 and

y3 will also contain y4, y5 and y6. In this case, among affine spans of all possible

choices of d1 + 1 = 2 vectors {(yj − yi)/‖yj − yi‖2}6
j=2 in this neighborhood, the one

corresponding to j = 2 and j = 3 is the closest one to y1, and is also close to the

124



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

tangent space ofM1 at y1. On the other hand, while the affine span of any 3 or more

data points in the neighborhood may pass through y1, it requires a combination of

more than 2 data points. Hence, the minimum number of points in the neighborhood

of y1 whose affine span passes close to y1 corresponds to the two data points from

M1.

4.2.1 Optimization algorithm

Our goal is to propose a method that selects, for each data point yi, a few neigh-

bors that lie in the same manifold. If the neighborhood Ni were known and of

relatively small size, one could search for the minimum number of points that satisfy

(4.1). However, Ni is not known a priori and searching for a few data points inNi that

satisfy (4.1) becomes more computationally complex as the size of the neighborhood

increases. To tackle this problem, we let the size of the neighborhood be arbitrary.

However, by using a sparse optimization program, we bias the method to select a few

data points that are close to yi and span a low-dimensional affine subspace passing

near yi.

Consider a point yi in the d`-dimensional manifold M` and let

Y i ,

[
y1−yi
‖y1−yi‖2

· · · yN−yi
‖yN−yi‖2

]
∈ RD×N−1. (4.2)

It follows from Assumption 1 that, among the columns of Y i, the ones that correspond

to the neighbors of yi inM` span a d`-dimensional affine subspace of RD that passes

125



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

near yi. In other words,

‖Y ici‖2 ≤ ε and 1>ci = 1 (4.3)

has a solution ci whose d` + 1 nonzero entries correspond to d` + 1 neighbors of yi in

M`.

Notice that after relaxing the size of the neighborhood, the solution ci that uses

the minimum number of vectors, i.e., the solution ci with the smallest number of

nonzero entries, may no longer be unique. In the example of Figure 4.2, for instance,

a solution of (4.3) with two nonzero entries can correspond to an affine combination

of (y2 − y1)/‖y2 − y1‖2 and (y3 − y1)/‖y3 − y1‖2 or an affine combination of (y2 −

y1)/‖y2−y1‖2 and (yp−y1)/‖yp−y1‖2. To bias the solution of (4.3) to the one that

corresponds to the closest neighbors of yi inMl, we set up an optimization program

whose objective function penalizes points based on their proximity to yi. That is, a

point yj that is closer to yi gets a lower penalty, characterized by a weight qij > 0,

than points that are farther away. Let Qi be a diagonal matrix whose j-th diagonal

entry is qij. We consider the following weighted `1-optimization program

min ‖Qici‖1 subject to ‖Y ici‖2 ≤ ε, 1>ci = 1, (4.4)

where the `1-norm promotes sparsity of the solution [29] and the proximity inducing

matrix Qi favors selecting points that are close to yi.

One choice of the proximity inducing matrix is to select the qij to be

qij =
‖yj − yi‖α2∑
t6=i ‖yt − yi‖α2

∈ (0, 1], (4.5)

126



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

for α > 0. One can also use other types of weights, such as exponential weights, given

by

qij =
exp(‖yj − yi‖2/σ)∑
t6=i exp(‖yt − yi‖2/σ)

∈ (0, 1], (4.6)

where σ > 0. The role of α in (4.5) and σ in (4.6) is to better deal with different

manifold curvatures and adjust the size of the effective neighborhood from which we

select the neighbors. More specifically, for a manifold that has a large curvature, the

selected neighbors should be closer to the given point, hence requiring to have larger

α or σ. On the other hand, for a manifold that has a small curvature, e.g., is close

to a subspace, one can select the neighbors that are not necessarily the closest to

the given point, yet are sufficiently close to it and lie on the same manifold. This is

acheved by a smaller value of α or σ.

Another optimization program, which is related to (4.4) by the method of La-

grange multipliers, is

min λ ‖Qici‖1 +
1

2
‖Y ici‖2

2 subject to 1>ci = 1, (4.7)

where the parameter λ sets the trade-off between the sparsity of the solution and the

affine reconstruction error [29, 99]. As we will show, for a wide range of values of λ,

the optimization program in (4.7) successfully finds a sparse solution of each point

whose nonzero elements correspond to the neighbors in the same manifold. Notice

that, by the definition of Qi and Y i, the solutions of the optimization programs (4.4)

and (4.7) are invariant with respect to a global rotation, translation, and scaling of

the data points.

127



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

Remark 7 Although, for each data point, we consider all N − 1 other points, from

which we select a few, the points that are far from the given data point will not be

selected by the weighted sparse optimization program. Thus, we can consider only the

L < N −1 nearest neighbors of each data point in the proposed optimization program,

which in turn improves the computational time of the algorithm.

The proposed optimization programs can also be viewed as a modification of the

SSC algorithm, studied in the previous chapter for clustering of data in multiple

subspaces, to deal with nonlinear manifolds with the goal of obtaining the clustering

and embedding of the data at the same time.

Notice that, in sharp contrast to the nearest neighbors-based methods, which

first fix the number of neighbors or the neighborhood radius and then compute the

weights between points in each neighborhood, we do the two steps at the same time.

In other words, the optimization programs (4.4) and (4.7) automatically choose a few

neighbors of the given data point, which approximately span a low-dimensional affine

subspace at that point. As we will show in the experiments, this helps to effectively

deal with manifolds that are spatially close to each other as well as manifolds of

different intrinsic dimensions and with non-uniform sampling.

4.2.2 Clustering and dimensionality reduction

By solving the proposed optimization programs for each data point, we obtain the

necessary information for clustering and dimensionality reduction. This is because

128



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

the solution c>i ,

[
ci1 · · · ciN

]
of the proposed optimization programs satisfies

∑

j 6=i

cij
‖yj − yi‖2

(yj − yi) ≈ 0. (4.8)

Hence, we can rewrite yi ≈
[
y1 y2 · · · yN

]
wi, where the weight vector w>i ,

[
wi1 · · · wiN

]
∈ RN associated to the i-th data point is defined as

wii , 0, wij ,
cij/‖yj − yi‖2∑
t6=i cit/‖yt − yi‖2

, j 6= i. (4.9)

The indices of the few nonzero elements of wi, ideally, correspond to the neighbors of

yi in the same manifold and their values are proportional to their inverse distances

to yi.

Next, we use the weights wi to perform clustering and dimensionality reduction.

We do so by building a similarity graph G = (V,E) whose nodes represent the data

points. We connect each node i, corresponding to yi, to the node j, corresponding

to yj, with an edge whose weight is equal to |wij| + |wji|. While, potentially, every

node can get connected to all other nodes, because of the sparsity of wi, each node i

connects itself to only a few other nodes that correspond to the neighbors of yi in the

same manifold. We call such neighbors as sparse neighbors. In addition, the distances

of the sparse neighbors to yi are reflected in the weights |wij|+ |wji|.

The similarity graph built in this way has ideally several connected components,

where points in the same manifold are connected to each other and there is no connec-

tion between two points in different manifolds. In other words, the similarity matrix

129



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

of the graph is ideally of the form

W ,

[
|w1| · · · |wN |

]
+

[
|w1| · · · |wN |

]>
=




W [1] · · · 0

...
. . .

...

0 · · · W [n]




Γ, (4.10)

where W [`] is the similarity matrix of the data points in M` and Γ ∈ RN×N is

an unknown permutation matrix. Clustering of the data follows by applying the

spectral clustering algorithm of [84] to W , similar to what we discussed in Section

3.2.2. One can also determine the number of connected components, i.e., the number

of manifolds, by analyzing the eigenspectrum of the Laplacian matrix [113].

Any of the existing dimensionality reduction techniques can be applied to the

data in each cluster to obtain a low-dimensional representation of the data in the

corresponding manifold. However, this would require new computation of the neigh-

borhoods and the weights. On the other hand, the similarity graph built by our

method has a locality preserving property by the definition of the weights. Thus, we

can use the adjacency matrix, W [i], of the i-th cluster as a similarity between points

in the corresponding manifold and obtain a low-dimensional embedding of the data

by taking the last few eigenvectors of the normalized Laplacian matrix associated

to W [i] [7]. More precisely, we form the normalized Laplacian matrix associated to

W [i] ∈ RNi×Ni as

L[i] = I −D[i]−1W [i], (4.11)

where D[i] = diag(W [i]1). Collecting the di eigenvectors of L[i] corresponding to

130



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

its second to the (di + 1)-th smallest eigenvalues in a matrix V [i] ∈ RNi×di , the

di-dimensional representation of the Ni data points are then given by the rows of

V [i].

4.2.3 Advantages of SMCE

An advantage of the proposed sparse optimization algorithm is that it can deal

with manifolds of different intrinsic dimensions without requiring to know the dimen-

sions of the manifolds a priori. Moreover, it can provide estimates of the intrinsic

dimensions of the manifolds. These come from the fact that a data point yi ∈ M`

and its neighbors in M`, under appropriate sampling conditions, lie approximately

in the d`-dimensional tangent space ofM` at yi. Since d` + 1 vectors in this tangent

space are linearly dependent, the solution ci of the proposed optimization program

in (4.7), with an appropriate choice of the regularization parameter, λ, is expected to

have d` + 1 nonzero elements. In practice, there is a range of λ for which the number

of neighbors recovered by (4.7) reflects the dimensionality of the underlying manifold,

as we will also show in the experiments.

To obtain an estimate of the dimension of a manifold, let Ω` denote the set of the

indices of data points that belong to the `-th cluster. For each data point in Ω`, sort

the elements of |ci| from the largest to the smallest values and denote the new vector

as c̃i. We define the median sparse coefficient vector associated to the `-th cluster as

msc(`) = median{c̃i}i∈Ω` , (4.12)

131



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

whose j-th element is computed as the median of the j-th elements of the vectors

{c̃i}i∈Ω` . Thus, the number of nonzero elements of msc(`) or, more practically, the

number of elements with relatively large magnitudes, gives an estimate of the intrinsic

dimension of the `-th manifold plus one.1

An advantage of our method is that it does not require to know the manifold

dimensions a priori and allows to have a different neighborhood size for each data

point, depending on the local dimension of the underlying manifold at that point.

For example, in the case of two manifolds of dimensions d1 = 2 and d2 = 30, for data

points in the `-th manifold, we automatically obtain solutions with approximately

d` + 1 nonzero elements. On the other hand, conventional manifold clustering and

dimensionality reduction methods that fix the number of neighbors fall into trouble,

as we will also show in the experiments, because the number of neighbors would be

too small for one manifold or too large for the other manifold.

4.3 Experiments

In this section, we evaluate the performance of SMCE on a number of synthetic

and real experiments. For all the experiments, we use the optimization program (4.7).

As discussed in Remark 7, since the weighted `1-optimization does not select points

that are very far from the given point, one consider only L < N−1 nearest neighbors

1One can also use the mean of the sorted coefficients in each cluster to compute the dimension
of each manifold. However, we prefer to use the median for robustness reasons.

132



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

of each data point in the optimization program. In our experiments, we observed that

we often obtain the same results using all data points and using L = N/10 nearest

neighbors. In our experiments, we use the weights defined in (4.5), and in all of the

experiments, except the motion segmentation experiment in Section 4.3.2.3, we set

α = 1. As in the case of nearest neighbors-based methods, there is no guarantee that

the points in the same manifold form a single connected component of the similarity

graph built by SMCE. However, this has always been the case in our experiments, as

we will show next.

4.3.1 Experiments with synthetic data

Manifold embedding. We first evaluate SMCE for the dimensionality reduction

task only. We sample N = 1, 000 data points from a 2-sphere, where a neighborhood

of its north pole is excluded. We embed the data in R100, add small Gaussian white

noise to it and apply SMCE for λ ∈ {10, 50, 100, 200}. Figure 4.3 (top row) shows the

embedding results of SMCE in a 2-dimensional Euclidean space. The three nonzero

elements of the msc vector for λ ∈ {50, 100, 200} correctly reflect the fact that the

intrinsic dimension of the sphere is equal to two. However, note that for very large

values of λ the embedding quality degrades since we put more emphasis on the sparsity

of the solution.

The middle and bottom rows of Figure 4.3 show the embeddings obtained by

several state-of-the-art algorithms for K = 5 and K = 20 nearest neighbors, respec-

133



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

SMCE, λ = 10 SMCE, λ = 50 SMCE, λ = 100 SMCE, λ = 200

LLE, K = 5 LEM, K = 5 MVU, K = 5 MVE, K = 5 LTSA, K = 5

LLE, K = 20 LEM, K = 20 MVU, K = 20 MVE, K = 20 LTSA, K = 20

Figure 4.3: Top row: A punctured sphere embedded in R100, the 2-D embeddings and
the msc vectors obtained by SMCE for different values of λ. Middle and bottom
rows: embeddings obtained by the state-of-the-art nearest neighbor-based algorithms
for K = 5 and K = 20, respectively.

tively. Notice that for K = 5, all methods obtain poor embedding results. On the

other hand, for K = 20, LLE and LEM obtain embeddings similar to those of SMCE,

while MVU, MVE and LTSA still do not obtain a good embedding (the red area near

the north pole of the sphere gets embedded inside the disc instead of outside it). This

suggests that the principle employed by SMCE to select the a few neighbors whose

affine span passes near the given point is very effective, i.e., SMCE chooses a few

neighbors that are very informative for dimensionality reduction.

Manifold clustering and embedding: non-uniform sampling. Next, we

consider a 1-dimensional trefoil-knot, which is isometric to a circle in R2, and a two-

dimensional flat manifold, which is isometric to a plane in R2, embedded jointly in R100

134



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

SMCE

LLE LEM

Figure 4.4: Clustering and embedding for a trefoil-knot with non-uniform sampling
and a plane with a hole. Left: original manifolds. Middle: embedding and msc
vectors obtained using SMCE. Right: clustering and embedding using LLE.

and corrupted with small Gaussian white noise. Both manifolds are randomly sampled

and the data corresponding to a disk in the middle of the plane are then removed

(see Figure 4.4). The non-convexity and non-uniform sampling of the parameter

space causes some dimensionality reduction methods such as Isomap to warp the

embedding [28]. In addition, it makes the choice of the number of nearest neighbors

or the neighborhood radius challenging for the conventional dimensionality reduction

algorithms. More precisely, for each manifold we need an appropriate neighborhood

size that captures the local geometry of the manifolds and does not include points

from other manifolds. In this example, K-nearest neighbor-based methods succeed in

clustering only for K ≤ 7 because there are points whose 8-th nearest neighbor comes

from the other manifold. Figure 4.4 shows the results of SMCE with λ = 10 as well

as the results of LLE and LEM with K = 7. While LLE and LEM with 7 nearest

135



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

SMCE

LLE LEM

Figure 4.5: Top row: two trefoil-knots embedded in R100 and the clustering, embed-
dings and msc vectors obtained by SMCE. Bottom row: clustering and embeddings
obtained by LLE and LEM.

Table 4.1: Clustering errors (%) of LLE and LEM as a function of K and of SMCE
as a function of λ, for the example of the two trefoil-knots shown in Figure 4.5.

K 2 3 4 5 6 8 10 20
LLE Error 15.5 9.5 16.5 13.5 16.5 37.5 38.5 14.5
LEM Error 15.5 13.5 17.5 14.5 24.5 27.5 13.5 12.5

λ 0.2 2 20 50 80 100 200 400
SMCE Error 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

neighbors does not find a faithful embedding of the trefoil-knot, SMCE with 2 or 3

neighbors succeeds in clustering, embedding, and estimating the intrinsic dimensions

of the manifolds, which suggests that SMCE chooses more informative neighbors for

both clustering and embedding.

Manifold clustering and embedding: spatial proximity. Next, we consider

the challenging case of manifolds being close to each other. We consider two trefoil-

knots, shown in Figure 4.5, which are embedded in R100 and are corrupted with small

136



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

Gaussian white noise. The data points are sampled such that among the 2 nearest

neighbors of 1% of the data points there are points from the other manifold. Also,

among the 3 and 5 nearest neighbors of 9% and 18% of the data points, respectively,

there are points from the other manifold. The nearest neighbor-based methods will

connect such points to their neighbors in the other manifold and assign large weights

to the connections. As a result, these methods cannot obtain a successful clustering

or a proper embedding. Table 4.1 shows the clustering errors of LLE and LEM for

different number of nearest neighbors, K, as well as the clustering errors of SMCE for

different values of λ. Notice that, while there is no K such that LLE and LEM can

successfully cluster the data, SMCE obtains a perfect clustering for a wide range of the

values of λ. Figure 4.5 shows the results of SMCE for λ = 10 as well as LLE and LEM

for K = 3. As the results show, enforcing that the sparse neighbors of a point span

a low-dimensional affine subspace passing near the point helps to select neighbors

from the correct manifold. This results in successful clustering and embedding of

the data as well as unraveling the dimensions of the manifolds (SMCE obtains, in

general, two sparse neighbors for each data point indicating the 1-dimensionality of

the manifolds). On the other hand, the fact that LLE and LEM choose the wrong

neighbors with strong weights, results in low-quality embeddings.

137



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDINGEmbedding via SMCE

Figure 4.6: 2-D embedding of the Frey face dataset obtained by SMCE.

4.3.2 Experiments with real data

In this section, we evaluate the performance of SMCE on real datasets. We show

that challenges such as manifold proximity and non-uniform sampling are also com-

mon in real datasets, and that our algorithm is able to handle these issues effectively.

4.3.2.1 Clustering and embedding of faces

Frey face dataset. We consider the dimensionality reduction of the images in the

Frey face dataset, which consists of 1, 965 face images captured under varying pose

and expression. Each image is vectorized as a 560 element vector of pixel intensities.

Figure 4.6 shows the 2-dimensional embedding obtained by SMCE. Notice that the

low-dimensional representation captures well the left to right pose variations in the

horizontal axis and the expression changes in the vertical axis.

Extended YaleB face dataset. We consider now the problem of clustering and

138



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

Table 4.2: Percentage of face images in the two subjects of the Extended YaleB face
database whose K nearest neighbors contain points from the other subject.

K 1 2 3 4 7 10
3.9% 10.2% 23.4% 35.2% 57.0% 64.8%

embedding of face images in the Extended Yale B database [73].

First, we consider face images of two different subjects in the dataset. Each subject

has 64 images of 192×168 pixels, captured under a fixed pose and expression and with

varying illuminations, leading to almost 33, 000-dimensional vectorized faces. Notice

that the space of the face images under varying illumination is not densely sampled

and in addition the two manifolds are very close to each other. Table 4.2 shows the

percentage of the points in the two manifolds (subjects) whose K nearest neighbors

contain points from the other manifold (subject).

Figure 4.7 shows the clustering errors of LLE and LEM as a function of the

number of nearest neighbors, K, and the clustering errors of SMCE as a function of

the regularization parameter, λ. Notice that, for both LLE and LEM, there is only

one value of K such that the clustering error is minimum (around 11%), and as we

change K, the clustering errors increase. On the other hand, for SMCE, there is a

large range of λ such that the clustering error is small (less than 4%).

Figure 4.8 (top row) shows the embeddings obtained by LLE, LEM and SMCE

for all the data prior to clustering. Notice that only SMCE reasonably separates the

low-dimensional representations of the face images according to their subjects. As

the table shows, there are several points whose nearest neighbor comes from the other

139



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

0 5 10 15 20 25 30
10

20

30

40

50

Number of Nearest Neighbors (K)

C
lu

st
er

in
g
 E

rr
o
r 

(%
)

LLE

0 5 10 15 20 25 30
10

15

20

25

30

35

Number of Nearest Neighbors (K)

C
lu

st
er

in
g
 E

rr
o
r 

(%
)

LEM

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

Regularization Paramter (λ)

C
lu

st
er

in
g
 E

rr
o
r 

(%
)

SMCE

Figure 4.7: Top: clustering errors (%) of LLE and LEM for two subjects in the Ex-
tended YaleB dataset as a function of the number of nearest neighbors (K). Bottom:
clustering error (%) of SMCE for two subjects in the Extended YaleB dataset as a
function of the regularization parameter λ.

manifold. Below the embedding of each method in Figure 4.8 (bottom row), we have

shown the weight vector associated to a data point in M1 whose nearest neighbor

comes fromM2. Notice that, while the nearest neighbor-based methods select wrong

neighbors (neighbors from M2) with strong weights, SMCE selects a few neighbors

from the correct manifold. The plots in Figure 4.9 show the embeddings obtained

by SMCE for each cluster. Notice that, as we move along the horizontal axis, the

140



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

LLE LEM SMCE

 

 

Subject 1
Subject 2

 

 

Subject 1
Subject 2

 

 

Subject 1
Subject 2

Figure 4.8: Top: 2-D embeddings obtained by LLE, LEM and SMCE for the face
data of two subjects in the Extended YaleB dataset. Bottom: the weights associated
to a data point from subject 1 obtained by each algorithm.

 

 

Cluster 1
Cluster 2

 

 

Cluster 1

 

 

Cluster 2

Figure 4.9: Clustering, embedding, and msc vectors obtained by SMCE for the face
data of two subjects in the Extended YaleB dataset.

direction of the light source, for the images in each cluster, changes from left to

right, while as we move along the vertical axis, the overall darkness of the images

changes from light to dark. Also, the msc vectors suggest a 2-dimensionality of the

face manifolds, correctly reflecting the number of the degrees of freedom of the light

source on the illumination rig (a sphere in R3).

141



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

Table 4.3: Clustering errors (%) of LLE, LEM and SMCE on the Extended YaleB
dataset as a function of the number of subjects (clusters).

Algorithm LLE LEM SMCE
2 Subjects

Mean 25.39 26.83 13.78
Median 21.88 24.22 4.69

3 Subjects
Mean 38.39 41.05 18.82

Median 39.58 42.19 12.76
5 Subjects

Mean 48.84 50.01 21.52
Median 50.00 49.38 22.81

8 Subjects
Mean 55.57 56.56 25.46

Median 55.27 56.84 26.86
10 Subjects

Mean 57.58 59.58 27.14
Median 57.58 58.59 25.62

Next, we consider clustering of face images on the entire Extended YaleB dataset,

where we use the same settings as the one described in Section 3.8.5. Table 4.3 shows

the clustering errors of LLE, LEM and SMCE on the dataset as a function of the

number of subjects (clusters). The results of LLE and LEM correspond to using

K = 3 and the results of SMCE correspond to using λ = 50, which give the lowest

clustering errors. Notice from the results that SMCE significantly outperforms LLE

and LEM. More specifically, SMCE obtains half of the clustering errors of LLE and

LEM for all different number of subjects.

142



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

 

 

Digit 0
Digit 3
Digit 4
Digit 6
Digit 7

 

 

Cluster 1

 

 

Cluster 2

Figure 4.10: Clustering and embedding of five digits from the MNIST dataset using
SMCE. Left: 2-D embedding of all the data points from digits {0, 3, 4, 6, 7}. Middle:
2-D embedding of the data points in the first cluster that corresponds to the digit 3.
Right: 2-D embedding of the data points in the second cluster that corresponds to
the digit 6.

4.3.2.2 Clustering and embedding of digits

We also consider the clustering and dimensionality reduction of the digits from

the MNIST test dataset [72]. We use the images from five digits {0, 3, 4, 6, 7} in the

dataset where we randomly select 200 data points from each digit. The left plot in

Figure 4.10 shows the joint embedding of all the data points obtained by SMCE. One

can see that the data are well separated according to their classes.

The middle and the right plots in Figure 4.10, show the 2-dimensional embeddings

obtained by SMCE for two clusters, which correspond to the digits 3 and 6. Notice

that, for the embedding of the cluster corresponding to the digit 3, as we move on

the horizontal axis from left to right, the overall thickness of the digits changes from

thick to thin. On the other hand, as we move on the vertical axis from bottom to

top, the digits change from being slanted to the left to being slanted to the right.

Similarly, for the embedding of the cluster corresponding to the digit 6, as we move

143



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

on the horizontal axis from left to right, the digits change from being slanted to the

left to being slanted to the right. On the other hand, as we move on the vertical axis

from bottom to top, the size of the end loop of the digit changes from small to large.

4.3.2.3 Motion segmentation experiments

To evaluate the clustering performance of the SMCE algorithm on a large dataset,

we consider the problem of motion segmentation on the Hopkins 155 dataset, which

we also considered in the previous chapter for the subspace clustering problem.

First, we run the LLE and LEM algorithms for different numbers of the nearest

neighbors, K. More specifically, for each value of K, we build the K-nearest neighbor

graph and obtain the weights using LLE and LEM. Then, we use the obtained weights

in a spectral clustering framework, as described in Chapter 2, to cluster the similarity

graph into n ∈ {2, 3} groups. Here, n denotes the number of motions in each video,

which we assume is given to the algorithms. The top plots of Figure 4.11 show the

average clustering errors for sequences of two and three motions in the dataset. From

the results we make the following conclusions:

– The clustering errors of both algorithms are minimum for K ∈ [5, 9], which is close

to the dimension of each manifold, i.e., 3. This comes from the fact that typically

for a d-dimensional manifold K ≈ 2d neighbors well capture the geometry of the

manifold.

– The clustering errors of both algorithms are large for all values of K, compared

144



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

5 10 15 20 25 30
12

14

16

18

20

22

24

26

28

K

C
lu

st
er

in
g
 E

rr
o
r 

(%
)

Two Motions

 

 

LLE

LEM

5 10 15 20 25 30
20

25

30

35

40

K

C
lu

st
er

in
g

 E
rr

o
r 

(%
)

Three Motions

 

 

LLE

LEM

10
−2

10
−1

10
0

2

4

6

8

10

12

14

16

18

α

C
lu

st
er

in
g

 E
rr

o
r 

(%
)

Two Motions

 

 

SMCE, λ = 0.01

SMCE, λ = 0.1

10
−2

10
−1

10
0

5

10

15

20

25

30

α

C
lu

st
er

in
g

 E
rr

o
r 

(%
)

Three Motions

 

 

SMCE, λ = 0.01

SMCE, λ = 0.1

Figure 4.11: Top: clustering errors (%) of LLE and LEM algorithms on the Hop-
kins 155 dataset as a function of the number of the nearest neighbors, K, for two
motions (left) and three motions (right). Bottom: clustering errors (%) of SMCE
algorithm on the Hopkins 155 dataset as a function of the exponent, α, of the weights
in (4.5), for two different values of λ, for two motions (left) and three motions (right).

to the state-of-the-art results that we studied in Chapter 3. This comes from the

fact that, for small values of K, the neighborhood graph does not capture well the

structure of the manifold, e.g., the points from the same manifold may form multiple

components of the similarity graph. On the other hand, for large values of K, while

the points from the same manifold get connected to each other, they also get connected

145



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

to points from other manifolds, hence spectral clustering fails to correctly separate

the data points into their underlying manifolds.

Next, we run the SMCE algorithm for different values of the exponent, α, of the

weights in (4.5) and for different values of the regularization parameter λ ∈ {0.01, 0.1}.

The bottom plots of Figure 4.11 show the average clustering errors for sequences of

two and three motions. From the results, we make the following conclusions:

– For a wide range of the weight exponent value, α, SMCE obtains small clustering

errors. As α increases, the clustering error also increases. This comes from the fact

that for large values of α, the algorithm becomes short-sighted, selecting few points

that are very close to the given point. On the other hand, for smaller values of α, the

algorithm allows for the selection of the points in the same manifold that are farther,

due to manifold gap and non-uniform sampling, yet lie on a low-dimensional affine

space passing close to the given point.

– The clustering errors for the two values of λ are relatively close to each other,

corroborating the robustness of the algorithm to the choice of the regularization

parameter.

Figure 4.12 shows the boxplots of the errors obtained by LLE, LEM and SMCE for

two and three motions. Notice from the plots that SMCE obtains statistically signif-

icant improvement over LLE and LEM for the segmentation of motions. Specifically,

for sequences with two motions, the length of the boxplot for SMCE is short, show-

ing that the algorithm obtain small errors for the majority of the sequences. Table

146



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

LLE LEM SMCE

0

10

20

30

40

50

Two Motions
C

lu
st

er
in

g
 E

rr
o

r 
(%

)

LLE LEM SMCE

0

10

20

30

40

50

Three Motions

C
lu

st
er

in
g

 E
rr

o
r 

(%
)

Figure 4.12: Boxplots for the motion segmentation errors of nonlinear manifold clus-
tering algorithms on the Hopkins 155 dataset using 2F -dimensional data points. Left:
clustering errors (%) for two motions. Right: clustering errors (%) for three motions.

Table 4.4: Clustering errors (%) of linear and nonlinear manifold clustering algorithms
on the Hopkins 155 dataset with the 2F -dimensional data points.

Algorithms LSA SSC LLE LEM SMCE
2 Motions

Mean 4.23 1.52 12.92 14.75 2.15
Median 0.56 0.00 4.08 7.69 0.00

3 Motions
Mean 7.02 4.40 21.56 23.56 7.03

Median 1.45 0.56 19.24 19.89 2.69
All

Mean 4.86 2.18 14.87 16.74 3.25
Median 0.89 0.00 8.71 13.97 0.00

4.4 also shows the average and the median clustering errors of different algorithms.

Note that SMCE obtains larger clustering error than SSC, studied in the previous

chapter, while it achieves much smaller errors than other manifold clustering as well

as subspace clustering methods, studied in Chapter 3. This comes from the fact that

SMCE at the same time of clustering pursues a dimensionality reduction objective,

i.e., it looks for points that are sufficiently close to the given point.

147



CHAPTER 4. SPARSE MANIFOLD CLUSTERING AND EMBEDDING

4.4 Conclusions

We proposed an algorithm based on sparse representation for simultaneous clus-

tering and dimensionality reduction of data lying in multiple manifolds. We used the

solution of a sparse optimization program to build a similarity graph from which we

obtained clustering and low-dimensional embedding of the data. The sparse represen-

tation of each data point ideally encodes information that can be used for inferring

the dimensionality of the underlying manifold around that point. We demonstrated

the effectiveness of the proposed algorithm for dealing with spatially close manifolds

and manifolds with non-uniform sampling and holes on synthetic and real data.

148



Chapter 5

Classification of Multi-Manifold

Data via Block-Sparse Recovery

In Chapters 3 and 4, we studied the problem of clustering data that lie in a union

of subspaces and nonlinear manifolds, respectively. A closely related and important

problem in the case of multi-manifold data, is the classification problem. The main

difference is that, in the clustering problem, the separation of the given data into their

underlying manifolds is unknown and needs to be recovered, while in the classification

problem, the data (training samples) are separated according to their underlying

manifolds, and the goal is to find the manifold of a new data point (test sample).

In this chapter, we consider the problem of classification of multi-manifold data,

where each class corresponds to a different manifold, and we want to classify a given

query and determine the manifold, i.e., the class, it belongs to. Motivated by practical

149



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

B[k] B[n] B[1] 

Sn

Sk

S1

Figure 5.1: In the face recognition problem, the dictionary has a block structure
where the training images of each subject form a few blocks of the dictionary and lie
in a union of subspaces.

problems such as face recognition [6,73,117], we model the manifold of each class with

a union of low-dimensional subspaces (see Figure 5.1) and assume that a test sample

lies in the direct sum of a few subspaces from the same class. We exploit the fact that

the dictionary of all training samples has a block structure where training data in

each class form a few blocks of the dictionary, hence, a test sample can be represented

by a combination of the training data from a few blocks of the dictionary [42].

We cast the classification as a block-sparse recovery problem where our goal is

to find a representation of a test example that uses the minimum number of blocks

from the dictionary. We consider two different classes of non-convex optimization

programs, consider their convex relaxations, and study conditions under which the

relaxations are equivalent to the original problems [42, 44]. In addition, we show

that the optimization programs can be modified properly to also deal with corrupted

data. We evaluate these algorithms on synthetic and real data, where we consider

the problem of automatic face recognition. We show that casting the face recognition

problem as a block-sparse recovery problem can improve the results of the state-

of-the-art face recognition algorithms, especially when there are relatively a small

150



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

number of training data in each class.

5.1 Problem settings

We assume that we are given N training data that lie in a union of L nonlinear

manifolds {M`}L`=1 corresponding to L classes. Motivated by practical problems such

as face recognition [6, 73, 117], we model the manifold of each class with a union of

subspaces {Si}ni=1 of dimensions {di}ni=1, where for all i we have di � D (see Figure

5.1). In other words, there exists a partition {Γ`}L`=1 of the set {1, 2, · · · , n} such that

the elements in Γ` denote the indices of subspaces associated with M`. We denote

by {bij ∈ RD}mij=1 the training data in the i-th subspace an let

B[i] ,

[
bi1 bi2 · · · bimi

]
∈ RD×mi . (5.1)

We also denote by B the collection of all training data across all classes, i.e.,

B ,

[
B[1] B[2] · · · B[n]

]
∈ RD×N . (5.2)

Given a test example y ∈ RD, which belongs to one of the L classes, our goal is to

find the class to which the test example belongs.

The classification algorithms, which we study in this chapter, can be thought

of as generalizations of the representation-based classification (SRC) algorithm [117],

where we assume a multi-manifold structure for the training data. In the next section,

we review the SRC algorithm.

151



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

5.2 A review of sparse representation-based

classification

The sparse representation-based classification (SRC) algorithm [117] is based on

the assumption that a test sample has a sparse representation in the dictionary of

all the training data across different classes, where it can be written as a linear

combination of a few training samples from the correct class. Hence, one is interested

in solving the following optimization problem

P`0 : min ‖c‖0 s. t. y = Bc, (5.3)

where ‖ · ‖0 denotes the `0 norm and indicates the number of nonzero elements of

the given vector. Since the P`0 optimization program is in general NP-hard, a convex

relaxation of it is considered by replacing the `0 with the `1 norm and solving the

following convex program

P`1 : min ‖c‖1 s. t. y = Bc. (5.4)

The SRC algorithm finds the class of a given test example as the class that best

represents the test example using its training data. More precisely, for a given test

example y, if we denote by c∗> =

[
c∗>[1] · · · c∗>[n]

]
the optimal solution of P`1 ,

the class of y is obtained by

class(y) = argmini

∥∥∥∥∥y −
∑

j∈Γi

B[j]c∗[j]

∥∥∥∥∥
2

, (5.5)

152



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

where, as mentioned before, Γi denotes the set of indices of the blocks corresponding

to class i. In other words, it is assumed that the best reconstruction of the test sample

is achieved using a few training samples from the same class.

An important advantage of the SRC algorithm is that it can deal with corrupted

data within the same framework. To see this, let y0 be a test example corrupted

with an error e that has a few nonzero entries, i.e., y = y0 + e, where ‖e‖0 � D.

Note that y0 has a sparse representation in the dictionary of the training data B and

the error has a sparse representation in the standard basis I (the identity matrix in

RD×D). Thus, in a new dictionary formed by concatenating the training data and

the standard basis, y has a sparse representation that can be recovered from

P̄`0 : min

∥∥∥∥∥∥∥∥



c

e




∥∥∥∥∥∥∥∥
0

s. t. y =

[
B I

]


c

e


 . (5.6)

To solve this problem, one uses an `1 relaxation and instead solve the following convex

program

P̄`1 : min

∥∥∥∥∥∥∥∥



c

e




∥∥∥∥∥∥∥∥
1

s. t. y =

[
B I

]


c

e


 . (5.7)

Finally, the class of the corrupted test sample is given by

class(y) = argmini

∥∥∥∥∥y − e
∗ −

∑

j∈Γi

B[j]c∗[j]

∥∥∥∥∥
2

. (5.8)

153



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

5.3 Challenges of multi-manifold data

classification

While SRC algorithm has been shown to be effective for classification, there still

remain questions about classification in the multi-manifold setting using sparse rep-

resentation which have not been sufficiently explored or have not been answered yet.

C1– The SRC method looks for the sparsest representation of a test example with

the hope that such a representation selects few training data from the correct class.

However, as shown in Figure 5.1, the dictionary of the training data has a structure in

which the manifold of each class is modeled by a union of low-dimensional subspaces.

Is there a way to direct the SRC method to take into account the dictionary structure,

e.g., by finding a representation of a test example that involves only a few blocks of

the dictionary corresponding to the training data from a single class. If so, what would

be the behavior of the new algorithms in dealing with corrupted data?

C2– When it comes to the problem of classification in multiple subspaces, there is a

fundamental gap between the theory of sparse recovery and the practice of machine

learning.

C2a– When the number of training data in each class is large, we can better

capture the underlying distribution of the data and the classification performance

increases. Nonetheless, existing sparse recovery algorithms do not have theoretical

154



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

guarantees when it comes to highly redundant dictionaries and the conditions for

their success almost never hold. Can we fill the gap between the current sparse rep-

resentation theory and the classification practice?

C2b– When the number of training data in each class is small, sparse recovery

methods have good theoretical guarantees. However, classification algorithms do not

perform well. Can we have alternative methods based on sparse representation that

can lead to better classification results when the number of training data in each class

is small?

5.4 Classification via block-sparse

representation

In this thesis, we assume that the data in each class lie in a manifold, which can

be modeled as a union of low-dimensional subspace. We argue that looking for the

sparsest representation of a test example is not the best criterion for classification.

In order to see this, we consider the example in Figure 5.2 (left) where we have

3 classes whose training samples lie in three subspaces; S1 being a 2-dimensional

subspace, S2 and S3 being 1-dimensional subspaces. The test sample y, which belongs

to class 1, can be written as a linear combination of any two data points from class

1, while it can also be written as a linear combination of one data point from class 2

and one from class 3. Thus, from the sparsest representation perspective, there is no

155



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

S1

S2 S3

y

S1

S11

S12

y1

y2

Figure 5.2: Left: sparsest representation of a test example does not necessarily come
from the correct class. y can be written as a linear combination of one data point
from S2 and one from S3 as well as a linear combination of two data points from S1.
Right: training data in a class might be separated into several blocks. Thus, a test
example can be written as a linear combination of a few blocks in each class.

difference between the two representations as they both have two nonzero elements,

while obviously from a classification perspective, the first solution is the desired one.

Now, if instead of looking for the sparsest representation we look for a representation

that uses the minimum number of subspaces/blocks, we obtain the desired solution

for perfect classification.

In a general classification task, the dictionary of the training samples has a block

structure with several blocks for each class corresponding to the training samples

from that class lying in a union of low-dimensional subspaces. We assume that a test

sample can be represented as a linear combination of the training samples from a few

blocks of the dictionary corresponding to its underlying class. For example, in Figure

5.2 (right), the test example y1 can be written as a linear combination of 1 block while

y2 can be written as a linear combination of two blocks of the underlying class. As

another example, in the face recognition problem, each class consists of images of a

156



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

single subject that can be separated into multiple blocks based on different expressions

as shown in Figure 5.1.

5.4.1 Block-sparse representation via P`q/`0

Based on what we have discussed so far, a better objective for classification is to

solve

P`q/`0 : min
n∑

i=1

I(‖c[i]‖q > 0) s. t. y = Bc, (5.9)

where I(·) is the indicator function and q > 0. This optimization problem seeks the

minimum number of nonzero coefficient blocks that reconstruct the test example.

Note that the optimization program P`q/`0 is, in general, NP-hard since it requires

searching exhaustively over all possible few blocks of B and checking whether they

span the given y. An `1 relaxation of this program is given by

P`q/`1 : min
n∑

i=1

‖c[i]‖q s. t. y = Bc, (5.10)

which is a convex program when q ≥ 1.

Remark 8 For q = 1, while the non-convex programs P`0/`1 and P`0 are different,

their convex relaxations P`1/`1 and P`1 are the same. Thus, P`1 can also be thought

of as a block-sparse recovery method that under appropriate conditions, as will be

discussed in this chapter, finds a representation of the test example with the minimum

number of nonzero blocks.

157



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

5.4.2 Block-sparse representation via P ′`q/`0

We will also consider an alternative optimization program for the classification

problem, which can be formulated as

P ′`q/`0 : min
n∑

i=1

I(‖B[i]c[i]‖q > 0) s. t. y = Bc, (5.11)

where q > 0. The `1 relaxation of this optimization program is given by

P ′`q/`1 : min
n∑

i=1

‖B[i]c[i]‖q s. t. y = Bc, (5.12)

which is a convex program for q ≥ 1. Unlike P`q/`0 that minimizes the number of

nonzero coefficient blocks c[i], the optimization program P ′`q/`0 minimizes the number

of nonzero reconstructed vectors B[i]c[i] ∈ Si, i.e., minimizes the number of active

subspaces. When the blocks consist of linearly independent data, the solution of P ′`q/`0

has also the minimum number of nonzero coefficient blocks, because ‖B[i]c[i]‖q > 0

if and only if ‖c[i]‖q > 0. On the other hand, when the blocks consist of linearly

dependent vectors, we may have ‖c[i]‖q > 0 while ‖B[i]c[i]‖q = 0. As a result, while

P ′`q/`0 still finds the minimum number of active subspaces, it does not necessarily

finds the minimum number of nonzero coefficient blocks. In practice, to prevent such

overfittings in the case of redundant blocks, we need to add a small regularization

term on the values of the coefficients, such as ‖c‖2
2, to the optimization program.

158



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

5.5 Theoretical analysis

In the previous sections, we showed that when data in multiple classes live in

multiple low-dimensional subspaces, the classification problem can be cast as a struc-

tured sparse recovery problem where we are interested in solving the non-convex

optimization programs P`q/`0 and P ′`q/`0 .

In this section, we study conditions under which the optimization programs P`q/`1

and P ′`q/`1 can find the minimum number of nonzero coefficient blocks, c[i], and the

minimum number of reconstructed vectors, B[i]c[i] ∈ Si, respectively. Unlike the

state-of-the-art structured sparse recovery literature [36,37,50] that only consider the

case where q = 2 and the data in each block are linearly independent, our theoretical

analysis allows for arbitrary q > 0. Also, motivated by practical problems such as

classification, we allow for arbitrary number of data in each block.

Before presenting theoretical guarantees for the two classes of optimization pro-

grams, we define the setting for the problem and present definitions that characterize

the relationships between subspaces and among data points in each subspace.

5.5.1 Problem settings and definitions

We consider the problem of block-sparse recovery in a union of subspaces. We

assume that the dictionary B ∈ RD×N consists of n blocks and the vectors in each

block B[i] ∈ RD×mi live in a linear subspace Si of dimension di. Unlike the state-of-

159



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

the-art block-sparse recovery literature, we do not restrict the blocks to have linearly

independent columns. Instead, we allow for both non-redundant (mi = di) and

redundant (mi > di) blocks. For reasons that will become clear in the subsequent

sections, throughout this section, we assume that the subspaces {Si}ni=1 spanned by

the columns of the blocks {B[i]}ni=1 are disjoint.

In order to characterize a dictionary B, we introduce two notions that charac-

terize the relationship between the blocks and among the atoms of each block of the

dictionary. We start by introducing notions that capture the inter-block relationships

of a dictionary. To do so, we make use of the subspaces associated with the blocks.

Definition 4 The subspace coherence between two disjoint subspaces Si and Sj is

defined as

µ(Si,Sj) = max
x∈Si,z∈Sj

|x>z|
‖x‖2‖z‖2

∈ [0, 1). (5.13)

The mutual subspace coherence, µS, is defined as the largest subspace coherence

among all pairs of subspaces,

µS , max
i 6=j

µ(Si,Sj). (5.14)

Notice from Definition 2 that two disjoint subspaces intersect only at the origin.

Therefore, their subspace coherence is always smaller than one.1 The following result

shows how to compute the subspace coherence efficiently from the singular values of

a matrix obtained from the subspace bases [57].

1Note that the smallest principal angle [57] between Si and Sj , θ(Si,Sj), is related to the subspace
coherence by µ(Si,Sj) = cos(θ(Si,Sj)). Thus, µS is the cosine of the smallest principal angle among
all pairs of different subspaces.

160



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

Proposition 2 Let Si and Sj be two disjoint subspaces with orthonormal bases Ai

and Aj, respectively. The subspace coherence µ(Si,Sj) is given by

µ(Si,Sj) = σ1(A>i Aj). (5.15)

It follows from Definition 4 that the mutual subspace coherence can be computed as

µS = max
i 6=j

σ1(A>i Aj). (5.16)

Comparing this with the notion of block-coherence defined in Chapter 2, the main dif-

ference is that block-coherence, µB, uses directly block matrices which are assumed to

be non-redundant. However, mutual subspace coherence, µS, uses orthonormal bases

of the blocks that can be either non-redundant or redundant. The two notions coin-

cide with each other when the blocks are non-redundant and consist of orthonormal

vectors.

While the mutual subspace coherence can be easily computed, it has the short-

coming of not characterizing very well the collection of subspaces because it only

reflects the most extreme correlations between subspaces. Thus, we define a notion

that better characterizes the relationship between the blocks of a dictionary.

Definition 5 Let Λk denote a subset of k different elements from {1, . . . , n}. The

k-cumulative subspace coherence is defined as

ζk , max
Λk

max
i/∈Λk

∑

j∈Λk

µ(Si,Sj). (5.17)

161



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

Roughly speaking, the k-cumulative subspace coherence measures the maximum total

subspace coherence between a fixed subspace and a collection of k other subspaces.

Note that for k = 1, we have ζ1 = µS.

Mutual/cumulative subspace coherence can be thought of as natural extensions

of mutual/cumulative coherence, defined in defined in chapter 2. In fact, they are

equivalent to each other for the case of one-dimensional subspaces, where each block of

the dictionary consists of a single atom. The following Lemma shows the relationship

between mutual and cumulative subspace coherence of a dictionary.

Lemma 2 Consider a dictionary B, which consists of n blocks. For every k ≤ n, we

have

ζk ≤ kµS. (5.18)

The proof of Lemma 2 is straightforward and is provided in the appendix at the end

of this chapter. While computing ζk is, in general, more costly than computing µS,

it follows from Lemma 2 that conditions for block-sparse recovery based on ζk are

weaker than those based on µS, as we will show in the next sections. In fact, for a

dictionary, ζk can be much smaller than kµS, which results in weaker block-sparse

recovery conditions based on ζk.

To see this, consider the four one-dimensional subspaces shown in Figure 5.3,

where S1 and S2 are orthogonal to S3 and S4, respectively. Also, the principal angles

between S1 and S2 as well as S3 and S4 are equal to θ < π/4. Hence, the ordered

subspace coherences are 0 ≤ 0 ≤ sin(θ) ≤ sin(θ) ≤ cos(θ) ≤ cos(θ). One can verify

162



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

O
S1

S2

S3S4

θ

θ

Figure 5.3: Four one-dimensional subspaces in a two-dimensional space. S1 and S2

are orthogonal to S3 and S4, respectively.

that

ζ3 = cos(θ) + sin(θ) < 3µS = 3 cos(θ).

In fact, for small values of θ, ζ3 is much smaller than 3µS.2

Next, we introduce notions that capture the intra-block characteristics of a dic-

tionary.

Definition 6 Let q > 0. For a dictionary B, define the intra-block q-restricted

isometry constant, εq, as the smallest constant such that for every i there exists a

full column-rank submatrix B̄[i] ∈ RD×di of B[i] ∈ RD×mi such that for every c̄[i] we

have

(1− εq)‖c̄[i]‖2
q ≤ ‖B̄[i]c̄[i]‖2

2 ≤ (1 + εq)‖c̄[i]‖2
q. (5.19)

Roughly speaking, εq characterizes the best q-restricted isometry property among all

2Another notion, which can be computed efficiently, is the sum of the k largest subspace coher-
ences, uk , µ1+· · ·+µk, where the sorted subspace coherences among all pairs of different subspaces
are denoted by µS = µ1 ≥ µ2 ≥ µ3 ≥ · · · . We can show that ζk ≤ uk ≤ kµS . In the example of
Figure 5.3, u3 = 2 cos(θ) + sin(θ), which is between ζ3 and 3µS .

163



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

submatrices of B[i] that span subspace Si. When q = 2, for a dictionary with non-

redundant blocks, where B̄[i] = B[i], ε2 coincides with the 1-block restricted isometry

constant of B defined in chapter 2, i.e., ε2 = δB,1. Thus, εq can be thought of as a

generalization of the 1-block restricted isometry constant, δB,1, to generic dictionaries

with both non-redundant and redundant blocks and arbitrary q ≥ 1.

Definition 7 Let q > 0. For a dictionaryB, define the upper intra-block q-restricted

isometry constant, σq, as the smallest constant such that for every i and c[i] we have

‖B[i]c[i]‖2
2 ≤ (1 + σq)‖c[i]‖2

q. (5.20)

While in general εq ≤ σq, for the special case of non-redundant blocks, where B̄[i] =

B[i], we have εq = σq.

Remark 9 It is important to note that the theory developed in this chapter holds for

any q > 0. However, since q ≥ 1 leads to convex programs that can be solved more

efficiently, we consider this case in our experiments.

5.5.2 Uniqueness of block-sparse representations

Consider a dictionary B with n blocks B[i] ∈ RD×mi generated by disjoint sub-

spaces Si of dimensions di. Let y be a signal that has a block-sparse representation

in B using k blocks indexed by {i1, . . . , ik}. We can write

y =
k∑

l=1

B[il]c[il] =
k∑

l=1

sil , (5.21)

164



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

where sil , B[il]c[il] is a vector in the subspace Sil . In this section, we investigate con-

ditions under which we can uniquely recover the indices {il} of the blocks/subspaces

as well as the vectors {sil ∈ Sil} that generate a block-sparse representation of a given

y. We will investigate the efficient recovery of such a block-sparse representation using

the optimization programs P`q/`1 and P ′`q/`1 in the subsequent sections.

In general, uniqueness of {sil} is a weaker notion than the uniqueness of {c[il]}

since a unique set of coefficient blocks {c[il]} uniquely determines the vectors {sil},

but the converse is not necessarily true. More precisely, given sil , the equation

sil = B[il]c[il] does not have a unique solution c[il] when B[il] is redundant. The

solution is unique, only when the block is non-redundant. Therefore, the unique-

ness conditions we present next, are more general than the state-of-the-art results.

While [37] and [36] provide conditions for the uniqueness of the blocks {il} and the

coefficient blocks {c[il]}, which only hold for non-redundant blocks, we provide condi-

tions for the uniqueness of the blocks {il} and the vectors {sil} for generic dictionaries

with non-redundant or redundant blocks. We show the following result whose proof

is provided in the appendix at the end of this chapter.

Proposition 3 Let B̄[i] ∈ RD×di be an arbitrary full column-rank submatrix of

B[i] ∈ RD×mi and define

B̄ ,

[
B̄[1] · · · B̄[n]

]
. (5.22)

The blocks {il} and the vectors {sil} that generate a k-block-sparse representation of

a signal can be determined uniquely if and only if B̄ c̄ 6= 0 for every 2k-block-sparse

165



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

vector c̄ 6= 0.

Remark 10 Note that the disjointness of subspaces is a necessary condition for

uniquely recovering the blocks that take part in a block-sparse representation of a sig-

nal. This comes from the fact that for k = 1, the uniqueness condition of Proposition

3 requires that any two subspaces intersect only at the origin.

Next, we state another uniqueness result that we will use in our theoretical analysis

in the next sections. For a fixed τ ∈ [0, 1) and for each i ∈ {1, . . . , n} define

Wτ,i , {si ∈ Si, 1− τ ≤ ‖si‖2
2 ≤ 1 + τ}, (5.23)

which is the set of all vectors in Si whose norm is bounded by 1+τ from above and by

1− τ from below. Let Λk = {i1, . . . , ik} be a set of k indices from {1, . . . , n}. Define

Bτ (Λk),{BΛk =

[
si1· · ·sik

]
, sil∈Wτ,il , 1 ≤ l ≤ k}, (5.24)

which is the set of matrices BΛk ∈ RD×k whose columns are drawn from subspaces

indexed by Λk and their norms are bounded according to (5.23). With abuse of

notation, we use Bk to indicate BΛk ∈ Bτ (Λk) whenever Λk is clear from the context.

For example, Bn ∈ RD×n indicates a matrix whose columns are drawn from all n

subspaces. We have the following result whose proof is provided in the appendix at

the end of this chapter.

166



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

Corollary 1 Let τ ∈ [0, 1). The blocks {il} and the vectors {sil} that constitute a

k-block-sparse representation of a signal can be determined uniquely if and only if

rank(Bn) ≥ 2k for every Bn ∈ Bτ (Λn).

Note that the result of Corollary 1 still holds if we let the columns ofBn have arbitrary

nonzero norms, because the rank of a matrix does not change by scaling its columns

with nonzero constants. However, as we will show in the next section, the bounds

on the norms as in (5.23) appear when we analyze block-sparse recovery using the

optimization programs P`q/`1 and P ′`q/`1 . While checking the condition of Corollary 1

is not possible, as it requires computing every possible si in Wτ,i, we use the result

of Corollary 1 in our theoretical analysis in the next sections.

In the remainder of this Chapter, we assume that a given signal y has a unique

k-block-sparse representation in B.

Definition 8 By uniqueness of a block-sparse representation, we mean that the blocks

Λk and the vectors {si ∈ Si}i∈Λk for which y =
∑

i∈Λk
si can be determined uniquely.

Under the uniqueness assumption, in the subsequent sections, we investigate condi-

tions under which P`q/`1 and P ′`q/`1 recover the unique set of nonzero blocks Λk and

the unique vectors {si ∈ Si}i∈Λk .

167



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

5.5.3 Block-sparse recovery via P`q/`1

In this section, we study conditions under which P`q/`1 recovers the unique block-

sparse representation of a given signal for both the case of non-redundant and redun-

dant blocks.

To that end, let Λk be a set of k indices from {1, · · · , n} and Λk̂ be the set of

the remaining n− k indices. Let x be a nonzero vector in the intersection of ⊕i∈ΛkSi

and ⊕i∈Λ
k̂
Si, where ⊕ denotes the direct sum operator. Let the minimum `q/`1-norm

coefficient vector when we choose only the k blocks of B indexed by Λk be

c̆∗ = argmin
∑

i∈Λk

‖c[i]‖q s. t. x =
∑

i∈Λk

B[i]c[i], (5.25)

and let the minimum `q/`1-norm coefficient vector when we choose the blocks indexed

by Λk̂ be

ĉ∗ = argmin
∑

i∈Λ
k̂

‖c[i]‖q s. t. x =
∑

i∈Λ
k̂

B[i]c[i]. (5.26)

The following theorem gives conditions under which the convex program P`q/`1 is

guaranteed to successfully recover a k-block-sparse representation of a given signal.

Theorem 4 For any signal that has a unique k-block-sparse representation in B,

the optimization program P`q/`1 recovers the unique block-sparse representation if and

only if

∀Λk, ∀x ∈ (⊕i∈ΛkSi) ∩ (⊕i∈Λ
k̂
Si), x 6= 0 =⇒

∑

i∈Λk

‖c̆∗[i]‖q <
∑

i∈Λ
k̂

‖ĉ∗[i]‖q. (5.27)

168



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

Proof. (⇐=) Fix Λk and y in ⊕i∈ΛkSi and let c∗ be the solution of P`q/`1 . If c∗ has

at most k nonzero blocks, then by the uniqueness assumption the nonzero blocks are

indexed by Λk. For the sake of contradiction, assume that c∗ has more than k nonzero

blocks, so c∗ is nonzero for some blocks in Λk̂. Define

x , y −
∑

i∈Λk

B[i]c∗[i] =
∑

i∈Λ
k̂

B[i]c∗[i]. (5.28)

From (5.28) we have that x lives in the intersection of ⊕i∈ΛkSi and ⊕i∈Λ
k̂
Si. Let c̆∗

and ĉ∗ be respectively the solutions of the optimization problems in (5.25) and (5.26),

for x. We can write

x =
∑

i∈Λk

B[i]c̆∗[i] =
∑

i∈Λ
k̂

B[i]ĉ∗[i]. (5.29)

We also have the following inequalities

∑

i∈Λk

‖c̆∗[i]‖q <
∑

i∈Λ
k̂

‖ĉ∗[i]‖q ≤
∑

i∈Λ
k̂

‖c∗[i]‖q, (5.30)

where the first inequality follows from the sufficient condition in (5.27). The second

inequality follows from the second inequalities in (5.28) and (5.29) and the fact that

ĉ∗ is the optimal solution of (5.26) for x. Using the first equalities in (5.28) and

(5.29), we can rewrite y as

y =
∑

i∈Λk

B[i](c∗[i] + c̆∗[i]), (5.31)

which implies that c∗ + c̆∗ is a solution of y = Bc. Finally, using (5.30) and the

169



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

triangle inequality, we obtain

∑

i∈Λk

‖c∗[i] + c̆∗[i]‖q ≤
∑

i∈Λk

‖c∗[i]‖q +
∑

i∈Λk

‖c̆∗[i]‖q

<
∑

i∈Λk

‖c∗[i]‖q +
∑

i∈Λ
k̂

‖ĉ∗[i]‖q ≤
n∑

i=1

‖c∗[i]‖q. (5.32)

This contradicts the optimality of c∗, since it means that c∗ + c̆∗, which is also a

solution of y = Bc, has a strictly smaller `q/`1-norm than c∗.

(=⇒) We prove this using contradiction. Assume there exist Λk and x in the in-

tersection of ⊕i∈ΛkSi and ⊕i∈Λ
k̂
Si for which the condition in (5.27) does not hold,

i.e.,

∑

i∈Λ
k̂

‖ĉ∗[i]‖q ≤
∑

i∈Λk

‖c̆∗[i]‖q. (5.33)

Thus, a solution of x = Bc is given by ĉ∗ that is not k-block-sparse and has a `q/`1-

norm that is smaller than or equal to any k-block-sparse solution, contradicting the

assumption that P`q/`1 recovers the uniques k-block-sparse representation of any given

signal.

The condition of Theorem 4 (and Theorem 5 in the next section) is closely related

to the nullspace property in [27, 70, 96, 108]. However, the key difference is that we

do not require the condition of Theorem 4 to hold for all feasible vectors of (5.25)

and (5.26), denoted by c̆ and ĉ, respectively. Instead, we only require the condition

of Theorem 4 to hold for the optimal solutions of (5.25) and (5.26). Thus, while the

nullspace property might be violated by some feasible vectors c̆ and ĉ, our condition

can still hold for c̆∗ and ĉ∗, guaranteeing the equivalence of the two optimization

170



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

programs.

Notice that it is not possible to check the condition in (5.27) for every Λk and

for every x in the intersection of ⊕i∈ΛkSi and ⊕i∈Λ
k̂
Si. In addition, the condition

in (5.27) does not explicitly incorporate the inter-block and intra-block parameters

of the dictionary. In what follows, we propose sufficient conditions that incorporate

the inter-block and intra-block parameters of the dictionary and can be efficiently

checked. We use the following Lemma, which is a generalization of Theorem 3.5

in [104], whose proof is provided in the Appendix.

Lemma 3 Let Ek ∈ RD×k be a matrix whose columns are chosen from subspaces

indexed by Λk and Ek ∈ Bα(Λk) for a fixed α ∈ [0, 1). Let Ek̂ ∈ RD×n−k be a matrix

whose columns are chosen from subspaces indexed by Λk̂ where the Euclidean norm

of each column is less than or equal to
√

1 + β. We have

‖(E>kEk)
−1E>kEk̂‖1,1 ≤

√
(1 + α)(1 + β) ζk

1− [α + (1 + α)ζk−1 ]
. (5.34)

Proposition 4 For any signal that has a unique k-block-sparse representation in B,

the optimization program P`q/`1 recovers the unique block-sparse representation if

√
1 + σq
1 + εq

ζk + ζk−1 <
1− εq
1 + εq

. (5.35)

Proof. Fix a set Λk = {i1, . . . , ik} of k indices from {1, . . . , n} and let Λk̂ =

{ik+1, . . . , in} denote the set of the remaining indices. Consider a signal x in the

intersection of ⊕i∈ΛkSi and ⊕i∈Λ
k̂
Si. The structure of the proof is as follows. We

171



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

show that x can be written as x = Bkak, where for the solution of (5.25), we have

∑
i∈Λk
‖c̆∗[i]‖q ≤ ‖ak‖1. Also, we show that for the solution of (5.26), one can write

x = Bk̂ak̂, where ‖ak̂‖1 =
∑

i∈Λ
k̂
‖ĉ∗[i]‖q. Under the sufficient condition of the

Proposition, we show that ‖ak‖1 < ‖ak̂‖1, implying that the condition of Theorem 4

is satisfied.

To start, let ĉ∗ be the solution of the optimization program in (5.26). For every

i ∈ Λk̂, define the vectors si and the scalars ai as follows. If ĉ∗[i] 6= 0 andB[i]ĉ∗[i] 6= 0,

let

si ,
B[i]ĉ∗[i]

‖ĉ∗[i]‖q
, ai , ‖ĉ∗[i]‖q. (5.36)

Otherwise, let si be an arbitrary vector in Si of unit Euclidean norm and ai = 0. We

can write

x =
∑

i∈Λ
k̂

B[i]ĉ∗[i] = Bk̂ak̂, (5.37)

where Bk̂ ,

[
sik+1

· · · sin
]

and ak̂ ,

[
aik+1

· · · ain
]>

. Note that from Definition 7,

we have ‖si‖2 ≤
√

1 + σq for every i ∈ Λk̂.

Let B̄[i] ∈ RD×di be the submatrix of B[i] associated with εq according to Defi-

nition 6. Since B̄[i] spans the subspace Si, there exists c̄[i] such that

x =
∑

i∈Λk

B̄[i]c̄[i] , Bkak, (5.38)

where Bk ,

[
si1 · · · sik

]
and ak ,

[
ai1 · · · aik

]>
. For every i ∈ Λk the vectors si

172



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

and the scalars ai are defined as

si ,
B̄[i]c̄[i]

‖c̄[i]‖q
, ai , ‖c̄[i]‖q, (5.39)

whenever c̄[i] 6= 0 and B̄[i]c̄[i] 6= 0. Otherwise, we let si be an arbitrary vector in Si

of unit Euclidean norm and ai = 0. Clearly, Bk ∈ Bεq(Λk) is full column-rank using

Corollary 1 when εq ∈ [0, 1). Hence, we have ak = (B>kBk)
−1B>k x and consequently,

‖ak‖1 = ‖(B>kBk)
−1B>k x‖1. (5.40)

Substituting y from (5.37) in the above equation, we obtain

‖ak‖1 = ‖(B>kBk)
−1B>kBk̂ak̂‖1 ≤ ‖(B>kBk)

−1B>kBk̂‖1,1‖ak̂‖1. (5.41)

Using Lemma 3 with α = εq and β = σq, we have

‖(B>kBk)
−1B>kBk̂‖1 ≤

√
(1 + εq)(1 + σq) ζk

1− [ εq + (1 + εq)ζk−1 ]
. (5.42)

Thus, if the right hand side of the above equation is strictly less than one, i.e., if

the condition of the proposition is satisfied, then from (5.41) we have ‖ak‖1 < ‖ak̂‖1.

Finally, using the optimality of c̆∗ when we choose the blocks indexed by Λk, we

obtain

∑

i∈Λk

‖c̆∗[i]‖q ≤
∑

i∈Λk

‖c̄[i]‖q=‖ak‖1 < ‖ak̂‖1 =
∑

i∈Λ
k̂

‖ĉ∗[i]‖q, (5.43)

which implies that the condition of Theorem 4 is satisfied. Thus, the convex program

P`q/`1 recovers a k-block-sparse representation of a given signal.

The following corollary derives stronger, but simpler to check, sufficient conditions

for block-sparse recovery using P`q/`1 .

173



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

Corollary 2 For any signal that has a unique k-block-sparse representation in B,

the optimization program P`q/`1 recovers the unique block-sparse representation if and

only if 3

(k

√
1 + σq
1 + εq

+ k − 1)µS <
1− εq
1 + εq

. (5.44)

Proof. The result follows from Proposition 4 by using the fact that ζk ≤ kµS from

Lemma 2.

For non-redundant blocks, we have σq = εq. Thus, in this case, for the convex

program P`q/`1 , the block-sparse recovery condition based on the mutual subspace

coherence in (5.44) reduces to

(2k − 1)µS <
1− εq
1 + εq

. (5.45)

Also, the block-sparse recovery condition based on the cumulative subspace co-

herence in (5.35) reduces to

ζk + ζk−1 <
1− εq
1 + εq

, (5.46)

which is always weaker than the condition based on the mutual subspace coherence

in (5.45).

3An intermediate sufficient condition is given by
√

1+σq

1+εq
uk + uk−1 <

1−εq
1+εq

using the fact that

ζk ≤ uk ≤ kµS .

174



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

5.5.4 Block-sparse recovery via P ′`q/`1

In this section, we study conditions under which P ′`q/`1 recovers the unique block-

sparse representation of a given signal for both the case of non-redundant and redun-

dant blocks. Our approach is similar to the one in the previous section.

Let Λk be a set of k indices from {1, . . . , n} and Λk̂ be the set of the remaining

indices. For a nonzero signal x in the intersection of ⊕i∈ΛkSi and ⊕i∈Λ
k̂
Si, let the

minimum `q/`1-norm coefficient vector when we choose only the blocks of B indexed

by Λk be

c̆∗ = argmin
∑

i∈Λk

‖B[i]c[i]‖q s. t. x =
∑

i∈Λk

B[i]c[i]. (5.47)

Also, let the minimum `q/`1-norm coefficient vector when we choose the blocks of B

indexed by Λk̂ be

ĉ∗ = argmin
∑

i∈Λ
k̂

‖B[i]c[i]‖q s. t. x=
∑

i∈Λ
k̂

B[i]c[i]. (5.48)

We have the following result.

Theorem 5 For any signal that has a unique k-block-sparse representation in B,

the optimization program P ′`q/`1 recovers the unique block-sparse representation if and

only if

∀Λk,∀x ∈ (⊕i∈ΛkSi) ∩ (⊕i∈Λ
k̂
Si), x 6= 0 =⇒

∑

i∈Λk

‖B[i]c̆∗[i]‖q<
∑

i∈Λ
k̂

‖B[i]ĉ∗[i]‖q.

(5.49)

Proof. (⇐=) Let y be a signal that lives in the subspace ⊕i∈ΛkSi. Denote by c∗ the

solution of the optimization program P ′`q/`1 . If for at most k blocks of c∗ we have

175



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

B[i]c∗[i] 6= 0, then by the uniqueness assumption, these blocks of c∗ are indexed by

Λk. For the sake of contradiction, assume that B[i]c∗[i] 6= 0 for some i ∈ Λk̂. Define

x , y −
∑

i∈Λk

B[i]c∗[i] =
∑

i∈Λ
k̂

B[i]c∗[i]. (5.50)

The remaining steps of the proof are analogous to the proof of Theorem 4 except

that we replace ‖c∗[i]‖q by ‖B[i]c∗[i]‖q in (5.30) and use the triangle inequality for

‖B[i](c∗[i] + c̆∗[i])‖q in (5.32).

(=⇒) We prove this using contradiction. Assume that there exist Λk and x in the

intersection of ⊕i∈ΛkSi and ⊕i∈Λ
k̂
Si for which the condition in (5.49) does not hold,

i.e.,

∑

i∈Λ
k̂

‖B[i]ĉ∗[i]‖q ≤
∑

i∈Λk

‖B[i]c̆∗[i]‖q. (5.51)

Thus, a solution of x = Bc is given by ĉ∗ that is not k-block-sparse and whose linear

transformation by B has a `q/`1-norm that is smaller than or equal to the norm of

the transformation by B of any k-block-sparse solution, contradicting the assumption

that P ′`q/`1 recovers the uniques k-block-sparse representation of any given signal.

Next, we propose sufficient conditions that incorporate the inter-block and intra-

block parameters of the dictionary and can be efficiently checked. Before that we

need to introduce the following notation.

Definition 9 Consider a dictionary B with blocks B[i] ∈ RD×mi. Define ε′q as the

smallest constant such that for every i and c[i] we have

(1− ε′q)‖B[i]c[i]‖2
q ≤‖B[i]c[i]‖2

2 ≤(1 + ε′q)‖B[i]c[i]‖2
q. (5.52)

176



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

Note that ε′q characterizes the relation between the `q and `2 norms of vectors in

RD and does not depend on whether the blocks are non-redundant or redundant. In

addition, for q = 2, we have ε′2 = 0.

Proposition 5 For any signal that has a unique k-block-sparse representation in B,

the optimization program P`q/`1 recovers the unique block-sparse representation if

ζk + ζk−1 <
1− ε′q
1 + ε′q

. (5.53)

Proof. The proof is provided in the Appendix.

The following corollary derives stronger yet simpler to check sufficient conditions for

block-sparse recovery using P ′`q/`1 .

Corollary 3 For any signal that has a unique k-block-sparse representation in B,

the optimization program P`q/`1 recovers the unique block-sparse representation if 4

(2k − 1)µS <
1− ε′q
1 + ε′q

. (5.54)

Proof. The result follows from Proposition 5 by using the fact that ζk ≤ kµS from

Lemma 2.

Unlike the conditions for the case of P`q/`1 , which depend on whether the blocks

are non-redundant or redundant, the conditions for the case of P ′`q/`1 do not depend on

4An intermediate sufficient condition is given by uk + uk−1 <
1−ε′q
1+ε′q

using the fact that ζk ≤ uk ≤
kµS .

177



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

the redundancy of the blocks. In addition, since ε′2 = 0, the condition for block-sparse

recovery using P ′`2/`1 based on the mutual subspace coherence reduces to

(2k − 1)µS < 1, (5.55)

and the condition based on the cumulative subspace coherence reduces to

ζk + ζk−1 < 1. (5.56)

Remark 11 Note that the sufficient conditions in (5.55) and (5.56) are weaker than

the sufficient conditions in (5.45) and (5.46), respectively. While we can not assert the

superiority of P ′`2/`1 over P`2/`1, since the conditions are only sufficient not necessary,

as we will show in the experimental results P ′`2/`1 is in general more successful than

P`2/`1 for block-sparse recovery.

Remark 12 Under the uniqueness assumption, both nonconvex programs P`q/`0 and

P ′`q/`0 find the unique blocks Λk and the vectors {si ∈ Si}i∈Λk for which y =
∑

i∈Λk
si.

Thus, when the conditions for the success of the convex programs P`q/`1 and P ′`q/`1

hold, their optimal solutions correspond to Λk and {si ∈ Si}i∈Λk . For non-redundant

blocks, this implies that the optimal coefficient vectors found by P`q/`1 and P ′`q/`1 are

the same and equal to the true solution.

5.5.5 Correcting sparse outlying entries

In real-world problems, observed signals might be corrupted by errors [115, 117],

hence might not perfectly lie in the range-space of a few blocks of the dictionary [42].

178



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

A case of interest, which also happens in practice, is when the observed signal is

corrupted with an error that has a few outlying entries. For example, in the face

recognition problem, a face image might be corrupted because of occlusions [117], or

in the motion segmentation problem, some of the entries of feature trajectories might

be corrupted due to objects partially occluding each other or malfunctioning of the

tracker [40,88]. In such cases, the observed signal y can be modeled as a superposition

of a pure signal y0 and a corruption term e of the form y = y0 + e, where y0 has a

block sparse representation in the dictionary B and e has a few large nonzero entries.

Thus, y can be written as

y = y0 + e = Bc+ e =

[
B I

]


c

e


 . (5.57)

Note that the new dictionary

[
B I

]
has still a block structure whose blocks cor-

respond to the blocks of B and the atoms of I. Thus, in this new dictionary, y

has a block-sparse representation with a few blocks corresponding to B and a few

blocks/atoms corresponding to I. Assuming that the sufficient conditions of the

previous sections hold for the dictionary

[
B I

]
, we can recover a block-sparse rep-

resentation of a corrupted signal using the optimization program P̄`q/`1 as

P̄`q/`1 : min
n∑

i=1

‖c[i]‖q + ‖e‖1 s. t. y =

[
B I

]


c

e


 , (5.58)

179



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

or using the optimization program P̄ ′`q/`1 as

P̄ ′`q/`1 : min
n∑

i=1

|B[i]c[i]‖q + ‖e‖1 y =

[
B I

]


c

e


 . (5.59)

Here, we used the fact that the blocks of I are of length one, i.e., e[i] ∈ R. Thus,

∑D
i=1 ‖e[i]‖q =

∑D
i=1 |e[i]| = ‖e‖1.

As a result, our theoretical analysis in this chapter for block-sparse recovery also

provides guarantees under which one can successfully recover the block-sparse rep-

resentation of a corrupted data and eliminate its sparse corruption. Note also that

our results can be easily generalized to the case where the error e has a sparse rep-

resentation in a dictionary G instead of I by considering the dictionary

[
B G

]
in

(5.57).

5.6 Experiments with synthetic data

We consider the problem of finding block-sparse representations of signals in dic-

tionaries whose atoms are drawn from a union of disjoint subspaces. We investigate

the performance of the two classes of convex programs for various block-sparsity levels.

For simplicity, we assume that all the subspaces have the same dimension d and

that the blocks have the same length m. First, we generate random bases Ai ∈ RD×d

for n disjoint subspaces {Si}ni=1 in RD by orthonormalizing i.i.d. Gaussian matrices

where the elements of each matrix are drawn independently from the standard Gaus-

180



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

sian distribution.5 Next, using the subspace bases, we draw m ∈ {d, 2d} random

vectors in each subspace to form blocks B[i] ∈ RD×m. For a fixed block-sprsity level

k, we generate a signal y ∈ RD using a random k-block-sparse vector c0 ∈ Rnm where

the k nonzero blocks, Λk, are chosen uniformly at random from the n blocks and the

coefficients in the nonzero blocks are i.i.d. and drawn from the standard Gaussian

distribution.

For each class of the convex programs P`q/`1 and P ′`q/`1 with q ∈ {1, 2,∞}, we

measure the following errors. The reconstruction error measures how well a signal y

can be reconstructed from the blocks of the optimal solution c∗ corresponding to the

correct support Λk and is defined as

reconstruction error =
‖y −∑i∈Λk

B[i]c∗[i]‖2

‖y‖2

. (5.60)

Ideally, if an optimization algorithm is successful in recovering the correct vector

in each subspace, i.e., B[i]c∗[i] = B[i]c0[i] for all i, then the reconstruction error

is zero. As we expect that the contribution of the blocks corresponding to Λk̂ to

the reconstruction of the given signal be zero, i.e., B[i]c∗[i] = 0, we measure the

block-contribution error as

block contribution error = 1−
∑

i∈Λk
‖B[i]c∗[i]‖2∑n

i=1 ‖B[i]c∗[i]‖2

∈ [0, 1]. (5.61)

The error is equal to zero when all contributing blocks correspond to Λk and it is equal

to one when all contributing blocks correspond to Λk̂. For non-redundant blocks, since

5In order to ensure that the generated bases correspond to disjoint subspaces, we check that each
pair of bases must be full column-rank.

181



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

c0 is the unique k-block-sparse vector such that y = Bc0, we can also measure the

coefficient recovery error as

coefficient recovery error =
‖c∗ − c0‖2

‖c0‖2

. (5.62)

We generate L1 = 200 different sets of n = 40 blocks in R100 and for each set of n

blocks we generate L2 = 100 different block-sparse signals. For a fixed block-sparsity

level, we compute the average of the above errors for each optimization program over

L = L1 × L2 = 20, 000 trials.6

Figure 5.4 shows the average errors for various block-sparsity levels for non-

redundant blocks where m = d = 4. As the results show, for a fixed value of q,

P ′`q/`1 obtains lower reconstruction, block-contribution, and coefficient recovery errors

than P`q/`1 for all block-sparsity levels. Moreover, while the performance of P`q/`1

significantly degrades for block-sparsity levels greater than 3, P ′`q/`1 maintains a high

performance for a wider range of block-sparsity levels.

Figure 5.5 shows the average errors for various block-sparsity levels for redundant

blocks with m = 2d = 8. Similar to the previous case, for a fixed q, P ′`q/`1 has a

higher performance than P`q/`1 for all block-sparsity levels. Note that redundancy in

the blocks improves the performance of P`q/`1 . Specifically, compared to the case of

non-redundant blocks, the performance of P`q/`1 degrades at higher sparsity levels.

Notice from the results in Figures 5.4 and 5.5 that P ′`q/`1 performs, in general,

better than P`q/`1 for block-spare recovery in non-redundant blocks, while the gap

6In order to solve the convex programs, we use the CVX package which can be downloaded from
http://cvxr.com/cvx.

182



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

2 4 6 8 10 12

10ï12

10ï10

10ï8

10ï6

10ï4

10ï2

100

Block sparsity level (k)

Re
co

ns
tru

ct
io

n 
Er

ro
r

NonïRedundant Dictionary

 

 

P’L
1
/L

1

P’L
2
/L

1

P’L
'

/L
1

PL
1
/L

1

PL
2
/L

1

PL
'

/L
1

2 4 6 8 10 12
10ï12

10ï10

10ï8

10ï6

10ï4

10ï2

100

Block sparsity level (k)

B
lo

ck
 C

on
tri

bu
tio

n 
Er

ro
r

NonïRedundant Dictionary

 

 

P’L
1
/L

1

P’L
2
/L

1

P’L
'

/L
1

PL
1
/L

1

PL
2
/L

1

PL
'

/L
1

2 4 6 8 10 12
10ï12

10ï10

10ï8

10ï6

10ï4

10ï2

100

Block sparsity level (k)

Co
ef

fic
ie

nt
 R

ec
ov

er
y 

Er
ro

r

NonïRedundant Dictionary

 

 

P’L
1
/L

1

P’L
2
/L

1

P’L
'

/L
1

PL
1
/L

1

PL
2
/L

1

PL
'

/L
1

Figure 5.4: Errors of the convex programs on synthetic data with n = 40, D = 100.
Reconstruction error (top left), block-contribution error (top right) and coefficient
recovery error (bottom) for non-redundant blocks with m = d = 4.

in the performances of the two optimization classes decreases for redundant blocks.

This comes from the fact that when the number of vectors in a block B[i] is small,

the vectors can be close to a degenerate subspace in range(B[i]). Hence, the cost

‖c[i]‖q of reconstruction a vector, si ∈ range(B[i]), that is nearly orthogonal to the

direction of the degenerate subspace can be rather high. Thus, the optimization

program P`q/`1 favors selecting vectors from other blocks to reconstruct si. As the

number of vectors in B[i] increases, the probability of obtaining a better distribution,

183



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

2 4 6 8 10 12
10ï14

10ï12

10ï10

10ï8

10ï6

10ï4

10ï2

100

Block sparsity level (k)

R
ec

on
st

ru
ct

io
n 

Er
ro

r

Redundant Dictionary

 

 

P’L
1
/L

1

P’L
2
/L

1

P’L
'

/L
1

PL
1
/L

1

PL
2
/L

1

PL
'

/L
1

2 4 6 8 10 12
10ï14

10ï12

10ï10

10ï8

10ï6

10ï4

10ï2

100

Block sparsity level (k)

Bl
oc

k 
Co

nt
rib

ut
io

n 
Er

ro
r

Redundant Dictionary

 

 

P’L
1
/L

1

P’L
2
/L

1

P’L
'

/L
1

PL
1
/L

1

PL
2
/L

1

PL
'

/L
1

Figure 5.5: Errors of the convex programs on synthetic data with n = 40, D = 100.
Reconstruction error (left) and block-contribution error (right) for redundant blocks
with m = 2d = 8.

i.e., having vectors in different directions of range(B[i]), increases. Hence, the cost

‖c[i]‖q of reconstructing the same si from the vectors in B[i] decreases. As a result,

P`q/`1 favors selecting vectors from B[i] to reconstruct si. On the other hand, no

matter of how the data are distributed in B[i], the cost ‖B[i]c[i]‖q of reconstructing

si from the vectors in B[i] remains the same, i.e., ‖B[i]c[i]‖q = ‖si‖q. Hence, the

performance of P ′`q/`1 will be less dependent on the number of vectors in the blocks

of the dictionary.

Another observation from the results of Figures 5.4 and 5.5 is that for each class

of convex programs, the case of q = ∞ either has a lower performance or degrades

at lower block-sparsity levels than q = 1, 2. In addition, the case of q = 2 in general

performs better than q = 1. This can come from the fact that q = 1 promotes sparsity

also in each coefficient block for P`q/`1 and in each block reconstructed vector for P ′`q/`1 ,

which may result in under-representing the given signal in the desired blocks.

184



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

5.7 Experiments with real data

5.7.1 Face recognition: uncorrupted data

In this part, we evaluate the performance of the block-sparse recovery algorithms

in the real problem of automatic face recognition. Assume we are given a collection of

mn face images of n subjects acquired under the same pose and varying illumination.

Under the Lambertian assumption, [6] shows that the face images of each subject live

close to a linear subspace of dimension d = 9. Thus, the collection of faces of different

subjects live close to a union of 9-dimensional subspaces. Let bij ∈ RD denote the j-th

training image for the i-th subject converted into a vector. We denote the collection

of m faces for the i-th subject as

B[i] ,

[
bi1 bi2 · · · bim

]
∈ RD×m. (5.63)

Thus, the dictionary B consists of the training images of the n subjects. In this

dictionary, a new face vector, y ∈ RD, which belongs to the i-th subject, can be

written as a linear combination of face vectors from the i-th block. However, in reality,

a face image is corrupted with cast shadows and specularities. In other words, the

columns of B are corrupted by errors and do not perfectly lie in a low-dimensional

subspace. Thus, in the optimization programs, instead of the exact equality constraint

y = Bc, we use the constraint ‖y − Bc‖2 ≤ δ.7 Following [117], we can find the

7In all the experiments of this section, we set δ = 0.05.

185



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

subject to which y belongs from

identity(y) = argmin
i
‖y −B[i]c∗[i]‖2. (5.64)

We evaluate the performance of each one of the above optimization programs on

the Extended Yale B dataset [73], a few images of which are shown in Figure 5.6.

The dataset consists of 2, 414 cropped frontal face images of n = 38 individuals. For

each subject, there are approximately 64 face images of size 192 × 168 = 32, 256,

which are captured under various laboratory-controlled lighting conditions. Since the

dimension of the original face vectors is very large, we reduce the dimension of the

data using the following methods:

– We use the eigenfaces approach [107] by projecting the face vectors to the first D

principal components of the training data covariance matrix.

– We multiply the face vectors by a random projection matrix Φ ∈ RD×32,256, which

has i.i.d. entries drawn from a zero mean Gaussian distribution with variance 1
D

[4, 117].

– We down-sample the images by a factor r such that the dimension of the down-

sampled face vectors is D.

In the experiments, we set D = 132. For each subject, we randomly select m ∈

{9, 18, 25, 32} training images, to form the blocks B[i] ∈ RD×m and use the remaining

images for testing. For every test image, we solve each class of the convex programs

for q ∈ {1, 2} and determine the identity of the test image using (5.64).8 We compute

8Similar to the synthetic experiments, the case of q =∞ has lower performance than other values

186



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

the classification rate as the average number of correctly classified test images for

which the recovered identity matches the ground-truth. We repeat this experiment

L = 20 times for random choices of m training data for each subject and compute

the mean classification rate among all the trials. We compare our results with the

nearest subspace (NS) method [62] as well as the Linear SVM classifier [34].

The recognition results for three dimensionality reduction methods are shown in

Figure 5.6. As the results show, the NS and SVM methods have lower performance

than methods based on sparse representation. This comes from the fact that the

linear SVM assumes that the data in different classes are linearly separable while the

face images have a multi-subspace structure, hence are not necessarily separable by

a hyperplane. In the case of the NS method, subspaces associated to different classes

are close to each other, i.e., have a small principal angle [45]. Since the test images

are corrupted by errors, they can be close to the intersection of several subspaces,

resulting in incorrect recognition. In addition, using the underlying subspaces ignores

the distribution of the data inside the subspaces as opposed to the sparsity-based

methods that directly use the training data. On the other hand, for a fixed value of q,

the convex program P ′`q/`1 almost always outperforms P`q/`1 . While the performances

of different methods are close for a large number of training data in each class, the

difference in their performances becomes evident when the number of data in each

class decreases. More specifically, while the performance of all the algorithms degrade

of q, hence we only report the results for q = 1, 2.

187



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

9 18 25 32
65

70

75

80

85

90

95

100

Block length (m)

C
la

ss
ifi

ca
tio

n 
ra

te
 (%

)

Eigenfaces

 

 

P’L
2
/L

1

P’L
1
/L

1

PL
2
/L

1

PL
1
/L

1

NS
SVM

9 18 25 32
65

70

75

80

85

90

95

100

Block length (m)
C

la
ss

ifi
ca

tio
n 

ra
te

 (%
)

Randomfaces

 

 

P’L
2
/L

1

P’L
1
/L

1

PL
2
/L

1

PL
1
/L

1

NS
SVM

9 18 25 32
65

70

75

80

85

90

95

100

Block length (m)

C
la

ss
ifi

ca
tio

n 
ra

te
 (%

)

Downsampling

 

 

P’L
2
/L

1

P’L
1
/L

1

PL
2
/L

1

PL
1
/L

1

NS
SVM

Figure 5.6: First row: sample face images from three subjects in the Extended Yale
B dataset. Middle and bottom rows: classification rates for the convex programs
on the Extended Yale B database with n = 38 and D = 132 as a function of the
number of training data in each class for using eigen-faces, random projections, and
down-sampling.

by decreasing the number of data in each class, the convex programs P ′`q/`1 are more

robust to decreasing the number of training data. In other words, when the number

of training data in each class is as small as the dimension of the face subspace,

i.e., m = d = 9, P ′`q/`1 has 5% to 10% higher recognition rate than P`q/`1 . This

188



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

result is similar to the result of synthetic experiments, where we showed that the

gap between the performance of the two classes of convex programs is wider for non-

redundant blocks than redundant blocks. It is also important to note that the results

are independent of the choice of the features, i.e., they follow the same pattern for

the three types of features as shown in Figure 5.6. In all of them P ′`2/`1 and P ′`1/`1

achieve the best recognition results.

5.7.2 Face recognition: robustness to random

corruptions

In this section, we test the robust versions of the structured sparsity-based algo-

rithms in dealing with random pixel corruption. To that end, we choose images in

subset 1 (and 2) of the Extended Yale B database for training and choose images in

subset 3 for testing. We downsample the images so that D = 1, 400. Without cor-

rupting the images, this is not a hard problem and this choice is to isolate the effect of

random corruption. Next, we corrupt ρ percentage of randomly chosen pixels in each

test image. We replace the values of the chosen pixels by i.i.d. values drawn from a

uniform distribution in the range of the image pixel values. We change ρ from 0 to

90 percent and compute the recognition rate. We compare the results of the robust

structured sparsity-based classification algorithms P̄`2/`1 and P̄ ′`2/`1 with three other

methods. First, we use the robust version of the SRC method, P̄`1 . Next, we use

189



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

0 20 40 60 80
0

20

40

60

80

100

Percent corrupted (%)

Cl
as

sif
ic

at
io

n 
ra

te
 (%

)
Random corruption, m = 7

 

 

P’L
2
/L

1

PL
2
/L

1

PL
1

PCA+NN
ICA+NN

0 20 40 60 80
0

20

40

60

80

100

Percent corrupted (%)

Cl
as

sif
ic

at
io

n 
ra

te
 (%

)

Random corruption, m = 19

 

 

P’L
2
/L

1

PL
2
/L

1

PL
1

PCA+NN
ICA+NN

Figure 5.7: Recognition results on the Extended Yale B database as a function of the
percentage of corruption.

the basic PCA to project the data into lower dimensions and use the NN classifier.

Third, we use the Independent Component Analysis (ICA) architecture I [67] with a

NN classifier.9

For m ∈ {7, 19} training data in each class, the recognition rates as a function

of the percentage of corrupted pixels are shown in Figure 5.7. For both cases, P̄`2/`1

and P̄ ′`2/`1 as well as P̄`1 achieve almost 100% recognition rate with up to 50% corrup-

tion, while the recognition rates of the two other methods drop quickly to less than

30% when we have 50% corrupted pixels. Note that P̄`2/`1 and P̄ ′`2/`1 obtain better

classification results than P̄`1 when the number of training data in each class is small

(m = 7). However, for m = 19, the performances of P̄`2/`1 and P̄`1 are similar.

9For PCA and ICA, we choose the number of basis components over the range {100, 200, 300, 400}
to give the best test performance.

190



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

5.7.3 Face recognition: robustness to random

block occlusion

In this section, we test the performance of the structured sparsity-based classifi-

cation methods in dealing with corrupted data, where corruption appears in a block

of a face image instead of being distributed across all image pixels.

We use images in subset 1 (and 2) of the Extended Yale B database for training and

use images in subset 3 for testing. We down-sample the images so that D = 1, 400. In

order to examine the robustness of the methods to occlusions we replace a randomly

chosen square block of each test image with an unrelated image and change the

percentage of occlusion from 0 to 50 percent. Similar to the previous section, we

compare the performance of P̄`2/`1 and P̄ ′`2/`1 against the SRC method, PCA+NN

and ICA+NN. For m ∈ {7, 19} training data in each class, the results are shown in

Figure 5.8. Note that the sparse representation based methods achieve almost 100%

recognition rate up to 20% occlusion, while the recognition rates of PCA+NN and

ICA+NN quickly drop as we increase the the percentage of occlusion. In addition,

for m = 7, both P̄`2/`1 and P̄ ′`2/`1 obtain better recognition rates than P̄`1 for all

percentages of occlusion.

191



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

0 10 20 30 40 50
20

30

40

50

60

70

80

90

100

Percent occluded (%)

Cl
as

sif
ic

at
io

n 
ra

te
 (%

)
Block occlusion, m = 7

 

 

P’L
2
/L

1

PL
2
/L

1

PL
1

PCA+NN
ICA+NN

0 10 20 30 40 50
30

40

50

60

70

80

90

100

Percent occluded (%)

Cl
as

sif
ic

at
io

n 
ra

te
 (%

)

Block occlusion, m = 19

 

 

P’L
2
/L

1

PL
2
/L

1

PL
1

PCA+NN
ICA+NN

Figure 5.8: Recognition results on the Extended Yale B database as a function of the
percentage of block occlusion.

5.7.4 Face recognition: robustness to disguise

In this part, we examine the robustness of the proposed algorithms to real mali-

cious occlusions in images. We use the AR database [79] which consists of face images

of n = 100 individuals acquired under the same pose with varying illuminations and

expressions. Out of the 26 images for each subject, in 6 images the subject is wear-

ing sunglasses, roughly occluding 20% of the image, and in 6 images, the subject is

wearing a scarf, occluding nearly 40% of the image. We down-sample the images so

that D = 1, 400. We randomly select m = 9 images for each subject as the training

data and use the images with sunglasses and scarves as test examples. We evaluate

the recognition rates of the structured-sparsity based algorithms as well as the SRC

method and the two other algorithms we used in the previous experiments: PCA+NN

and ICA+NN. The results are shown in Table 5.1. While P̄`1 obtains slightly bet-

ter recognition rate than P̄`2/`1 for images with sunglasses, P̄`2/`1 obtains about 25%

192



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

Table 5.1: Recognition rates on the AR database for robustness to disguise.

Algorithms P ′`2/`1 P`2/`1 P`1 PCA+NN ICA+NN

Sunglasses 66.5% 80.5% 84.3% 57.5% 51.7%
Scarves 41.7% 59.8% 35.2% 10.5% 9.2%

All 54.1% 70.2% 59.8% 34.0% 30.5%

higher recognition rate than P̄`1 for images with scarves.

5.8 Conclusions

We formulated the problem of classification of multi-manifold data as a block-

sparse recovery problem using two non-convex optimization programs P`q/`0 and

P ′`q/`0 . To solve them efficiently, we proposed convex relaxations for the two non-

convex programs and studied conditions under which they are equivalent to the

original non-convex formulations. We showed that the proposed algorithms can be

modified to also deal with corrupted data. Our experiments on the face recognition

problem showed that the proposed classification methods lead to better recognition

results especially when the number of training data in each class is relatively small.

193



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

5.9 Appendix

5.9.1 Proof of Proposition 2

Let Λk , {j∗1 , . . . , j∗k} and i∗ /∈ Λk be the set of indices for which ζk is obtained, i.e.,

ζk = max
Λk

max
i/∈Λk

∑

j∈Λk

µ(Si,Sj) =
k∑

l=1

µ(Si∗ ,Sj∗l ). (5.65)

Denoting the sorted subspace coherences among all pairs of different subspaces by

µS = µ1 ≥ µ2 ≥ · · · , we have

ζk =
k∑

l=1

µ(Si∗ ,Sj∗l ) ≤ uk =
k∑

l=1

µl ≤ kµS, (5.66)

which proves the desired result.

5.9.2 Proof of Proposition 3

We prove this result using contradiction.

(=⇒) Assume there exists a 2k-block-sparse vector c̄ 6= 0 such that B̄ c̄ = 0. We can

write c̄> =

[
c̄>1 c̄>2

]
where c̄1 and c̄2 are k-block-sparse vectors. So, we have

B̄ c̄ =

[
B̄1 B̄2

]


c̄1

c̄2


 = 0 =⇒ ȳ , B̄1c̄1 =−B̄2c̄2. (5.67)

Thus, there exists a vector ȳ that has two k-block-sparse representations in B using

different sets of blocks. This contradicts the uniqueness assumption of the proposition.

194



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

(⇐=) Assume there exists a vector y that has two different k-block-sparse repre-

sentations using ({il}, {sil}) 6= ({i′l}, {s′il}). Since for each block of B̄, we have

rank(B̄[i]) = rank(B[i]), there exist c̄1 and c̄2 such that y = B̄ c̄1 = B̄ c̄2, where

c̄1 and c̄2 are different k-block-sparse with the indices of their nonzero blocks being

{il} and {i′l}, respectively. Also, B̄[il]c̄1[il] = sil and B̄[il]c̄2[il] = s′il . Thus, we have

B̄ (c̄1 − c̄2) = 0 that contradicts the assumption of the proposition since c̄1 − c̄2 is a

2k-block-sparse vector.

5.9.3 Proof of Corollary 1

We prove the result using contradiction.

(=⇒) Assume there exists Bn ∈ Bτ (Λn) such that rank(Bn) < 2k. So, there exists a

2k-sparse vector c>n ,

[
c1
n · · · cnn

]
such that Bncn =

∑n
i=1 c

i
nsi = 0, where si ∈Wτ,i

is the i-th column of Bn. For each full column-rank submatrix of B[i], denoted by

B̄[i] ∈ RD×di , there exists a unique c̄[i] such that B̄[i]c̄[i] = cinsi. Thus, B̄ c̄ = 0,

where B̄ is defined in (5.22) and c̄> ,

[
c̄[1]> · · · c̄[n]>

]
is a 2k-block-sparse vector.

This, contradicts the uniqueness assumption using Proposition 3.

(⇐=) Now, assume there exists a signal y that has two different k-block-sparse rep-

resentations in B. From Proposition 3, there exists a 2k-block-sparse vector c̄ 6= 0

such that B̄ c̄ = 0. We can rewrite B̄[i] c̄[i] = cinsi, where si ∈ Wτ,i. Thus, we have

B̄ c̄ = Bncn = 0, where Bn ,

[
s1 · · · sn

]
∈ Bτ (Λn) and c>n ,

[
c1
n · · · cnn

]
is a

2k-sparse vector. This implies rank(Bn) < 2k that contradicts the assumption.

195



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

5.9.4 Proof of Lemma 3

The idea of the proof follows the approach of Theorem 3.5 in [104]. Let Ek =
[
ei1 · · · eik

]
∈ Bα(Λk) and Ek̂ =

[
eik+1

· · · ein
]

where ‖eil‖2 ≤
√

1 + β for every

il ∈ Λk̂. Using matrix norm properties, we have

‖(E>kEk)
−1E>kEk̂‖1,1 ≤ ‖(E>kEk)

−1‖1,1‖E>kEk̂‖1,1. (5.68)

We can write E>kEk = Ik +D, where

D ,




e>i1ei1 − 1 · · · e>i1eik

...
. . .

...

e>ikei1 · · · e>ikeik − 1



. (5.69)

Since Ek ∈ Bα(Λk), for any column of Ek, we have ‖ei‖2
2 ≤ 1 + α. Also, for any two

columns ei and ej of Ek we have

|e>i ej| ≤ ‖ei‖2‖ej‖2 µ(Si,Sj) ≤ (1 + α)µ(Si,Sj). (5.70)

Thus, we can write

‖D‖1,1 ≤ α + (1 + α) ζk−1. (5.71)

If ‖D‖1,1 < 1, we can write (E>kEk)
−1 = (Ik +D)−1 =

∑∞
i=0 (−D)k/k! from which

we obtain

‖(E>kEk)
−1‖1,1 ≤

∞∑

i=0

‖D‖k1,1
k!

=
1

1− ‖D‖1,1

≤ 1

1− [α + (1 + α)ζk−1 ]
. (5.72)

196



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

On the other hand, E>kEk̂ has the following form

E>kEk̂ =




e>i1eik+1
· · · e>i1ein

...
. . .

...

e>ikeik+1
· · · e>ikein



. (5.73)

Since for each column ei of the matrix Ek we have ‖ei‖2
2 ≤ 1+α and for each column

ej of the matrix Ek̂ we have ‖ej‖2
2 ≤ 1 + β, we obtain

‖E>kEk̂‖1,1 ≤
√

(1 + α)(1 + β) ζk. (5.74)

Finally, substituting (5.72) and (5.74) into (5.68), we get

‖(E>kEk)
−1E>kEk̂‖1,1 ≤ ‖(E>kEk)

−1‖1,1‖E>kEk̂‖1,1 ≤
√

(1 + α)(1 + β) ζk
1− [α + (1 + α)ζk−1 ]

.

(5.75)

5.9.5 Proof of Proposition 5

Fix a set Λk = {i1, . . . , ik} of k indices from {1, . . . , n} and denote by Λk̂ = {ik+1, . . . , in}

the set of the remaining indices. For a signal x in the intersection of ⊕i∈ΛkSi and

⊕i∈Λ
k̂
Si, let c̆∗ be the solution of the optimization program (5.47). We can write

x =
∑

i∈Λk

B[i]c∗[i] = Bkak, (5.76)

where Bk ,

[
si1 . . . sik

]
and ak ,

[
ai1 . . . aik

]>
are defined as follows. For every

i ∈ Λk, if c̆∗[i] 6= 0 and B[i]c̆∗[i] 6= 0, define

si ,
B[i]c̆∗[i]

‖B[i]c̆∗[i]‖q
, ai , ‖B[i]c̆∗[i]‖q. (5.77)

197



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

Otherwise, let si be an arbitrary vector in Si of unit Euclidean norm and ai = 0.

According to Definition 9, we have Bk ∈ Bε′q(Λk).

Now, let ĉ∗ be the solution of the optimization program (5.48). We can write

x =
∑

i∈Λ
k̂

B[i]ĉ∗[i] = Bk̂ak̂, (5.78)

where Bk̂ ,

[
sik+1

. . . sin

]
and ak̂ ,

[
aik+1

. . . ain

]>
are defined in the following

way. For every i ∈ Λk̂, if ĉ∗[i] 6= 0 and B[i]ĉ∗[i] 6= 0, define

si ,
B[i]ĉ∗[i]

‖B[i]ĉ∗[i]‖q
, ai , ‖B[i]ĉ∗[i]‖q. (5.79)

Otherwise, let si be an arbitrary vector in Si of unit Euclidean norm and ai = 0.

Note that from Definition 9, we have Bk̂ ∈ Bε′q(Λk̂).

Since Bk ∈ Bε′q(Λk), assuming ε′q ∈ [0, 1), the matrix Bk is full column-rank from

Corollary 1. Hence, we have ak = (B>kBk)
−1B>k y and consequently,

‖ak‖1 = ‖(B>kBk)
−1B>k x‖1. (5.80)

Substituting x from (5.78) in the above equation, we obtain

‖ak‖1 = ‖(B>kBk)
−1B>kBk̂ak̂‖1 ≤ ‖(B>kBk)

−1B>kBk̂‖1,1‖ak̂‖1. (5.81)

Using Lemma 3 with α = ε′q and β = ε′q, we have

‖(B>kBk)
−1B>kBk̂‖1,1 ≤

(1 + ε′q)ζk

1− [ε′q + (1 + ε′q)ζk−1]
. (5.82)

Thus, if the right hand side of the above equation is strictly less than one, i.e., the

sufficient condition of the proposition is satisfied, then from (5.81) we have ‖ak‖1 <

198



CHAPTER 5. CLASSIFICATION OF MULTI-MANIFOLD DATA VIA
BLOCK-SPARSE RECOVERY

‖ak̂‖1. Finally, using the definitions of ak and ak̂, we obtain

∑

i∈Λk

‖B[i]c̆∗[i]‖q = ‖ak‖1 < ‖ak̂‖1 =
∑

i∈Λ
k̂

‖B[i]ĉ∗[i]‖q, (5.83)

which implies that the condition of Theorem 5 is satisfied. Thus, P ′`q/`1 recovers the

unique block-sparse representation of the given signal.

199



Chapter 6

Conclusions

In this thesis, we considered the machine learning of the multi-manifold data. We

considered the three fundamental tasks of clustering, dimensionality reduction and

classification. We proposed algorithms based on sparse representation techniques to

address these problems efficiently.

In the case of clustering and dimensionality reduction, we showed that the pro-

posed algorithms can effectively address the challenges of these tasks and solve the

issues of existing algorithms, such as eliminating the need to know the dimensions of

the manifolds a priori and dealing with manifolds that are spatially close or even in-

tersect. As we showed through extensive experiments, our proposed algorithms have

significantly improved the state-of-the-art results in segmentation of different motions

in videos and clustering of human face images. For subspaces, we also showed that the

proposed clustering algorithm has theoretical guarantees and works under moderate

200



CHAPTER 6. CONCLUSIONS

conditions on the arrangement of the subspaces and the data distribution.

In the case of the multi-manifold data classification, by exploiting the structure of

the manifolds, we showed that we can have more effective classification algorithms to

deal with a small number of training samples as well as the noise and corruption in

the data. We investigated the theoretical guarantees of the studied algorithms and,

through extensive experiments, we verified their efficacy in the real-world problem of

face recognition.

201



Bibliography

[1] E. Amaldi and V. Kann, “On the approximability of minimizing nonzero vari-

ables or unsatisfied relations in linear systems,” Theoretical Computer Science,

vol. 209, pp. 237–260, 1998.

[2] E. Arias-Castro, G. Chen, and G. Lerman, “Spectral clustering based on local

linear approximations,” Electron. J. Statist., vol. 5, pp. 1537–1587, 2011.

[3] F. Bach, “Consistency of the group lasso and multiple kernel learning,” Journal

of Machine Learning Research, vol. 9, pp. 1179–1225, 2008.

[4] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the

restricted isometry property for random matrices,” Constructive Approxima-

tion, vol. 28, no. 3, pp. 253–263, 2008.

[5] D. Barbará and P. Chen, “Using the fractal dimension to cluster datasets,” in

KDD ’00: Proceedings of the sixth ACM SIGKDD international conference on

Knowledge discovery and data mining, 2000, pp. 260–264.

202



BIBLIOGRAPHY

[6] R. Basri and D. Jacobs, “Lambertian reflection and linear subspaces,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 3, pp.

218–233, 2003.

[7] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for

embedding and clustering,” in Neural Information Processing Systems, 2002,

pp. 585–591.

[8] ——, “Laplacian eigenmaps for dimensionality reduction and data representa-

tion,” Neural Computation, vol. 15, no. 6, pp. 1373–1396, 2003.

[9] R. E. Bellman, Dynamic programming. Princeton University Press, 1957.

[10] D. Bertsekas, A. Nedic, and A. Ozdaglar, Convex Analysis and Optimization.

Athena Scientific, 2003.

[11] P. Boufounos, G. Kutyniok, and H. Rauhut, “Sparse recovery from combined

fusion frame measurements,” IEEE Trans. Inform. Theory, to appear.

[12] T. Boult and L. Brown, “Factorization-based segmentation of motions,” in

IEEE Workshop on Motion Understanding, 1991, pp. 179–186.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-

tion and statistical learning via the alternating direction method of multipliers,”

Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2010.

203



BIBLIOGRAPHY

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University

Press, 2004.

[15] P. S. Bradley and O. L. Mangasarian, “k-plane clustering,” J. of Global Opti-

mization, vol. 16, no. 1, pp. 23–32, 2000.

[16] T. Brox and J. Malik, “Object segmentation by long term analysis of point

trajectories,” European Conf. on Computer Vision, 2010.

[17] E. Candès, “The restricted isometry property and its implications for com-

pressed sensing,” Comptes Rendus Mathematique, vol. 346, no. 9-10, pp. 589–

592, 2008.

[18] E. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis,”

Journal of the ACM, vol. 58, 2011.

[19] E. Candès and B. Recht, “Exact matrix completion via convex optimization,”

Foundations of Computational Mathematics, vol. 9, pp. 717–772, 2008.

[20] E. Candès and M. Wakin, “An introduction to compressive sampling,” IEEE

Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, Mar. 2008.

[21] E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. on

Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[22] G. Chen and G. Lerman, “Spectral curvature clustering (SCC),” International

Journal of Computer Vision, vol. 81, no. 3, pp. 317–330, 2009.

204



BIBLIOGRAPHY

[23] J. Chen and X. Huo, “Theoretical results on sparse representation of multiple-

measurement vectors,” IEEE Trans. on Signal Processing, vol. 54, no. 12, pp.

4634–4643, Dec. 2006.

[24] R. Coifman and S. Lafon, “Diffusion maps,” Applied and Computational Har-

monic Analysis, vol. 21, no. 1, pp. 5–30, 2006.

[25] J. Costeira and T. Kanade, “A multibody factorization method for indepen-

dently moving objects.” Int. Journal of Computer Vision, vol. 29, no. 3, 1998.

[26] S. Cotter, B. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse solutions to linear

inverse problems with multiple measurement vectors,” IEEE Trans. on Signal

Processing, vol. 7, no. 7, pp. 2477–2488, Jul. 2005.

[27] D. Donoho, “High-dimensional centrally symmetric polytopes with neighbor-

liness proportional to dimension,” Discrete and Computational Geometry, vol.

102, no. 27, pp. 617–652, 2006.

[28] D. Donoho and C. Grimes, “Hessian eigenmaps: Locally linear embedding tech-

niques for high-dimensional data,” National Academy of Sciences, vol. 100,

no. 10, pp. 5591–5596, 2003.

[29] D. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposi-

tion,” IEEE Trans. Information Theory, vol. 47, no. 7, pp. 2845–2862, Nov.

2001.

205



BIBLIOGRAPHY

[30] D. L. Donoho and M. Elad, “Optimally sparse representation in general

(nonorthogonal) dictionaries via `1 minimization,” PNAS, vol. 100, no. 5, pp.

2197–2202, 2003.

[31] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse over-

complete representations in the presence of noise,” IEEE Trans. on Information

Theory, vol. 52, no. 1, pp. 6–18, Jan. 2006.

[32] D. L. Donoho, “Neighborly polytopes and sparse solution of underdetermined

linear equations,” Technical Report, Stanford University, 2005.

[33] ——, “For most large underdetermined systems of linear equations the minimal

`1-norm solution is also the sparsest solution,” Communications on Pure and

Applied Mathematics, vol. 59, no. 6, pp. 797–829, 2006.

[34] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley-Interscience,

October 2004.

[35] M. Elad, M. A. T. Figueiredo, and Y. Ma, “On the role of sparse and redundant

representations in image processing,” Proceedings of the IEEE, vol. 98, no. 6,

pp. 972–982, 2010.

[36] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Compressed sensing of block-

sparse signals: Uncertainty relations and efficient recovery,” IEEE Trans. Signal

Processing, vol. 58, no. 6, pp. 3042–3054, June 2010.

206



BIBLIOGRAPHY

[37] Y. C. Eldar and M. Mishali, “Robust recovery of signals from a structured

union of subspaces,” IEEE Trans. Inform. Theory, vol. 55, no. 11, pp. 5302–

5316, 2009.

[38] E. Elhamifar, G. Sapiro, and R. Vidal, “Finding exemplars from pairwise dis-

similarities via simultaneous sparse recovery,” in Neural Information Processing

Systems, 2012.

[39] ——, “See all by looking at a few: Sparse modeling for finding representative

objects,” in IEEE Conference on Computer Vision and Pattern Recognition,

2012.

[40] E. Elhamifar and R. Vidal, “Sparse subspace clustering,” in IEEE Conference

on Computer Vision and Pattern Recognition, 2009.

[41] ——, “Clustering disjoint subspaces via sparse representation,” in IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing, 2010.

[42] ——, “Robust classification using structured sparse representation,” in IEEE

Conference on Computer Vision and Pattern Recognition, 2011.

[43] ——, “Sparse manifold clustering and embedding,” in Neural Information Pro-

cessing Systems, 2011.

[44] ——, “Block-sparse recovery via convex optimization,” IEEE Transactions on

Signal Processing, 2012.

207



BIBLIOGRAPHY

[45] ——, “Sparse subspace clustering: Algorithm, theory, and applications,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, submitted., Avail-

able: http://arxiv.org/abs/1203.1005.

[46] P. Favaro, R. Vidal, and A. Ravichandran, “A closed form solution to robust

subspace estimation and clustering,” in IEEE Conference on Computer Vision

and Pattern Recognition, 2011.

[47] M. A. Fischler and R. C. Bolles, “RANSAC random sample consensus: A

paradigm for model fitting with applications to image analysis and automated

cartography,” Communications of the ACM, vol. 26, pp. 381–395, 1981.

[48] S. Foucart, “A note on guaranteed sparse recovery via `1-minimization,” Appl.

Comput. Harmon. Anal., 2010 (To appear).

[49] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear

variational problems via finite-element approximations,” Comp. Math. Appl.,

vol. 2, pp. 17–40, 1976.

[50] A. Ganesh, Z. Zhou, and Y. Ma, “Separation of a subspace-sparse signal: Algo-

rithms and conditions,” in IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Apr. 2009.

[51] C. W. Gear, “Multibody grouping from motion images,” Int. Journal of Com-

puter Vision, vol. 29, no. 2, pp. 133–150, 1998.

208



BIBLIOGRAPHY

[52] J. Gemmeke and B. Cranen, “Noise robust digit recognition using sparse rep-

resentations,” in ISCA ITRW, 2008.

[53] ——, “Using sparse representations for missing data imputation in noise robust

speech recognition,” in EUSIPCO, 2008.

[54] A. Gionis, A. Hinneburg, S. Papadimitriou, and P. Tsaparas, “Dimension in-

duced clustering,” in KDD ’05: Proceeding of the eleventh ACM SIGKDD in-

ternational conference on Knowledge discovery in data mining, 2005, pp. 51–60.

[55] A. Goh and R. Vidal, “Segmenting motions of different types by unsupervised

manifold clustering,” in IEEE Conference on Computer Vision and Pattern

Recognition, 2007.

[56] ——, “Clustering and dimensionality reduction on Riemannian manifolds,” in

IEEE Conference on Computer Vision and Pattern Recognition, 2008.

[57] H. Golub and C. V. Loan, Matrix Computations, 2nd ed. Johns Hopkins

University Press, 1996.

[58] R. Gribonval and M. Nielsen, “Sparse representations in unions of bases,” IEEE

Transactions on Information Theory, vol. 49, no. 12, pp. 3320–3325, 2003.

[59] A. Gruber and Y. Weiss, “Multibody factorization with uncertainty and missing

data using the EM algorithm,” in IEEE Conf. on Computer Vision and Pattern

Recognition, vol. I, 2004, pp. 707–714.

209



BIBLIOGRAPHY

[60] G. Haro, G. Randall, and G. Sapiro, “Translated poisson mixture model for

stratification learning,” International Journal of Computer Vision, 2008.

[61] T. Hastie and P. Simard, “Metrics and models for handwritten character recog-

nition,” Statistical Science, vol. 13, no. 1, pp. 54–65, 1998.

[62] J. Ho, M. H. Yang, J. Lim, K. Lee, and D. Kriegman, “Clustering appearances

of objects under varying illumination conditions.” in IEEE Conf. on Computer

Vision and Pattern Recognition, 2003.

[63] W. Hong, J. Wright, K. Huang, and Y. Ma, “Multi-scale hybrid linear models

for lossy image representation,” IEEE Trans. on Image Processing, vol. 15,

no. 12, pp. 3655–3671, 2006.

[64] R. Jenatton, J. Y. Audibert, and F. Bach, “Structured variable selection with

sparsity-inducing norms,” Journal of Machine Learning Research, vol. 12, pp.

2777–2824, 2011.

[65] I. Jolliffe, Principal Component Analysis, 2nd ed. Springer-Verlag, 2002.

[66] K. Kanatani, “Motion segmentation by subspace separation and model selec-

tion,” in IEEE Int. Conf. on Computer Vision, vol. 2, 2001, pp. 586–591.

[67] J. Kim, J. Choi, J. Yi, and M. Turk, “Effective representation using ica for face

recognition robust to local distortion and partial occlusion,” PAMI, vol. 27,

no. 12, pp. 1977–1981, 2005.

210



BIBLIOGRAPHY

[68] S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point

method for large-scale l1-regularized least squares,” IEEE Journal on Selected

Topics in Signal Processing, vol. 1, no. 4, pp. 606–617, 2007.

[69] M. Knott and D. Bartholomew, Latent variable models and factor analysis.

London: Edward Arnold, 1999.

[70] M. J. Lai and Y. Liu, “The null space property for sparse recovery from multiple

measurement vectors,” Applied and Computational Harmonic Analysis, vol. 30,

no. 3, pp. 402–406, 2011.

[71] F. Lauer and C. Schnörr, “Spectral clustering of linear subspaces for motion

segmentation,” in IEEE International Conference on Computer Vision, 2009.

[72] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” in Proceedings of the IEEE, 1998, pp. 2278

– 2324.

[73] K.-C. Lee, J. Ho, and D. Kriegman, “Acquiring linear subspaces for face recog-

nition under variable lighting,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 27, no. 5, pp. 684–698, 2005.

[74] E. Levina and P. J. Bickel, “Maximum likelihood estimation of intrinsic dimen-

sion.” in NIPS, 2004.

[75] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of subspace

211



BIBLIOGRAPHY

structures by low-rank representation,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2012.

[76] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by low-rank repre-

sentation,” in International Conference on Machine Learning, 2010.

[77] G. Liu and S. Yan, “Latent low-rank representation for subspace segmentation

and feature extraction,” International Conference on Computer Vision, 2011.

[78] Y. Ma, A. Yang, H. Derksen, and R. Fossum, “Estimation of subspace ar-

rangements with applications in modeling and segmenting mixed data,” SIAM

Review, 2008.

[79] A. Martinez and R. Benavente, “The ar face database,” CVC Technical Report

24, 1998.

[80] M. Mishali and Y. C. Eldar, “Blind multi-band signal reconstruction: Com-

pressed sensing for analog signals,” IEEE Transactions on Signal Processing,

vol. 57, no. 3, pp. 993–1009, Mar. 2009.

[81] ——, “From theory to practice: Sub-nyquist sampling of sparse wideband ana-

log signals,” IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp. 375–391,

April 2010.

[82] P. Mordohai and G. G. Medioni, “Unsupervised dimensionality estimation and

212



BIBLIOGRAPHY

manifold learning in high-dimensional spaces by tensor voting.” in International

Joint Conference on Artificial Intelligence, 2005, pp. 798–803.

[83] B. Nasihatkon and R. Hartley, “Graph connectivity in sparse subspace cluster-

ing,” in IEEE Conference on Computer Vision and Pattern Recognition, 2011.

[84] A. Ng, Y. Weiss, and M. Jordan, “On spectral clustering: analysis and an

algorithm,” in Neural Information Processing Systems, 2001, pp. 849–856.

[85] G. Obozinski, M. J. Wainwright, and M. I. Jordan, “Support union recovery in

high-dimensional multivariate regression,” Annals of Statistics, vol. 39, no. 1,

pp. 1–17, 2011.

[86] F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi, “Recovering sparse signals us-

ing sparse measurement matrices in compressed dna microarrays,” IEEE Jour-

nal of Selected Topics in Signal Processing, vol. 2, no. 3, pp. 275–285, Jun.

2008.

[87] M. Polito and P. Perona, “Grouping and dimensionality reduction by locally

linear embedding,” in Neural Information Processing Systems, 2002.

[88] S. Rao, R. Tron, Y. Ma, and R. Vidal, “Motion segmentation via robust sub-

space separation in the presence of outlying, incomplete, or corrupted trajecto-

ries,” in IEEE Conference on Computer Vision and Pattern Recognition, 2008.

[89] S. Rao, R. Tron, R. Vidal, and Y. Ma, “Motion segmentation in the presence of

213



BIBLIOGRAPHY

outlying, incomplete, or corrupted trajectories,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2009.

[90] B. Recht, M. Fazel, and P. Parrilo, “Guaranteed minimum-rank solutions of

linear matrix equations via nuclear norm minimization,” SIAM Review, vol. 52,

no. 3, pp. 471–501, 2010.

[91] S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally linear

embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[92] B. Shaw and T. Jebara, “Minimum volume embedding,” in Artificial Intelli-

gence and Statistics, 2007.

[93] ——, “Structure preserving embedding,” in International Conference on Ma-

chine Learning, 2009.

[94] M. Soltanolkotabi and E. J. Candes, “A geometric analysis of subspace cluster-

ing with outliers,” Annals of Statistics, 2012.

[95] R. Souvenir and R. Pless, “Manifold clustering,” in IEEE International Con-

ference on Computer Vision, vol. I, 2005, pp. 648–653.

[96] M. Stojnic, F. Parvaresh, and B. Hassibi, “On the reconstruction of block-

sparse signals with and optimal number of measurements,” IEEE Trans. Signal

Processing, vol. 57, no. 8, pp. 3075–3085, Aug. 2009.

214



BIBLIOGRAPHY

[97] Y. Sugaya and K. Kanatani, “Geometric structure of degeneracy for multi-body

motion segmentation,” in Workshop on Statistical Methods in Video Processing,

2004.

[98] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric frame-

work for nonlinear dimensionality reduction,” Science, vol. 290, no. 5500, pp.

2319–2323, 2000.

[99] R. Tibshirani, “Regression shrinkage and selection via the LASSO,” Journal of

the Royal Statistical Society B, vol. 58, no. 1, pp. 267–288, 1996.

[100] M. Tipping and C. Bishop, “Mixtures of probabilistic principal component an-

alyzers,” Neural Computation, vol. 11, no. 2, pp. 443–482, 1999.

[101] ——, “Probabilistic principal component analysis,” Journal of the Royal Sta-

tistical Society, vol. 61, no. 3, pp. 611–622, 1999.

[102] C. Tomasi and T. Kanade, “Shape and motion from image streams under or-

thography,” International Journal of Computer Vision, vol. 9, no. 2, pp. 137–

154, 1992.

[103] R. Tron and R. Vidal, “A benchmark for the comparison of 3-D motion seg-

mentation algorithms,” in IEEE Conference on Computer Vision and Pattern

Recognition, 2007.

215



BIBLIOGRAPHY

[104] J. Tropp, “Greed is good: Algorithmic results for sparse approximation,” IEEE

Trans. Information Theory, vol. 50, no. 10, pp. 2231–2242, Oct. 2004.

[105] J. A. Tropp., “Algorithms for simultaneous sparse approximation. part ii: Con-

vex relaxation,” Signal Processing, special issue ”Sparse approximations in sig-

nal and image processing”, vol. 86, pp. 589–602, 2006.

[106] P. Tseng, “Nearest q-flat to m points,” Journal of Optimization Theory and

Applications, vol. 105, no. 1, pp. 249–252, 2000.

[107] M. Turk and A. Pentland, “Face recognition using eigenfaces,” in IEEE Con-

ference on Computer Vision and Pattern Recognition, 1991, pp. 586–591.

[108] E. van den Berg and M. Friedlander, “Theoretical and empirical results for re-

covery from multiple measurements,” IEEE Trans. Information Theory, vol. 56,

no. 5, pp. 2516–2527, 2010.

[109] R. Vidal, “Subspace clustering,” Signal Processing Magazine, vol. 28, no. 2, pp.

52–68, 2011.

[110] R. Vidal and R. Hartley, “Motion segmentation with missing data by Power-

Factorization and Generalized PCA,” in IEEE Conference on Computer Vision

and Pattern Recognition, vol. II, 2004, pp. 310–316.

[111] R. Vidal, Y. Ma, and S. Sastry, “Generalized Principal Component Analysis

216



BIBLIOGRAPHY

(GPCA),” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 27, no. 12, pp. 1–15, 2005.

[112] R. Vidal, R. Tron, and R. Hartley, “Multiframe motion segmentation with

missing data using PowerFactorization and GPCA,” International Journal of

Computer Vision, vol. 79, no. 1, pp. 85–105, 2008.

[113] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing,

vol. 17, 2007.

[114] K. Q. Weinberger and L. Saul, “Unsupervised learning of image manifolds by

semidefinite programming,” in IEEE Conference on Computer Vision and Pat-

tern Recognition, 2004, pp. 988–955.

[115] J. Wright and Y. Ma, “Dense error correction via `1-minimization,” IEEE

Transactions on Information Theory, vol. 56, no. 7, pp. 3540–3560, 2010.

[116] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan, “Sparse

representation for computer vision and pattern recognitiong,” Proceedings of

the IEEE, vol. 98, no. 6, pp. 1031–1044, 2010.

[117] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face recogni-

tion via sparse representation,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 31, no. 2, pp. 210–227, Feb. 2009.

217



BIBLIOGRAPHY

[118] J. Yan and M. Pollefeys, “A general framework for motion segmentation: In-

dependent, articulated, rigid, non-rigid, degenerate and non-degenerate,” in

European Conf. on Computer Vision, 2006, pp. 94–106.

[119] A. Yang, R. Jafari, P. Kuryloski, S. Iyengar, S. Sastry, and R. Bajcsy, “Dis-

tributed segmentation and classification of human actions using a wearable sen-

sor network,” CVPR Workshop on Human Communicative Behavior Analysis,

2008.

[120] A. Yang, J. Wright, Y. Ma, and S. Sastry, “Unsupervised segmentation of nat-

ural images via lossy data compression,” Computer Vision and Image Under-

standing, vol. 110, no. 2, pp. 212–225, 2008.

[121] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped

variables,” Journal of the Royal Statistical Society: Series B, vol. 68, no. 1, pp.

49–67, 2006.

[122] L. Zelnik-Manor and M. Irani, “Degeneracies, dependencies and their implica-

tions in multi-body and multi-sequence factorization,” in IEEE Conf. on Com-

puter Vision and Pattern Recognition, vol. 2, 2003, pp. 287–293.

[123] T. Zhang, A. Szlam, and G. Lerman, “Median k-flats for hybrid linear modeling

with many outliers,” in Workshop on Subspace Methods, 2009.

[124] T. Zhang, A. Szlam, Y. Wang, and G. Lerman, “Hybrid linear modeling via local

218



BIBLIOGRAPHY

best-fit flats,” in IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2010, pp. 1927–1934.

[125] Z. Zhang and H. Zha, “Principal manifolds and nonlinear dimensionality reduc-

tion via tangent space alignment,” SIAM J. Sci. Comput., vol. 26, no. 1, pp.

313–338, 2005.

[126] B. Zhao, G. Rocha, and B. Yu, “The composite absolute penalties family for

grouped and hierarchical selection,” The Annals of Statistics, vol. 37, no. 6, pp.

3468–3497, 2009.

219



Vita

Ehsan Elhamifar received his B.S. degree in Biomedical Engineering from Amirkabir

University of Technology Iran in 2004, awarded as the best undergraduate student.

He obtained his M.S. degree in Electrical Engineering from Sharif University of Tech-

nology Iran in 2006. He also obtained an M.S.E. degree in Applied Mathematics and

Statistics from The Johns Hopkins University in 2011. His research interests include

machine learning and computer vision, in particular, sparse signal representation,

high-dimensional data analysis, as well as clustering, dimensionality reduction, and

classification of multi-manifold data.

220


