BAYESIAN REGISTRATION FOR ANATOMICAL LANDMARK DETECTION
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ABSTRACT

"

In order to perform medical image registration, landmarks a
used to settle correspondences between images. A landmze
is avoxel in the image that corresponds to a well-definedtpoir
in the anatomy. Manual landmarking is a difficult, tedious
and time-consuming procedure that would gain to be autc
mated. We propose a bayesian approach for automatic lan
marking. Using training data, we learn the geometry througt!
a probabilistic template. Landmarking consists then i est _ _
mating an affine transformation mapping the image onto th ig. 1. (a) the bottom left cross represents the Head of the Hippoaamp

. . A . andmark, the right top cross is the Tail of the Hippocampupsfiows the
template. We use grad|e_nt ascentin the likelihood fundtion  mean image of the hippocampus, obtained by averaging the itiesrs 14
perform this task. Experiments validate the methodology foimages without registration, (c) is the average image aftgd riegistration
landmarking the temporal lobe in MR brain images. using the landmarks HoH and HT.

(a) (b) ()

1. INTRODUCTION _ o
be extremely complicated, we use a probabilistic template.

If landmarks by themselves can provide a first analysis of they, present a Bayesian approach to estimate the transforma-
geometry of brain structures, they are overall useful fage  ion, ¢ : R — R3 which maps the landmark location in the

registration, see Figure 1. They can be used to initialize€0 jma46 onto the landmark location in the template. Given a
spondences between structures or to give control poinkein t training set of imagesX ™, ("), X*) the vector of inten-
alignment process, [1]. We define a landmark, as in [2], as thgjties of the imagé:, we define a generative modB{ X|¢)
voxel in the image which corresponds to a specific point of the,,y estimate the best transformation for a new image using
arjatomy. They can be point§ like the apex of the Head of thg,o maximum a posteriori (MAP) estimatomax,, P(¢|z).
Hippocampus (HoH), the Tail of the Hippocampus (HT) and, section 2 we detail the image model. Parameter estimation
the Splenium of the Corpus Callosum (SCC). Figure 1 showg; i section 3. Section 4 presents the gradient ascent algo-
some examples of landmarks. The manual detection of theggnm_ Finally we demonstrate the algorithm on brain MRI to

points is a tedious and time consuming task. Although Somgetect the Iocation of the Head and the Tail of the Hippocam-
methods have been developed to attempt detecting some typ&?s and also the Splenium of the Corpus Callosum.
of landmarks automatically, based on 3D filters [3] or by fit-

ting a local parametric model on the intensities [4], theedet 2. BAYESIAN INTENSITY MODEL

tion of landmarks remains a manual task. In both cases indeeth  The transformation set

one needs prior information on the underlying structureand Letd b ¢ ¢ , frolP RS h th

detectable contour, but landmarks that neuroscientidisede het be as_et 0 transhormatlonsh rcl) dﬁ K ',Suf‘ t at

do not necessarily fulfill the latter requirement. there is a uniqué € @ that maps the landmarks in the image
We propose a generic approach for automatic landmarRMto a given configuration in the_ template. W_e will consider

detection. We assume that an image results from the defogansformatlons not more complicated than affine transéerm

mation of a template. Because deformations in the brain ca'i.ﬁOns or compositions of transformations inspired from the
procedure specialists use to define landmarks. Firstly, HoH

*supported by the Doctoral Fellowship of the Univezsiies Sciences et  is located using a translation, secondly, the hippocamgus i
Tef%ffmoljogc;es dzll?_g/eDAADlQ/ 0210337 | funds of the Gerib rotated around the sagittal axis to fix its orientation arehth
unae y -02-1- , general tunds 0O e r A . . :
Imaging Science, JHU and NIH, ADRC Pilot Project Award, 2005he Itis Scal_ed t_O ov_erlay the tal_l' We will present experimennis
authors are deeply thankful to Craig Stark for kindly pravigithe images ~ translation in this paper while the more complex transforma

and for locating the landmarks on them. tions will appear elsewhere.




2.2. Thegenerative model ¢

Let us describe the generative modBl, X |¢), whereX is Z¢(u)£
the gray-level image and : R?> — R? is a transformation.
We assume that the voxel intensities are independent given
the landmarks location, i.e. given the transformation hea t Fig. 2. To generate a new image (rightmost), draw a random segmentation
we can write the conditional joint probability as a product: (leftmost) based on the distribution of matters containetiéniemplate. Ap-
P(X|¢) = H'UGV P(XUM)), with V the set of voxels. We pI_yarando_m def(?rmati(_)tzi—1 to finq the new image s_egmgntat_ion_(mi_ddle).
introduce a new variablé, representing the matter at voxel Finally assign an intensity chosen in the correspondingsSian distribution.

v. The intensity distribution is indeed slightly differembin
one image to the other, because anatomically equivalent vox
els appear with different intensities in two images. Let us
assume that the brain is composed of 6 matters: CSF, GM
and WM to which we add the mixed voxels composed of
CSF+GM and GM+WM. We also identify a sixth class cor-
responding to very high intensities due to blood vessels ot
to the skull. The discrete random varialdg takes values
on{1,---,6}. Conditioning by the matter at each voxel, the
generative model can be written as

N1y 02)
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P(XU = $v|¢) = ZP(X” = g;v|Zv =7, ¢)P(ZU = j|¢) Fig. 3 Template obtained whep is atranslatior_1 with HoH as Iand_mark.
Each image corresponds to one matter. The white voxels hawhaghdba-
bility to belong to the corresponding matter. The represkséztion of the

We assume that the intensity at the voxelgiven the mat- template corresponds to the sagittal slice containing Hobticd that the
.. . hippocampus appear both in CSF+GM and in GM.

ter at the same voxel is independent of the transformation

This assumption allows us to model the photometry indepen-

dently of the geometry. The first term characterizes the phagij| allow us to deal with much simpler transformations and

tometry of the mattey in the image, which is modeled with achieve results comparable to classical methods for regist
a Gaussian distribution. The second term corresponds to thgy,

probability of observing the mattgrat the voxel given the

transformationg which maps the image onto the template.
This is the probability distribution of the matter at thentsa ~ 2-4. Bayesian versusclassical registration methods
formed voxelp(v). Under the preceding assumptions the gene
erative model can be rewritten as

j=1

onsidering a new image, one wants to maximize the likeli-
hood of the observation over the parameteos the transfor-

6 mation¢. The likelihood of the model can be expressed with
P(X|¢) = H Z 95 (xo)P(Zyv) = 7). the generative model and the prior distribution on the fiams
veV j=1 mation: P(¢| X)) o< P(X|¢)P(¢). The prior is a distribution
over the parameters of. In the case of a translation for ex-
2.3. Theprobabilistic template ample, we use a Gaussian model on the paranietet] so

In this Bayesian setting, we define the template as the pro that we compute from the training set a mean vector of para-

ability distribution of the matter when the landmarks lie in meters 'ORS .and an empirical co_viarlance matrixif x R®.
a standardized configuration. Figure 2 represents the mod-(le—he log-likelihood of the mode is:

with which new images can be generated by drawing a mat- 6

ter at each voxel according to the di_stribution ip the templa 1(0) = Z 1nZgj(xu)P(Z¢(v) = j) +1In P(6).
then drawing a random transformation. Applying the inverse eV
transformationp—! one creates the geometry of the new im-

age and finally using a set of Gaussian distributions we caAs in the classical cost function used for image registratio
assign an intensity to each voxel. The template gives ththe likelihood contains two terms. A data term measuring
probability to observe each matter at each voxel. If the probthe way the model fits to the data and a regularization term.
ability at one voxel to observe one of the matters is high, itJsing a Bayesian approach allows us to deduce naturally the
means that most of the images of the registered training sebst function from the model and the template gives a vari-
contain this matter at this point. The probabilistic tentpla able weight to the voxels of the image. When the entropy
allows us to capture the matter variability in addition of th of the matter distribution is low, the corresponding voxash
global geometry. We conjecture that using such a templatpotentially a large weight: it increases the likelihoodhét

Jj=1



observation and the model match and penalizes it in case of
mismatch.

Algorithm 1 describes the outline of the procedures whose
steps are detailed in the following section.

Algorithm 1 (Bayesian Registration)

Learning step, n images in the training set:

1. Photometry estimation: Using the EM-algorithm, learn
the intensity distribution of each mattgm each image " * =0 =

{5, Tk.j )36{1 """ 6}}k€{1""’”} Fig. 4. Example of Gaussian mixture parameter estimation on a 41-by-
2. Quperimposition of the training set: Given a set of 41-by-41 voxel subpart of the image. x-axis: intensitiesxis: count. The

; : plain lines are the 5 estimated Gaussian densities and tHmedaoepresents
transformations, find {¢1’ T (b”} such that for each the estimated histogram. The outliers distribution does ppear on this

image the transformed landmarks are mapped to thﬁ\gure as the mean is usually around 300.
same location.

3. Prior distribution estimation: Estimate the prior distri- A
bution based on the set of transformations estimated 0%'2' Template estimation
the training set. Using a training set, composedofmages, typically between

10 and 100, on which the landmarks have been located, one

computes for each imagdethe transformatior;, € ® which

maps the voxels coordinates onto the template. The super-
imposition procedure provides us with a collection of trans

For anew image formations{¢;, - ,¢,}. We use the set of parameters of

these transformations to estimate the prior distributiord.o

At each locations(v) in the template corresponds a set of in-

_ o _ _ o tensities(x ;()) . f;(”)) resulting from the registration of

2. Transformation estimation: Find ¢ which maximizes the training set. Because the transformation does not map
the likelihood of the observations, using a gradient asperfectly the image onto the template, the matters are et pe
cent over the transformation parameters, fectly superimposed in the transformed images, also(a}

the intensities correspond to different matters of therbrai

Since the matters and their distribution are unknown we need

to use the EM-algorithm to estimate the mixture parameters.

3. LEARNING ALGORITHM The likelihood maximized by EM, is written as

4. Template estimation: Based on the transformed images
{(Xé,(v))uev}ke{l _____ n}» use the EM-algorithm to esti-
mate the matter proportions at each voxét).

1. Photometry estimation: Similarly to the learning step,
learn the matter distributior(g:;, a?)je{l,___76}.

: . (k) 2

3.1. Photometry estimation i Zlogz P(Zy) = §) exp | (:v¢(v)2 2/%,;) .

As outlined in the previous section, we model the intensity o PZs=d) Y, 27Wk,j Th.j

each matter in the brain with a Gaussian distribution, sb tha

the intensity at a voxel results from a mixture of Gaussian di We use the photometric parametgus ;. Uk ;) estimated dur-
tributions. This model has been commonly used in MRI segind the previous step. Figure 3 shows one slice of the templat
mentation with a variable number of Components [5] G|Verpbta|ned |f¢ is assumed to be a translation based on the loca-
the matter segmentation of the image, it would be easy to estiion of HoH.

mate the mixture parameters, it would also be straightfoiwa

to find the segmentation, if the model parameters were known. 4. TRANSFORMATION ESTIMATION BY

However, since the matter at each voxel is unknown, we use GRADIENT METHOD

the EM algorithm to alternatively compute the classificatio

of the voxels and estimate the model parameters. The EMsiven a new image, recovering the landmarks location isequi
algorithm [6] maximizes the log-likelihood of the mixture alent to finding the transformatiammapping the image onto
model over the parametet&j,uj,af) with j € {1,...,6}.  the template.¢ is a transformation frofR*® — R? of para-

In the case of Gaussian mixture, both the E-step and the Mneterd. Given the generative model, one wants to maximize
step can be written in closed form and convergence to a Iahe likelihood of the observations over the transformagian

cal minimum has been proved. We initialize the EM with rameters, the likelihood is a mapping frdk¥ — R, where
Kmeans. d is the number of parameters of the transformation. Let us



simplify the notationVj, P(Zy.,) = j) = Pj(Zyw)). We

compute the gradient of the log-likelihood: Table 1. Mean prediction error obtained with our algorithm

for SCC, HoH and HT using the training set (38 images) and

m the testing set (9 images).
10) = > ) gj(w)P(Zsw) +InP(6), _ _
eV j=1 error (training set) error (testing set)
6 SCC | 1.81mm ¢ =1.42mm)| 2.46mm ¢ =1.92mm)
i— j\Lo VoP;(Z v
vl() = 3 Zf;j 9 (@)VoFi(Zow) &\ pey | HoM | 2.75mm g —1.94mm)| 3.70mm & —1.48mm)
vev 22195 (o) P (Zg(v)) HT | 0.26mm ¢ =0.51mm)| 2.19mm ¢ =1.11mm)
OP; (Zp(v)) 91
. . an(aZz ) aag
0P (Zy(v)) felory The algorithm obtains performance comparable to the preci-

0= o0 sion of the expert on the training set. As for the performance

The gradient of the log-likelihood over the parameters ef th on the testing set, it is closer to the precision a non-sfistia
transformatiorf can be written as a function of the template would reach.
derivative. Consequently it is possible to compute theeeart

sian derivatives of the template offline that makes the opti-

mizatic_m algorithm mU(_:h fast_er. The estimation of the tr_ansWe have presented a generic approach to address the issue
fo_rma_tlon paramete_rs IS eq“".’a'er?t talalimensional Opt"_ of automatic landmarking medical images. We develop a
mization problgm withd smalllm this approach, up to 12 in Bayesian approach which results in the construction of b-pro
the case of affine transformation. abilistic template for the matter of the brain. Using a tiagn

5. EXPERIMENTSON BRAIN MRI set of images, it is easy to estimate the parameter of thegene

ative model thanks to the EM-algorithm. Finally we showed

The training set is composed of 38 T1-weighted MR brairthat the gradient ascent of the log-likelihood can be coexput
images acquired on a Philips-Intera 3-Tesla scanner, eith r efficiently to estimate the transformation mapping the fand
olution 1mn¥. Brains were first transformed into standard-marks in the template. The method we developed can be used
ized Talairach space using Analysis of Functional Neuroimeither for specialists training or as a starting point fogé&
ages (AFNI) to provide a canonical orientation (anteriadl an deformation registration.
posterior commissures (AC and PC) made co-linear) and ap-
proximate alignment. All the images have the same size after
the transformation161 x 191 x 151 voxels or mm. An ex-
pert located the splenium of the corpus callosum (SCC), th
apex of the Head of the Hippocampus (HoH) and define on
the same sagittal slice as HoH the Tail of the Hippocampus
(HT). We apply the algorithm to the detection of HoH, SCC[2] J.Talairach and P. TournouGo-planar stereotaxic Atlas

and HT. of the Human Brain, Thieme Medical Publishers, 1988.
In the case of HoH and SCC, the considered set of trans-

formations is the group of translationsit¥. The derivatives [3] J.-P. Thirion, “New feature points based on geometric
of the template are exactly the cartesian derivatives ofieac  invariants for 3d image registrationiht. J. of Computer
matter. We use a gradient ascent to find the maximum of the Mision, vol. 18:2, pp. 121-137, 1996.

likelihood. The results are presented on both the trainimd a
the testing set, 9 MR brain images from the same scann . . .
and landmarked by the same specialist. We compare the re- ric and Intensity Models, Kluwer Academic, Dordrecht,
sults of the algorithm to the expert landmark by computirgy th 2001.

Euclidian distance between the two points. The detection 9] carey E. Priebe, Michael I. Miller, and J. Tilak Rat-

it reduces to a 2D problem, assuming that the location of HOH  hierarchical mixture modelling,"Computational Statis-

is given. Once again we consider the group of translations  tjcs and Data Analysis, 2004.

but now inR?. Table 1 presents the results obtained on the

training and the testing set. The specialist’s intra-\@lity is ~ [6] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum
0.71mm ¢ =0.61mm) for SCC and 1.22mna (=0.92mm) likelihood from incomplete data via the em algorithrd,”
for HoH, while the non-expert intra-variability on the same R Stat. Soc., vol. 39, pp. 1-38, 1977.

images for HoH is 3.58mmo( =0.98mm). The resulting

inter-observer variability for HoH is 3.26mna (=0.98mm).

6. CONCLUSION
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