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Motivation

In many areas, we deal with large amount of data

e Data contains multiple classes

e Each class lies in a
low-dimensional subspaces

Motion Segmentation Face Recognition/Clustering

Pictures are from various databases/papers
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Subspace clustering

Given data X = [x1,...,xy], find a union of subspaces

that fits the data:

[1] Elhamifar-Vidal, Sparse Subspace Clustering, CVPR 2009

Two-step Approach
- Build data affinity
- Apply spectral clustering

Challenges
- Distance based affinity fails
at the intersection of subspaces

Self-Expressive Model
- Compute affinity by data
self-representation
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Prior work: sparse subspace clustering (SSC)

Sparsity Self-representation
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Prior work: overview

Theory
Arbitrary SSC-BP [1], :
subspaces RSC [2] @IS talk>

Independent
subspaces

LRR [3], LSR [4]

LSC [5], SSSC 6],

No guarantees Bipartite graph [7]

Scalability

10K data points 1M data points

[1] E. Elhamifar and R. Vidal, Sparse Subspace Clustering, CVPR’09

[2] M. Soltanolkotabi and E. Candes, Robust Subspace Clustering, Annual of Statistics’13

[3] G. Liu, Z. Lin, Y. Yu, Robust Subspace Segmentation by Low-Rank Representation, ICML'10
[4] Lu et al,, Robust and efficient subspace segmentation via least squares regression, ECCV 2012. g et e
[5] X. Chen and D. Cai, Large Scale Spectral Clustering with Landmark-based Representation, AAAI'11

[6] X. Peng, L. Zhang, Z. Yi, Scalable Sparse Subspace Clustering, CVPR’13 AGIN G
[71 A. Adler, M. Elad, Y. Hel-Or, Linear-Time Subspace Clustering via Bipartite Graph Modeling $ €1 ENCE
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Sparse subspace clustering

Sparsity Self-representation

min ||c;|lo] s.t. [x; = Xcj,¢;;, =0
-

7
Convex relaxation J

Method:

SSC by basis pursuit
(SSC-BP)

Properties:
«/ Guaranteed correct connections

K Not scalable:
solved by CVX/ADMM

tested on < 640 points

[1] Elhamifar-Vidal, Sparse Subspace Clustering, CVPR 2009
[2] Dyer et al, Greedy Feature Selection for Subspace Clustering, JMLR 2014




SSC by Orthogonal Matching Pursuit

Self-representation

X5 = XCj,ij =0

Sparsity
min ||c||o| s.t.
Cj
Convex relaxation J
Method:
SSC by basis pursuit
(SSC-BP)
Properties:

«/ Guaranteed correct connections

K Not scalable:
solved by CVX/ADMM

tested on < 640 points

[1] Elhamifar-Vidal, Sparse Subspace Clustering, CVPR 2009
[2] Dyer et al, Greedy Feature Selection for Subspace Clustering, JMLR 2014

%Greedy pursuit

Method:

SSC by orthogonal matching
pursuit (SSC-OMP)

Properties:

¢ QGuaranteed correct connections

‘¢ Scalable




SSC by Orthogonal Matching Pursuit

Self-representation

X5 = XCj,ij =0

Sparsity
min ||c||o| s.t.
Cj
Convex relaxation J
Method:
SSC by basis pursuit
(SSC-BP)
Properties:

«/ Guaranteed correct connections

K Not scalable:
solved by CVX/ADMM

tested on < 640 points

[1] Elhamifar-Vidal, Sparse Subspace Clustering, CVPR 2009
[2] Dyer et al, Greedy Feature Selection for Subspace Clustering, JMLR 2014

%Greedy pursuit

Method:

SSC by orthogonal matching
pursuit (SSC-OMP)

Contributions:

«/ Guaranteed correct connections

«/ Scalable:
tested on 1,000,000 points
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SSC by Orthogonal Matching Pursuit

Find representation x; = Xc; by greedy selection

Xj X Cj
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What are the conditions for giving correct connections?
Each iteration picks a point from the same subspace
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Guaranteed correct connections: deterministic model

Theorem

Suppose that x; € §y. Then, c; gives correct connections if

;L(Ifoj XY <,

where p captures the similarity between Sy and all other
subspaces, and r captures distribution of points in &;.

For SSC-BP!. For SSC-OMP:
Wf = dual points Wf = residual points

[3] Soltanolkotabi-Candes, A geometric analysis of subspace clustering with outliers
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Guaranteed correct connections: deterministic model

p(Wi, X4 <rf J

Similarity between subspaces

Easier case Harder case
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Guaranteed correct connections: deterministic model

;(Wf, XY < TQ

Similarity between subspaces Distribution of points
Easier case Harder case

Is this condition likely to be satisfied ?
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Guaranteed correct connections: random model

Random model:

- Draw n subspaces of dimension d in ambient dimension D
- Draw pd + 1 points from each subspace

Under the random model. the solution {cj} ' | gives correct

connections@ith overwhelming probability if

d _cp)logp

D 121log N
For SSC-BPB!: For SSC-OMP:
p>1—2 — Ne Vrd p>1— 2L Ne v

[3] Soltanolkotabi-Candes, A geometric analysis of subspace clustering with outliers
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Scalability: SSC-BP versus SSC-OMP

Running time (sec.)

- SSC-BP (Baseline)
- SSC-OMP

360,000 points
~ 14 hours

10;- '\

102;- <1h0uré

1012- -
1

Number of data points

SSC-OMP significantly reduces the time, and deals with 1 million data
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Experiment on extended Yale B

1mg— - img-64

subject-1 ’
.."i
subject-2 .. S
subject-38 “ . i
\ )
Y

No. subjects 2 10 20 30 38
a%: average clustering accuracy
SSC-OMP | 9921 8843 81.71 79.27 80.45
SSC-BP 9945 91.85 7980 76.10 68.97
LSR 06.77 62.80 67.17 67.79 63.96
LRSC 94.32 6698 6634 6749 66.78
SCC 78.91 NA NA 14.15 12.80
f(sec.): running time
SSC-OMP 0.3 1.7 4.7 9.4 14.5
SSC-BP 491 2282 5546 1240 1851
LSR 0.1 0.8 3.1 8.3 15.9
LRSC 1.1 1.9 6.3 14.8 26.5
SCC 50.0 NA NA 5203 750.7

Ql 00 times fas@




Experiment on MNIST

000/ \ 1\

No. points 2,000 6,000 20,000 60,000

a%: average ::Iusrenng accuracy
SSC-OMP | 85.17 88.99 90.56 94.21 94.68
SSC-BP | 83.01 85.58 85.60 - -
LSR 75.84 78.09 7991 - -
LRSC 75.02 7944 7988 - -

SCC 5345 6643  70.60 - -
t(sec.): running time

SSC-BP 20.1  635.2 13605 - -

LSR 1.7 424  327.6 - -
LRSC 1.9 43.0 3129 - -
SCC 31.2 1013 366.8 - -




Conclusion

SSC by Orthogonal Matching Pursuit (OMP):

% theoretical guarantees for correct connections

¢ performance validation on large databases
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SSC

min |[c|; + ~|jx — Xc||2
C 2

« Few wrong connections | X Many wrong connections

X Not well connected « Well-connected
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Elastic net Subspace Clustering (EnSC)

. 1 —A gl
min Allc; |1 + e |3 + 21x; — Xesllf st ey =0
C; 2 2
Connection error Connectivity Clustering accuracy
100 1 100
501\ """"" """""""""""""""""" i
Y 05 1 % o5 1 5%
A A

Key theoretical challenges:

‘¢ Is EnSC guaranteed to give correct connections

‘¢ How to explain the tradeoff with connectivity
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Scalable Elastic net Subspace Clustering

. 1— A
min Al|c;l|; +

)i

* Prior methods

_ ADMM Scalability issue:
— TInterior point - Too many iterations to converge
_ Solution path - Access to full data matrix

— Proximal gradient method
— efc.

Key challenge:

‘¢ Can we derive scalable algorithms that can handle 1 million data
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Geometry of solution

. 1— )\
min A||c; || +

- 12
e 3+

Oracle point §; = v(x; — Xc¥)
e If we know the solution ¢, we can compute 0;
e If we know 0;, we can find the support of the solution c;

J
05/110;1l2

(%, 05)| > A

& [ci]i #0
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Oracle guided active set (ORGEN) algorithm

1—A
min A|[c;|[] + ——
iin A1+ —

X; ‘ X C;
O ERRCO0000000000 -
O BEROO0O0O0O0000000 -
E EERCO0000000000 =
0 -
L m
L O
Ll
L
- initialize support set 1T° =
- compute oracle region =

2
lejll2 + 5 lIx; = Xejlls st e =0

add \ X remove

N v

N

add
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Oracle guided active set (ORGEN) algorithm

. 1—A gl
min Al i+~ lles 3+ 2lix; — Xejl§ st g =0
| X
}élj Theorem:
O
E The support set 1" converges to the true
E support set in a finite number of iterations
O
| | h - 4
- Init . L . .
_con Ifficiency is gained by solving multiple

-upc small problems instead of one big problem
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SSC-BP vs. SSC-OMP vs. EnSC-Oracle

Running time (sec.)

- SSC-BP (Baseline)
- SSC-OMP
- EnSC-Oracle

. 14 hours ——— ]
10 < 4 hour ’
L < 1 hour

reduces the time for SSC-BP

10 R T
Number of data points
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Correct connections vs. connectivity
1— A

min Aflc;f1 +

)i

oracle region
Xj € S s e e
— A\ 1is large r I--al| 'I":-'?_';.?:""':wa..'-.i'_'-. i
— oracle region is small T g P
—> correct connection

— A is small
—> oracle region is large
—> well-connected
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Guaranteed no wrong connections

: )i
min [|c; [l + 5 [lx; — Xejllz st e =0
J

Theorem: (for SSC)

Condition for guaranteed no wrong connections:

p(WO, X)) < ¢

7~ N

Similarity between subspaces  Distribution of points
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Guaranteed no wrong connections
1— A

1

5 x; — Xcj|l5 st. c;;j=0

min Affc; ||y + eIz +

C; )
Theorem: (for EnSC)

Condition for guaranteed no wrong connections:

LW O, x(6)) < p0 172

7~ N

Similarity between subspaces  Distribution of points

Condition is harder to be satisfied

Graph has better connectivity } Higher clustering accuracy
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Test of EnSC with ORGEN on real data

database

Coil-100

PIE

MNIST

CovType

# data

7,200

11,554

70,000

581,012

ambient dim. # clusters Examples

1024 100

1024

500

54 7



Our method (EnSC) achieves the best clustering accuracy

database # data SSC-BP SSC-OMP EnSC
Coil-100 7,200 57.10% 42.93% 69.24%

PIE 11,554 41.94% 24.06% 52.98%
MNIST 70,000 - 93.07% 93.79%

CovIype 581,012 - 48.76% 53.52%




Our method (EnSC) is scalable

database # data SSC-BP SSC-OMP EnSC

Coil-100 7,200 127 mins 3 mins 3 mins
PIE 11,554 412 mins 5 mins 13 mins

MNIST 70,000 - 6 mins 28 mins

CovType 581,012 - 783 mins 1452 mins




Conclusion

il

_ I—-A
min e, |, + )

c e 13 + SlIx; = Xl s.t. ej5 =0
¢ guaranteed correct connections

better clustering
¢ improved connectivity

¢ efficient algorithm for large scale problems
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