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Abstract

Motivated by the theory of low-rank matrix represen-
tation, a new type of invariant image feature, called
transform-invariant low-rank texture (TILT), has been re-
cently proposed. However, the applicability of TILT fea-
tures in computer vision has been severely limited by two
major problems. First, TILT feature representation is based
on the assumption that the given image contains only one
dominant low-rank region, which typically does not hold in
natural images. Second, when multiple low-rank regions
are present, the existing TILT detection methods either ran-
domly sample the image or apply to fixed grid coordinates,
both of which cannot guarantee good recovery of salient
low-rank image features. In this paper, we propose a novel
algorithm to address these two important issues. First, uti-
lizing superpixels and the concept of canonical rank de-
rived from TILT, we introduce a method to segment natural
images into a geometric layer and a non-geometric layer.
Second, we apply a Markov random field model to a multi-
scale low-rank representation of the image geometric layer,
and obtain an effective algorithm to detect TILT features.
Finally, we present an application of the multiscale TILT
detection algorithm to the classical problem of building fa-
cade segmentation. Extensive experiments are conducted
on the Pankrac building database to demonstrate the effi-
cacy of the algorithms.

1. Introduction

In computer vision, it has been well known that tradi-
tional image features such as corner points and edges do
not contain sufficient 3D geometric information alone. As
a result, inferring 3D geometry using these basic features
on single or multiple images has been a difficult inverse
problem, partly because the global geometric relationship
between 3D shapes in space has been “destroyed” during
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the feature extraction stage. Furthermore, the basic im-
age features extracted from local image pixels can be eas-
ily affected by many image nuisances such as illumina-
tion change, camera perspective projection, and occlusion.
Therefore, it is desirable in many vision applications to in-
stead extract image features that contain richer semantic or
geometric information, whose representation as vectors or
matrices is invariant to those image nuisances. In general,
this category of robust image features are known as invari-
ant features.

In the literature, many types of invariant features have
been proposed. Arguably the most influential ones are
the affine-invariant SIFT features and many of its variants
[16, 19, 20, 1]. Since point and line features used in tradi-
tional structure-from-motion (SfM) approaches are not in-
variant to camera transformation and illumination, SIFT-
type features expand the representation of image appear-
ance to a small local window and consider the distribution
of its pixel values and gradients. In urban-scene modeling,
symmetric texture regions are also widely used [32, 15, 5].
Using the virtual views of symmetric patterns, their 3D ori-
entation can be readily estimated from just a single image
[13, 14]. Another type of geometric features used in 3D
modeling are homogeneous color regions such as super-
pixels [23] whose orientation under perspective projection
is consistent with that of some global planar structures in
space [21, 27]. Finally, in object recognition and segmenta-
tion, various types of object part-based regions that contain
rich semantic information have been proposed [36, 11, 30].

More recently, motivated by the emerging theory of Ro-
bust PCA [4], a new type of invariant feature has been pro-
posed, called transform-invariant low-rank texture (TILT)
[35]. The fundamental idea of TILT is that image texture
that represents regular or repetitive 3D shapes in space is
often low rank, when the texture region is represented as a
matrix of its pixel values. However, under camera perspec-
tive distortion and potential pixel corruption, the matrix rep-
resentation of the texture in the image space exhibits much
higher rank compared to its canonical representation, i.e.,
the texture observed under orthographic projection and free
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of pixel corruption. Therefore, the rank of the texture region
can be used as part of an objective function to rectify the un-
derlying image distortion. This new approach suggests that
we can obtain accurate geometric models of many urban
objects, such as buildings, hallways, road signs, and human
faces, without relying on extraction of any traditional local
features (as shown in Figure 1). More importantly, the re-
sulting TILT features can be shown to be robust to camera
perspective distortion and can also compensate a moderate
amount of pixel corruption, which are the main advantages
of the method compared to other existing invariant features.

Figure 1. Examples of manually labeled image patterns that are
extracted as TILT features. Top: Initialization of the feature lo-
cations as the red bounding boxes, and the final orientation of the
feature as the green bounding boxes. The TILT features compen-
sate the perspective distortion. Bottom: Canonical representation
of the low-rank matrices.

We are aware of three applications where the use of TILT
features has been considered: 3D reconstruction of building
facades [22], symmetry detection [34], and camera calibra-
tion [33]. Compared to a typical natural image where the
presence of low-rank texture may be only sporadic, the im-
ages used in the above applications mostly have overwhelm-
ing regular and/or repetitive patterns. However, despite at-
tractive attributes of TILT, it has not been widely adopted
in other vision application where the use of invariant fea-
tures would be preferred. We believe this is mainly due
to two reasons. First, TILT feature representation is based
on the assumption that the given image contains only one
dominant low-rank region, which typically does not hold in
natural images. Second, when multiple low-rank regions
are present, the existing TILT detection methods either ran-
domly sample the image or apply to fixed grid coordinates,
both of which cannot guarantee good recovery of salient
low-rank image features.

1.1. Contributions

In this paper, we propose a novel algorithm called multi-
scale TILT detection (MTD) to address the above two crit-
ical issues that have handicapped the use of TILT features
in computer vision applications. First, utilizing superpixels
and the concept of canonical rank derived from TILT, we
introduce a method to segment natural images into a geo-
metric layer and a non-geometric layer. Second, we apply a

Markov random field model to a multiscale low-rank repre-
sentation of the image geometric layer, and obtain an effec-
tive algorithm to detect TILT features. To this end, given
a natural image as the input, the result of the algorithm
provides a geometric segmentation of the image scene into
regions with consistent 3D orientation and surface texture,
as shown in Figure 2.

We believe the new TILT detection algorithm can be
readily employed by higher-level algorithms in object
recognition, image retrieval, and 3D reconstruction. In this
paper, we present an example to apply the algorithm to the
classical problem of modeling 3D planar structures. More
specifically, we build a 2D adjacency graph, where each
node in the graph corresponds to a TILT feature. We con-
nect two adjacent features by an edge whose associated
weight is derived from their low-rank representations. As
some of the nodes in the graph correspond to outlying fea-
tures, we employ a robust clustering algorithm to cluster
the graph into multiple groups while rejecting the outly-
ing nodes. Each of the groups represents a dominant planar
structure, e.g., a building facade.

Note that, when MTD is applied to the application of
finding building facades, the result bears resemblance to a
category of urban scene reconstruction algorithms based on
detecting image texture symmetry such as [25]. Neverthe-
less, the focus of most symmetry-based facade modeling
algorithms including [25] is on finding 2D deformable lat-
tice structures, and the implementation is typically based on
some existing salient features such as SIFT features. In this
paper, our main focus is on the detection of more robust
TILT features from natural images. Arguably, the TILT fea-
tures can be also used as the basic “building block” to con-
struct 2D lattice structures. More importantly, since TILT
features are more robust in handling camera perspective
distortion, illumination change, and pixel occlusion, more
complex facade structures can be successfully recovered by
the MTD algorithm, as some examples shown in our exper-
iments.

2. Problem Formulation
In this section, we first review the basic TILT framework.

Suppose A ∈ Rm×m represents the image of a low-rank
texture pattern, which can be distorted by a 3D transforma-
tion τ and sparse pixel corruption E ∈ Rm×m.1 Therefore,
under such transformation τ , the relationship between the
distorted input image I and its ground-truth low-rank com-
ponent A can be modeled as:

I ◦ τ = A+ E. (1)

In a sense, the appearance of a grayscale image patch I
treated as a matrix can be decomposed as I = (A,E, τ),

1Without loss of generality, we assume A and E are square matrices.



(a) Original image (b) Geometric layer (c) Non-geometric layer (d) TILT feature detection

Figure 2. Results of the proposed algorithm on a challenging example in the presence of perspective distortion, vegetation occlusion, and
transparent glass surfaces. TILT feature detection results are illustrated by the superimposed local frames (the green arrows indicate surface
normals).

where τ is camera projection, E is a sparse pixel corruption
matrix, and A is a low-rank texture pattern invariant to τ
and E. We refer A as a canonical representation of I . In
this paper, we restrict our attention to model planar texture
patterns. Hence, τ is assumed to belong to the homography
group GL(3).

Motivated by the Robust PCA algorithm [4], (A,E, τ)
can be recovered by solving the following optimization pro-
gram:

min
A,E,τ

‖A‖∗ + λ‖E‖1 subj. to I ◦ τ = A+ E, (2)

where ‖ · ‖∗ and ‖ · ‖1 represent the nuclear norm and entry-
wise `1- norm of a matrix, respectively. However, the prob-
lem (2) is nonlinear due to the fact that τ ∈ GL(3), and
directly minimizing this objective function is expensive. It
was shown in [35] that one can linearize the constraint and
iteratively estimate a one-step update ∆τ by solving

min
A,E,∆τ

‖A‖∗+λ‖E‖1 subj. to I◦τk+∇I∆τ = A+E.

(3)
This optimization program then can be solved by algorithms
similar to Robust PCA solvers. Figure 1 illustrates the re-
sults of applying (2) to some representative low-rank texture
regions.

Next, we more rigorously define the multiscale TILT de-
tection problem:

Problem 1 (Multiscale TILT Detection (MTD)) Given a
natural image, the MTD problem seeks solutions to obtain a
set of TILT features from unique image regions: I1, · · · , In.
Each TILT feature is decomposed to Ik = (Ak, Ek, τk),
where τk represents the homography transformation from
the 3D position of the texture pattern in space to the cam-
era, Ek is the sparse pixel corruption matrix, and Ak is the
low-rank texture representation.

3. Multiscale TILT Detection
3.1. Multiscale Low-Rank Analysis

Given a natural image such as the one shown in Figure 3
Left, we first need to partition the image into local patches

where the TILT representation is calculated. A popular ap-
proach to group local homogeneous texture regions is to use
superpixels [24, 9], as shown in Figure 3 Middle.
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Figure 3. An example of multiscale TILT feature extraction. Left:
Original. Middle: Superpixels rendered using mean colors.
Right: Multiscale TILT features. A local frame is attached to each
TILT feature to illustrate its 3D orientation with the green arrows
indicating the surface normals. The algorithm recovers the correct
3D orientation of the pattern at scale 3 and 4, while the results
from the smaller scales are not as accurate.

After superpixel extraction, each superpixel can be fitted
by a bounding box, and the TILT algorithm [35] is readily
applied to the bounding box as the initial position of a po-
tential TILT feature. However, in practice, directly applying
TILT to superpixels may not always yield good representa-
tion, even when the superpixels represent salient geometric
structures in space. One major reason is that often the di-
mension of a superpixel could be rather small, while the un-
derlying algorithm of Robust PCA that underpins the TILT
algorithm requires the input matrix to have a sufficient size
for the algorithm to be effective.2

We address the above problem by adopting a multiscale
scheme similar to other invariant feature detection algo-
rithms such as SIFT. More specifically, at each superpixel,
we consider bounding boxes of increasing sizes. In other
words, we first consider a bounding box of size w×w cen-
tered at each superpixel. Next, we increase the size of the

2In fact, Robust PCA theory that guarantees the exact recovery of the
low-rank and sparse components of a matrix holds asymptotically only
when the size of the matrix grows large.



original bounding box by ratios r0 = 1 < r1 < r2 <
· · · < rL−1, corresponding to L different scales. Then,
for the i-th superpixel, its bounding box at scale j is pro-
cessed by TILT as Iji = (Aji , E

j
i , τ

j
i ). As shown in the right

plot of Figure 3, TILT estimation at multiple scales better
captures repetitive 2D patterns and their homography trans-
forms than at the original superpixel scale.

In the next section, for neighboring superpixels, we will
select their most consistent TILT features at multiple scales.
Before that, it is important to notice that certain regions in
an image may represent homogeneous color patches (such
as sky and water) or noisy high-rank patches (such as trees,
grass, and pedestrians). As a result, the estimation of TILT
at those regions may be noisy and not consistent with any
meaningful geometric structure in space, as shown in Figure
4. Therefore, these regions should be first excluded from
the subsequent MTD calculation. Using the TILT decom-
position I = (A,E, τ), this task can be easily achieved by
checking the estimated rank of the low-rank component A.

Figure 4. Example of a non-geometric vegetation image in which
multiscale TILT features are not consistent.

To do so, we first define the canonical rank of an image.

Definition 2 (Canonical Rank) Given an image patch I
and its TILT components I = (A,E, τ), its canonical rank
ρ(I) is defined by thresholding the energy of its low-rank
component A in singular value decomposition:

ρ(I)
.
= arg min

k

∑k
i=1 σ

2
i (A)

‖A‖2F
> γ, (4)

where σi is the i-th singular value of A: σ1 ≥ σ2 ≥ · · · ,
and γ is a predetermined fidelity threshold.

We have found that ρ(I) provides a good criterion to par-
tition an image into a geometric layer and a non-geometric
layer. More specifically, for an image region I that contains
a superpixel, if its canonical rank ρ(I) at any scale is smaller
than a preset threshold α1, then the superpixel will be des-
ignated as a homogeneous color region. Similarly, if ρ(I) is
greater than another preset threshold α2 at any scale, then
the superpixel will be designated as a noisy region. Color
regions and noisy regions typically do not represent geo-
metric structures in space. Hence, we merge these regions
to a non-geometric layer. Conversely, if α1 ≤ ρ(I) ≤ α2

at all scales, then the superpixel is a low-rank region and
belongs to a geometric layer.

Figure 5 shows an example of partitioning an image into
the two layers. More examples are shown in Section 5.

(a) Segment of low-rank regions (b) Segment of color/noisy regions

Figure 5. Partitioning of the image in Figure 3 into (a) the geo-
metric layer and (b) the non-geometric layer.

3.2. TILT Detection on Adjacency Graph

In this section, we assume n superpixels in the geometric
layer have been fitted with TILT features at multiple scales
(e.g., four as shown in Figure 3). The task is to build a 2D
adjacency graphG to establish their spatial and texture sim-
ilarities, which is called a TILT adjacency graph (TAG). We
will also apply a Markov random field (MRF) model on the
TAG to select an optimal TILT representation of each su-
perpixel among the multiple scales such that the 3D orien-
tations of neighboring TILT features are consistent. Figure
6 illustrates an example of building the TAG.

Figure 6. Left: The TAG of the image in Figure 3. Right: Selec-
tion of consistent TILT representation in multiple scales.

First, a TILT adjacency graph (TAG) is defined as G =
(V,E), where V = {I1, I2, . . . , In} is the set of nodes that
represent the n superpixels in the geometric layer, and E =



{eij} is the set of edges that connect two nodes Ii and Ij if
the two superpixels share a common boundary in the image.

Second, based on the estimated TAG, we want to de-
termine the optimal TILT scale from the multiscale rep-
resentation such that the 3D orientation of the connected
TILT features in the TAG are consistent. In this paper, we
have chosen four scales at each superpixel to represent its
TILT features in Section 3.1. Therefore, the orientation of
a superpixel Ii can be represented by four normal vectors
(n1

i ,n
2
i ,n

3
i ,n

4
i ).3 Furthermore, two normal vectors con-

nected in the TAG define a potential function for the MRF:

V (ni,nj) = arccos

(
ni
Tnj

‖ni‖2‖nj‖2

)
. (5)

The intuition behind potential function (5) is that a super-
pixel most likely has the same normal vector as its adjacent
superpixels.

Given the potential function and the TAG, the distri-
bution of the candidate TILT features for the combination
X = {n1,n2, . . . ,nN} on the MRF is defined as:

P (X) =
1

Z
exp(−

∑
eij∈E

V (ni,nj)), (6)

where Z is the normalization value. Finally, we seek the
configuration X∗ = {n∗1,n∗2, . . . ,n∗n} that maximizes the
above distribution function:

X∗ = arg max
X

P (X). (7)

Since solving the above optimization program is, in gen-
eral, NP-hard [3], in practice we can use two classical meth-
ods, which are iterated conditional modes [2] and simulated
annealing based on Gibbs sampling [10]. We have found
that both solutions can provide reasonable results for the
most likely configuration. Since MRF optimization is not
the main focus of this paper, we simply choose the Gibbs
sampling method in our algorithm.

The MTD algorithm is summarized as follows.

4. Application: Modeling Planar Structures
In this section, we demonstrate an illustrative applica-

tion of TILT features to modeling planar structures. The
basic idea is that, given the TILT features in the TAG, we
partition the TAG into subgraphs, each of which represents
a global planar structure in space. Subsequently, a larger
TILT representation of each group can be fitted that con-
tains all the TILT features in the subgraph, called a TILT
complex. A TILT complex provides a geometric represen-
tation of even larger, more global urban structures in natural
images. An example is shown in Figure 7.

3A normal vector nj
i can be recovered from the decomposition of its

homography transformation τ ji [12, 17].

Algorithm 1: Multiscale TILT Detection (MTD)
1: Partition the input image into superpixels I1, . . . , IN .
2: Compute multiscale TILT representation
Iji = (Aji , E

j
i , τ

j
i )

3: Partition all superpixels into a geometric layer and a
non-geometric layer based on canonical rank (4).

4: Build TILT adjacency graph G.
5: Determine optimal TILT scale X∗ by maximizing the

MRF distribution (7).
Output: TILT detection on the geometric layer.

Figure 7. Left: Partitioning the TAG in Figure 6 into two com-
plexes connected by red and cyan edges (in color). Outlying TILT
features that are not connected to the two subgraphs are also ex-
cluded. Right: The two TILT complexes provide a higher-level
global geometric model.

First, we note that enforcing the TAG and MRF may still
group TILT features from structures with different texture
patterns if they share similar 3D orientations. Some exam-
ples are shown in Section 5. Therefore, we are motivated
to further partition the TAG based on the texture similarity
of the TILT features. More specifically, we use the well-
known Gabor filters [18] and the χ2-distance [26] to mea-
sure the similarity of two texture regions under TILT trans-
form. A 2D mother Gabor wavelet g at coordinates (x, y) is
given by:

gσ,λ(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2
+ i

2πx

λ

)
∈ C, (8)

where σ is the Gaussian localization parameter and λ is the
wavelength of the sinusoidal factor.

In a TAG, the response of a TILT feature I∗ = (A,E, τ)
whose optimal scale is selected by the MRF (7) to a Gabor
wavelet function g(i) is defined by the convolution

F (i) = ‖A ∗ g(i)‖ ⊂ R2. (9)



The pixel distribution in the convoluted image F (i) can
be represented by a normalized histogram vector. Subse-
quently, the texture similarity D(I1, I2) of two TILT fea-
tures I1 and I2 can be calculated by the χ2-distances of their
Gabor histogram vectors over all the wavelet filters [26]. If
the texture similarity distance D(Ii, Ij) of two TILT fea-
tures is too large, their edge eij will be removed from the
TAG.

Second, we observe that if two adjacent superpixels Ii
and Ij belong to the same facade, they often share simi-
lar texture patterns and orientations. As the cue of texture
similarity has been utilized in the construction of the TAG
above, a naive way to take advantage of the other geometric
cue is to directly compare the similarity of their homogra-
phies (τi, τj) from their TILT representations. However,
we have found that in practice, especially in urban images,
two planar structures such as building facades might share
similar textures and orientations in space, but they could
represent two complete different 3D surfaces with different
depths in space. Such regions that are similar only based on
their local TILT representations should not be merged and
treated as a single planar structure.

To mitigate this problem and inspired by the work in
[35], we propose to introduce a verification step that hy-
pothetically merge Ii and Ij as a new image Iij

.
= [Ii, Ij ]

4,
and again solve its combined TILT representation as:

min
A′,E′,τij

‖A′‖∗+λ‖E′‖1 subj. to Iij ◦ τij = A′+E′.

(10)
We define another cost function f(ni,nj ,nij) on the TAG
associated to the edge eij that measures the dissimilarity of
the two adjacent TILT features in terms of their orientations
(ni,nj ,nij), which are calculated from (τi, τj , τij) as

f(ni,nj ,nij) = exp(− α

max(V (ni,nij), V (nj ,nij))2
),

(11)

where 0 ≤ f(·) < 1 and α is a user-defined parameter.
When Ii and Ij are with the same facade, ideally ni =
nj = nij so that f(·) = 0. Therefore, the problem of
clustering TILT features into TILT complexes becomes a
graph partitioning problem on the TAG.

For two main reasons, instead of using a standard graph-
cut algorithm such as [29], we employ the recently proposed
dissimilarity-based sparse modeling representative selec-
tion (DSMRS) algorithm [8] for graph partitioning. First,
some of the nodes in the graph correspond to outlying fea-
tures since the corresponding superpixels contain different
regions, such as two different facades or a facade occluded
by trees. Second, the number of clusters is not known a

4By an abuse of notation, Iij is the minimal bounding-box region that
contains both Ii and Ij and other pixels in between.

priori. Such problems cannot be reliably handled by tradi-
tional graph partitioning techniques such as the Normalized
Cut algorithm [29]. On the other hand, DSMRS algorithm
can robustly cluster the graph for a large range of its sin-
gle regularization parameter and can also reject outliers [8].
However, the algorithm requires to have dissimilarities be-
tween all pairs of connected nodes. Thus, to take advan-
tage of the DSMRS algorithm, we define the dissimilarity
f(·) between any two nodes as the total dissimilarity on the
shortest path between the connected nodes on the TAG. The
output of the algorithm finds clustering of the nodes, while
the outliers as whose subgraphs with very small sizes are
detected and rejected.

5. Implementation and Experiment

In the implementation of the MTD algorithm, we choose
a public code Quick Shift [31] to pre-segment the image
into superpixels due to its fast speed compared to other ex-
isting methods like mean shift [6] and Medoidshifts [28].
We choose the initial window size around each superpixel
as w = 50 pixels and consider L = 4 scales with r1 = 1.2,
r2 = 1.4 and r3 = 1.6. We choose the rank threshold in
equation (4) as γ = 0.999, which yields good empirical re-
sults. To solve the MRF problem in (7), we use the Gibbs
sampling algorithm. However, we have observed that the
iterated conditional modes algorithm also provides equally
good results as the Gibbs sampling method. For the user
defined parameters in the MTD algorithm, we set α1 = 1,
α2 = 13. We have observed that the MTD algorithm is
not very sensitive to the change of these values due to the
robustness of the method.

In terms of the speed, the complexity of the full pipeline
is clearly dominated by the calculation of TILT representa-
tion at multiple scales. The reader is referred to [4, 35, 22]
for fast TILT solvers.

5.1. Multiscale TILT Detection

The two experiments in this and next section are based
on the Pankrac dataset [7], which consists of 82 images of
30 urban buildings.

First, we apply the MTD algorithm on the Pankrac
dataset. The TILT feature detection results are shown in
the first two columns of Figure 8. In all the results, the
image regions with no TILT feature attached belong to the
estimated non-geometric layer.

It is worth noting that the first two images in Figure 8
contain significant portions of non-Lambertian surfaces and
complex sky texture. The MTD algorithm is able to seg-
ment the sky region into the non-geometric layer, and ac-
curately recover the 3D orientation of the TILT features on
the building glass surface. In the next three examples, MTD
successfully recovers the TILT features on more complex



3D shapes, many of which do not satisfy any 2D symmetry
models.

Finally, we draw the following conclusions:

1. Utilizing the canonical rank condition, our algorithm is
able to accurately partition an image into the geometric
and non-geometric layers.

2. The MRF model is very effective in selecting consis-
tent local TILT features at optimal scales, even when
the planar structures have large non-Lambertian sur-
faces (i.e., glass) and/or large perspective distortion.

5.2. Building Facade Detection

In this experiment, we demonstrate the application of
modeling urban building facades using TILT complexes.
The results from the same Pankrac images are shown in the
last two columns of Figure 8.

We observe that the DSMRS algorithm is capable of
finding dominant geometric structures in a wide variety of
conditions. In particular, in the first four examples, sur-
faces with different orientation or different texture patterns
are correctly segmented. In the last example, surfaces with
similar texture but different depths are also segmented. The
more global TILT complex models accurately describe the
overall 3D shapes of the large buildings in space. The al-
gorithm also effectively prunes out outlying TILT features
that are not from the dominant planar structures.

Compared to the existing facade modeling algorithms
such as [25], those algorithms likely will fail to group the
lattice points when their facade features do not have uni-
form Lambertian appearance or are not translationally sym-
metric, such as the first five examples of Figure 8.

6. Conclusion
Compared to traditional image features, global geo-

metric features such as TILT have shown attractive at-
tributes that may pertain to several high-level vision appli-
cations. This paper addresses the detection of TILT features
via a novel multiscale clustering algorithm as a means of
geometric segmentation. The algorithm can be used as a
fundamental image feature detection method that comple-
ments the existing invariant feature detection algorithms,
especially for urban images where symmetric man-made
structures abound.
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