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ABSTRACT

In order to perform medical image registration, landmarks are
used to settle correspondences between images. A landmark
is a voxel in the image that corresponds to a well-defined point
in the anatomy. Manual landmarking is a difficult, tedious
and time-consuming procedure that would gain to be auto-
mated. We propose a bayesian approach for automatic land-
marking. Using training data, we learn the geometry through
a probabilistic template. Landmarking consists then in esti-
mating an affine transformation mapping the image onto the
template. We use gradient ascent in the likelihood functionto
perform this task. Experiments validate the methodology for
landmarking the temporal lobe in MR brain images.

1. INTRODUCTION

If landmarks by themselves can provide a first analysis of the
geometry of brain structures, they are overall useful for image
registration, see Figure 1. They can be used to initialize corre-
spondences between structures or to give control points in the
alignment process, [1]. We define a landmark, as in [2], as the
voxel in the image which corresponds to a specific point of the
anatomy. They can be points like the apex of the Head of the
Hippocampus (HoH), the Tail of the Hippocampus (HT) and
the Splenium of the Corpus Callosum (SCC). Figure 1 shows
some examples of landmarks. The manual detection of these
points is a tedious and time consuming task. Although some
methods have been developed to attempt detecting some types
of landmarks automatically, based on 3D filters [3] or by fit-
ting a local parametric model on the intensities [4], the detec-
tion of landmarks remains a manual task. In both cases indeed
one needs prior information on the underlying structure anda
detectable contour, but landmarks that neuroscientists define
do not necessarily fulfill the latter requirement.

We propose a generic approach for automatic landmark
detection. We assume that an image results from the defor-
mation of a template. Because deformations in the brain can
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Fig. 1. (a) the bottom left cross represents the Head of the Hippocampus
landmark, the right top cross is the Tail of the Hippocampus, (b) shows the
mean image of the hippocampus, obtained by averaging the intensities of 14
images without registration, (c) is the average image after rigid registration
using the landmarks HoH and HT.

be extremely complicated, we use a probabilistic template.
We present a Bayesian approach to estimate the transforma-
tion φ : R

3 → R
3 which maps the landmark location in the

image onto the landmark location in the template. Given a
training set of images(X(k), φ(k)), X(k) the vector of inten-
sities of the imagek, we define a generative modelP (X|φ)
and estimate the best transformation for a new image using
the maximum a posteriori (MAP) estimator:maxφ P (φ|x).
In section 2 we detail the image model. Parameter estimation
is in section 3. Section 4 presents the gradient ascent algo-
rithm. Finally we demonstrate the algorithm on brain MRI to
detect the location of the Head and the Tail of the Hippocam-
pus and also the Splenium of the Corpus Callosum.

2. BAYESIAN INTENSITY MODEL

2.1. The transformation set

Let Φ be a set of transformations fromR3 → R
3, such that

there is a uniqueφ ∈ Φ that maps the landmarks in the image
onto a given configuration in the template. We will consider
transformations not more complicated than affine transforma-
tions or compositions of transformations inspired from the
procedure specialists use to define landmarks. Firstly, HoH
is located using a translation, secondly, the hippocampus is
rotated around the sagittal axis to fix its orientation and then
it is scaled to overlay the tail. We will present experimentson
translation in this paper while the more complex transforma-
tions will appear elsewhere.



2.2. The generative model

Let us describe the generative model,P (X|φ), whereX is
the gray-level image andφ : R

3 → R
3 is a transformation.

We assume that the voxel intensities are independent given
the landmarks location, i.e. given the transformation, so that
we can write the conditional joint probability as a product:
P (X|φ) =

∏

v∈V P (Xv|φ), with V the set of voxels. We
introduce a new variableZv representing the matter at voxel
v. The intensity distribution is indeed slightly different from
one image to the other, because anatomically equivalent vox-
els appear with different intensities in two images. Let us
assume that the brain is composed of 6 matters: CSF, GM
and WM to which we add the mixed voxels composed of
CSF+GM and GM+WM. We also identify a sixth class cor-
responding to very high intensities due to blood vessels or
to the skull. The discrete random variableZv takes values
on {1, · · · , 6}. Conditioning by the matter at each voxel, the
generative model can be written as

P (Xv = xv|φ) =

6
∑

j=1

P (Xv = xv|Zv = j, φ)P (Zv = j|φ).

We assume that the intensity at the voxelv, given the mat-
ter at the same voxel is independent of the transformationφ.
This assumption allows us to model the photometry indepen-
dently of the geometry. The first term characterizes the pho-
tometry of the matterj in the image, which is modeled with
a Gaussian distribution. The second term corresponds to the
probability of observing the matterj at the voxelv given the
transformationφ which maps the image onto the template.
This is the probability distribution of the matter at the trans-
formed voxelφ(v). Under the preceding assumptions the gen-
erative model can be rewritten as

P (X|φ) =
∏

v∈V

6
∑

j=1

gj(xv)P (Zφ(v) = j).

2.3. The probabilistic template

In this Bayesian setting, we define the template as the prob-
ability distribution of the matter when the landmarks lie in
a standardized configuration. Figure 2 represents the model
with which new images can be generated by drawing a mat-
ter at each voxel according to the distribution in the template,
then drawing a random transformation. Applying the inverse
transformationφ−1 one creates the geometry of the new im-
age and finally using a set of Gaussian distributions we can
assign an intensity to each voxel. The template gives the
probability to observe each matter at each voxel. If the prob-
ability at one voxel to observe one of the matters is high, it
means that most of the images of the registered training set
contain this matter at this point. The probabilistic template
allows us to capture the matter variability in addition of the
global geometry. We conjecture that using such a template

Fig. 2. To generate a new image (rightmost), draw a random segmentation
(leftmost) based on the distribution of matters contained in the template. Ap-
ply a random deformationφ−1 to find the new image segmentation (middle).
Finally assign an intensity chosen in the corresponding Gaussian distribution.

CSF CSF+GM GM

GM+WM WM OUT

Fig. 3. Template obtained whenφ is a translation with HoH as landmark.
Each image corresponds to one matter. The white voxels have a high proba-
bility to belong to the corresponding matter. The represented section of the
template corresponds to the sagittal slice containing HoH. Notice that the
hippocampus appear both in CSF+GM and in GM.

will allow us to deal with much simpler transformations and
achieve results comparable to classical methods for registra-
tion.

2.4. Bayesian versus classical registration methods

Considering a new image, one wants to maximize the likeli-
hood of the observation over the parametersθ of the transfor-
mationφ. The likelihood of the model can be expressed with
the generative model and the prior distribution on the transfor-
mation:P (φ|X) ∝ P (X|φ)P (φ). The prior is a distribution
over the parameters ofφ. In the case of a translation for ex-
ample, we use a Gaussian model on the parameter[a b c] so
that we compute from the training set a mean vector of para-
meters inR3 and an empirical covariance matrix inR3 × R

3.
The log-likelihood of the model is:

l(θ) =
∑

v∈V

ln
6

∑

j=1

gj(xv)P (Zφ(v) = j) + lnP (θ).

As in the classical cost function used for image registration,
the likelihood contains two terms. A data term measuring
the way the model fits to the data and a regularization term.
Using a Bayesian approach allows us to deduce naturally the
cost function from the model and the template gives a vari-
able weight to the voxels of the image. When the entropy
of the matter distribution is low, the corresponding voxel has
potentially a large weight: it increases the likelihood if the



observation and the model match and penalizes it in case of
mismatch.

Algorithm 1 describes the outline of the procedures whose
steps are detailed in the following section.

Algorithm 1 (Bayesian Registration)

Learning step, n images in the training set:

1. Photometry estimation: Using the EM-algorithm, learn
the intensity distribution of each matterj in each image
k, {(µk,j , σ

2
k,j)j∈{1,...,6}}k∈{1,...,n}.

2. Superimposition of the training set: Given a set of
transformationsΦ, find{φ1, . . . , φn} such that for each
image the transformed landmarks are mapped to the
same location.

3. Prior distribution estimation: Estimate the prior distri-
bution based on the set of transformations estimated on
the training set.

4. Template estimation: Based on the transformed images
{(X

(k)
φ(v))v∈V }k∈{1,...,n}, use the EM-algorithm to esti-

mate the matter proportions at each voxelφ(v).

For a new image

1. Photometry estimation: Similarly to the learning step,
learn the matter distributions(µj , σ

2
j )j∈{1,...,6}.

2. Transformation estimation: Find φ which maximizes
the likelihood of the observations, using a gradient as-
cent over the transformation parameters,θ.

3. LEARNING ALGORITHM

3.1. Photometry estimation

As outlined in the previous section, we model the intensity of
each matter in the brain with a Gaussian distribution, so that
the intensity at a voxel results from a mixture of Gaussian dis-
tributions. This model has been commonly used in MRI seg-
mentation with a variable number of components [5]. Given
the matter segmentation of the image, it would be easy to esti-
mate the mixture parameters, it would also be straightforward
to find the segmentation, if the model parameters were known.
However, since the matter at each voxel is unknown, we use
the EM algorithm to alternatively compute the classification
of the voxels and estimate the model parameters. The EM-
algorithm [6] maximizes the log-likelihood of the mixture
model over the parameters(αj , µj , σ

2
j ) with j ∈ {1, . . . , 6}.

In the case of Gaussian mixture, both the E-step and the M-
step can be written in closed form and convergence to a lo-
cal minimum has been proved. We initialize the EM with
Kmeans.

Fig. 4. Example of Gaussian mixture parameter estimation on a 41-by-
41-by-41 voxel subpart of the image. x-axis: intensities, y-axis: count. The
plain lines are the 5 estimated Gaussian densities and the dotline represents
the estimated histogram. The outliers distribution does not appear on this
figure as the mean is usually around 300.

3.2. Template estimation

Using a training set, composed ofn images, typically between
10 and 100, on which the landmarks have been located, one
computes for each imagek the transformationφk ∈ Φ which
maps the voxels coordinates onto the template. The super-
imposition procedure provides us with a collection of trans-
formations{φ1, · · · , φn}. We use the set of parameters of
these transformations to estimate the prior distribution on θ.
At each locationφ(v) in the template corresponds a set of in-
tensities(x(1)

φ(v), . . . , x
(n)
φ(v)) resulting from the registration of

the training set. Because the transformation does not map
perfectly the image onto the template, the matters are not per-
fectly superimposed in the transformed images, also atφ(v)
the intensities correspond to different matters of the brain.
Since the matters and their distribution are unknown we need
to use the EM-algorithm to estimate the mixture parameters.
The likelihood maximized by EM, is written as

max
P (Zφ(v)=j)

∑

k

log

6
∑

j=1

P (Zφ(v) = j)
√

2πσ2
k,j

exp



−
(x

(k)
φ(v) − µk,j)

2

2σ2
k,j



.

We use the photometric parameters(µk,j , σ
2
k,j) estimated dur-

ing the previous step. Figure 3 shows one slice of the template
obtained ifφ is assumed to be a translation based on the loca-
tion of HoH.

4. TRANSFORMATION ESTIMATION BY
GRADIENT METHOD

Given a new image, recovering the landmarks location is equiv-
alent to finding the transformationφ mapping the image onto
the template.φ is a transformation fromR3 → R

3 of para-
meterθ. Given the generative model, one wants to maximize
the likelihood of the observations over the transformationpa-
rameters, the likelihood is a mapping fromRd → R, where
d is the number of parameters of the transformation. Let us



simplify the notation∀j, P (Zφ(v) = j) = Pj(Zφ(v)). We
compute the gradient of the log-likelihood:

l(θ) =
∑

v∈V

ln

m
∑

j=1

gj(xv)Pj(Zφ(v)) + lnP (θ),

∇θl(θ) =
∑

v∈V

∑6
j=1 gj(xv)∇θPj(Zφ(v))

∑6
j=1 gj(xv)Pj(Zφ(v))

+ ∇θ lnP (θ),

with ∀j, ∇θPj(Zφ(v)) =

〈

∂Pj(Zφ(v))

∂x
∂φ1

∂θ
∂Pj(Zφ(v))

∂y
, ∂φ2

∂θ
∂Pj(Zφ(v))

∂z
∂φ3

∂θ

〉

.

The gradient of the log-likelihood over the parameters of the
transformationθ can be written as a function of the template
derivative. Consequently it is possible to compute the carte-
sian derivatives of the template offline that makes the opti-
mization algorithm much faster. The estimation of the trans-
formation parameters is equivalent to ad-dimensional opti-
mization problem withd small in this approach, up to 12 in
the case of affine transformation.

5. EXPERIMENTS ON BRAIN MRI

The training set is composed of 38 T1-weighted MR brain
images acquired on a Philips-Intera 3-Tesla scanner, with res-
olution 1mm3. Brains were first transformed into standard-
ized Talairach space using Analysis of Functional Neuroim-
ages (AFNI) to provide a canonical orientation (anterior and
posterior commissures (AC and PC) made co-linear) and ap-
proximate alignment. All the images have the same size after
the transformation:161 × 191 × 151 voxels or mm. An ex-
pert located the splenium of the corpus callosum (SCC), the
apex of the Head of the Hippocampus (HoH) and define on
the same sagittal slice as HoH the Tail of the Hippocampus
(HT). We apply the algorithm to the detection of HoH, SCC
and HT.

In the case of HoH and SCC, the considered set of trans-
formations is the group of translations inR

3. The derivatives
of the template are exactly the cartesian derivatives of each
matter. We use a gradient ascent to find the maximum of the
likelihood. The results are presented on both the training and
the testing set, 9 MR brain images from the same scanner
and landmarked by the same specialist. We compare the re-
sults of the algorithm to the expert landmark by computing the
Euclidian distance between the two points. The detection of
HT is conditional to the position of the HoH landmark, hence
it reduces to a 2D problem, assuming that the location of HoH
is given. Once again we consider the group of translations
but now inR

2. Table 1 presents the results obtained on the
training and the testing set. The specialist’s intra-variability is
0.71mm (σ =0.61mm) for SCC and 1.22mm (σ =0.92mm)
for HoH, while the non-expert intra-variability on the same
images for HoH is 3.58mm (σ =0.98mm). The resulting
inter-observer variability for HoH is 3.26mm (σ =0.98mm).

Table 1. Mean prediction error obtained with our algorithm
for SCC, HoH and HT using the training set (38 images) and
the testing set (9 images).

error (training set) error (testing set)
SCC 1.81mm (σ =1.42mm) 2.46mm (σ =1.92mm)
HoH 2.75mm (σ =1.94mm) 3.70mm (σ =1.48mm)
HT 0.26mm (σ =0.51mm) 2.19mm (σ =1.11mm)

The algorithm obtains performance comparable to the preci-
sion of the expert on the training set. As for the performance
on the testing set, it is closer to the precision a non-specialist
would reach.

6. CONCLUSION

We have presented a generic approach to address the issue
of automatic landmarking medical images. We develop a
Bayesian approach which results in the construction of a prob-
abilistic template for the matter of the brain. Using a training
set of images, it is easy to estimate the parameter of the gener-
ative model thanks to the EM-algorithm. Finally we showed
that the gradient ascent of the log-likelihood can be computed
efficiently to estimate the transformation mapping the land-
marks in the template. The method we developed can be used
either for specialists training or as a starting point for large
deformation registration.
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