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Abstract

In many image/video/web classification problems, we
have access to a large number of unlabeled samples. How-
ever, it is typically expensive and time consuming to obtain
labels for the samples. Active learning is the problem of
progressively selecting and annotating the most informa-
tive unlabeled samples, in order to obtain a high classi-
fication performance. Most existing active learning algo-
rithms select only one sample at a time prior to retraining
the classifier. Hence, they are computationally expensive
and cannot take advantage of parallel labeling systems such
as Mechanical Turk. On the other hand, algorithms that
allow the selection of multiple samples prior to retraining
the classifier, may select samples that have significant in-
formation overlap or they involve solving a non-convex op-
timization. More importantly, the majority of active learn-
ing algorithms are developed for a certain classifier type
such as SVM. In this paper, we develop an efficient active
learning framework based on convex programming, which
can select multiple samples at a time for annotation. Unlike
the state of the art, our algorithm can be used in conjunc-
tion with any type of classifiers, including those of the fam-
ily of the recently proposed Sparse Representation-based
Classification (SRC). We use the two principles of classi-
fier uncertainty and sample diversity in order to guide the
optimization program towards selecting the most informa-
tive unlabeled samples, which have the least information
overlap. Our method can incorporate the data distribution
in the selection process by using the appropriate dissimi-
larity between pairs of samples. We show the effectiveness
of our framework in person detection, scene categorization
and face recognition on real-world datasets.

1. Introduction

The goal of recognition algorithms is to obtain the high-
est level of classification accuracy on the data, which can
be images, videos, web documents, etc. The common first
step of building a recognition system is to provide the ma-
chine learner with labeled training samples. Thus, in su-
pervised and semi-supervised frameworks, the classifier’s

performance highly depends on the quality of the provided
labeled training samples. In many problems in computer
vision, pattern recognition and information retrieval, it is
fairly easy to obtain a large number of unlabeled training
samples, e.g., by downloading images, videos or web doc-
uments from the Internet. However, it is, in general, dif-
ficult to obtain labels for the unlabeled samples, since the
labeling process is typically complex, expensive and time
consuming. Active learning is the problem of progressively
selecting and annotating the most informative data points
from the pool of unlabeled samples, in order to obtain a
high classification performance.

Prior Work. Active learning has been well studied in
the literature with a variety of applications in image/video
categorization [5, 15, 16, 22, 30, 33, 34, 37], text/web clas-
sification [25, 29, 38], relevance feedback [3, 36], etc. The
majority of the literature consider the single mode active
learning [21, 23, 25, 27, 29, 31], where the algorithm se-
lects and annotates only one unlabeled sample at a time
prior to retraining the classifier. While this approach is ef-
fective in some applications, it has several drawbacks. First,
there is a need to retrain the classifier after adding each new
labeled sample to the training set, which can be computa-
tionally expensive and time consuming. Second, such meth-
ods cannot take advantage of parallel labeling systems such
as Mechanical Turk or LabelMe [7, 24, 28], since they re-
quest annotation for only one sample at a time. Third, sin-
gle mode active learning schemes might select and annotate
an outlier instead of an informative sample for classifica-
tion [26]. Fourth, these methods are often developed for a
certain type of a classifier such as SVM or Naive Bayes and
cannot be easily modified to work with other classifier types
[21, 23, 25, 29, 31].

To address some of the above issues, more recent meth-
ods have focused on the batch mode active learning, where
they select and annotate multiple unlabeled samples at a
time prior to retraining the classifier [2, 5, 12, 17, 18]. No-
tice that one can run a single mode active learning method
multiple times without retraining the classifier in order to
select multiple unlabeled samples. However, the drawback
of this approach is that the selected samples can have sig-
nificant information overlap, hence, they do not improve

4321



Figure 1. We demonstrate the effectiveness of our proposed active learning framework on three problems of person detection, scene categorization and
face recognition. Top: sample images from the INRIA Person dataset [6]. The dataset contains images from 2 classes, either containing people or not.
Middle: sample images from the Fifteen Scene Categories dataset [19]. The dataset contains images from 15 different categories, such as street, building,
mountain, etc. Bottom: sample images from the Extended YaleB Face dataset [20]. The dataset contains images from 38 classes, corresponding to 38
different individuals, captured under a fixed pose and varying illumination.

the classification performance compared to the single mode
active learning scheme. Other approaches try to decrease
the information overlap among the selected unlabeled sam-
ples [2, 12, 13, 18, 36]. However, such methods are often
ad-hoc or involve a non-convex optimization, which can-
not be solved efficiently [12, 13], hence approximate solu-
tions are sought. Moreover, similar to the single mode ac-
tive learning, most batch mode active learning algorithms
are developed for a certain type of a classifier and can-
not be easily modified to work with other classifier types
[12, 13, 17, 29, 32, 34].

Paper Contributions. In this paper, we develop an effi-
cient active learning framework based on convex program-
ming that can be used in conjunction with any type of clas-
sifiers. We use the two principles of classifier uncertainty
and sample diversity in order to guide the optimization pro-
gram towards selecting the most informative unlabeled sam-
ples. More specifically, for each unlabeled sample, we de-
fine a confidence score that reflects how uncertain the sam-
ple’s predicted label is according to the current classifier
and how dissimilar the sample is with respect to the labeled
training samples. A large value of the confidence score
for an unlabeled sample means that the current classifier is
more certain about the predicted label of the sample and
also the sample is more similar to the labeled training sam-
ples. Hence, annotating it does not provide significant addi-
tional information to improve the classifier’s performance.
On the other hand, an unlabeled sample with a small con-
fidence score is more informative and should be labeled.
Since we can have many unlabeled samples with low con-
fidence scores and they may have information overlap with
each other, i.e., can be similar to each other, we need to se-
lect a few representatives of the unlabeled samples with low
confidence scores. We perform this task by employing and
modifying a recently proposed algorithm for finding data
representatives based on simultaneous sparse recovery [9].

The algorithm that we develop has the following advantages
with respect to the state of the art:

– It addresses the batch mode active leaning problem,
hence, it can take advantage of parallel annotation systems
such as Mechanical Turk and LabelMe.

– It can be used in conjunction with any type of classi-
fiers. The choice of the classifier affects selection of un-
labeled samples through the confidence scores, but the pro-
posed framework is generic. In fact, in our experiments, we
consider the problem of active learning using the recently
proposed Sparse Representation-based Classification (SRC)
method [35]. To the best of our knowledge, this is the first
active learning framework for the SRC algorithm.

– It is based on convex programming, hence can be solved
efficiently. Unlike the state of the art, it incorporates both
the classifier uncertainty and sample diversity in a convex
optimization to select multiple informative samples that are
diverse with respect to each other and the labeled samples.

– It can incorporate the distribution of the data by using an
appropriate dissimilarity matrix in the convex optimization
program. The dissimilarity between pairs of points can be
Euclidean distances (when the data come from a mixture
of Gaussians), geodesic distances (when data lie on a man-
ifold) or other types of content/application-dependent dis-
similarity, which we do not restrict to come from a metric.

Paper Organization. The organization of the paper is as
follows. In Section 2, we review the Dissimilarity-based
Sparse Representative Selection (DSMRS) algorithm that
we leverage upon in this paper. In Section 3, we propose
our framework of active learning. We demonstrate exper-
imental results on multiple real-world problems in Section
4. Finally, Section 5 concludes the paper.
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2. Dissimilarity-based Sparse Modeling Repre-
sentative Selection (DSMRS)

In this section, we review the Dissimilarity-based Sparse
Modeling Representative Selection (DSMRS) algorithm
[9, 10] that finds representative points of a dataset. Assume
we have a dataset with N points and we are given dissim-
ilarities {dij}i,j=1,...,N between every pair of points. dij
denotes how well i represents j. The smaller the value of
dij is, the better point i is a representative of point j. We as-
sume that the dissimilarities are nonnegative and djj ≤ dij
for every i and j. We can collect the dissimilarities in a
matrix as

D =

d
>
1
...

d>N

 =

d11 d12 · · · d1N
...

...
. . .

...
dN1 dN2 · · · dNN

 ∈ RN×N . (1)

Given the dissimilarities, the goal is to find a few points that
well represent the dataset. To do so, [9] proposes a convex
optimization framework by introducing variables zij asso-
ciated to dij . zij ∈ [0, 1] indicates the probability that i is
a representative of j. We can collect the optimization vari-
ables in a matrix as

Z =

z
>
1
...

z>N

 =

 z11 z12 · · · z1N
...

...
. . .

...
zN1 zN2 · · · zNN

 ∈ RN×N . (2)

In order to select a few representatives that well encode the
collation of points in the dataset, two objective functions
should be optimized. The first objective function is the en-
coding cost of theN data points via the representatives. The
encoding cost of j via i is set to dijzij ∈ [0, dij ], hence the
total encoding cost for all points is∑

i,j

dijzij = tr(D>Z). (3)

The second objective function corresponds to penalizing the
number of selected representatives. Notice that if i is a
representative of some points in the dataset, then zi 6= 0
and if i does not represent any point in the dataset, then
zi = 0. Hence, the number of representatives corresponds
to the number of nonzero rows of Z. A convex surrogate for
the cost associated to the number of selected representative
is given by

N∑
i=1

‖zi‖q , ‖Z‖1,q, (4)

where q ∈ {2,∞}. Putting the two objectives together, the
DSMRS algorithm solves

min λ ‖Z‖q,1 + tr(D>Z) s. t. Z ≥ 0, 1>Z = 1>,
(5)
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Figure 2. Separating data in two different classes. Class 1 consists of
data in {G(1)

1 ,G(1)
2 ,G(1)

3 } and class 2 consists of data in {G(2)
1 ,G(2)

2 }.
Left: a max-margin linear SVM learned using two training samples (green
crosses). Data in G(1)

2 are misclassified as belonging to class 1. Note that

labeling samples from G(1)
3 or G(2)

2 does not change the decision boundary

much and G(1)
2 will be still misclassified. Right: labeling a sample that the

classifier is more uncertain about its predicted class, helps to improve the
classification performance. In this case, labeling a sample from G(1)

2 that
is close to the decision boundary, results in changing the decision boundary
and correct classification of all samples.

where the constraints ensure that each column of Z is a
probability vector, denoting the association probability of j
to each one of the data points. Thus, the nonzero rows of
the solution Z indicate the indices of the representatives.
Notice that λ > 0 balances the two costs of the encoding
and the number of representatives. A smaller value of λ
puts more emphasis on better encoding, hence results in ob-
taining more representatives, while a larger value of λ puts
more emphasis on penalizing the number of representatives,
hence results in obtaining less representatives.

3. Active Learning via Convex Programming

In this section, we propose an efficient algorithm for ac-
tive learning that takes advantage of convex programming
in order to find the most informative points. Unlike the
state of the art, our algorithm can be used in conjunction
with any classifier type. To do so, we use the two principles
of classifier uncertainty and sample diversity to define con-
fidence scores for unlabeled samples. A lower confidence
score for an unlabeled sample indicates that we can obtain
more information by annotating that sample. However, the
number of unlabeled samples with low confidence scores
can be large and, more importantly, the samples can have
information overlap with each other or they can be outliers.
Thus, we integrate the confidence scores in the DSMRS
framework in order to find a few representative unlabeled
samples that have low confidence scores. In the subsequent
sections, we define the confidence scores and show how to
use them in the DSMRS framework in order to find the most
informative samples. We assume that we have a total of N
samples, where U and L denote sets of indices of unlabeled
and labeled samples, respectively.
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3.1. Classifier Uncertainty

First, we use the classifier uncertainty in order to select
informative points for improving the classifier performance.
The uncertainty sampling principle [4] states that the infor-
mative samples for classification are the ones that the clas-
sifier is most uncertain about.

To illustrate this, consider the example shown in the left
plot of Figure 2, where the data belong to two different
classes. G(i)j denotes the j-th cluster of samples that be-
long to class i. Assume that we already have two labeled
samples, shown by green crosses, one from each class. For
this specific example, we consider the linear SVM classifier
but the argument is general and applies to other classifier
types. A max-margin hyperplane learned via SVM for the
two training samples is shown in the figure. Notice that the
classifier is more confident about the labels of samples in
G(1)3 and G(2)2 as they are farther from the decision boundary,
while it is less confident about the labels of samples in G(1)2 ,
since they are closer to the hyperplane boundary. In this
case, labeling any of the samples in G(1)3 or G(2)2 does not
change the decision boundary, hence, samples in G(1)2 will
still be misclassified. On the other hand, labeling a sample
from G(1)2 changes the decision boundary so that points in
the two classes will be correctly classified, as shown in the
right plot of Figure 2.

Now, for a generic classifier, we define its confidence
about the predicted label of an unlabeled sample. Con-
sider data in L different classes. For an unlabeled sample i,
we consider the probability vector pi =

[
pi1 · · · piL

]
,

where pij denotes the probability that sample i belongs to
class j. We define the classifier confidence score of point i
as

cclassifier(i) , σ − (σ − 1)
E(pi)

log2(L)
∈ [1, σ], (6)

where σ > 1 and E(·) denotes the entropy function. Note
that when the classifier is most certain about the label of a
sample i, i.e., only one element of pi is nonzero and equal
to one, then the entropy is zero and the confidence score
is maximum, i.e., is equal to σ. On the other hand, when
the classifier is most uncertain about the label of a sample
i, i.e., when all the elements of pi are equal to 1/L, then
the entropy is equal to log2(L) and the confidence score is
minimum, i.e., is equal to one.

Remark 1 For probabilistic classifiers such as Naive
Bayes, the probability vectors, pi, are directly given by
the output of the algorithms. For SVM, we use the re-
sult of [14] to estimate pi. For SRC, we can compute
the multi-class probability vectors as follows. Let xi =[
x>i1 · · · x>iL

]>
be the sparse representation of an un-

labeled sample i, where xij denotes the representation co-
efficients using labeled samples from class j. We set pij ,
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G(1)
2

G(2)
1

G(2)
2

G(1)
1

G(1)
2

G(2)
1

G(2)
2

Figure 3. Separating data in two different classes. Class 1 consists of data
in {G(1)

1 ,G(1)
2 } and class 2 consists of data in {G(2)

1 ,G(2)
2 }. Left: a max-

margin linear SVM learned using two training samples (green crosses).
Data in G(1)

2 and G(2)
2 are misclassified as belonging to class 2 and 1, re-

spectively. Note that the most uncertain samples according to the classifier
are samples from G(1)

1 and G(2)
1 , which are close to the decision boundary.

However, labeling such samples does not change the decision boundary
much and samples in G(1)

2 and G(2)
2 will still be misclassified. Right:

labeling samples that are sufficiently dissimilar from the labeled training
samples helps to improve the classification performance. In this case, la-
beling a sample from G(1)

2 and a sample from G(2)
2 results in changing the

decision boundary and correct classification of all samples.

‖xij‖1/‖xi‖1.

3.2. Sample Diversity

We also use the sample diversity criterion in order to find
the most informative points for improving the classifier per-
formance. More specifically, sample diversity states that in-
formative points for classification are the ones that are suf-
ficiently dissimilar from the labeled training samples (and
from themselves in the batch mode setting).

To illustrate this, consider the example of Figure 3,
where the data belong to two different classes. G(i)j denotes
the j-th cluster of samples that belong to class i. Assume
that we already have two labeled samples, shown by green
crosses, one from each class. For this example, we con-
sider the linear SVM classifier but the argument applies to
other classifier types. The max-margin hyperplane learned
via SVM for the two training samples is shown in the the
left plot of Figure 3. Notice that samples in G(1)1 and G(2)1

are similar to the labeled samples (have small Euclidean dis-
tances to the labeled samples in this example). In fact, label-
ing any of the samples in G(1)1 or G(2)1 does not change the
decision boundary much, and the points in G(1)2 will be still
misclassified as belonging to class 2. On the other hand,
samples in G(1)2 and G(2)2 are more dissimilar from the la-
beled training samples. In fact, labeling a sample from G(1)2

or G(2)2 changes the decision boundary so that points in the
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Figure 4. Separating data in two different classes. Class 1 consists of data in {G(1)
1 ,G(1)

2 } and class 2 consists of data in {G(2)
1 ,G(2)

2 }. Left: a max-margin

linear SVM learned using two training samples (green crosses). All samples in G(2)
2 as well as some samples in G(1)

2 are misclassified. Middle: two

samples with lowest confidence scores correspond to two samples from G(1)
2 that are close to the decision boundary. A retrained classifier using these two

samples, which have information overlap, still misclassifies samples in G(2)
2 . Right: two representatives of samples with low confidence scores correspond

to a sample from G(1)
2 and a sample from G(2)

2 . A retrained classifier using these two samples correctly classifies all the samples in the dataset.

two classes will be correctly classified, as shown in the right
plot of Figure 3.

To incorporate diversity with respect to the labeled train-
ing set, L, for a point i in the unlabeled set, U , we define
the diversity confidence score as

cdiversity(i) , σ − (σ − 1)
minj∈L dji

maxk∈U minj∈L djk
∈ [1, σ],

(7)
where σ > 1. When the closest labeled sample to an unla-
beled sample i is very similar to it, i.e., minj∈L dji is close
to zero, then the diversity confidence score is large, i.e., is
close to σ. This means that sample i does not promote di-
versity. On the other hand, when all labeled samples are
very dissimilar from an unlabeled sample i, i.e., the fraction
in (7) is close to one, then the diversity confidence score is
small, i.e., is close to one. This means that selecting and
annotating sample i promotes diversity with respect to the
labeled samples.

3.3. Selecting Informative Samples

Recall that our goal is to have a batch mode active learn-
ing framework that selects multiple informative and diverse
unlabeled samples, with respect to the labeled samples as
well as each other, for annotation. One can think of a sim-
ple algorithm that selects samples that have the lowest con-
fidence scores. The drawback of this approach is that while
the selected unlabeled samples are diverse with respect to
the labeled training samples, they can still have significant
information overlap with each other. This comes from the
fact that the confidence scores only reflect the relationship
of each unlabeled sample with respect to the classifier and
the labeled training samples and do not capture the relation-
ships among the unlabeled samples.

To illustrate this, consider the example of Figure 4,
where the data belong to two different classes. Assume
that we already have two labeled samples, shown by green
crosses, one from each class. A max-margin hyperplane
learned via SVM for the two training samples is shown in

the the left plot of Figure 4. In this case, all samples in
G(2)2 as well as some samples in G(1)2 are misclassified. No-
tice that samples in G(1)2 have small classifier and diversity
confidence scores and samples in G(2)2 have small diversity
confidence scores. Now, if we select two samples with low-
est confidence scores, we will select two samples from G(1)2 ,
as they are very close to the decision boundary. However,
these two samples have information overlap, since they be-
long to the same cluster. In fact, after adding these two
samples to the labeled training set, the retrained classifier,
shown in the middle plot of Figure 4, still misclassifies sam-
ples in G(2)2 . On the other hand, two representatives of sam-
ples with low confidence scores, i.e., two samples that cap-
ture the distribution of samples with low confidence scores,
correspond to one sample from G(1)2 and one sample from
G(2)2 . As shown in the right plot of Figure 4, the retrained
classifier using these two points correctly classifies all of
the samples.

To select a few diverse representatives of unlabeled sam-
ples that have low confidence scores, we take advantage
of the DSMRS algorithm. Let D ∈ R|U|×|U| be the dis-
similarity matrix for samples in the unlabeled set U =
{i1, · · · , i|U|}. We propose to solve the convex program

min λ ‖CZ‖1,q+tr(D>Z) s. t. Z ≥ 0, 1>Z = 1>,
(8)

over the optimization matrix Z ∈ R|U|×|U|. The matrix
C = diag(c(i1), . . . , c(i|U|)) is the confidence matrix with
the active learning confidence scores, c(i), defined as

c(ik) , min{cclassifier(ik), cdiversity(ik)} ∈ [1, σ]. (9)

More specifically, for an unlabeled sample ik that has a
small confidence score c(ik), the optimization program puts
less penalty on the k-th row of Z being nonzero. On the
other hand, for a sample ik that has a large confidence score
c(ik), the optimization program puts more penalty on the
k-th row of Z being nonzero. Hence, the optimization pro-
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Figure 5. Classification accuracy of different active learning algorithms
on the INRIA Person dataset as a function of the total number of labeled
training samples selected by each algorithm.

motes selecting a few unlabeled samples with low confi-
dence scores that are, at the same time, representatives of
the distribution of the samples. This therefore addresses
the main problems with previous active learning algorithms,
which we discussed in Section 1.

Remark 2 We should note that other combinations of the
classifier and diversity scores can be used, such as c(i) ,√
cclassifier(i) · cdiversity(i) ∈ [1, σ]. However, (9) is very in-

tuitive and works best in our experiments.

4. Experiments
In this section, we examine the performance of our pro-

posed active learning framework on several real-world ap-
plications. We consider person detection, scene catego-
rization and face recognition from real images (see Figure
1). We refer to our approach, formulated in (8), as Con-
vex Programming-based Active Learning (CPAL) and im-
plement it using an Alternating Direction Method of Mul-
tipliers method [1], which has quadratic complexity in the
number of unlabeled samples. For all the experiments, we
fix σ = 20 in (6) and (7), however, the performances do
not change much for σ ∈ [5, 40]. As the experimental re-
sults show, our algorithm works well with different types of
classifiers.

To illustrate the effect of confidence scores and represen-
tativeness of samples in the performance of our proposed
framework, we consider several methods for comparison.
Assume that our algorithm selectsKt samples at iteration t,
i.e., prior to training the classifier for the t-th time.
– We select Kt samples uniformly at random from the pool
of unlabeled samples. We refer to this method as RAND.
– We selectKt samples that have the smallest classifier con-
fidence scores. For an SVM classifier, this method corre-
sponds to the algorithm proposed in [29]. We refer to this
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Figure 6. Total number of samples from each class of INRIA Person
dataset selected by our proposed algorithm (CPAL) at different active
learning iterations.

algorithm as Classifier Confidence-based Active Learning
(CCAL).

4.1. Person Detection

In this section, we consider the problem of detecting hu-
mans in images. To do so, we use the INRIA Person dataset
[6] that consists of a set of positive training/test images,
which contain people, and a set of negative train/test im-
ages, which do not contain a person (see Figure 1). For each
image in the dataset, we compute the Histogram of Oriented
Gradients (HOG), which has been shown to be an effective
descriptor for the task of person detection [6, 8]. We use
the positive/negative training images in the dataset to form
the pool of unlabeled samples (2, 416 positive and 2, 736
negative samples) and use the the positive/negative test im-
ages for testing (1, 126 positive and 900 negative samples).
For this binary classification problem (L = 2), we use the
linear SVM classifier, which has been shown to work well
with HOG features for the person detection task [6, 8]. We
use the χ2-distance to compute the dissimilarity between
the histograms, as it works better than other dissimilarity
types, such as the `1-distance and KL-divergence, in our
experiments.

Figure 5 shows the classification accuracy of different
active learning methods on the test set as a function of the
total number of labeled samples. From the results, we make
the following conclusions:

– Our proposed active learning algorithm, consistently out-
performs other algorithms. In fact, with 316 labeled sam-
ples, CPAL obtains 96% accuracy while other methods ob-
tain less than 84% accuracy on the test set.

– CCAL and RAND perform worse than our proposed algo-
rithm. This comes from the fact that the selected samples by
CCAL can have information overlap and are not necessar-
ily representing the distribution of unlabeled samples with
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Figure 7. Classification accuracy of different active learning algorithms
on the Fifteen Scene Categories dataset as a function of the total number
of labeled training samples selected by each algorithm.

low confidence scores. Also, RAND ignores all confidence
scores and obtains, in general, lower classification accuracy
than CCAL.

Figure 6 shows the total number of samples selected by
our method from each class. Although our active learning
algorithm is unaware of the separation of unlabeled samples
into classes, it consistently selects about the same number
of samples from each class. Notice also that our method
selects a bit more samples from the nonperson class, since,
as expected, the negative images have more variation than
the positive ones.

4.2. Scene Categorization

In this section, we consider the problem of scene cate-
gorization in images. We use the Fifteen Scene Categories
dataset [19] that consists of images from L = 15 differ-
ent classes, such as coasts, forests, highways, mountains,
stores, etc (see Figure 1). There are between 210 and 410
images in each class, making a total of 4, 485 images in the
dataset. We randomly select 80% of images in each class to
form the pool of unlabeled samples and use the rest of the
20% of images in each class for testing. We use the kernel
SVM classifier (one-versus-rest) with the Spatial Pyramid
Match (SPM) kernel, which has been shown to be effective
for scene categorization [19]. More specifically, the SPM
kernel between a pair of images is given by the weighted
intersection of the multi-resolution histograms of the im-
ages. We use 3 pyramid levels and 200 bins to compute the
histograms and the kernel. As the SPM is itself a similar-
ity between pairs of images, we also use it to compute the
dissimilarities by negating the similarity matrix and shifting
the elements to become non-negative.

Figure 7 shows the accuracy of different active learning
methods on the test set as a function of the total number of
selected samples. Our method consistently performs better
than other approaches. Unlike the experiment in the pre-
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Figure 8. Classification accuracy of different active learning algorithms
on the Extended YaleB Face dataset as a function of the total number of
labeled training samples selected by each algorithm.

vious section, here the RAND method, in general, has a
better performance than CCAL method that selects multi-
ple samples with low confidence scores. A careful look into
the selected samples by different methods shows that, this
is due to the fact that CCAL may repeatedly select similar
samples from a fixed class while a random strategy, in gen-
eral, does not get stuck to repeatedly select similar samples
from a fixed class.

4.3. Face Recognition

Finally, we consider the problem of active learning for
face recognition. We use the Extended YaleB Face dataset
[20], that consists of face images of L = 38 individuals
(classes). Each class consists of 64 images captured un-
der the same pose and varying illumination. We randomly
select 80% of images in each class to form the pool of unla-
beled samples and use the rest of the 20% of images in each
class for testing. We use the Sparse Representation-based
Classification (SRC), which has been shown to be effective
for the classification of human faces [35]. To the best of our
knowledge, our work is the first one addressing the active
learning problem in conjunction with SRC. We downsam-
ple the images and use the 504-dimensional vectorized im-
ages as the feature vectors. We use the Euclidean distance
to compute dissimilarities between pairs of samples.

Figure 8 shows the classification accuracy of different
active learning methods as a function of the total number of
labeled training samples selected by each algorithm. One
can see that our proposed algorithm performs better than
other methods. With a total of 790 labeled samples (aver-
age of 21 samples per class), we obtain the same accuracy
(about 97%) as reported in [35] for 32 random samples per
class. It is important to note that the performances of RAND
and CCAL are very close. This comes from the fact that the
space of images from each class are not densely sampled.
Hence, samples are typically dissimilar from each other. As
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a result, samples with low confidence scores are generally
dissimilar from each other.

5. Conclusions
We proposed a batch mode active learning algorithm

based on simultaneous sparse recovery that can be used
in conjunction with any classifier type. The advantage of
our algorithm with respect to the state of the art is that
it incorporates classifier uncertainty and sample diversity
principles via confidence scores in a convex programming
scheme. Thus, it selects the most informative unlabeled
samples for classification that are sufficiently dissimilar
from each other as well as the labeled samples and repre-
sent the distribution of the unlabeled samples. We demon-
strated the effectiveness of our approach by experiments on
person detection, scene categorization and face recognition
on real-world images.
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