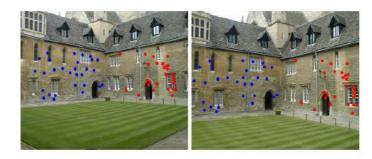


Scalable Subspace Clustering

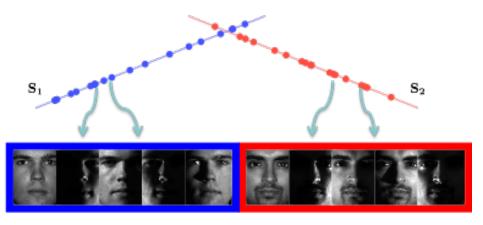
Chong You

Johns Hopkins University

Joint work with Chun-guang Li, Daniel P. Robinson, and René Vidal

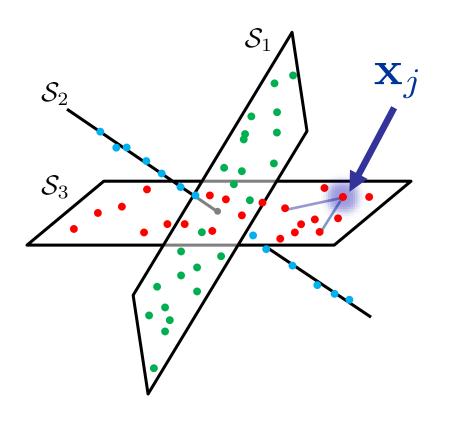

Motivation

In many areas, we deal with large amount of data


- Data contains multiple classes
- Each class lies in a low-dimensional subspaces

Motion Segmentation

Planar Segmentation



Face Recognition/Clustering

Subspace clustering

Given data $X = [\mathbf{x}_1, \dots, \mathbf{x}_N]$, find a union of subspaces that fits the data:

Two-step Approach

- Build data affinity
- Apply spectral clustering

Challenges

- Distance based affinity fails at the intersection of subspaces

Self-Expressive Model

- Compute affinity by data self-representation

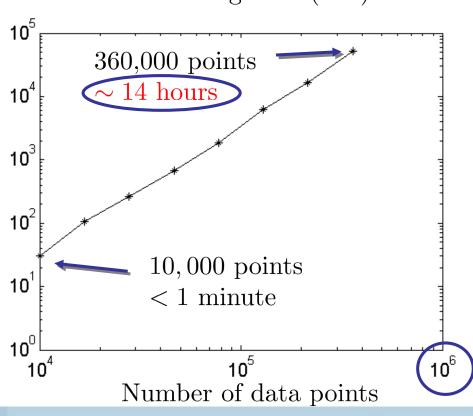
Prior work: sparse subspace clustering (SSC)

 $\min_{\mathbf{c}_j} \|\mathbf{c}_j\|_0$

Convex relaxation

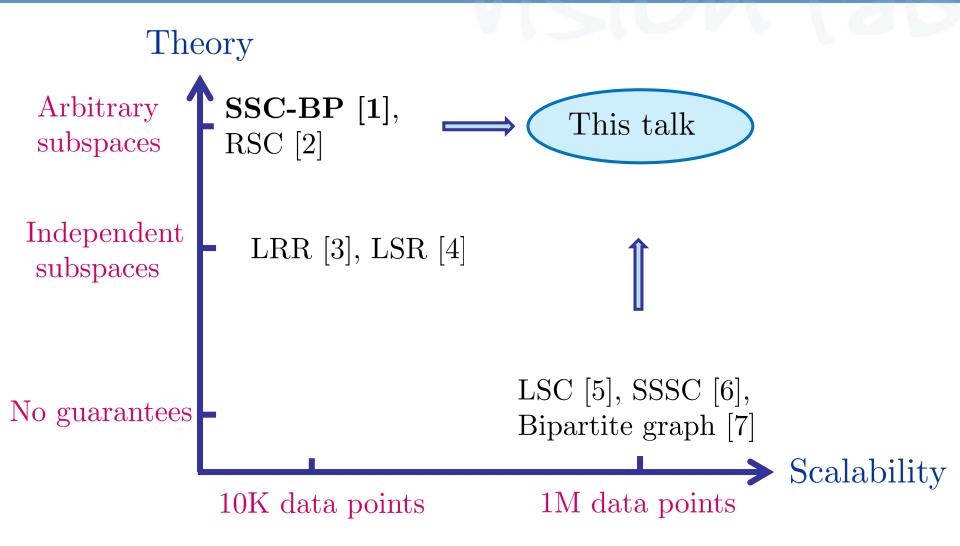
Self-representation

s.t.
$$\mathbf{x}_j = X\mathbf{c}_j, c_{jj} = 0$$


Running time (sec.)

Method:

SSC by basis pursuit (SSC-BP)


Properties:

- ✓ Guaranteed correct connections
- Not scalable: solved by CVX/ADMM tested on ≤ 640 points

Prior work: overview

^[1] E. Elhamifar and R. Vidal, Sparse Subspace Clustering, CVPR'09

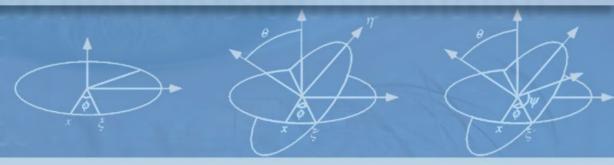
[7] A. Adler, M. Elad, Y. Hel-Or, Linear-Time Subspace Clustering via Bipartite Graph Modeling

^[2] M. Soltanolkotabi and E. Candes, Robust Subspace Clustering, Annual of Statistics'13

^[3] G. Liu, Z. Lin, Y. Yu, Robust Subspace Segmentation by Low-Rank Representation, ICML'10

^[4] Lu et al., Robust and efficient subspace segmentation via least squares regression, ECCV 2012.

^[5] X. Chen and D. Cai, Large Scale Spectral Clustering with Landmark-based Representation, AAAI'11


^[6] X. Peng, L. Zhang, Z. Yi, Scalable Sparse Subspace Clustering, CVPR'13

Scalable Sparse Subspace Clustering by Orthogonal Matching Pursuit

Chong You[†], Daniel P. Robinson[‡], René Vidal[†]

[†]Center for Imaging Science, Johns Hopkins University [‡]Applied Mathematics and Statistics, Johns Hopkins University

Sparse subspace clustering

Sparsity

 $\min_{\mathbf{c}_j} \|\mathbf{c}_j\|_0$

Convex relaxation

Self-representation

s.t.
$$\mathbf{x}_j = X\mathbf{c}_j, c_{jj} = 0$$

Method:

SSC by basis pursuit (SSC-BP)

Properties:

- ✓ Guaranteed correct connections
- Not scalable: solved by CVX/ADMM tested on ≤ 640 points

^[2] Dyer et al, Greedy Feature Selection for Subspace Clustering, JMLR 2014

SSC by Orthogonal Matching Pursuit

Sparsity

$$\min_{\mathbf{c}_j} \|\mathbf{c}_j\|_0$$

Convex relaxation

Self-representation

$$\mathbf{x}_j = X\mathbf{c}_j, c_{jj} = 0$$

Greedy pursuit

Method:

SSC by basis pursuit (SSC-BP)

Properties:

- ✓ Guaranteed correct connections
- ➤ Not scalable: solved by CVX/ADMM tested on ≤ 640 points

Method:

SSC by orthogonal matching pursuit (SSC-OMP)

Properties:

- ? Guaranteed correct connections
- ? Scalable

SSC by Orthogonal Matching Pursuit

Sparsity

 $\min_{\mathbf{c}_j} \|\mathbf{c}_j\|_0$

Convex relaxation

Self-representation

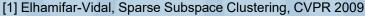
$$\mathbf{x}_j = X\mathbf{c}_j, c_{jj} = 0$$

Greedy pursuit

Method:

SSC by basis pursuit (SSC-BP)

Properties:

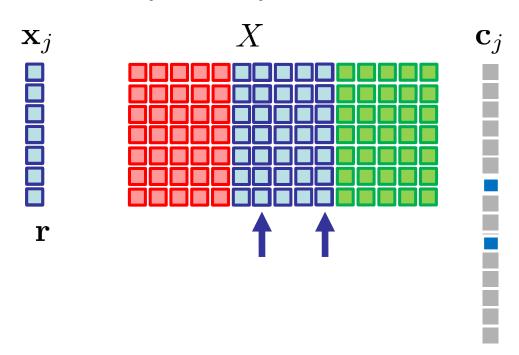

- ✓ Guaranteed correct connections
- Not scalable: solved by CVX/ADMM tested on ≤ 640 points

Method:

SSC by orthogonal matching pursuit (SSC-OMP)

Contributions:

- ✓ Guaranteed correct connections
- ✓ Scalable: tested on 1,000,000 points



^[2] Dyer et al, Greedy Feature Selection for Subspace Clustering, JMLR 2014

SSC by Orthogonal Matching Pursuit

Find representation $\mathbf{x}_j = X\mathbf{c}_j$ by greedy selection

What are the conditions for giving correct connections? Each iteration picks a point from the same subspace

Guaranteed correct connections: deterministic model

Theorem

Suppose that $\mathbf{x}_j \in \mathcal{S}_{\ell}$. Then, \mathbf{c}_j gives correct connections if

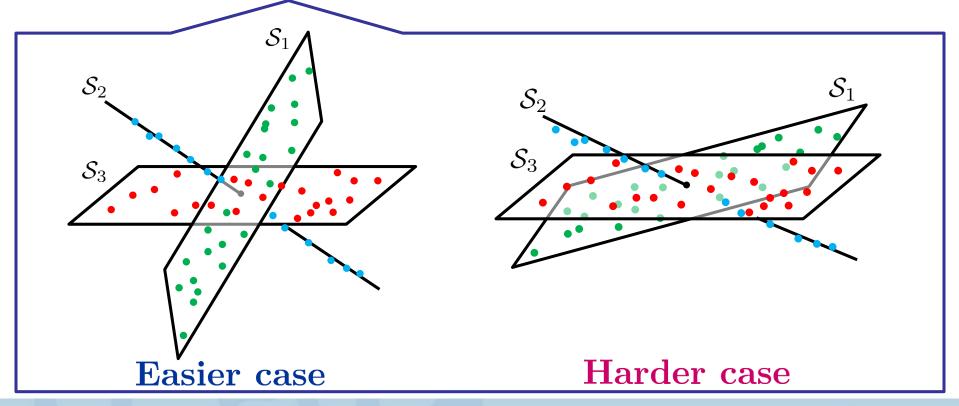
$$\mu(W_j^{\ell}, X^{-\ell}) < r^{\ell},$$

where μ captures the similarity between \mathcal{S}_{ℓ} and all other subspaces, and r captures distribution of points in \mathcal{S}_{ℓ} .

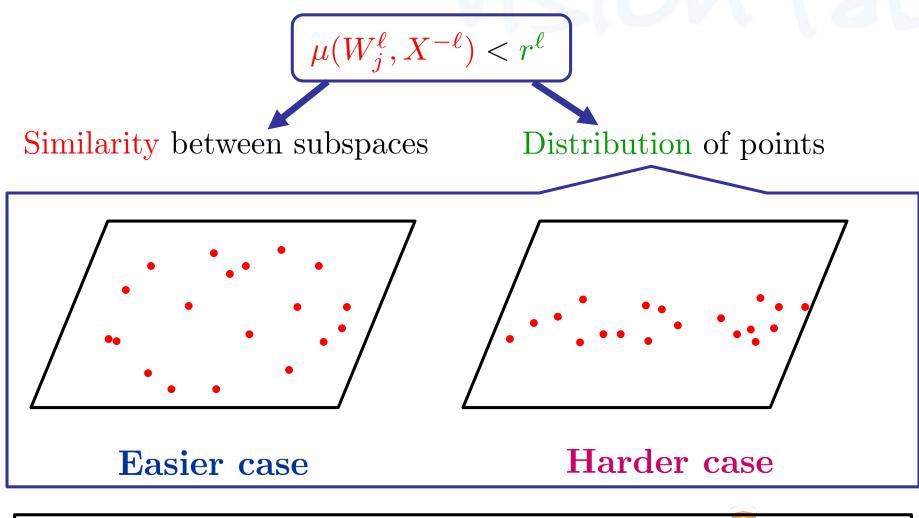
For SSC-BP $^{[3]}$:

 $W_i^{\ell} = \text{dual points}$

For SSC-OMP:


 $W_i^{\ell} = \text{residual points}$

Guaranteed correct connections: deterministic model


 $\mu(W_j^\ell, X^{-\ell}) < r^\ell$

Similarity between subspaces

Guaranteed correct connections: deterministic model

Is this condition likely to be satisfied?

Guaranteed correct connections: random model

Random model:

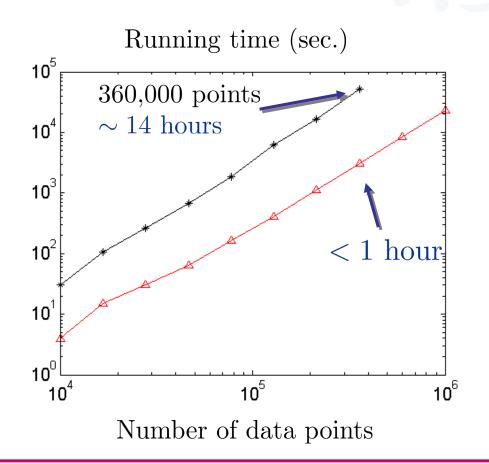
- Draw n subspaces of dimension d in ambient dimension D
- Draw $\rho d + 1$ points from each subspace

Theorem

Under the random model, the solution $\{\mathbf{c}_j\}_{j=1}^N$ gives correct connections with overwhelming probability if

$$\frac{d}{D} < \frac{c^2(\rho)\log\rho}{12\log N}$$

For SSC-BP $^{[3]}$:


$$p > 1 - \frac{2}{N} - Ne^{-\sqrt{\rho}d}$$

For SSC-OMP:

$$p > 1 - \frac{2d}{N} - Ne^{-\sqrt{\rho}d}$$

Scalability: SSC-BP versus SSC-OMP

- SSC-BP (Baseline)
- SSC-OMP

SSC-OMP significantly reduces the time, and deals with 1 million data

Experiment on extended Yale B

 $img-1 \cdot \cdot \cdot img-64$

subject-38

No. subjects	2	10	20	30	38			
a%: average c	a%: average clustering accuracy							
SSC-OMP	99.21	88.43	81.71	79.27	80.45			
SSC-BP	99.45	91.85	79.80	76.10	68.97			
LSR	96.77	62.89	67.17	67.79	63.96			
LRSC	94.32	66.98	66.34	67.49	66.78			
SCC	78.91	NA	NA	14.15	12.80			
t(sec.): runnin	g time							
SSC-OMP	0.3	1.7	4.7	9.4	14.5			
SSC-BP	49.1	228.2	554.6	1240	1851			
LSR	0.1	0.8	3.1	8.3	15.9			
LRSC	1.1	1.9	6.3	14.8	26.5			
SCC	50.0	NA	NA	520.3	750.7			

> 100 times faster

Experiment on MNIST

00	0	1	Ĭ.	1	• • •
----	---	---	----	---	-------

9	9	ප
---	---	---

No. points	500	2,000	6,000	20,000	60,000	
a%: average	a%: average clustering accuracy					
SSC-OMP	85.17	88.99	90.56	94.21	94.68	
SSC-BP	83.01	85.58	85.60	-	-	
LSR	75.84	78.09	79.91	-	-	
LRSC	75.02	79.44	79.88	-	-	
SCC	53.45	66.43	70.60	-	-	
t(sec.): running time						

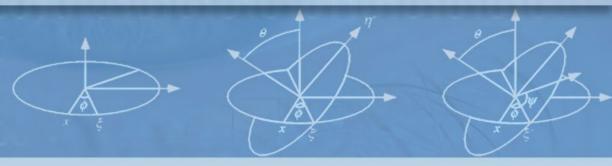
SSC-OMP	1.3	11.7	71.7	427	3219
SSC-BP	20.1	635.2	13605	-	-
LSR	1.7	42.4	327.6	-	-
LRSC	1.9	43.0	312.9	-	-
SCC	31.2	101.3	366.8	-	-

Conclusion

SSC by Orthogonal Matching Pursuit (OMP):

theoretical guarantees for correct connections

performance validation on large databases



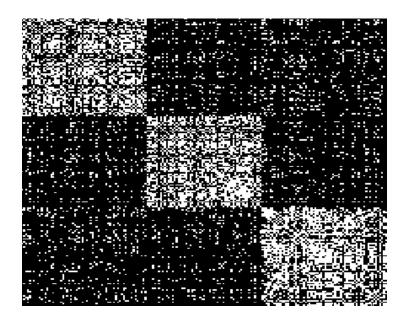
Scalable Elastic Net Subspace Clustering

Chong You[†], Chun-Guang Li*, Daniel P. Robinson[‡], René Vidal[†]

[†]Center for Imaging Science, Johns Hopkins University *SICE, Beijing University of Posts and Telecommunications [‡]Applied Mathematics and Statistics, Johns Hopkins University

Motivation

SSC

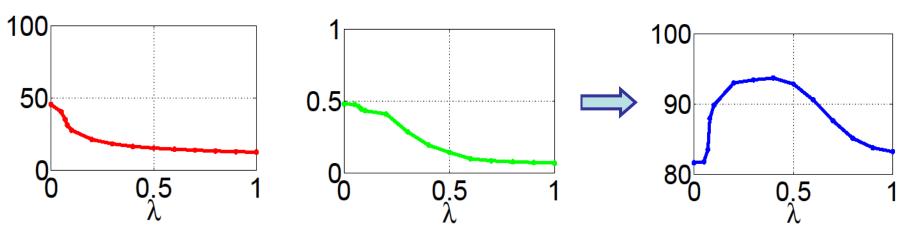

$$\min_{\mathbf{c}} \|\mathbf{c}\|_1 + \frac{\gamma}{2} \|\mathbf{x} - X\mathbf{c}\|_2^2$$

- ✓ Few wrong connections
- × Not well connected

LSR

$$\min_{\mathbf{c}} \|\mathbf{c}\|_2^2 + \frac{\gamma}{2} \|\mathbf{x} - X\mathbf{c}\|_2^2$$

- × Many wrong connections
- ✓ Well-connected


Elastic net Subspace Clustering (EnSC)

$$\min_{\mathbf{c}_{j}} \lambda \|\mathbf{c}_{j}\|_{1} + \frac{1-\lambda}{2} \|\mathbf{c}_{j}\|_{2}^{2} + \frac{\gamma}{2} \|\mathbf{x}_{j} - X\mathbf{c}_{j}\|_{2}^{2} \quad \text{s.t. } \mathbf{c}_{jj} = 0$$

Connection error

Connectivity

Clustering accuracy

Key theoretical challenges:

- ? Is EnSC guaranteed to give correct connections
- ? How to explain the tradeoff with connectivity

Scalable Elastic net Subspace Clustering

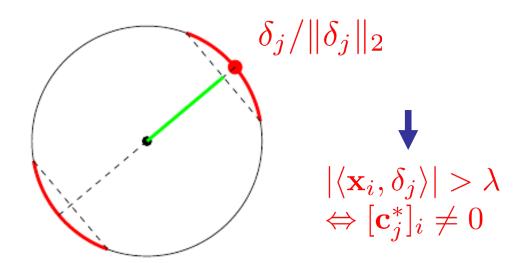
$$\min_{\mathbf{c}_{j}} \lambda \|\mathbf{c}_{j}\|_{1} + \frac{1-\lambda}{2} \|\mathbf{c}_{j}\|_{2}^{2} + \frac{\gamma}{2} \|\mathbf{x}_{j} - X\mathbf{c}_{j}\|_{2}^{2} \quad \text{s.t.} \quad \mathbf{c}_{jj} = 0$$

- Prior methods
 - ADMM
 - Interior point
 - Solution path
 - Proximal gradient method
 - etc.

Scalability issue:

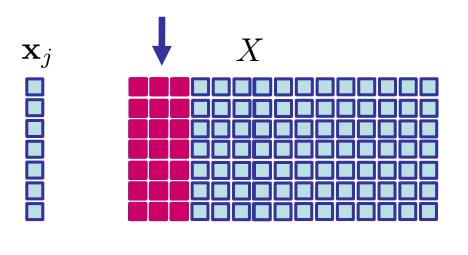
- Too many iterations to converge
- Access to full data matrix

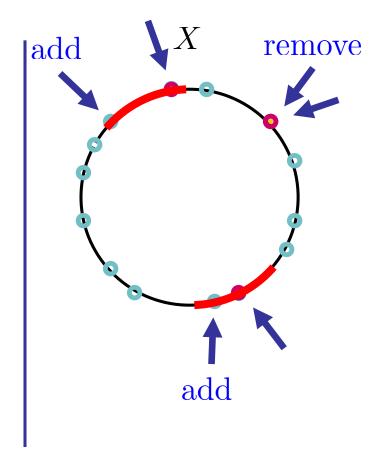
Key challenge:


? Can we derive scalable algorithms that can handle 1 million data

Geometry of solution

$$\min_{\mathbf{c}_{j}} \lambda \|\mathbf{c}_{j}\|_{1} + \frac{1-\lambda}{2} \|\mathbf{c}_{j}\|_{2}^{2} + \frac{\gamma}{2} \|\mathbf{x}_{j} - X\mathbf{c}_{j}\|_{2}^{2} \quad \text{s.t. } \mathbf{c}_{jj} = 0$$
Oracle point $\delta_{j} = \gamma(\mathbf{x}_{j} - X\mathbf{c}_{j}^{*})$


- If we know the solution \mathbf{c}_{j}^{*} , we can compute δ_{j}
- If we know δ_j , we can find the support of the solution \mathbf{c}_j^*



Oracle guided active set (ORGEN) algorithm

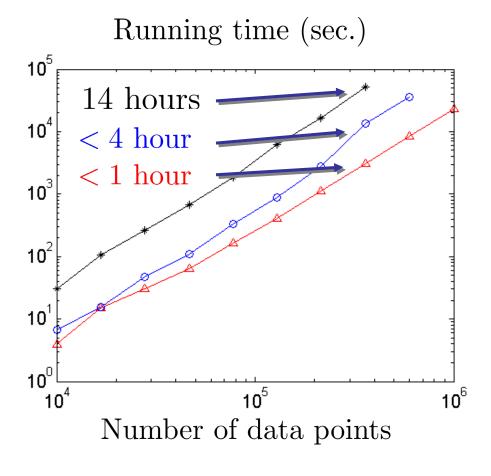
$$\min_{\mathbf{c}_{j}} \lambda \|\mathbf{c}_{j}\|_{1} + \frac{1-\lambda}{2} \|\mathbf{c}_{j}\|_{2}^{2} + \frac{\gamma}{2} \|\mathbf{x}_{j} - X\mathbf{c}_{j}\|_{2}^{2} \quad \text{s.t.} \quad \mathbf{c}_{jj} = 0$$

- initialize support set T
- compute oracle region

Oracle guided active set (ORGEN) algorithm

$$\min_{\mathbf{c}_{j}} \lambda \|\mathbf{c}_{j}\|_{1} + \frac{1-\lambda}{2} \|\mathbf{c}_{j}\|_{2}^{2} + \frac{\gamma}{2} \|\mathbf{x}_{j} - X\mathbf{c}_{j}\|_{2}^{2} \quad \text{s.t. } \mathbf{c}_{jj} = 0$$

 \mathbf{x}_{j}


Theorem:

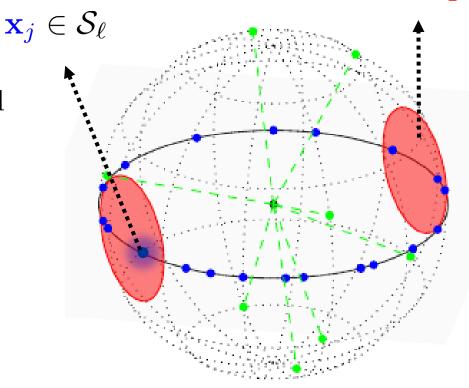
The support set T converges to the true support set in a finite number of iterations

- init
- con
- upc
- rep
- Efficiency is gained by solving multiple
- small problems instead of one big problem

SSC-BP vs. SSC-OMP vs. EnSC-Oracle

- SSC-BP (Baseline)
- SSC-OMP
- EnSC-Oracle

reduces the time for SSC-BP



Correct connections vs. connectivity

$$\min_{\mathbf{c}_{j}} \lambda \|\mathbf{c}_{j}\|_{1} + \frac{1-\lambda}{2} \|\mathbf{c}_{j}\|_{2}^{2} + \frac{\gamma}{2} \|\mathbf{x}_{j} - X\mathbf{c}_{j}\|_{2}^{2} \quad \text{s.t. } \mathbf{c}_{jj} = 0$$

oracle region

- $-\lambda$ is large
 - \implies oracle region is small
 - \implies correct connection
- $-\lambda$ is small
 - \implies oracle region is large
 - \implies well-connected

Guaranteed no wrong connections

$$\min_{\mathbf{c}_j} \|\mathbf{c}_j\|_1 + \frac{\gamma}{2} \|\mathbf{x}_j - X\mathbf{c}_j\|_2^2 \quad \text{s.t. } \mathbf{c}_{jj} = 0$$

Theorem: (for SSC)

Condition for guaranteed no wrong connections:

$$\mu(W^{(\ell)}, X^{(-\ell)}) < r^{(\ell)}$$

Similarity between subspaces

Distribution of points

Guaranteed no wrong connections

$$\min_{\mathbf{c}_{j}} \lambda \|\mathbf{c}_{j}\|_{1} + \frac{1-\lambda}{2} \|\mathbf{c}_{j}\|_{2}^{2} + \frac{\gamma}{2} \|\mathbf{x}_{j} - X\mathbf{c}_{j}\|_{2}^{2} \quad \text{s.t.} \quad \mathbf{c}_{jj} = 0$$

Theorem: (for EnSC)

Condition for guaranteed no wrong connections:

$$\mu(W^{(\ell)}, X^{(-\ell)}) < r^{(\ell)} - \frac{1 - \lambda}{\lambda}$$

Similarity between subspaces

Distribution of points

Condition is harder to be satisfied Graph has better connectivity Higher clustering accuracy

Experiments

Test of EnSC with ORGEN on real data

database	# data	ambient dim.	# clusters	Examples
Coil-100	7,200	1024	100	
PIE	11,554	1024	68	THE PARTY OF THE P
MNIST	70,000	500	10	1 166
CovType	581,012	54	7	

Experiments

Our method (EnSC) achieves the best clustering accuracy

database	# data	SSC-BP	SSC-OMP	EnSC
Coil-100	7,200	57.10%	42.93%	69.24%
PIE	11,554	41.94%	24.06%	52.98%
MNIST	70,000	-	93.07%	93.79%
CovType	581,012	-	48.76%	53.52%

Experiments

Our method (EnSC) is scalable

database	# data	SSC-BP	SSC-OMP	EnSC
Coil-100	7,200	127 mins	3 mins	3 mins
PIE	11,554	412 mins	5 mins	13 mins
MNIST	70,000	-	6 mins	28 mins
CovType	581,012	-	783 mins	1452 mins

Conclusion

$$\min_{\mathbf{c}_{j}} \lambda \|\mathbf{c}_{j}\|_{1} + \frac{1-\lambda}{2} \|\mathbf{c}_{j}\|_{2}^{2} + \frac{\gamma}{2} \|\mathbf{x}_{j} - X\mathbf{c}_{j}\|_{2}^{2} \quad \text{s.t.} \quad \mathbf{c}_{jj} = 0$$

guaranteed correct connections

improved connectivity

better clustering

efficient algorithm for large scale problems

Acknowledgement

Funding: NSF-IIS 1447822

Vision Lab @ Johns Hopkins University http://www.vision.jhu.edu

Thank you!

