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Chapter 1

Resumé en francais

Mon travail de recherche depuis 1'obtention de ma thése de doctorat s’organise autour des
thémes ci-dessous.

1.1 Le “Jeu des 20 questions" et ses applications

Le mécanisme d’acquisition d’information, par exemple la localisation d’un object dans
une image est considéré d’un point de vue Bayésien. De maniére éventuellement séquen-
tielle et adaptative, des régions de l'image sont considérées, des fonctions des pixels sont
calculées, et la distribution sur la position de ’object est remise a jour. J’ai étudié des
stratégies optimales pour l'espérance de I'Entropie de Shannon sur la position de 1'object
aprés un nombre fixé d’itérations. J'ai aussi contribué au développement algorithmique
de cette méthodologie pour la détection de visages, le suivi d’outils chirurgicaux dans des
séquences d’images et le contréle d'un microscope électronique.

Publications: [7, 1, 8, 9, 33, 18, 20, 35, 6, 32, 34, 41].

1.2 Les méthodes de maximum d’entropie sur la moyenne

Je propose dans ce travail une méthode originale pour ’estimation des paramétres p1,...,px
d’une loi Multinomiale dans la situation oli le nombre de paramétres k, ainsi que le nombre
d’observations n sont grands. Par exemple, k = 100.000 et n = 1.000.000. Dans un pre-
mier temps, un ensemble de lois Multinomiales qui sont "proches" des observations sont
identifiées. Dans un second temps, je sélectionne dans cet ensemble la loi Multinomiale
qui est la plus proche (Kulback) d'une loi choisie par défaut. Cette méthode est utilisée
pour estimer une probabilité sur les mots de la langue anglaise. D’autre part, j’ai utilisé
et evalué des méthodes d’estimation de paramétres de mesures de Gibbs et j'ai appliqué
ces méthodes a la détection de la peau humaine dans des images en couleur.

Publications: [22, 23, 24, 25, 44, 43, 17]



1.3 Les méthodes statistiques en imagerie

J’ai proposé une formulation originale pour le probléme de détection d’amers en ima-
gerie médicale basée sur ’apprentissage statistique. J’ai formulé le probléme en terme
d’estimation Bayésienne d’une déformation. J’ai évalué cette méthode pour des images
de résonnance magnétique du cerveau. Par ailleurs, j'ai proposé une méthode de mise en
correspondance de formes adaptée a 'imagerie médicale des poumons pour l’étude de la
tuberculose.

Publications: [39, 15, 12, 14, 13, 38, 5, 31, 29, 37].

1.4 Les méthodes statistiques pour 1’étude clinique
de la maladie d’Alzheimer

La base de données ADNI (Alzheimer’s Disease Neuroimaging Initiative) est congue pour
étudier la maladie d’Alzheimer (AD). Cette base comporte plusieurs milliers de sujets ob-
servés pendant plusieurs années avec de multiples biomarqueurs incluant l'imagerie struc-
turale et fonctionnelle, le comptage de protéines et de nombreux tests neurologiques. J'ai
proposé une méthode statistique permettant de combiner des biomarqueurs hétérogénes
afin de fournir un indice ou score d’Alzheimer pour chaque sujet. J’ai contribué ainsi a
décrire le processus évolutif d’AD.

Publications: [26, 27].

1.5 Travail collaboratif en ingénierie biomédicale

Je regroupe ici des travaux variés ol j’ai contribué en temps qu’expert en probabilités,
statistique et imagerie.
Publications: [19, 11, 40, 2, 30, 3].



Chapter 2

Summary of research activities

2.1 Pattern theory, Bayesian modelling and computer vision

2.1.1 Pattern theory

Pattern Theory was initiated by Ulf Grenander about thirty years ago. The aim is to
analyze patterns from a statistical point of view in all “signals” generated by the world,
whether they be visual, acoustical, textual, molecular (e.g., DNA strings), neural, etc.
Patterns are described using hidden variables, together with their probability distribu-
tions, whereas signals, or relevant functions of the signals, are modeled conditionally on
the hidden variables. In principle, the detection of patterns in noisy and ambiguous sam-
ples can then be achieved by the use of Bayes’s rule. An overview of pattern theory as
a mathematical theory of perception was presented during the International Congress of
Mathematics in 2002; see [28].

There are enormous difficulties in realizing the pattern theory program. Initially, I
was inspired by problems arising in computer vision. Indeed, computer vision offers an
overwhelmingly rich source of challenging questions. How can a system identify an object
in an image in the presence of clutter and occlusion? Locally, the existence of the object
is always ambiguous, whereas globally it seems unambiguous! Humans identify faces and
skin very efficiently from still images. A trained radiologist can precisely identify brain
structures from magnetic resonance images. Can one design efficient computer vision
systems that replicate these capabilities ?

In each situation, one starts with data and seeks concepts in the sense of interpreta-
tions. It is then necessary to use a quantitative measure of information that can be applied
to a large class of objects. Shannon information theory provides some of the theoretical
foundations. However, the classical goals of information theory — coding and compres-
sion — are not the same as in computer vision, where the questions are of a statistical
nature, mostly estimation. There are many interesting connections between statistics and
information theory. One of particular interest and simplicity is related to the problem of
Bayesian classification.



2.1.2 Bayesian analysis and conditional entropy

In Bayesian classification, there is a finite set of objects or interpretations of interest,
denoted Y. The data, often multidimensional, lives in a set X. Assuming a suitable
probability structure and a binary loss function, the best guess for the object, having
observed a data point x € X, is Y(x), the mode of the posterior probability P(Y|X =
x). Now the expected error of this classifier, denoted e*, is very closely related to the
conditional entropy H(Y|X) (in base 2) which measures the expected amount of information
that X provides about Y. On one hand, a concavity argument provides e* < cH(Y|X); for
some positive constant c(|Y|) and, on the other hand, Fano’s inequality yields a reciprocal
bound: H(Y|X) < H(e*) + e*log(|Y| — 1). So, it is sufficient and necessary to control
H(Y|X) in order to control e*. The situation generalizes to other Bayesian loss functions
as the quadratic loss or the L; loss as long as Y is countable. In each case, it is sufficient
and necessary to control H(Y|X) in order to control the risk of the Bayesian estimator. In
the case of regression, when Y is a continuous random variable or vector, the situation is
different. In the case of the quadratic loss, controlling the conditional differential entropy
H(Y|X) is necessary but not sufficient. Indeed, using the maximum entropy principle, Th.
17.2.3 in [4] and Jensen inequality,

d
E[IY - EIVIXI[P] > 52370 (2.1)

where Y is of dimension d. As a consequence, a large value of the conditional entropy
H(Y|X) implies a large Bayesian quadratic risk (left side of (2.1)). However, a small value
for the conditional entropy does not necessarily implies a small value for the Bayesian
quadratic risk. We provide two examples. First, consider the situation where the condi-
tional distribution of Y given X = x, for each x, is a mixture, with equal weights, of two
Normal distributions with different means but same variance o?. Choosing a sequence of
values 02 such that lim, ,,, 02 = 0, we have lim,_ o H(Y|X) = —oco but the Bayesian
quadratic risk remains away from zero. In this case, some regularity of the posterior distri-
bution of Y given X = x would be needed in order to guaranty a reciprocalin (2.1). Asa sec-
ond example, consider the case where Y is two-dimensional, i.e Y = (Y;,Y2) but X provides
information on Y; only. In this case H(Y|X) = H(Y7|X,Y2) +H(Y2|X) = H(Y7|X, Y2) + H(Y2)
where the first equality is the chain rule for the conditional entropy and the second comes
from the independence of X and Y,. Now, if H(Y7[X,Y;) is arbitrarily small (i.e negative
and large in absolute value), so is H(Y|X). However, H(Y2|X) = H(Y2) which means that
the component of the Bayesian quadratic risk associated with the second coordinate (i.e
Y;) is not controlled.

In what follows, we will consider algorithms which sequentially reduce the Shannon
entropy of the posterior.

2.2 20 questions

This work was done at JHU in collaboration with Raphael Sznitman, Peter Frazier and
Han Weidong. It pursue ideas originally presented by Donald Geman.



2.2.1 Tterative questioning as a model for perception

Let us consider computer vision, or machine perception, as an efficient mechanism aimed
at reducing uncertainty; as do others. A concrete example is as follows: consider the
task of locating a front facing standard size face within an image, this location being by
definition fully characterized by the pixel location of the nose. As in Bayesian statistics,
this location is described by a random variable, which distribution over the set of pixel
locations has large entropy. We assume that a collection of unit cost questions are available.
Each question is parameterized with the coordinates of a sub-image. The answer which
is a numerical value is obtained by computing a function of the image values within this
sub-image and is modeled as a noisy answer to the question “does the face belong to this
sub-image?" Which sub-images should then be chosen and in which order such that one
would detect the face while minimizing the average or worse case number of queries? More
formally, we now describe the basic theoretical framework of “20 questions” in which our
research is conducted:

1. There is some unknown target, or collection of targets, that we would like to locate.
Let Y denote the location of this (these) target(s), and let Y denote the set of values
that Y can take. For example, Y might be the pose of an object in a scene, as
recorded in an image (we call this task “object localization”).

2. Before the search begins, there is a Bayesian prior distribution py on the unknown
object or quantity. Thus, we model Y as being a random variable or vector drawn
at random from the distribution py. In object localization, for example, this prior
incorporates information that certain poses of an object are more common than
others.

3. We may ask questions, perform tests, or search in particular locations, to gather
information. However, the answers to these questions may be obscured by noise.

Formally, we model a question as a subset A C ), whose truthfull response is given
by Z(A) = 1a(Y), where 14 is the indicator function of the set A. We do not observe
Z(A) directly, instead observing a noisy version X(A) of Z(A).

For example, in object localization, A would be a sub-image, and X(A) would be
obtained by running a statistical filter over the image whose output distribution
depends on whether Y € A or not.

We ask a sequence of questions, Aj,..., AN in this way, observing answers X, =
X(An),n=1,...,N, where the choice of question A, depends on all the previous
questions and their responses, A1, X1,..., An, Xn.

4. Once questioning ceases, we estimate the location of Y as well as possible, given the
information that we have collected.

Qur ability to perform the final estimation task well depends critically upon the questions
that we have asked. If we ask poor questions, then we will need a much larger number of
questions to perform well. If we ask good questions, then we can provide high-quality
estimates with limited data and limited time.



Thus, the central goal of this research is to design algorithms for adaptively
deciding which questions to ask next, to provide optimal or near-optimal average-case
performance under the prior.

2.2.2 Main results

As questions are chosen, asked and answered, the prior distribution po over the target
Y is updated according to Bayes rule, providing p1,p2,.... Notice that even when there
is no noise in the answers and when the questions are chosen deterministically, p, is in
general a random sequence, as a function of Y. We notate 7, the history of the first n
questions and answers under a valid policy, that is a policy for which the choice of the
next question depends only on the questions and answers obtained so far. We consider
next the F,, measurable sequence H, which is the entropy of p,. It is convenient to use
the following notations: H, = H(pn) = H(Y|F,). Then,

EHy Al = H(YFny, Xnt) (2.2)
H (Y Xp1|Fn) — H (X1 Fn) (2.3)

H(Y|Fn) — (HXn1lFn) — HXn 11 Fn, Y)) (2.4)

= Hn =TV, Xpq 1l Fn) (2.5)

(2.6)

The right hand side of (2.2) is the conditional entropy of Y given the random variable X,
and the history F,,. Equations (2.3)and (2.4) are direct applications of the chain rule for
the joint entropy. Equation (2.5) comes from the definition of I (Y, X;,11/Fn), the mutual
information between Y and X, given the history F,. Since the mutual information is a
non negative quantity, we see from (2.5) that the entropy process H,, decreases in average,
under any valid policy. Now, recall that we defined X1 as a noisy version of Z,, 1 which
itself is a binary variable: the indicator of some set A, 1 C Y. More precisely, we assume
that given the history F, Y — Zn11 — Xn41 is @ Markov chain. This in turns implies,

E [Hn-H ‘}—n] Hn —1 (Y> Zn-H |}—n)
Hn - H(Zn+1 |Fn)

Hy, —1

AVARAVARYS

where (2.7) is the data processing inequality, Th. 2.8.1 in [4]. (2.8) is obtained by
bounding from above the mutual information and (2.9) since X, is a binary random
variable. Now, taking the expected value on both sides of (2.9), we obtain

E[Hp] > Ho—n (2.10)

which gives its name to the game of 20 questions. Indeed, consider a situation where Y
is uniformly distributed over the first 22° (which is close to 1,000, 000) positive integers.
How many binary questions are needed in average to guess Y, assuming truthful answers?
We plug E[H,] = 0 in (2.12) obtaining n > Hy = log,2?° = 20. Moreover, this lower
bound is achievable using for example the dichotomy policy.



Another situation of interest occurs when the noise process X,, is a memoryless channel,
that is when Xj,..., X, are conditionally independent given Y. We have shown in [18]
(Chapter 3 of this document) that in this case the bound in (2.9) can be improved to

E Myt Fnl > Ho— C (2.11)

where 0 < C < 1 1is a channel capacity which can be computed explicitly as function of
the noise model.
As was noted in [36], combining (2.11) with (2.1),

2rE .
27

E[IY-EMFAIIP] > 5 27 (2.12)

provides a lower bound on the quadratic efficiency of any policy.
Equation (2.5) suggest a specific policy, namely the entropy pursuit which consist in,
having observed a specific history F;,, choosing at step n + 1

Ani1 = argmax I (Y, Xn1 (A)Fn) (2.13)

We show in [18] that under certain conditions, this policy is actually globally optimal in
minimizing the expected entropy E[Hn] over an horizon of N questions for any N > 1.
We further present the dyadic policy which is also optimal but not adaptive i.e. all the
questions can be asked and answered in parallel. Now, the performance of an optimal
policy is remarkable. Indeed, under an optimal policy

E[Hn] = Ho —nC (2.14)

The expected entropy of the target decreases linearly with the number of questions. In
other words, the same amount of information (measured by the Shannon entropy) is
obtained in average at each step. As long as C is not too small, this is a motivating result
for application and further theoretical explorations. Chapter 3 presents this theory and
Chapter 4 present an extension to multiple targets. Note that the later is a preliminary
draft. Section 2.3 and Chapters 5 and 6 provide applications of this framework for various
tasks in computer vision.

I plan to further study problems in optimal search, detection, and interrogation in
a Bayesian decision-making framework, developing search algorithms with both theoret-
ical guarantees and strong empirical performance. Using the 20 questions mathematical
framework I plan to study specific problems in computer vision focusing on target track-
ing and detection, in screening, in simulation optimization, in machine learning and in
experimental psychology for understanding visual search.

2.3 Application of iterative questioning to computer vision

2.3.1 Road Tracking

This work was done while I was a PhD student under the supervision of Donald Geman.
As such it not part of the HDR. However, since it has been important in framing future
work, it is briefly described here.



Figure 2.1: An algorithm for tracking roads

We present a new approach for tracking roads from satellite images, and thereby
illustrate a general computational strategy (“active testing") for tracking 1D structures
and other recognition tasks in computer vision. Our approach is related to work in active
vision on “where to look next" and motivated by the “divide-and-conquer" strategy of
parlor games such as “Twenty Questions." We choose “tests" (matched filters for short road
segments) one at a time in order to remove as much uncertainty as possible about the “true
hypothesis" (road position) given the results of the previous tests.The tests are chosen
on-line based on a statistical model for the joint distribution of tests and hypotheses. The
problem of minimizing uncertainty (measured by entropy) is formulated in simple and
explicit analytical terms. To execute this entropy testing rule we then alternate between
data collection and optimization: at each iteration new image data are examined and a
new entropy minimization problem is solved exactly, resulting in a new image location to
inspect, and so forth. We report experiments using panchromatic SPOT satellite imagery
with a ground resolution of ten meters: given a starting point and starting direction, we
are able to rapidly track highways in Southern France over distances on the order of one
hundred kilometers without manual intervention. Road tracking consists of identifying a
road in a remotely sensed image, starting with a pixel on the road in the image and a
direction, both manually selected; see [7].

2.3.2 Outlier Detection and Asymptotic Properties of the Road Track-
ing Algorithm

This work was initiated at USTL and continued at JHU in collaboration with Damianos
Karakos.

Our motivation for this paper originates in the work on road tracking described above.
Below a certain clutter level, that algorithm could track a road accurately, but suddenly,
with increased clutter, tracking would become impossible.

We consider the problem of detecting a target in the presence of background clutter.
We study an ultra-simplified model, introduced in [42], where a phenomenon of phase
transition is observed: there are M + 1 sequences of independent discrete random vari-
ables, each sequence being of length N, and all sequences have components with the same
probability mass function po except for one sequence, the target, whose elements have
probability mass function p;. We focus on asymptotic bounds of performance, and we
show that the error of the maximum likelihood estimator for the target converges to 0 or
to 1, depending on the behavior of the fundamental quantity M2 NP®1Po) where D(.,.)



is the Kulback-Leibler divergence. Moreover, we describe a target detector for the case
where po and p; are unknown, and we prove that it has the same phase transition behavior
as in the case of known distributions. See [20] and Chapter 9

2.3.3 Face Detection

This work was done during my post-doc at the University of Chicago in collaboration with
Yali Amit.

Figure 2.2: Face detection. The amount of processing as a function of the location in the
image

Face detection consists in identifying the locations of the faces, if any, in an image. It
is a necessary step for performing face recognition from unconstrained images. Here the
class variable takes only two values corresponding to the presence or absence of a face in
a sub-image. This apparent simplicity hides a complex mixture of situations when a face
is present, corresponding to instances of pose, identity and lighting, not to mention the
enormous variations in the nature of the cluttered background. It is actually surprising
that any statistically meaningful performance could be achieved. Detection is done in
two stages: (i)“focusing”, during which a relatively small number of regions-of-interest
are identified, minimizing computation and false negatives at the temporary expense of
false positives; and (2) “intensive classification”, during which a selected region-of-interest
is labeled face or background based on multiple decision trees and normalized data. In
contrast to most detection algorithms, the processing is then very highly concentrated in
the regions near faces and near false positives, as can be seen in Figure 2.2. See [1] and
Chapter 5. Unfortunately, such a computational design does not emerge naturally from
greedy entropy. We studied this phenomenon in a more general context as described in
the following subsection.

2.3.4 Global vs Greedy Procedures for Entropy Reduction

This work was done at USTL in collaboration with Donald Geman.

The construction of classification trees is nearly always top-down, locally optimal, and
data-driven. Such recursive designs are often globally inefficient, for instance, in terms
of the mean depth necessary to reach a given classification rate. We consider statistical
models for which exact global optimization is feasible, using dynamic programming, and
thereby demonstrate that recursive and global procedure may result in very different tree
graphs and overall performance. Here is a toy example that was motivated by the work
on face detection. There are two classes. One noted a is “object” and the other noted



Figure 2.3: Left: Locally optimal tree. Right: Globally optimal tree. The error rates are
the same but the mean depth of the global tree is smaller.

b is “background”, with prior probabilities p(a) = 107* and p(b) = 1 — 10~*. There
are two types of tests, X; and X;. X; has a 0 false positive rate, i.e., keeps all the
background together, but has false negative rate 0.5. X, has a 0 false negative rate, i.e.,
loses no objects, but 0.5 false positive rate. These tests are assumed to be repeatable,
the sequence of outcomes being independent conditional on the class. Figure 2.3.4 shows
the tree obtained by the greedy entropy reduction as well as a globally optimal tree with
maximum depth 6. The error rate for these trees are approximatively the same but the
mean depth is about 4 for the greedy one, and about 2.5 for the optimal one. At the
same mean depth, the optimal strategy may have an error rate ten times smaller than the
greedy strategy. See [8] and Chapter 7

2.4 Automatic Landmark Detection from Brain MRI

This work is being conducted at JHU in collaboration with Camille Vidal, born Izard.

An anatomical landmark in the brain is a well-defined point of the anatomy of the
brain. Locating a landmark in a magnetic resonance brain image, or “landmarking,”
consists of selecting a particular voxel in the image, corresponding to the anatomical
landmark in the imaged brain. This voxel, like an anchor, is a precious piece of information
for measuring and registering brain structures. Landmarking can be a tedious manual
procedure, expensive and time consuming. It might be error prone, difficult to assess, and
dependent on the scanner and on the landmarker. We have developed a generic algorithm
that permits one to partially automate the landmarking process. The algorithm has two
components. One is an off-line procedure, the other is on-line. The former is a system
that estimates the parameters of a probabilistic model from a training set of landmarked
images using the Estimation Maximization (EM) algorithm. The later inputs an image
as well as the parameters previously estimated and outputs a tentative location for the
landmark as well as a covariance metric that assesses the remaining uncertainty. The
selected location can then be validated or corrected manually. The probabilistic model
has two components corresponding to photometry and the geometry. The former is a
mixture of Gaussian distributions whereas the later is a probabilistic model over sets of
deformations. We have considered various classes of affine deformations as well as small
nonlinear deformations using kernels.

An instantiation of the method for detecting the apex of the Head of the Hippocampus



(HoH) is shown in Figure 2.4. See [39, 15, 12, 14, 13] and Chapter 10.

Figure 2.4: Left: A sagittal slice of the brain. The Apex of the head of the Hippocampus
(HoH) is shown in red. Center: Probabilistic model predicting the probability for matter
type given the location of the HoH. Red channel: cerebrospinal fluid. Green channel: grey
matter. Blue channel: white matter. Right : Expected variance reduction in localizing
the HoH according to the learned probabilistic model. Most informative voxels are in
blue, least informative voxels are in red

2.5 Maximum Entropy Modeling and Small Sample Statistics

Maximum Entropy Modeling is a statistical modeling methodology aimed at selecting a
probability distribution given a data set. It is a two-step procedure. In the first step, one
chooses a subset of probability distribution that is consistent with the data. Typically,
one constrains the mean of certain functions of the data, also called features, to agree
with the empirical mean derived from the data at hand. In the second step, one chooses
a reference probability distribution or positive measure. Then, the “closest” distribution
to the reference, within the subset defined in the first step, is selected. For example, if
the reference is the Uniform measure and the Kulback-Leibler distance is used to define
“closest”, this procedure amounts to selecting the distribution with maximum entropy
under constraints.

The whole procedure might be viewed as an alternative to Bayesian modeling since
one is not obliged to choose a whole prior over a set of distributions but rather a single
element, the reference, together with a set of features.

This method was pioneered in statistical mechanics where the object of study is a very
large set of interacting particles. The “microstate” is defined as the collection of the states
of the particles. It is to be modeled. However, the set of microstates is so large that it
cannot be directly modeled from observing a few instances. Alternatively, one has access
to “macrostates”. These are quantities that are averaged over the set of particles. Choosing
the maximum entropy model among those which replicate the observed macrostate values
leads to the important class of Gibbs models, or Markov Random Fields.

This approach was shown to be of great practical importance in low level imaging in
[10]. The use of large sets of natural images has led, using MEM, to the construction of
models for textures [45].



2.5.1 Models for the Texture of Skin

This work was done in collaboration with Mohamed Daoudi and Huicheng Zheng at USTL,
while Mohamed and I were co-supervising Huicheng’ PhD thesis.

Figure 2.5: Three models for the classification of skin pixels

In order to classify pixels as “skin” or “non skin”, we have experimented with Maximum
Entropy Modeling with tree approximations to Markov Random Fields. Indeed, when the
underlying graph is a tree, the optimization procedure required to estimate the parameters
of the model can be tackled by an efficient procedure, already used in natural language
processing, known as iterative scaling. Moreover, classification of pixels as skin or not
skin is achieved through an efficient combinatorial optimization procedure, closely related
to dynamic programming and known as belief propagation. We build a sequence of three
models by adding features one at a time. The observed statistics come from a collection of
hand-segmented images. The first model imposes constraints on one-pixel color histograms
given “skin” and given “non-skin” . The solution is a baseline model in which colors are
conditionally independent. This model is well-known among practitioners. The baseline
model is certainly too weak and does not take into account the fact that skin zones
are made of large regions with regular shapes. Hence, in the second model, we add
constraints on the distribution of neighboring labels (skin or not-skin) in order to smooth
the solution. Finally, a color gradient is included in building the third model. Figure
2.5.1 depicts examples of the resulting segmentations. The color is proportional to the
posterior probability for skin. State-of-the-art performance is reported. See[24, 44] and
Chapter 11.

2.5.2 MEM in the Small Sample Setting and Language Modeling

This work was done at Johns Hopkins University, in collaboration with Sanjeev Khudan-
pur, Damianos Karakos and Ali Yazgan.

Figure 2.6: Maximum Likelihood Sets for k = 3 outcomes. Left: n = 3 observations.
Right: n = 10 observations.



There are challenging applications in statistics where the number of samples is small
compared to the dimensionality of the data. If one wants to adapt the MEM approach
to these situations, one has to take into account the natural variability of the empirical
mean of the features around their expectation in order to define a set of distributions
consistent with the data. How can this be done in a systematic way? An example arises
in natural language modeling where one needs to define the probability for the next word
in a sequence. Even, more basically, one needs to estimate the probability of appearance
of a word, independently of the past words. Assume there are k = 50,000 English words
in the dictionary and that a corpus of n = 1,000,000 words from the Wall Street Journal
is available. Typically, 13,000 words are not present in the corpus and 13,000 are seen
only once. This is a small sample situation. When estimating conditional distributions,
the small sample effect is even more severe. The simplest features in this context are the
indicator functions for a presence of a word. There are k such features. However, the set of
distributions over words that replicate the observed frequencies for each word is reduced
to a single distribution — the empirical measure, or type which put zero mass on about 1/4
of the vocabulary. We propose a parameter-free method to release the hard constraint on
the word frequencies. We choose the set of distributions on words that make the observed
frequencies more likely than any other with the same sample size. This defines a closed
convex polyhedron in the space of distributions that we call the Maximum Likelihood Set;
see Figure 2.5.2. We then choose the one in this set closest in Kulback-Leibler divergence
to the Zipf distribution, the natural prior in this context. The obtained estimator is shown
to be competitive with state-of-the art methods, see [25] and Chapter 8

2.6 Image registration for studying the progression of Tuber-
culosis in a preclinical study

This work was done at JHU in collaboration with Sanjay Jain, Laurent Younes, Camille
Vidal and Saumya Gurbani.

Quantifying FDG PET signal

Registration/Segmentation

Subject Image

Hﬂ

Registrafion/Segme

Figure 2.7: Registration pipeline

Many techniques have been proposed to segment organs from images. However the



segmentation of diseased organs remains challenging and frequently requires a sizeable
amount of user interaction. The challenge consists of segmenting an organ while its ap-
pearance and its shape vary due to the presence of the disease in addition to individual
variations. We propose a template registration technique that can be used to recover the
complete segmentation of a diseased organ from a partial segmentation. The usual tem-
plate registration method is modified in such a way that it is robust to missing parts. The
proposed method is used to segment Mycobacterium tuberculosis (TB) infected lungs in
CT images of experimentally infected mice, [39, 38]. This allows to measure precisely the
inflammation generated by TB, [5, 31].

2.7 Modelling the time course of neurodegenerative diseases

This work was done at JHU in collaboration with Pierre Jedynak, Jerry Prince, Brian
Caffo, Yulia Gel, Bo Liu, Andrew Lang, Runze Tang and Xhou Ye.

Alzheimer’s disease (AD) is a dreadful neuro-degenerative disease. The Alzheimer’s
disease neuroimaging initiative (ADNI) is a publicly available clinical dataset including
subjects diagnosed with AD dementia, mild cognitive impairment (MCI), and normal
controls. In ADNI, hundreds of measurements, including clinical, cognitive, biochemical,
genetic and imaging are available at baseline and longitudinally (M =~ 10 visits) for more
than N = 900 subjects. The AD trajectory of a subject is then a curve in the Euclidian
space of dimension K (number of measurements) out of which M points are partially
observed. The ADNI dataset provides N such curves. Since the subjects in the ADNI
dataset are developing the same disease, we hypothesize that a few continuous latent
variables explain the collection of measurements observed at successive visits, modulo
certain individual characteristics. Specifically, we hypothesize that the curves defined
above lie in a manifold of dimension L < K embedded in R¥ which we refer to as the disease
space. We further hypothesize that individual characteristics, genetic or environmental,
characterize the trajectory of a subject within this manifold as function of subject age.
This point of view leads to the following compositional model:

Yijk = T (g(tij; 01); px) + €y (2.15)

Where yij¢ is the measurement with index k for subject i at visit j, ti is the age
of subject 1 at visit j. t — g(t,0;) maps the age of a subject to a point in the disease
manifold C R, and x — f(x, px) maps a point in R" to an observable point in RX. 6;
is a collection of subject dependent parameters characterizing the trajectory of a subject
within the disease manifold while py is a collection of measurement dependent parameters
characterizing the disease space. €ijk is the residual noise. Scientific questions about AD
can be reformulated in the language of the model in equation (2.15) and thus can be
answered using parameter estimation and testing. “Do all subjects follow the same disease
progression?" is equivalent to “Does L = 17". “Does the Apoed genotype affects disease
onset?" can be tested by measuring the correlation between 0 and the Apoed genotype.
“Does hippocampus volume change earlier in the disease progression than Tau mediated
neuronal injury?" can be tested in using L=1 and comparing the fitted parameters for
these 2 measures. The currently most accepted model of disease progression known as



“Cliff Jack curves", see [16], corresponds to a choice of K=5 measurements, L=1, and
sigmoid functions for f. In [21], Chapter 12, we have fitted a closely related model with
K =7, L =1, sigmoid functions for f and linear functions for g. This model allows
explaining 62% of the variance of these 7 measurements over the whole cohort. This is the
current state of the art. Also, one of the findings of this analysis is the discovery that the
Rey auditory verbal test, 30 minutes recall, a measure which was not considered in [16], is
an early indicator of AD progression [27]. Another outcome of this statistical analysis is an
AD progression score for each subject in the ADNI cohort. This score, which is computed
from a heterogeneous collection of measures, provides a continuous characterization of the
disease stage of each subject. See figure 2.8.

TAU (pg/ml) Progression of ADNI biomarkers
as function of the Alzheimer's
Disease Progression Score (ADPS)
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Figure 2.8: The values of seven biomarkers, measured at all visits of all ADNI subjects, are
plotted on the normalized AD progression score (ADPS). Each connected polyline repre-
sents the consecutive visits of a single subject, and each line segment is colored according
to the subject’s clinical diagnoses between visits (see legend). The gray curves are the
sigmoid functions representing the fitted behavior of each biomarker in the normalized
space. (Reproduced from [21])

I plan to further develop this research and identify (Ulf Grenander’s) patterns in
neurodegenerative diseases from large and heterogeneous data.
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Abstract

We consider the problem of twenty questions with noisy answers, in which we seek to
find a target by repeatedly choosing a set, asking an oracle whether the target lies in this
set, and obtaining an answer corrupted by noise. Starting with a prior distribution on the
target’s location, we seek to minimize the expected entropy of the posterior distribution.
We formulate this problem as a dynamic program and show that any policy optimizing
the one-step expected reduction in entropy is also optimal over the full horizon. Two
such Bayes optimal policies are presented: one generalizes the probabilistic bisection
policy due to Horstein and the other asks a deterministic set of questions. We study the
structural properties of the latter, and illustrate its use in a computer vision application.

Keywords: Twenty questions; dynamic programing; bisection; search; object detection;
entropy loss; sequential experimental design; Bayesian experimental design
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1. Introduction

In this paper we consider the problem of finding a target X* € R? by asking a knowledgeable
oracle questions. Each question consists in choosing a set A € R¢, querying the oracle whether
X* lies in this set, and observing the associated response. While this is closely related to the
popular game of ‘twenty questions’, we consider here the case where answers from the oracle
are corrupted with noise from a known model. This game appears naturally in a number of
problems in stochastic search, stochastic optimization, and stochastic root finding. In this paper
we present an illustrative application in computer vision.

We consider a Bayesian formulation of this problem using entropy loss. In dimension
d = 1 we seek to minimize the expected entropy of the posterior after a fixed number of
questions. After formulating the problem in Section 2, we show in Section 3 that any policy
myopically maximizing the expected one-step reduction in entropy is also optimal in a fully
sequential sense (Theorems 1 and 2), and to follow such a policy it is sufficient to query sets A
whose posterior probability of containing X* is a specific value given in Theorem 2. We then
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provide two specific Bayes optimal policies. The first, described in Section 4.1, poses questions
about intervals, A = (—o00, x). The second, which we call the dyadic policy and describe in
Section 4.2, poses questions about more general sets. We also provide further analysis of this
second policy: a law of large numbers and a central limit theorem for the posterior entropy
(Theorem 3), and an explicit characterization of the expected number of size-limited noise-free
questions required to find the target after noisy questioning ceases (Theorem 4). In Section 5
we consider a modified version of the entropic loss in d = 2 dimensions, and show that a
simple modification of the dyadic policy is asymptotically Bayes optimal for this loss function
(Theorem 5). In Section 5 we also provide a central limit theorem for the posterior entropy
under this policy (Theorem 6). In Section 6 we provide an illustrative application in computer
vision. Concluding remarks are given in Section 7.

When the noise corrupting the oracle’s responses is of a special form, that of a symmetric
channel, the Bayes optimal policy ford = 1 with questions A restricted to be intervals (described
in Section 4.1) takes a particularly natural form: choose A = (—o0, x), where x is the median
of the posterior distribution. This policy, called the probabilistic bisection strategy, was first
proposed in [12] (republished in [13]). This policy was recently shown to be optimal in the
binary symmetric case by one of the authors in [31]. Burnashev and Zigangirov [4] introduced
a similar procedure that measures on either side of the median of the posterior over a discrete
set of points, and showed that its error probability decays at an asymptotically optimal rate.
For a review of these two procedures, see [S]. Both Karp and Kleinberg [14] and Ben-Or and
Hassidim [1] also considered a noisy binary search problem with constant error probability
over a discrete set of points, and gave optimality results for policies similar to measuring at the
median of the posterior. In [14], this is part of a larger analysis in which the error probability
may vary. Nowak [19], [20] analyzed noise-tolerant versions of generalized binary search for
searching in a space of hypotheses. A parallel line of research has considered the case when
the oracle is adversarial rather than stochastic, and is surveyed in [21].

When the questions are restricted to be intervals, the problem that we consider is similar
to the stochastic root-finding problem considered in the seminal paper [24] and generalized to
multiple dimensions in [3]. In the stochastic root-finding problem, one chooses a sequence of
points x1, x2, ... to query, and observes the corresponding values f(x1), f(x2), ... of some
decreasing function f at x, obscured by noise. The goal in this problem is to find the root
of f. Procedures include the stochastic approximation methods of [3] and [24], as well as
the Polyak—Ruppert averaging introduced independently in [22] and [25]. Asymptotic rates of
convergence of these procedures are well understood; see [15, Chapter 10]. Our problem and
the stochastic root-finding problem are similar because if X* is the root of f then querying
whether X* is in (—o00, x) can be recast as querying whether f(x) < 0. The problems differ
because the noise in observing whether f(x) < 0 depends upon x and is generally larger when
f(x) is closer to 0, while in our formulation we assume that the distribution of the oracle’s
response depends only on whether X* is in the queried subset or not.

Both our problem and stochastic root-finding lie within the larger class of problems in
sequential experimental design, in which we choose at each point in time which experiment to
perform in order to optimize some overall value of the information obtained. The study of this
area began with Robbins [23], who introduced the multi-armed bandit problem, later studied
in [2], [11], [16], [32], and [33], among others. For a self-contained discussion of sequential
experimental design in a Bayesian context, see [7].



116 B. JEDYNAK ET AL.

2. Formulation of the problem

Nature chooses a continuous random variable X* with density po with respect to the
Lebesgue measure over R, The fact that X* is continuous will turn out to be important
and the arguments presented below do not generalize easily to the case where X* is a discrete
random variable.

To discover X*, we can sequentially ask N questions. Asking the nth question, 0 < n <
N — 1, involves choosing a Lebesgue measurable set A, C R and evaluating: Does X* belong
to A, ?". To avoid technical issues below, we require that A,, is the union of at most J,, half-open
intervals, where Jy, J1, . .. is a fixed sequence of natural numbers. The answer, denoted Z,,, is
the indicator function of the event {X™* € A,}. However, Z, is not openly communicated to us.
Instead, Z, is the input of a memoryless noisy transmission channel from which we observe the
output Y, 1. Here Y, is a random variable which can be discrete or continuous, univariate
or multivariate. The memoryless property of the channel expresses the fact that Y}, depends
on Z,, but not on previous questions or answers. As a consequence, repeatedly answering the
same question may not provide the same answer each time. Moreover, we assume that the
distribution of Y, 41 given Z, does not depend on n. There is a measure p on the space in
which Y, takes value, and the density with respect to w of Y41 given Z,, is

P €dyl Zo=2 _ [ i(y) ifz=1,
du fo(y) ifz=0.

If Y,+ is discrete then we take w to be a discrete measure, while if Y, is continuous we
take u to be the Lebesgue measure. We require that the Shannon entropy of the conditional
distribution P(Y,,+1 € - | Z, = z) be finite for both z = 0 and z = 1. At any time step n,
we characterize what we know about X* by computing the conditional density p,, of X* given
the history of previous measurements D, = (A, Ym+1)’:n_:10. Following the terminology of
Bayesian statistics, we call p, the posterior density. The study of the stochastic sequences of
densities p,, under different policies, constitutes the main mathematical contribution of this
paper. For an event A, we will use the notation

)

pn(A) = f pn(x)dx.
A
The posterior density p,+1 of X* after observing D, is elegantly described as a function of

Pn»> Jos f1, the nth question A,, and the answer to this question Y, 1.

Lemma 1. On the event A, = A and Y,+1 =y, the posterior density on X* is

1
Pn+1(u) = g(ﬂ ) Lueay +fo0(y) Liugay) pu(u),

where
Z = fiy)pn(A) + fo(y)(1 — pa(A)). (2)
Proof. On the event A, = A and Y,4+; = y, the posterior density p,+1(u) = P(X* €
du | Dy41)/dx = P(X* €du | D, Ay = A, Yy41 = y)/dA, where A is the Lebesgue mea-
sure, can be written using Bayes’ formula as
1 P(Yyy1€dy | Dy, Ay = A, X*=u)P(X* €du | D,, A, = A)
Zz du dx

1
= E(fl ) Yweay + o) Liugay) pn(u),
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where Z is the normalizing constant,

7 - f 109 Liwea) +fo ) Liugay) pa (@) du.

Later, we will take conditional expectations given the density p,,. Formally, these conditional
expectations are taken with respect to the sigma-algebra generated by the stochastic process
{pn(u): u € I}. Because p,(u) for each u is a function of D,, by the recursive expression in
Lemma 1, this sigma-algebra is a subset of the sigma-algebra generated by D,,.

We will measure the quality of the information gained about X* from these N questions
using the Shannon differential entropy. The Shannon differential entropy (see [6, Chapter 9]),
or simply ‘the entropy’ of p,, H(p,), is defined as

400

H(py) = _f pn(x)log p,(x) dx,
—00

where log is the logarithm to base 2. In particular, we consider the problem of finding a

sequence of N questions such that the expected entropy of X* after observing the Nth answer

is minimized.

We will write this problem more formally as the infimum over policies of the expectation
of the posterior entropy, but before doing so we must formally define a policy. Informally, a
policy is a method for choosing the questions A,, as a function of the observations available
at time n. The technical assumption that each question A, is a union of only finitely many
intervals ensures the Borel measurability of H (py) under each policy.

First, A, is the union of at most J,, half-open intervals, and so may be written as

Jn
Ap = U[an,j» bn,j)’
j=1
where a,, ; < b, ; are elements of R = RU{—o00, +00}. If ay,j = —oo then the corresponding
interval is understood to be open on the left. Here Jo, Ji, ..., Jy—1 is any fixed sequence of

natural numbers that is the same for all policies. If A, comprises strictly less than J, intervals
then we may take a, ; = b, ; for some j. When A, is written in this way, the space in which
A, takes values may be identified with the space A, = {(a;,b;): j =1,...,Jy, aj < bj},

which is a closed subset of sz".

Then, with fixed pg, p, may be identified with the sequence ((a,,;, bm,j)jj.’i 1 Ym+1)z_:]0,
which takes values in the space S, = (Ag x -+ x A,_1) x R". Furthermore, the function
pn = H(p,) may be written as a measurable function from S, to R.

After having identified possible values for A, with points in A, and possible values for p,
with points in S,, we define a policy 7 to be a sequence of functions 7 = (g, 7y, ...), where
Tt S, — A, is a measurable function. We let IT be the space of all such policies. Any such
policy 7 induces a probability measure on ((ay, j, by, j)jJ.”: 1> Yot ),11v:—01. We let E* indicate the
expectation with respect to this probability measure. In a slight abuse of notation, we will
sometimes talk of p € S, and A € A,, by which we mean the density p associated with a
vector in S,,, or the set A associated with a vector in A,,.

With this definition of a policy 7, the associated measure E™, and the space of all policies
[1, the problem under consideration may be written as

inf E"[H (py)]. (3)
mell
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Any policy attaining the infimum is called optimal. We consider this problem for the general
case in Section 3, and for the specific cases of d = 1 and d = 2 in Sections 4 and 5, respectively.
In Section 5 we also consider a modification of this objective function that separately considers
the entropy of the marginal posterior distribution, and ensures that both entropies are small.
This prevents a policy from obtaining optimality by learning one coordinate of X* without
learning the other.

3. Entropy loss and channel capacity

In this section we consider the problem (3) of minimizing the expected entropy of the
posterior over R?. We present general results characterizing optimal policies, which will be
used to create specific policies in Sections 4 and 5.

We first present some notation that will be used within our results. Let ¢ be the function
with domain [0, 1] defined by

) = Hufr + 1 —u) fo) —uH(f1) — (I —u)H(fo);

¢(u) is a mutual information for each u (see (7) and (10) below). The associated channel
capacity C is

C = sup ¢(u).
uel0,1]

Below, in Theorem 1, we show that this maximum is attained in (0, 1). Let u* € (0, 1) be a
point attaining this maximum, so ¢ (u*) = C.

We show that an optimal policy consists of choosing each A, so that p,(A,) = u*. When
the A, are chosen in this way, the expected entropy decreases arithmetically by the constant C
at each step. Moreover, if the communication channel is symmetric in the sense that (1 —u) =
o) forall0 <u <1, thenu* = % In the noiseless case, or even the case where the supports
of fo and f] do not overlap, the model is symmetric, C = 1, and the obvious bisection policy
is optimal.

Optimal policies constructed by choosing p,(A,) = u™ are greedy policies (or ‘knowledge-
gradient’ policies, as defined in [9]), since they make decisions that would be optimal if only
one measurement remained, i.e. if N were equal to n + 1. Such greedy policies are usually
used only as heuristics, and so it is interesting that they are optimal in this problem.

Our analysis relies on dynamic programming. To support this analysis, we define the value
function

V(p,n)zyjrelfHE”[H(pN)Ipnzp], peS,n=0,...,N.

Standard results from controlled Markov processes show that this value function satisfies
Bellman’s recursion (see Section 3.7 of [8]),

V(p,n) = Aiél}; E[V(ppt1,n+1) | Ay = A, pp = pl, pESy, n<N, “4)

where the expectation is taken over Y, 1, and any policy attaining the minimum of (4) is optimal
(see Section 2.3 of [8]). In general, the results of [8] for general Borel models imply only that
V(-,n): S, — R is universally measurable, and do not imply Borel measurability. However,
we show below in Theorem 2 that, in our case, V (-, n): S, — RisaBorel-measurable function.

As apreliminary step toward solving Bellman’s recursion, we present the following theorem,
which shows that minimizing the expected entropy of the posterior one step into the future can
be accomplished by choosing A,, as described above. Furthermore, it shows that the expected
reduction in entropy is the channel capacity C.
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Theorem 1. We have
Aiélg E[H(pnt1) | Ap = A, pul = H(pn) — C, (%)
where the expectation is taken over Y, 1. Moreover, there exists a point u*™ € (0, 1) such that
¢u*) = C, and the minimum in (5) is attained by choosing A such that p,(A) = u*.
Proof. We first rewrite the expected entropy as
E[H(pny1) | Ap = A, pul = H(py) — I(X*, Y1 | An = A, pn),

where I (X*, Y,+1 | Ay = A, pp) is the mutual information between the conditional distribu-
tions of X* and Y, 4+ (see [6, Chapter 2]), and we recall that the entropy of X™* given A, = A
and p, is exactly H(p,). This leads to

inf E[H(pn—H) | Ay = A, pul = H(py) — sup I(X*» Yn—l—l | Ay = A, pp). (6)
A€h, A€h,

Temporarily fixing A, we expand the mutual information as
I(X*a YVit1 | An=A,pn) = HYnt1 | Ap = A, pn) — H(Yp41 | X*, A, =A, pn), (1)

where H (- | -) is the conditional entropy, as defined in [6, Chapter 2]. Using (2),

H(Yy41 | An = A, pp) = H(pn(A) f1 + (1 = pn(A)) f0). (8)
Also,
HY,41 | X*, Ap = A, Pn) = /pn(u)H(Yn-H | X* =u, A, = A, Pn) du
= / pn(W)H(f1) du +f pn(u)H(fo) du
ueA uéA
= H(f1)pa.(A) + H(fo)(1 — py(A)). ()]
The difference between (8) and (9) is ¢(p,(A)), and so
I(X*, Yyt1 | An = A, pn) = @(pn(A)). (10)

This and (6) together show that

sup I(X*, Yui1 | Ayw = A, pn) = sup ¢(pn(A)) = sup ¢(u) =C.

Ach, Ach, uel0,1]
This shows (5), and that the infimum in (5) is attained by any set A with ¢(p,(A)) = C. It
remains only to show the existence of a point u* € (0, 1), with ¢(u*) = C.

First, ¢ is a continuous function, so its maximum over the compact interval [0, 1] is attained.

If the maximum is attained in (0, 1) then we simply choose u™ to be this point. Now consider the
case when the maximum is attained at u € {0, 1}. Because ¢ is a mutual information for each
u, it is nonnegative. Also, ¢(0) = ¢(1) = 0. Thus, if the maximum is attained at u € {0, 1}
then ¢(u) = O for all u, and we can choose u™ in the open interval (0, 1).

We are now ready to present the main result of this section, which gives a simple character-
ization of optimal policies.
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Theorem 2. Any policy that chooses each A, to satisfy p,(A,) = u™ € argmax,c[o,1] ¢ (u) is
optimal. In addition, for each n, the value function V (-, n): S, — R is Borel measurable and
is given by
V(pp,n) = H(py) — (N —n)C. (11
Proof. Itisenoughto show that, foreachn =0, 1, ..., N, the value functionis given by (11),
and that the described policy achieves the minimum in Bellman’s recursion (4). Measurability
of V(-,n): S, — R then follows from the fact that p, — H(p,) is Borel measurable when
written as a function from S, to R. We proceed by backward induction on n. The value function
clearly has the claimed form at the final time n = N. Now, fix any n < N and assume that the
value function is of the form claimed for n 4+ 1. Then, Bellman’s recursion and the induction
hypothesis show that

Vi(pn,n) = Ainf E[V(pny1.n+1) | Ap = A, pal

= inf B{H(pu1) = (N =n—DC | Ay = A, py]

E n

= Algg E[H(pp+1) | Aw=A, pul = (N —n—-1)C (12)

=H(p) —C—-(N-n—-DC
= H(pp) — (N —n)C,

where we have used (5) in Theorem 1 to obtain the fourth equality. Theorem 1 also shows
that the infimum in (12) is attained when A satisfies p,(A) = u*, and so the described policy
achieves the minimum in Bellman’s recursion.

We offer the following interpretation of the optimal reduction in entropy shown in Theorem 2.
First, the entropy of a random variable uniformly distributed over [a, b] is log(b — a). The
quantity 27X for a continuous random variable X can then be interpreted as the length of the
support of a uniform random variable with the same entropy as X. We refer to this quantity
more simply as the ‘length of X . If the prior distribution of X* is uniform over [0, 1] then the
length of X* under pg is 1 and Theorem 2 shows that the expected length of X* under py is
no less than 2~C¥ | where this bound on the expected length can be achieved using an optimal
policy.

We conclude this section by discussing u* and C in a few specific cases. In general, there
are no simple expressions for #* and C. However, in certain symmetric cases the following
proposition shows that u™ = %

Proposition 1. If the channel has the symmetry
ew) =9 —u) forall0 <u <1 (13)
then % € arg maxyco,1] ¢(u) and we may take u™ = % Furthermore, if
H(ufi + (I —u)fo) = Hufo+ (1 —u)f1) forallu € [0, 1] (14)
then this is sufficient to guarantee (13).

Proof. Let u' be a maximizer of ¢(u). It might be equal to u*, or if there is more than
one maximizer, it might differ. Note that = 2u + 2(1 u’). The function ¢ is concave
(see [6, Theorem 2.7.4, Chapter 2]) 1mp1y1ng that <p( ) > 2<p(u/) + 2(,0(1 — u’). Now, using
o) = ¢(1 —u'), we obtain go( ) > @(u’), which shows that 4 5 € argmax,eo,1] ¢ (). If (14)
is met then H ( fo) = H(f1) by taklng u = 0, and (13) follows dlrectly from the definition of ¢.
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TABLE 1: Channel capacity and the value u™ at which the channel capacity is achieved. The binary
symmetric case is treated in [31].

Channel Model Channel capacity u

0 1
Binary symmetric fo 1—¢ e 1 —h(e)
fi £ 1—c¢

=

0 1 e
Binary erasure fo l—c¢ 0
N 0 1—¢

™
—_
|
™

N —

0 1
1/(1 )
% _ _ * A S A,
7 fo 1 0 h(u*(1 —e&)) —u*h(e) [T h@ /=2
fi e l—e¢
Multivariate normal fo ~ N(mp, ) Not analytical %
Symmetric f1~N(@mp, %) Not analytical %

A few simple channels with expressions for u* and C are presented in Table 1. We use
the notation B(u) for a Bernoulli random variable with parameter u and A (u) for H(B(u)),
the entropy of this random variable. In the multivariate normal case, u* = % follows from
Proposition 1 because u f1 + (1 — u) fy is the multivariate normal density with mean um + (1 —
u)mg and variance ¥, and the entropy of a multivariate normal distribution does not depend on
its mean, implying that (14) is satisfied.

4. One-dimensional optimal policies

We now present two specific policies in dimension d = 1 that satisfy the sufficient conditions
for optimality given in Theorem 2: the probabilistic bisection policy and the dyadic policy.
After defining these two policies in Sections 4.1 and 4.2, we study the sequence of entropies
(H(pp): n > 1) that they generate, focusing on the dyadic policy. In addition to Theorem 2,
which shows that E*[H (p,)] = H(po) — nC for any optimal policy 7, the analysis of the
dyadic policy in Section 4.2 provides a strong law of large numbers and a central limit theorem
for H(py). In further analysis of the dyadic policy, in Section 4.3 we analyze the number of
size-limited noise-free questions required to find X™* after noisy questioning with the dyadic
policy ceases, which is a metric that is important in the application discussed in Section 6.

To support the analyses in Sections 4.1 and 4.2, we first give here a general expression for the
one-step change in entropy, H (p,+1) — H(py), under any policy 7 satisfying p, (A,) = u*.

Lemma 2. We have

H(pp+1) — H(pn)

_ (B(u*le(y))’ B(u*))

u(l —u™*) _
T(fl()’) — foO)(H(py) —logu* — H(p,) +log(1 —u*)),  (15)
where D is the Kullback—Leibler divergence.

+
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Proof. First, we define two densities:

pn(x) . pu(x) . -

—2 ifxeA,, _ ifx e A,
i ={"w "0 prw={1-w "

0 ifx e A, 0 ifx e A,

where A, is the complement of A,,. Their respective entropies are

1
H(p;) = logu* — u—*fA pn(x)log pu(x) dx,

H(p,) =log(1 —u*) — /A Pn(x)log p,(x)dx,

1 —u*
and H(p,) = u*H(p;") + (1 —u*)H(p,)) + h(u*).
Using Lemma 1, for a given observation Y, 41 = y, we have

H(ppt1) =10gZ — ppy1(Ay)log fi1(y) — pn—i—l(An) log fo(y)

1 1
-~ AiO) f P 108 pa(x) dx = — fo(2) / Pu(x) log pa(x) dx
A, Ay

1 1
=logZ — —ufi(y)log fi(y) — — (1 —u) fo(y) log fo(y)

_ l * * +\y l % Ry —
74 fily)(ogu™ — H(p,)) Z(l u”) fo(y)(log(l —u™) — H(p,)).
Expanding and rearranging, we obtain (15).

Note also that, under an optimal policy, the density of Y, 41 is the mixture of densities
u* fi 4+ (1 —u*) fo according to Lemma 1, and the random variables Y7, Y», ... are independent
and identically distributed (i.i.d.).

4.1. Probabilistic bisection policy

We first consider the case when questions are limited to intervals A = (—o0, a), a € R. This
limitation appears naturally in applications, such as stochastic root finding [24] and signal esti-
mation [5]. In this case, an optimal policy consists of choosing a,, such that | f’éo pn(x)dx = u*.
Such an a,, always exists, but is not necessarily unique.

When the model is symmetric in the sense of Proposition 1, u* = %, and q,, is the median
of p,. This policy of measuring at the median of the posterior is the probabilistic bisection
policy introduced in [12]. Thus, the optimal policy with interval questions and general channels
is a generalization of the probabilistic bisection policy, and we continue to refer to it as the
probabilistic bisection policy even when u™ # %

We briefly consider the behavior of (H (p,): n > 1) under the probabilistic bisection policy.
We assume a binary symmetric channel with noise parameter €. Recall that u™* = % in this case,

and FF) .
141 1

H(pps1) — H(pn) = h(e) — 1+ (3 — &) Wut (H(p,)) — H(p,)),

where the W, are i.i.d. Rademacher random variables. In this situation, even when pg is the
density of the uniform distribution over the interval [0, 1], the behavior of the process H (p,)
can be complicated. A simulation of H(p,) is presented in Figure 1. The high degree of

Moreover,
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FiGURE 1: The process H(p;) for the binary symmetric channel. Here pg is Uniform([0, 1]). Top: the

questions are chosen by the probabilistic bisection policy. 7Top left: ¢ = 0.2 and C = 0.28. Top

right: ¢ = 0.4 and C = 0.03. Bottom: the questions are chosen according to the dyadic policy.

Bottom left: binary symmetric channel ¢ = 0.2. Bottom right: normal channel, with fy ~ N(—1, 1),
f1~ N(1,1),and C = 0.47.

variation of H (p,) around its mean value evident in Figure 1 may be disadvantageous in some

applications. We do not pursue the probabilistic bisection policy further in this paper.

4.2. Dyadic policy

Consider now the situation where all sets in A, are available as questions, and pg is piecewise
constant with finite support. Let I = {[;: k =0, ..., K — 1} be a finite partition of the support
of po into intervals such that pg is constant and strictly positive in each of these intervals. We
assume that each interval I is closed on the left and open on the right, so I = [ag, bg) with
ar € R and by € R. This assumption is without loss of generality, because if it is not met,
we can alter the prior density po on a set of Lebesgue measure O (which does not change the
corresponding prior probability measure) to meet it. We also assume that the constants J,, used
to construct A, satisfy J,, > 2"+1 K If this restriction is not met then we are free to increase
J, in most applications.

Foreachk =0, ..., K — 1, we partition I into two intervals, A 2k and Ag 24+1:

Ao,2k = [ao 2k, bo2k) = lak, ax + u™(bx — ax)),
A0,2k+1 = [a0,2k+1. bo,2k+1) = [ax + u™(bx — ax), b).
With this partition, the mass po(Ao.2x) = u™* po(Ix). The question asked at time O is

K—-1

Ao = ] Ao
k=0

and po(Ao) = u*.
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Po(x) Prior
0 X 1

AO,O AO,I n=0

AIO A11 A1,2 Am n=1

Az,o A1,1 Az,z A2,3 A2,4 Az.s A2,6 A2,7 n=2

FIGURE 2: Illustration of the dyadic policy when pq is uniformon [0, 1] and u™ = %. The prioris displayed
above illustrations of the sets A, x forn = 0, 1, 2. Each question A, is the union of the dark gray subsets
Ap i for that value of n.

We use a similar procedure recursively for eachn = 0, 1, ... to partition each A, x into two
intervals, A, 11,2« and A,41 2k+1, and then construct the question A, from these partitions.
Let K, =2"t'K,and, fork =0, ..., K, — 1, define

Ani12k = [@ni 1,2k buy1,26) = [an ks ng + u (buk — an k),
Ani12k41 = [@ni1,2k115 bug1,2k41) = [ank + u™ (Dp g — an i), buk)-

Then, from these, the question to be asked at time n + 1 is

Ku—1

Apg1 = U Ant1,2k-
k=0

This construction is illustrated in Figure 2.
Observe that p,+1(An+1.2k) = ™ ppt1(A, k) implies that

Kn—1
Port(Ans)) = D w*puyi(Ang) = u*
k=0
because {A, x: k=0, ..., K, — 1} is a partition of the support of pg. Thus, this construction
satisfies p,(A,+1) = u*, and is optimal. In addition, the sets Ag, ..., A,—1 are constructed

without knowledge of the responses, and, thus, this policy is nonadaptive. This is useful in
applications, allowing multiple questions to be asked simultaneously. We call this policy the
dyadic policy because each question is constructed by dividing the previous question’s intervals
into two pieces.

We now provide an analysis that leads to a law of large numbers and a central limit theorem
for H(p,) under this policy when # is large. Under the dyadic policy, we have

H(pl) = H(py) +logu™ and H(p,) = H(py) + log(1 —u™),

which implies, using (15), that

u* fi (Yng1) ) . )
H(pus1) — H(py) = —D( B . B NV
(Prt1) = Hpn) ( (”*fl(Yn+1)+(1—M*)fO(YnH) @) an
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where Y, is, as already stated, a sequence of i.i.d. random variables with density u* f1 4+ (1 —
u*) fo. Weread from (17) that H(p,,) is, in this case, a sum of i.i.d. random variables. Moreover,
each one is bounded above and below. Indeed,

0< D<B( u*fl(Yn-l—l) >,B(u*))
u* f1(Ype1) + (0 —u*) fo(Yng1)
< max(D(B(0), B(u™)), D(B(1), B(u*))),

implying the bound
min(log(u™), log(1 — u®)) < H(pp+1) — H(pa) < 0. (18)

For the binary symmetric channel, (17) reduces to a constant, as noted in (16). This proves the
following theorem.

Theorem 3. For any piecewise constant po, using the dyadic policy,

H
lim (Pn) = —C almost surely (a.s.) (19)

n—00 n

and
H(pn) +nC p

: D 2

Jim NG = N(0,07), (20)
where o2 is the variance of the increment H(pu+1) — H(pp), which can be computed from the
distribution given in (17). A degenerate situation occurs for the binary symmetric channel with
noise €. In this case, the sequence H(p,) = H(pg) — nC is constant.

The dyadic policy is illustrated in the two bottom diagrams of Figure 1, where H (p,) is
plotted as a function of n. The binary symmetric channel model with ¢ = 0.2 is shown in
the bottom-left diagram. The sequence H (p,) is constant, in sharp contrast with the behavior
of H(p,) for the same model under the probabilistic bisection policy, shown in the top-left
diagram. Finally, a normal channel is presented in the bottom-right diagram.

4.3. Expected number of noise-free questions

In this section we consider an alternative to entropy for measuring performance, which arises
in the example considered in Section 6. We suppose that, in addition to the noisy questions
previously discussed, we also have the ability to ask a noise-free oracle whether X™* lies in
a given set, where the sets about which we can ask noise-free questions come from some
restricted class, e.g. their size is below a threshold. In Section 6, the sets about which we can
ask noise-free questions correspond to pixels in an image. We suppose that after a fixed number
N of noisy questions, we query sets using the noise-free questions until we find X*. The loss
function that arises naturally in this situation is the expected number of noise-free questions
until X* is found.

Given a posterior py resulting from the first stage of noisy questions, the optimal way in
which to ask the noise-free questions is to first sort the available sets about which noise-free
questions can be asked, in decreasing order of their probability of containing X™* under py.
Then, query these sets in this order until X* is found. Observing that X* is not in a particular
set alters the probability of the other sets, but does not change the order of these probabilities.
Thus, it is sufficient to ask the noise-free questions in an order that depends only upon py, and
no subsequent information.
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We give below in Theorem 4 an explicit expression for the expected number of noise-
free questions required after the dyadic policy completes. Before giving this expression in
Theorem 4, we have the following preliminary result. In both this result and Theorem 4, we
assume the dyadic policy, a uniform pg, and a binary symmetric channel with noise parameter ¢.

Proposition 2. Foreachk € {0, ..., 2N _ 1}, let My be the number of noisy questions A, whose
answer has indicated X* € Ay_1 , either via AN—1x C ApandY, =1, or AN—1x C I\ Ay
and Y, = 0. Then, the density of Ay_1 x under py is

111712V (1 — e)MkgN =Mk

Furthermore, for eachm € {0, ..., N}, the number of k with My = m is deterministic, and is
equal to (nN1)

Proof. In the proof, we refer to Ay_1 as Bx. During noisy questioning, each time an
answer indicates X* € By, we multiply the posterior density on By by 2(1 — ¢), and each
time an answer indicates X* ¢ By, we multiply by 2¢. Since the prior density was |7|~!, the
posterior density on By after all N measurements is |I|~12V (1 — g)MkgN—Mi

For each k € {0,...,2N — 1}, let by, = 1{g,ca,), and define the binary sequence by =
(bx1, - --,brn). By construction of the sets By under the dyadic policy, each by is unique.
Since there are 2" possible binary sequences of N bits, and 2V sets By, the mapping between
By and by is a bijection.

Consider a sequence of answers to noisy questions, Y, ..., Yn. For each by, define a subset
Dy =1{ne{l,...,N}: by, = Y,}. Each by defines a unique subset Dj. Since there are 2N
subsets and 2V sequences by, each subset D C {1,..., N} is equal to some Dy. Thus, the
mapping between by and Dy is a bijection.

Because My = |Dy|, the number of k with My = m is equal to the number of subsets
D C {1, ..., N} of size m. This number is exactly (Z)

Proposition 2 shows that the number of sets Ay_jx with any given posterior density
|1]712V (1 —¢)™eN =™ is deterministic. Figure 3(a) shows this posterior probability distribution,
after sorting the sets according to their density, for N = 5 and ¢ = 0.3. The expectation under
pn of the number of noise-free questions required to find X* depends only upon this sorted
posterior probability density, and is thus also deterministic. We now give an expression for this
expectation in Theorem 4.

Theorem 4. In each interval An_1 x fork =0, ..., 2N — 1, assume that there are £ disjoint,
equally sized sets about which we can ask noise-free questions. Then the expectation under py
of the number of noise-free questions required to find X* is

N N N
N () +1/¢ N
1—g)" N—m| \m 0.
2 (m)( e [ P D P
m=0 m'=m+1
Proof. First, if we have a collection of disjoint subsets C1q, ..., Cg, each with probability

1/K of containing X*, and we query each subset in order of increasing index until we find X*,
then we ask k questions when X* € Cj and the expected number of questions asked is
S kP(X* € Cr) =Y. k/K = (K 4 1)/2. Under py, Proposition 2 shows that X*

has probability
N
( >(1 —g)meN—m (21)
m

of being in a subset Ay_;x with My = m, because there are (Z ) such intervals, each of
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FIGURE 3: (a) The posterior density py for the binary symmetric channel with the dyadic policy, with

subsets Ay_1 x sorted in order of decreasing posterior density py(x), and N = 5. (b) The expected

number of noise-free questions as a function of N, for a fixed collection of 216 gubsets about which
noise-free questions may be asked. In both (a) and (b), ¢ = 0.3.

size 2~N|I|, and each of density |/ |~12N (1 — ¢)™eN =™ Then, because the number of noise-
free questions available in each Ay_j is €, the expected number of noise-free questions,
conditioned on X* being in a subset Ay_1 x with My = m, is

N

(Me+1 N
o+ > (m,>z. (22)

m'=m+1

Here, the first term is the number of questions asked in subsets with M = m, and the second
term is the number of questions asked in subsets with My > m, which had a strictly higher
density py(x) and were queried earlier. The result follows by combining (21) and (22) and
summing over k.

Using Theorem 4, we consider the effect of varying N. Suppose that the sets about which
noise-free questions may be asked are pixels in an image, as in the example in Section 6. Take
I = [0, 1], and suppose that each pixel is of size 2~ and occupies a region [k2~, (k+1)27%]
forsome k = 0, ..., 2L, If sets Ay_1 ; must contain an integer numbers of pixels then we may
naturally consider any N between 0 and L. For any such N, the number of pixels £ in a subset
An_1x is £ = 2E7N_ In this setting, the expected number of noise-free questions asked as a
function of N is shown in Figure 3(b) for L = 16 and ¢ = 0.3. It can be seen from the figure
that there is a dramatic decrease in the expected number of noise-free questions as the number
of noisy questions N increases.

S. Optimal policies in two dimensions with entropy loss

We now consider the case d = 2, in which X™* is a two-dimensional random variable,
X* = (X7, X3), with joint density po. To minimize the expected entropy E[H (py)] of the
two-dimensional posterior distribution on X* at time N, Theorem 2 from Section 3 shows that
it is optimal to use any policy satisfying p,(A,) = u*.

While the objective function E[ H (py)] is natural in dimension d = 1, it has a drawback in
d = 2 and higher dimensions. This is well illustrated using an example. Assume that X7} and
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X ’2" are independent and uniformly distributed over intervals of lengths 51 and 5, respectively.
Then H(p) = log(s1s2). In this case, H(p) can be arbitrarily small even if the entropy of one
of the marginal densities remains large, e.g. so = 1.

This leads us to consider objective functions without this drawback. For example, we
might wish to solve inf; E* [max(H(pn), H2(pn))], where Hi(py) = H(f pn (G, u2)dus)
and H>(py) = H( f pn(u1, -)duy) are the entropies of the marginals. However, solving this
problem directly seems out of reach. Instead, we focus onreducing E” [max(H;(py), H2(pn))]
at an asymptotically optimal rate by solving

PO |
V(p) = inf lim inf — E™ [max(H;(pn), H2(pn)) | po = pl. (23)
T N—ooo N

We use the lim inf to include policies for which the limit might not exist. Throughout this
section, we assume that both Hi(pg) and H»(po) are finite.

For further simplification, we assume that questions concern only one coordinate. That is,
the sets queried are either of type 1, A, = B x R, where B is a finite union of intervals of R, or,
alternatively, of type 2, A, = R x B. In each case we assume that the response passes through
a memoryless noisy channel with densities f and f D for questions of type 1, and fo and
f1 ) for questions of type 2. Let C; and C; be the channel capacities for questions of type 1
and 2, respectively. We also assume that pg is a product of its marginals. This guarantees that
py for all n > 0 remains a product of its marginals and that only one marginal distribution is
modified at each point in time. This is shown by the following lemma.

Lemma 3. Assume that p,,(uy, u3) = pn (D (u1) pn ) (u3) and that we choose a question of type 1
with A, = B x R. Then, given Y,,11 =y,

1
Pry1(ur, uz) = Z—l(ff” ) Vyey + 187 0) Ly g8) P @) p2 (w2),

where Zi = i ) pi” (B) + f3 ()1 = pi” (B).
Similarly, if we choose a question of type 2 with A, = R x B then

1
pn+1<u1,u2>=z—2<f Y0 Yy + 2 ) Vnes) P u2) p&P (),

where Zy = f12 () py? (B) + £ ()1 — pi? (B)).

Proof. The proof is straightforward using Bayes formula, and is similar to the proof of
Lemma 1 in the one-dimensional case.

In the two-dimensional setting, any policy can be understood as making two decisions at
each time n. The first decision is which coordinate to query, that is, whether to ask a question
of type 1 or type 2. Given this choice, the second decision is which question of this type to ask,
which corresponds to a finite union of intervals of R. As before, these decisions may depend
only upon the information gathered by time n, for which the corresponding sigma-algebra is .
For N > 0, let Sy be the number of questions of type 1 answered by time N. That is, Sy is
the number of n € {0, ..., N — 1} such that A, is of the form A,, = B x R. We take Sy = 0.

We first present a lower bound on the expected decrease in the entropy of each marginal
posterior distribution.

Lemma 4. Under any valid policy r,

E"[Hi(pn)] = Hi(po) — C1E"[Su],  E"[Ha(pp)] = Ha(po) — Ca(n — E7[Sy]).
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Proof. Define M\ = Hi(pn) + C1S, and M\> = H>(p,) + C2(n — S,). We will show
that MD and M® are submartingales. Focusing first on M| we calculate

E" (M)} | Fal = E"[Hy(pus1) | Fal + C1Sn41

since S,+1 1S F,-measurable. We consider two cases. First, if S,4+1 = S, (which occurs if
A, is of type 2) then Hi(p,+1) = Hi(py) and the F,-measurability of Hi(p,) implies that
E™ [M,gg1 | £.1= M,gl). Second, if S,+1 = S, + 1 (which occurs if A, is of type 1) then
Theorem 2 implies that E” [H{ (py+1) | F2]1 = Hi(p,) — C. Hence,

E" M) | Fal = Ci(Sy + D) + Hi(py) — €1 = MY,

which shows that M,El) is a submartingale. The proof is similar for M,(,2>.
Now, because M,gl) is a submartingale, E™ [M,gl) 1>M (1), which implies that E* [H (p,)] >
Hi(po) — C1 E™[S,]. Proceeding similarly for M,Ez) completes the proof.

Consider the following policy, notated 77 *. At step n, choose the type of question at random,
choosing type 1 with probability C»/(C1 4+ C») and type 2 with probability C;/(C; + C3).
Then, in the dimension chosen, choose the subset to be queried according to the one-dimensional
dyadic policy.

We show below in Theorem 5 that 7* is optimal for the objective function (23). Before
presenting this result, which is the main result of this section, we present an intermediate result
concerning the limiting behavior of 7 *. This intermediate result is essentially a strong law of
large numbers for the objective function (23).

Lemma 5. Let Ty = (1/N) max(H;(pn), Hy(pn)). Under 7*, as N — o0,
Ty > ——— a.s. 24)

Moreover, there is a constant K such that |Ty| < K forall N.

Proof. Recall that Sy is the number of questions of type 1 answered by time N, so Sy /N —
C>/(C1+C3) a.s. Thelaw of large numbers established in (19) for the one-dimensional posterior
shows that H|(py)/Sy — —C a.s. Combining these two facts shows that H{(py)/N —
—C1C2/(C1 4 C3) as. By a similar argument, Hy(py)/N — —C1C2/(C1 + C3) a.s., which
shows (24).

We now show the bound on |Ty|. Using 7*, according to (18),

N
Hi(pn) = Hi(po) + ) Zn,

n=1
where the Z,, are independent bounded random variables and
|Zn| = | min(log(u), log(1 —u))| = B.

As a consequence, forany N > 1, |H{(pn)/N| < |Hi1(po)| + B. The same is true for Hy(py),
which proves that there is a constant K such that |Ty| < K.

We now present the main result of this section.
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Theorem 5. The policy n* is optimal with respect to (23). Moreover, the optimal value is, for
any po with H(pg) < 09,
C1Cy
Ci+Cy

Proof. First we show that the value in (25) constitutes a lower bound for V (pg). Second,
we show that (25) is an upper bound on V (pg) using the properties of the policy 7 * presented
in Lemma 5.

For the lower bound,

V(po) = (25)

1
V(po) = inf ljvnligof N max(E™[H (pn)], E" [Hi(pNn)])

> inf lim inf % max(H1(po) — E[SN]C1, H2(po) — (N — E[Sy])C2)

T N—>oo

= inf max(—aCy, —(1 —a)Cy)

0<a<l
C1Cy
Ci+Cy

We obtained the first line using Jensen’s inequality, the second line using Lemma 4, the third
line by choosing @ = lim inf,_, oo E[Sx]/N, and the fourth line by recalling that C; > 0 and
Cy > 0.

Now, for the upper bound,

* H H
V(po) <liminf E" |:max< l(pN)’ 2(pN)):|
N—o00 N N

\ H H
—E" [max(liminf PN o ing z(pN))}
N—o0 N—oo
GG
G+ G

The uniform bound on T from Lemma 5 is sufficient to justify the exchange between the limit
and the expected value in going from the first to the second line.

We remark as an aside that in the case where C; = C3, this policy is also optimal for the
value function (3) since it verifies (11).

We conclude this section by providing a central limit theorem for the objective under this
policy 7*.

Theorem 6. Under ¥,

1
lim —[maX(H1 (pn), Ha(pn)) +

Ci1C p max(o1v/C2Zy, 02/ C1Z3) 26)
n—o0 /n - .

n
Ci+C JC1 +Cr

Here, Z1 and Z> are independent standard normal random variables, and o*l.2 is the variance of
the increment of H; (py+1) — H; (py) when measuring type i, whose distribution is given by (17).

Proof. Fori = 1,2, let S, ; be the number of questions of type i answered by time n, so
Sn1=S8S,and S, 2 =n—S,. Lett,; =inf{n: S,; =s}fors =0,1,.... Thenty; =0 and
{t;i: s =1,2,...} are the times when questions of type i are answered. Thus, each stochastic
process {H;(py,;): s =0, 1, ...} fori = 1, 2 has adistribution identical to that of the entropy of
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the one-dimensional posterior under the dyadic policy. In addition, the two stochastic processes
are independent.
The central limit theorem established in (20) shows that
lim H;i(pi,;) +5Ci »
§—> 00 \/E o

where each Z; is a standard normal random variable and Z; is independent of Z5.
From the definition of ¢ ;,

. Hi(py,)+5Ci n . Hi(pp)+ SniCi
lim —————— = lim .
§— 00 ﬁ n— 00 Sn,i

Let j = 1 wheni =2,and j =2 wheni = 1. Thenlim;, o Sy,;/n = C;j/(C; + C2) ass.
and

0iZi,

lim Hi(pn) + Sn,iCi » lim (pn) +nCiC2/(C1 4+ C2) [Ci1+ Cr
n—00 /Sn.i n— 00 \/ﬁ (of )

These three facts imply that

. Hi(py) +nC1C/(C1 +C2) p Cj
1m = Ul'Zl‘.
n— 00 \/ﬁ Ci+C

This proves (26) for the limit.

6. IATEX character localization

In this section we present an application of the dyadic policy to a well-established problem
in computer vision: object localization. While the probabilistic bisection policy has already
been applied in computer vision, see [10] and [27], the dyadic policy has not, and we feel that
it offers considerable promise in this application area.

In the object localization problem, we are given an image and a known object, and must
output parameters that describe the pose of the object in the image. In the simplest case, the
pose is defined by a single pixel, but more complex cases can include, e.g. a rotation angle, a
scale factor, or a bounding box. Machine learning techniques have led to the development of
classifiers that, given a specific pose, provide accurate answers to the binary question ‘Is the
object in this pose?’. In our model, we assume these classifiers act as oracles, i.e. are perfect,
even though they may occasionally classify incorrectly in practice. Classifiers such as support
vector machines [28] and boosting [26] are combined with discriminant features (see, e.g. [18])
to provide the most accurate algorithms (see [29] and [30]). To find the object’s pose within
an image, classifiers are evaluated at nearly every possible pose, which is computationally
costly. We demonstrate that the use of the dyadic policy rather than this brute force approach
considerably reduces the computational cost. Although a detailed comparison would be beyond
the scope of the illustrative example we present here, the branch and bound algorithm used in
[17] is an alternative methodology for reducing computational cost in object localization.

6.1. IATEX character images, noisy queries, and model estimation

The task we consider is localizing a specific ISIEX character in a binary image. In this setting,
animage is a binary matrix / € {0, 1}"**"", where the image has m rows and m columns. A IS[EX
character is another smaller binary image J € {0, 1}/*/, where j < m. We present experiments
where the character of interest, or pattern, is the letter “T’. We assume that the pattern is always
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(a) (b) (c) (d)

FIGURE 4: (a) Example of an image containing the character ‘T’. (b)-(d) Examples of subset-based
questions. The gray sectors in images (b)—(d) represent the queried regions AJ, A%, and A%, respectively.

present in the image, and fully visible (i.e. not occluded by other objects or only partially visible
in the image). The goal is to find the location X* = (X7, X3) of the pixel at the upper-left
corner of the pattern within the image.

We generated 1000 images, each of size 256 x 256 pixels. Each image has a black background
(i.e. pixel values of zero), and contains a single fully visible “T” at a random location in the
image. This ‘T’ is a binary image of size 32 x 32 pixels (see Figure 4(a)). Noise is added to
the image by flipping each pixel value independently with probability 0.1. We then randomly
assign each image into one of two sets of approximately equal size: one for training and the
other for testing. The training set is used to learn the noise model as described below, and the
testing set is used to evaluate the performance of the algorithm.

In this task, querying a set A corresponds to asking whether the upper-left corner of the
‘T’ resides in this set. We use a simple image-processing technique to provide a noisy answer
to this question. The technique we use is chosen for its simplicity, and other more complex
image-processing techniques might produce more informative responses, improving the overall
performance of the algorithm.

In describing this technique, we first observe that all the images are of size 256 x 256 pixels
and so any pixel coordinate can be represented in base 2 using two 8-bit strings, or octets. For
example, the pixel with column—row location (32,14) is represented by (00100000, 00001110).
We define 16 sets of pixels. Let A’i, i =1,...,8, be the set of pixels whose column pixel
coordinate has a 1 for its ith bit. Similarly, let Aé, i =1,...,8, be the set of pixels whose
row pixel coordinate has a 1 for its ith bit. Figure 4(b)—(d) respectively show the sets Al, A%,
and Ag. For any given image / and set A;., we define the response

YA =Y 1) = Y 1), 27)

i i
xeAj ngj

where 7 (x) € {0, 1} is the binary image’s value at pixel x. The motivation for using the response
defined by (27) is that y(A’ ) is more likely to be large when A’ contains the ‘T".

Although the response y(A’ ) is entirely determined by the i 1mage I and the location of the
‘T’ within it, our algorithm models the response using a noise model of the form (1). For
simplicity, we assume that both the density f] of y(A) when A contains the ‘T, and the density
fo of y(A) when A does not contain the ‘T’, are normal with respective distributions N (i, o?)
and N(—pu, 0%). The training set is used to estimate these parameters, leading to u = 64.76
and o = 105.7. Because the model is symmetric, u™ = 0.5. The channel capacity is estimated
with Monte Carlo integration to be C = 0.23.
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6.2. Prior, posterior, and algorithm

We let X* = (X7, X3), X7 €[0,255] and X7 € [0, 255], with pg uniform over the domain
of X*. Since the sets A’. constrain only one coordinate, the posterior over X* is a product
distribution, as was discussed in Section 5. The posterior for each coordinate j = 1,2 was
computed in Lemma 3. We now specialize to the model at hand using the notation ‘o<’ to define
equality up to a term that does not depend on x;:

8
ps” ) o [ TGN L eaiy 00 L gai ).
i=1
i
() hoy) ;
log pg’’(x;) log — X v,
SIS foy') 2

{i:xj'EAlj} {i:x_iEAlj}

The algorithm has two phases: (i) the noisy query phase and (ii) the noise-free query phase.
The noisy query phase comes first, and uses the dyadic policy to obtain a posterior distribution
on X*. The implementation of this noisy query phase is facilitated by the nonadaptive nature
of the dyadic policy’s questions, which allows us to compute the answers to the questions all at
once. The noise-free query phase then uses the posterior resulting from the first phase, together
with a sequence of size-limited noise-free questions, to determine the exact location of X*.

Noisy query phase. Given an image I, we begin by computing y(AS.) = yj. foreach j = 1,2
andi =1, ..., 8. We then compute £(x) for each pixel x, which is proportional to the logarithm

of the posterior density at x,
L= Y v+ Y ¥
{i: xeAl} {i: xeAl}

The top row of Figure 5 shows example images from our test set, while the bottom row of
Figure 5 shows the corresponding £-images, in which the value of £(x) is plotted for each pixel.

FIGURE 5: Pixel reordering: example images from the test set (fop) and corresponding £-images (bottom).
Dark regions indicate pixels more likely to contain the character, while light regions are less likely.
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Dark regions of the £-image indicate pixels with large £(x), which are more likely to contain
the “T".

Noise-free query phase. We sort the pixels in decreasing order of £(x). We then sequentially
perform noise-free evaluations at each pixel x in this order until the true pixel location X* is
found. To perform a noise-free evaluation at a given pixel, we compare the ‘T’ pattern with the
32 x 32 pixel square from the image with upper-left corner at x to see if they match. When X*
is found, we stop and record the number of noise-free evaluations performed.

6.3. Results

We validated the algorithm above by evaluating it on the test set described in Section 6.1. To
do this, we ran the algorithm on each image and recorded the number of noise-free evaluations
required to locate the target character. The results described below (i) demonstrate that the
dyadic policy significantly reduces the number of noise-free evaluations required to locate the
‘T’ character, and (ii) allows us to visualize the results summarized in (11), (19), and (20) within
the context of this application.

Recall that each image has 256 x 256 = 65536 pixels. Over 500 test images, the mean,
median, and standard deviation of the number of noise-free evaluations are 2021.5, 647, and
4066.9, respectively. This corresponds to a speed-up factor of 15 over an exhaustive (and typical)
search policy. Figure 6(a) shows the sample distribution of the number of noise-free evaluations.
We also computed the entropy of the posterior distribution after the 16 noisy questions are
answered. According to (11), E[H (p16)] = H(po) — 16C = 16 — 16(0.23) = 12.32, which is
in agreement with the empirically observed value E[H (p16)] = 12.3 (with standard deviation
0.716). We also visualized the convergence of the entropy for each image, as predicted by the
law of large numbers in (19). In Figure 6(b), we plot H (p,)/n, n =0, ..., 16, for each image
in our test set. The empirical variance at n = 16 is very small. Finally, according to (20), the
distribution of (H (p,) — (H(po) — nC))/+/n should be approximately normal. In Figure 7(a)
we present the histogram and in Figure 7(b) we present a normal Q-Q plot, demonstrating close
agreement with the normal distribution.
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FIGURE 6: Noise-free evaluations and convergence in entropy. (a) The distribution of the number of
noise-free evaluations needed to locate the target character. (b) Plot of H(p,)/n as a function of n. Each
line corresponds to one image, with H(p,)/n plotted overn =1, ..., 16. H(p,)/n convergesto 1 — C.
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FIGURE 7: Central limit theorem. (a) Distribution of (H (p,) — (H(po) — nC))/+/n, with mean —0.01.
The distribution is close to Gaussian as the Q-Q plot (b) shows.

7. Conclusion

We have considered the problem of twenty questions with noisy responses, which arises
in stochastic search, stochastic optimization, computer vision, and other application areas.
By considering the entropy as our objective function, we obtained sufficient conditions for
Bayes optimality, which we then used to show optimality of two specific policies: probabilistic
bisection and the dyadic policy. This probabilistic bisection policy generalizes a previously
studied policy, while we believe that the dyadic policy has not been previously considered.

The dyadic policy asks a deterministic set of question, despite being optimal among fully
sequential policies. This lends it to applications that allow multiple questions to be asked
simultaneously. The structure of this policy also lends itself to further analysis. We provided
a law of large numbers, a central limit theorem, and an analysis of the number of noise-free
questions required after noisy questioning ceases. We also showed that a generalized version
of the dyadic policy is asymptotically optimal in two dimensions for a more robust version of
the entropy loss function. We then demonstrated the use of this policy on an example problem
from computer vision.

A number of interesting and practically important questions present themselves for future
work. First, our optimality results assume the entropy as the objective, but in many applications
other objectives are more natural, e.g. the expected number of noise-free questions as in
Section 4.3, or the mean-squared error. Second, our results assume that noise is added by
a memoryless transmission channel. In many applications, however, the structure of the noise
depends upon the questions asked, which calls for generalizing the results herein to this more
complex style of noise dependence. We feel that these and other questions will be fruitful areas
for further study.
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Abstract

We consider the problem of twenty questions with noiseless answers, in which we aim to
locate multiple objects by querying the number of objects in each of a sequence of chosen sets.
We assume a joint Bayesian prior density on the locations of the objects and seek to choose
the sets queried to minimize the expected entropy of the Bayesian posterior distribution after a
fixed number of questions. An optimal policy for accomplishing this task is characterized by the
dynamic programming equations, but the curse of dimensionality prevents its tractable compu-
tation. We first derive a lower bound on the performance achievable by an optimal policy. We
then provide explicit performance bounds relative to optimal for two computationally tractable
policies: greedy, which maximizes the one-step expected reduction in entropy; and dyadic, which
splits the search domain in successively finer partitions. We also show that greedy performs at
least as well as the dyadic policy. This can help when choosing the policy most appropriate
for a given application: the dyadic policy is easier to compute and nonadaptive, allowing its
use in parallel settings or when questions are inexpensive relative to computation; while the
greedy policy is more computationally intensive but also uses questions more efficiently, making
it the better choice when robust sequential computation is possible. Numerical experiments
demonstrate that both procedures outperform a divide-and-conquer benchmark policy from the
literature, called sequential bifurcation. Finally, we further characterize performance under the
dyadic policy by showing that the entropy of the posterior distribution is asymptotically normal.

1 Introduction

We consider the following set-guessing problem. Let © = R be the real line and § = (1, ..., 0;) € QF
be a vector containing the unknown locations of k objects, where k > 1 is known. One can
sequentially choose subsets Aj, As,... of , query the number of objects in each set, and obtain
a series of noiseless answers X1, Xs,.... In studying this problem, our goal is to devise a method

We plan a parallel submission of a short (eight-page) summary of this work to the 2014 Neural Information
Processing Systems (NIPS) conference, which will also include numerical simulations and further discussions of the
potential applications of the material. If it is accepted at NIPS, we will reference it in the introduction. This is
in accordance with IEEE Transactions on Information Theory’s policy on prior publication. See http://www.comm.
utoronto.ca/trans-it/author-info.shtml.



for choosing the questions that allows us to find # as accurately as possible, given a finite budget
of questions. We work in a Bayesian setting, and use the entropy of the posterior distribution on
f to measure accuracy.

While the adaptive method with minimal expected posterior entropy is described by the dynamic
programming principle, and could in principle be computed using dynamic programming, current
computational techniques do not allow doing this in a tractable way. In this paper, we provide a
lower bound on this minimal expected entropy; and analyze two specific methods, providing in one
case an explicit expression for the expected entropy, and in the other case a tractable upper bound.

The previous literature on similar problems can be classified into two groups: those that consider
a single object (k = 1); and those that consider multiple objects (k > 1).

Among single-object versions of this problem, the earliest is the Rényi-Ulam game [1, 2]. In
this game, one person (the responder) thinks of a number between one and one million and another
person (the questioner) chooses a sequence of subsets to query in order to find this number. The
responder can answer either YES or NO and is allowed to lie a given number of times.

Variations of the Renyi-Ulam game have been considered in [3]. Among these variations, the
following continuous probabilistic version, first studied in [4], is similar to the problem we consider:
The responser thinks of a number 6 € [0, 1] and the questioner aims to find a set A C [0, 1] with
measure less than e such that 6 € A with probability at least ¢q. In addition, the responser lies
with probability no more than p. Whether the questioner can win this game based on the error
probability p is analyzed and searching algorithms using O(log %) queries are provided.

Among previous work on the single-object problem, perhaps the closest to the current work
is [5], which considered a Bayesian setting and used the entropy of the posterior distribution to
measure of accuracy, as we do here. It considered two policies, a greedy policy called probabilistic
bisection, which was originally proposed in [6] and further studied in [7, 8], and the dyadic policy.
[9] generalized the probabilistic bisection policy to multiple questioners. Here, we generalize both
policies to multiple objects.

Our work contrasts with this previous work on the single-object problem by considering multiple
objects.

The previous literature includes work on three multiple-object problems: the Group Testing
problem [10, 11, 12, 13, 14]; the subset-guessing game associated with the Random Chemistry
algorithm [15, 16]; and the Guessing Secret game [17]. In the Group Testing problem, questions are
of the form: Is AN S # B¢ In the subset-guessing game associated with the Random Chemistry
algorithm, questions are of the form Is S C A?. In the Guessing Secret game, when queried with
a set A, the responder chooses an element from S according to any rule that he likes, and tells the
questioner whether this chosen element is in A. The chosen element itself is not revealed, and may
change after each question. Thus, the answer is 1 when S C A, 0 when AN S = (), and can be
either 0 or 1 otherwise.

Our work contrasts with this previous work by considering a problem where the answer provided
by the responser is not binary but instead counts the number of objects in the queried set.

These multiple-object-localization games find application in constructions of block codes [18, 19],
searching for auto-catalytic sets of molecules [15], searching for collections of multiple contingencies
leading to cascading power failures in models of electrical networks [20], computer vision [21, 22, 23],
and screening for stochastic simulation [24, 25].

Now, in Section 2, we state the problem more formally, and summarize our main results.



2 Problem Formulation and Summary of Main Results

Let @ = (61,...,0;) be a random vector taking values in R¥. 6; represents the location of the ith
object of interest, ¢ = 1,...,k. We assume that 61,...,60; are i.i.d. with density fy, and joint
density pg. We refer to py as the Bayesian prior probability distribution on 6. We will ask a
series of N > 0 questions to locate 01, ..., 0, where each question takes the form of a subset of R,
and the answer to this question is the number of objects in this subset. More precisely, for each
n € {1,2,..., N}, the n'* question is A, C R and its answer is

X =14, (01) + -+ 14, (0k), (1)

where 1 4 is the indicator function of the set A. Our choice of the set A, may depend upon the
answers to all previous questions, and upon some initial randomization through a uniform random
variable Z on [0, 1] chosen independently of §. Thus, the set A,, is random, through its dependence
on Z, and the answers to previous questions.

We call a rule for choosing the questions A,, a policy. Formally, we define a policy 7 to be a
sequence m = (my,...,my), where 7, is a Borel-measurable subset of [0,1] x {0,1,...,k}" ! x R.
With a policy 7 specified, the choice of A, is then A4, = {t e R: (Z, X1.p—1,t) € mp}, so that
specifying m, implicitly specifies a rule for choosing A, based on the random seed Z and the
history Xi.,—1. Here, we have used the notation X,.; for any natural numbers a and b to indicate the
sequence (X, ..., Xp) if a > b, and the empty sequence if a < b. We define 6, and A, similarly.
The distribution of A,, thus implicitly depends on 7. When we wish to highlight this dependence,
we will use the notation P™ and E™ to indicate probability and expectation respectively. However,
when the policy being studied is clear, we will simply use P and E .

We refer to the posterior probability distribution on 6 after n questions as p,, so p, is the
conditional distribution of 6§ given Xji., and Aj.,. Equivalently, under any fixed policy m, p, is the
conditional distribution of 6 given Z and Xi.,. This posterior p, can be computed using Bayes
rule: p,(u) is proportional to pg(u) over the set {u ceRF: X, = Zle 14, (u;), 1<m< n}, and
0 outside. The dependence on Z arises because A, may depend on Z, in addition to X7.,_1.

After we exhaust our budget of N questions, we will measure the quality of what we have
learned from them via the differential entropy H (py) of the posterior distribution py on 6 at this
final time,

H(pn) = —E[logpn] = — /]Rk v (uik) log(pn (ui:k)) du.k- (2)

Throughout this paper, we use “log” to denote the logarithm to base 2. We let Hy = H(pp),
and we assume —oo < H(pg) < +oo. The posterior distribution py, as well as its entropy H(pn),
are random for N > 0, as they depend on Xi.y and Z. Thus, we measure the quality of a policy
7 € II when given N questions using

R(m,N) = E™[H (pn)]- (3)
Our goal in this paper is to characterize the solution to the optimization problem

;gg R(m,N). (4)

Any policy that attains this infimum is called optimal.



While (4) can be formulated as a partially observable Markov decision process [26], and can be
solved, in principle, via dynamic programming, the state space of this dynamic program is the space
of posterior distributions over 6, and the extreme size of this space prevents solving this dynamic
program through brute-force computation.

Thus, in this paper, rather than attempting to compute the optimal policy, we provide an easily
computed lower bound on (4), and then study two classes of policies relative to this lower bound:
greedy policies, and dyadic policies.

By a greedy policy, we mean any policy that chooses each of its questions to minimize the
expected entropy of the posterior distribution one step forward in time,

A, € argmin E[H (py,)|pn—1,An = A, for alln =1,2,... N, (5)
A

where the argmin is taken over all Borel-measurable subsets of R. We show in Section 6 that this
argmin exists.
To define the dyadic policy, let us recall that the quantile function of 6y is

Q(p) =inf{ueR:p < Fy(u)}, (6)

where Fp is the cumulative distribution function of 6;, corresponding to its density fy. The dyadic
policy consists in choosing at step n > 1 the set

an-lq

n= U (e(350) ()| ) Nsuwtso) (7

J=0

where supp(fo) is the support of fy, i.e., the set of values v € R for which fo(u) > 0. For
example, when fy is uniform over (0, 1], the dyadic policy is the one in which the first question
is A1 = (%, 1], the second question is Ay = (%, %] U (%, 1}, ..., and each subsequent question is
obtained by subdividing (0,1] into 2" equally sized subsets, and including every second subset.
A further illustration of the dyadic question sets A, is provided in Figure 3 in Section 5. This
definition of the dyadic policy generalizes a definition provided in [5] for single objects.

We are now ready to present our main results:
1
Hy—log(k+1)N < inlfIR(w,N) < R(rg,N) < R(rp,N)=Hy— H (Bin (k:, 2)) N, (8)
S

where g is any greedy policy, 7p is the dyadic policy, and Bin indicates the binomial distribution.

The first inequality in (8) is an information theoretic inequality (proved in Section 3). The
second inequality is trivial since an optimal policy is at least as good as any other policy. The third
inequality comes from a detailed computation of the posterior distribution py of 6 after observing
N answers for any possible sequence of N questions (see Section 6.2). Additionally, we show that
this inequality cannot be reversed, by presenting a special case in which there is a greedy policy
whose performance is strictly better than that of the dyadic policy (see Section 6.3). The last
equality comes from the characterization of the posterior distribution py in the special case of the
dyadic policy (see Section 5.2).

The power of these results is illustrated by Figure 1, which shows, as a function of the number
of objects k, the number of questions required to reduce the expected entropy of the posterior on



their locations by 20 bits per object. The figure shows the number of questions needed under the
dyadic policy (solid line, and right-most expression in (8)); under two benchmark policies described
below, Benchmark 1 and Benchmark 2 (dotted, and dash-dotted lines); and a lower bound on the
number needed under the optimal policy (dashed line, and left-most expression in (8)). By (8), we
know that the number of extra questions required by using either the dyadic or the greedy, instead
of the optimal policy, is bounded above by the distance between the solid and dashed lines.

600 -
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----Benchmark 2 o

500+ .
— Dyadic Policy 5
- - -Lower Bound on Opt o

5
o
o

Number of questions
N w
o o
o o

100
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Figure 1: Number of questions needed to reduce the entropy by 20 bits per object under two benchmark policies
and the dyadic policy, and a lower bound on the number under the optimal policy. The dyadic policy significantly
outperforms both benchmarks and its performance is relatively close to the lower bound on the optimal possible from
(8). The performance of the greedy policy is between that of the dyadic and optimal policies.

Benchmark 1 identifies each object individually, using an optimal single-object strategy. It first
asks questions to localize the first object 81, reducing the entropy of our posterior distribution on
that object’s location by 20 bits. This requires 20 questions, and can be achieved, for example, by
a bisection policy, [6]. It then uses the same strategy to localize each subsequent second object,
requiring 20 questions per object?. The total number of questions required under this policy to
achieve 20 bits of entropy reduction per object is 20k.

Benchmark 2 is adapted from the sequential bifurcation policy of [25]. While [25] considered
an application setting somewhat different from the problem that we consider here (screening for
discrete event simulation), we were able to modify their policy to allow it to be used in our setting. A
detailed description of the modified policy is provided in Appendix A. It makes full use of the ability
to ask questions about multiple objects simultaneously, and improves slightly over Benchmark 1.
We view this policy as the best previously proposed policy from the literature for solving the
problem that we consider.

2Implementing Benchmark 1 would require the ability to ask questions about whether or not a single specified
object (e.g., object 1) resides in a queried set, rather than the number of objects in that set. While this ability is
not included in our formal model, Benchmark 1 is nevertheless a useful comparator.



The figure shows that a substantial saving over both benchmarks is possible through the dyadic
or greedy policy. For example, for k = 2* = 16 objects, Benchmark 1 and Benchmark 2 require
320 and 304 questions respectively. In contrast, the dyadic policy requires 106 questions, which is
nearly 3 times smaller than required by the benchmarks. Furthermore, (8) shows that the greedy
policy performs at least as well as the dyadic policy. Thus, localizing objects’ locations jointly can
be much more efficient than localizing them one-at-a-time, and the dyadic and greedy policies are
implementable policies that can achieve much of the potential efficiency gains.

The figure also shows, again at k = 2* = 16 objects, that the optimal policy requires at least
80 questions, while the dyadic and greedy require no more than 106 questions, and so are within a
factor of 1.325 of optimal. This is remarkable, when we compare how little is lost when going from
the hard-to-compute optimal policy to the easily computed dyadic policy, with how much is gained
by going to the dyadic from one of the two benchmark policies considered.

The dyadic policy can be computed extremely quickly, and can even be pre-computed, as the
questions asked do not depend on the answers to previous questions. This makes it convenient
in settings where multiple questions can be asked simultaneously, e.g., in a parallel or distributed
computing environment. The greedy policy requires more computational effort than the dyadic
policy, but is still substantially easier to compute than the optimal policy, and provides performance
at least as good as that of the dyadic policy, as shown by (8), and sometimes strictly better, as will
be shown in Section 6.3.

We see in the figure that the dyadic policy’s value and the value of the optimal policy come
together at k = 1. This can also be seen directly from our theoretical results. When k = 1, the
left-hand and right-hand sides of (8) are equal, since Bin (k, 1) becomes a Bernoulli(3) random
variable, whose entropy is log(2) = 1. This shows, when k£ = 1, that the expected entropy reduction
under the dyadic is the same as the lower bound on this reduction under the optimal policy, which
in turn shows that both dyadic and greedy policies are optimal, and the lower bound is tight. This
result can also seen through results obtained in [5]. When k = 1, the well-known bisection policy
is a greedy policy, and the dyadic is also greedy, i.e., satisfies (5).

We begin our analysis in Section 3, by justifying the left-most inequality in (8). We then provide
an explicit expression for the posterior distribution in Section 4, which is used in later analysis.
We analyze the dyadic policy in Section 5, and the greedy policy in Section 6. Finally, we offer
concluding remarks in Section 7.

3 A Lower Bound on the Expected Entropy after a Fixed Number
of Questions and Answers

In this section, below in Theorem 1, we prove the first inequality in (8), which is a lower bound on

the expected entropy after a fixed number of questions and answers.

We first introduce some notation, used here, and throughout the paper. For any pair of random
variables W, V| we define H(W||V') to be the random variable taking the value

_/_OO f(w|V:v)logf(w|V:U)dw (9)

for each V' = v, assuming the conditional density function f(w|V = v) exists. The “usual” condi-
tional entropy is related to it by



HW|V) =EHW]|V)]. (10)

We now provide here, in Lemma 1, an expression for the expected entropy after additional

questions. This lemma is based on the idea that each additional question reduces the entropy of

01.r by an amount that can be expressed in terms of the conditional entropy of the answer to that

question. The total entropy reduction can then be computed as a sum of the contributions from

each question, which we use later to study the expected total entropy reduction under specific
policies.

Lemma 1. Under any policy 7,

E[H(pn+1)|Bn) = H(pn) — H(Xp41||Bn), for alln=0,1,...,N —1, (11)
where By, = (Z, X1.,) denotes the random vector in the history observable before asking the question
Ant1, which is deterministic once By, = by, is fized. Moreover,

N-1
E[H(px)] = Ho— Y H(Xn11|Bn). (12)

n=0
Proof. First of all, we prove the recursive relation (11). H(py,) is the entropy of the posterior
distribution of 6, which is random through its dependence on the past history B,, hence we can
rewrite it as H(p,) = H(0||By). Similarly, H(pp4+1) = H(0||Bp+1) = H(0||Bp, Xn+1). Since all
three terms in (11) are o(B,,)-measurable random variables, it suffices to prove (11) holds for any

fixed history B, = b, i.e.

E[H(9||By, Xn+1)|Bn = bp] = H(0|By, = by,) — H(Xp41|Bn = by). (13)
Using information theoretic arguments, we have
k
E[H(0|| By, Xn+1)|Bn = by] = Z H(0|By, = by, Xpt1 = pt1)P(Xnt1 = Tnt1|Bn = by) (14a)
xn+1=0

= H(0| X 41, Bn = by) (14b)

= H(0, Xp+1|Bn = bn) — H(Xp41|Bn = by) (14c)

= H(X,41|0,Bn, =by) + HO|B, = by,) — H(Xp4+1|Bn = b,)  (14d)

= H(0|By, = bn) — H(Xp41|Bn = by) (14e)

where (14b) comes from the definition of conditional entropy and (14c), (14d) come from the chain
rule for conditional entropy. (14e) holds as the first term in (14d) vanishes because the information
of 6 completely determines the answer X, 1. This proves (13).

Now, in order to prove (12), let us first obtain a recursive relation in unconditional expected
entropy of posterior distributions. Taking the expectation over B,, on both sides of (11),

E [E[H(pn+l)|BnH = E[H(pn)] —F [H(XnJrlHBn)] . (15)

Note that FE [E[H (pp+1)|Bn)] = E[H (pn+1)] by the iterated conditioning property of conditional
expectation. Moreover, E [H(X,+1||Bn)] = H(X,+1|By) according to the definition of conditional
entropy in (10). Hence, (15) is equivalent to

E[H (pny1)] = E[H (pn)] — H(Xp41|Bn). (16)
Applying (16) iteratively for n = N —1,...,0, we obtain (12), which concludes the proof. [



Now, applying (12) in Lemma 1 and using an information theoretic argument, we are able to
show the first inequality in our main result (8).

Theorem 1.
inlf'l R(m,N) > Hy — log(k + 1)N. (17)
e

Moreover, when k > 1, this inequality s strict.
Proof. Since conditioning always reduces entropy, we have
H(X,41|Bn) < H(Xp41), forallm=0,1,...,N — 1. (18)

Combining (12) with (18), the expected entropy must satisfy

N
E[H(pn)] > Hy =) H(Xy). (19)
n=1
Recall that foralln =1,2,..., N, X, is a discrete random variable with k+1 possible outcomes,

namely 0,1, ..., k. The maximum possible value for the entropy H(X,,) is log(k+1), obtained when
each outcome of X,, has the same probability ﬁ, ie. H(X,) <log(k+ 1). Thus, by (19),

E[H(pn)] = Ho —log(k + 1)N. (20)

Since (20) is true for any policy 7, and indicating the dependence of E[H (py)] on the policy =
in our notation, we have

inf R(w, N) = inf E"[H(pn)] > Ho — log(k + 1)N. (21)
well mell
This proves our claim (17).

We now prove that the inequality (17) is strict when k& > 1, i.e. when there is more than one
object. Consider any fixed By = Z = z, which specifies the questions set A;. Recall from (1) that
X1 =14,(01) + -+ + 14,(0r) and that 6y,...,60; are independent. As a consequence, X; | Z =
z ~ Bin(k,p), where p = [, fo(u)du. Therefore, H(X:|Z = z) = H (Bin(k, p)) < log(k + 1) when
k > 1, implying H(X1|By) < log(k+1), so that there is no policy that can achieve the lower bound.

O

4 Explicit Characterization of the Posterior Distribution

In this section, we first derive in Section 4.1 an explicit formula for the posterior distribution on
the locations of the objects, and introduce some additional notation. We then provide in Section
4.2 an example illustrating this notation and the posterior distribution. This example also will be
used later, in Section 6.3, to show that greedy is sometimes strictly better than dyadic. Finally, in
Section 4.3, we compute the conditional distribution of the next answer X, given previous answers
X1.n—1, which we will use later to analyze the value of a policy.



4.1 The Posterior Distribution of the Objects

Consider a fixed n, where 1 < n < N. For each binary sequence of length n, s = {s1,...,s,}, let
= (N 4N M 45 suee(fo). (22)
1<j<n;s;=1 1<5<n;s5;=0

The collection {Cs : Cs # 0,s € {0,1}"} is a partition of the support of fy. A history of n
questions provides information on which sets Cs contain which objects among 61.x.

We will think of a sequence of binary sequences sV, ..., s(*) as a sequence of codewords indi-
cating the sets in which each of the objects 0;.; reside, i.e, indicating that 6y is in C ), 69 is in
C,2), etc. We may consider each binary sequence s .. s®) to be a column vector, and place

them into an n X k binary matrix, §. This binary matrix then codes the location of all k£ objects,
and is a codeword for their joint location.

Moreover, to characterize the location of the random vector § = (6;.;) in terms of its codeword
S, define Cs C R¥ to be the Cartesian product

Cs = 05(1) X o X Cs(k)‘ (23)

To be consistent with an answer X, we must have exactly X; objects located in the question
set A; for each 1 < j < n. This can be described in terms of a constraint on the matrix S as

sgl) +---+ sgk) = X, i.e., that the sum of the j** row in the matrix S is Xj. Thus, after observing
the answers to the questions Xi., = 1., the set of all possible joint codewords describing 6., is

E,={8|sW,...,s® € {0,1}",Cyy,...,Cyy # 0,58 4 4 s =z forall 1 < j < n}. (24)

An example will be provided in Section 4.2 to illustrate this construction.
Given this notation, we observe the following lemma:

Lemma 2. Let the random seed Z = z be fixed. Then, for each 1., the event {X1., = x1.n} can
be rewritten

{Xlzn = $1:n} = {9 € U CS} ) (25)
S€eE,

where we recall that E, depends on 1., and z. Moreover for any S,T € E, with S # T, the two

sets Cs and C'1 are disjoint.

Proof. Clearly, according to the definition of E, in (24), when ¢ € [Uscp Cs, the answers that
we observe must satisfy Xi., = x1.,. On the other hand, suppose 01.; & USeEn Cs. Then 64,
belongs to some nonempty set Cs where S ¢ E,. Hence, there exists j, 1 < j < n, such that
35.1) +-- '+S§-k) # x;, which implies that the answer to the question A; is X; = sg.l) +-- -+3§-k) # zj.
This proves (25).

Now, for any S # T, there exists ¢ with 1 < ¢ < k such that s # ¢t(). This implies that Cy
and Cy are disjoint and the last assertion follows. O

At this point, the explicit characterization of the posterior distribution is immediate and we
have the following lemma.



Lemma 3. ( )
Uq.
pn(ul:k) = pO—lk ,fO?” Uk € U 037 (26)

pO U CS SEE'VL
S€EE,

and pp(u1.k) = 0 for upy ¢ |J Cs. Here, for any measurable set A, po(A) denotes the integral
Sekb,
fA po(u1.x) duy.,.. Moreover,

Po < U C’s) = > p0(Cs) = Y fo(Cym) - fo(Cym), (27)

SE€En, Se€E, SeEn,

where fo(Cyw) denotes the integral [, » fo(u) du.

4.2 Examples Illustrating the Posterior Distribution

To illustrate the previous construction, and also to provide the foundation for a later analysis in
Section 6.3 showing the greedy policy is strictly better than the dyadic policy in some settings, we
provide two examples of the posterior distribution, arising from two different responses to the same
sequence of questions.

Suppose 61, 02 are two objects located in (0,1] with a uniform prior distribution fy. Let A; and
Ay be the first two questions of the dyadic policy, so A} = (%, 1] and Ay = (i, %] U (%, 1]. Then
consider two possibilities for the answers to these questions:

Example 1: Suppose X; = 0 and X3 = 2. According to (24), there is only one matrix S in the
collection Fs, which has s() = s() = (0,1)7. Thus Fy = {S;} where

Si— (2 ‘j) | (28)

By (26) in Lemma 3, we have that ps(u1.2) = 16 when uy.2 is in (%, %] X (%, %], and 0 otherwise.

Example 2: Suppose X7 = 1 and Xy = 1. According to (24), there are four matrices in the
collection Ey = {S1,S2,S3,84},

e o ) FS IR (R

By (26) in Lemma 3, the posterior distribution has density p2(u1.2) = 16 when u.2 is in (0, Z] X (%, 1]
or (%,%] X (%,%] or (%,%] X (%,%] or (%,1] X (O, ﬂ, and is 0 otherwise.

All possible joint locations of 61,65 in the two examples above are shown in Figure 2.
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Example 1 Example 2

S1 01,02 Si| 01 02
0 1/4 1/2 3/4 1 0 1/4 1/2 3/4 1
So 01 0
0 1/4 1/2 3/4 1
S3 0 01
0 1/4 1/2 3/4 1
Sy 62 01
0 1/4 1/2 3/4 1

Figure 2: Illustration of the locations of the two objects 61, 62 specified by each matrix given in (28) and (29). The
dark subsets mark the location of the objects 61, 0>.

4.3 The Posterior Predictive Distribution of X,

We now provide an explicit form for the posterior predictive distribution of X, 41, i.e., its conditional
distribution given the history Xj., and the external source of randomness in the policy Z. This
is useful because Lemma 1 shows that the expected entropy E[H (py)] can be computed using the
conditional entropy of X, 1 given B, = (Z, X1.,). We use this in Sections 5.2 and 6.2 to compute
the expected entropy for the dyadic and greedy policies respectively.

For n = 0, we have demonstrated in the proof of Theorem 1 that X; follows the binomial
distribution Bin(k, fo(A1)) given Z.

Now, consider any n € {1,2,..., N —1}, and any fixed history b,, = (z, z1.,). Using the equality
(25) presented in Lemma 2 we have,

P(Xpi1 = 2|By = by)

= ) P(Xp41 =,0 € Cs|Bn =by)
SEE, (30)

= Y P(Xnj1 =1|0 € Cs, B, = by)P(6 € Cs|B,, = by).
SeE,

Now, since for any S € E,,, {# € Cs,Z = z} C {B,, = by} according to Lemma 2, we can simplify:
P(Xpi1 =20 € Cs,B,, =b,) = P(Xpy1 =2|0 € Cs,Z = 2). (31)
Also, using Lemma 3, we obtain

o folCywy) e fo(Cymy)
PAO € Cs|Bn = bn) = > Jo(Cym) - fo(Cym) (32)

SeE,
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Finally, according to (1), X, 11 is the sum of & Bernoulli random variables 14, ,(01),...,14, ,(0k).

Given the event {6 € Cs,Z = z}, these k Bernouili r.v’s are conditionally independent with

An41NnC Ap1nC . oy .
respective parameters q; = %@)3(1)), e Q= %&(k)) This conditional independence

can be verified as follows. Consider any fixed binary vector w € {0,1}*. For each i = 1,...,k, let
D; be equal to Ap41 if w; = 1 and its complement Aj,_ ; if w; = 0. Then,

P(]lAn+1(9i) =wj;, 1= 1,...,]6’9605,2:2) :P((gz e D, Z'Zl,...,k‘(gGCS,Z:Z)
_po(DiNCyy X - X DpeNCywy) _ [15, po(Di N Cye) _ ﬁ po(Di N C )
po(Cs) [T, 20(C) 13 Po(Can)) (33)
k k
=[[P6:icDilo € Cs,Z =2) = [[ P(La,,,(6:) = wil0 € Cs, Z = 2).
-1 i=1

Using the fact that X, 11 is the sum of k£ conditionally independent Bernoulli random variables
given § € Cs and Z = z, we may provide an explicit probability mass function. When ¢ =
-+ = @, Xpt+1 is conditionally Bin(k,q1) given 0 € Cs and Z = z. In general, let Wy,..., W,
be n independent discrete random variables with W; ~ Bernoulli(g;), where q1, ..., g, are any real
numbers in [0,1]. The distribution of Y = Wj + ... + W, is called Poisson Binomial distribution,
which was first studied by S. D. Poisson in [27]. We denote the distribution of Y by PB(qi, ..., qn)
and its probability mass function P(Y =y) = fpa(y;q1,-..,¢s) is given by

feB(Y;q1, - qn) = Z Hq;uj(l—(b‘)l*wj’ (34)

w=(w1,...,wn)€{0,1}M w1 +...4wp=y j=1
and has mean and variance given by

EY]=q¢ + ...+ ¢n,

VarlYl=q(1 —q) + ...+ qu(1 — qn). (35)

Using this definition of the Poisson Binomial distribution, the conditional distribution of X,,11
given 6 € Cs and Z = z is PB(q1, ..., qn).

Finally, putting together equations (30), (32), and the fact that X,, 41 is conditionally PB(qy, ..., ¢,)
given € Cg and Z = z provides the following characterization of the conditional probability mass
function of X,,4+1 given B,, = (Z, X1.n) = by

Theorem 2. Forn =0, given {By = by} = {Z = 2z}, X1 ~ Bin(k, fo(A1)). Forn=1,2,...,N—1,
given By, = (Z, X1.n) = bn, Xnt1 is a mizture of Poisson Binomial distributions with probability
mass function:

P(Xn-H = $|Bn = bn)
_ Z zj:“o(cs(n)mfo(cs(k))

S€En Tk,

_ fo(AnanNC (1)) . fo(An+1ﬁCS(k))> (36)
fo(Ct<1))-~-f0(Ct(k))fPB <SE, Q= folCy) 77 Ak = fo(C (%)) )

5 The Dyadic Policy for Localizing Multiple Objects

We now present the first policy of interest: the dyadic policy. This policy is easy to implement, and
is non-adaptive, allowing its use in parallel computing environments. The description of the dyadic

12



policy will be given in Section 5.1. In Section 5.2, we will prove the theorem concerning the value
of this policy and derive the last equality in our main results (8). Finally, asymptotic normality of
H(py) under the dyadic policy will be provided in Section 5.3.

5.1 Description of the dyadic policy

The definition of the dyadic policy is given in (7). In this section, we provide an iterative construc-
tion of this policy, introducing notation which will be useful later on.
First, we partition the support of fy into two subsets, A1 and Ay 1:

Mo = (@@ (5 )| swni (372
ma = (@(3) Q) nsuwp(so), (37)

where @), as defined in (6), denotes the quantile function. With this partition, the question asked

at time 1 is
Ap = Apy. (38)

Then we adopt a similar procedure recursively for each n = 1,..., N — 1 to partition A, ; into
two subsets, A, 412; and Ay,412j41 and then construct the question from these partitions. For
j=0,...,2" — 1, define

27 25 +1
Apnt12; = <Q <2n+1> ,Q <2n+1>] N supp(fo), (39a)
25 +1 25 +2
An+1,2j+1 = (Q ( 2n+1 ) 7Q < 2n+1 >:| N Supp(f0)7 (39b)
Then the question asked at time n + 1 is

2n—1
Apt1 = U Ant1,2j41- (40)

=0

An illustration of these sets A,, is provided below in Figure 3.
Note that the dyadic policy is non-adaptive, as only the prior distribution is used to construct
the next set and not the answer to previous questions.

13



fo(u)

prior
0 u 1
A0 1, n=1
Az A 1 Ag o A3 n=2
A30 A3 1 Azo | A33 [A34 |A35 | Aze| P37 n=3

Figure 3: Illustration of the dyadic policy. The prior density with support [0, 1] is displayed above the illustrations
of the sets A, 1, for n =1,2,3. The question set A, is the union of the dark subsets A, i for that value of n.

5.2 The value of the dyadic policy
The value of the dyadic policy is stated as follows:

Theorem 3. Under the dyadic policy p,

R(np,N)=Hy— H (Bin (k ;)) N. (41)

Proof. In this proof, we will first simplify the equation (36) in Theorem 2 to obtain the posterior
distribution of X, under the dyadic policy. Then we will calculate the entropy H™ (X,+1|Bp)
and employ Lemma 1 to compute the value of the dyadic policy.

At time n, where 1 < n < N, the support of fj is partitioned into pairwise disjoint subsets
{An0,...,An2n_1}. Recall the definition of C; in (22). The sets Cs provide a bijection which maps
a binary sequence s € {0,1}" to a subset A, ;) for some j(s) € {0,1,...,2" — 1}. Hence, C,u in
(36) can be rewritten as

Cyiy = A, (s, for some index i(sWy e{0,1,...,2" —1}. (42)
on_1

According to the construction of dyadic questions in Section 5.1, Ap41 = |J Ant1,2j4+1. More-
=0

over, An+1,2j(s(i))+1 C An,j(s(i)) and An+1’2j+1 N An,j(s(i)) = (Z), fOl" all ] 7& ](3(7‘)) ThU.S, by (42) we
have

A1 N Cgi) = A 9j(s) 410 (43)
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Combining the above result with the fact that fo(A4,,; 2j(s) +1) 2fo( nj(s0) ) yields

fo(Ans1NCyw) 1

=_, 44
fo(Cy) 2 (44)
and this is true for all i =1,2,... k.
Thus, for n > 1, we can simplify (36) in Theorem 2 as
Pr(Xnt+1 = z|B, = b )
. Jo(C (1)) fo(C (& f ( _ Jo(AnpanC (1) . fo(An+1ﬁCs(k)))
- scE Z fo(C (1)) fo t(k)) PB n= fo(C 1)) vk = fo(C 1)
o fo(C (1)) fo(C 1)) _1 _1
— Sén TG%: fO(Ct(l))“fO(Ct(k))fPB (l’,ql =55k = 2) (45)
. ) SEZIZE fo(C (1)) fo(C (1))
= Jre (x, N=73- k= 5) 2 fo(Cay)-fo(Coy)
TEER
= fes(mqi=4%,...,0n=13).

The density above is just the density of the binomial distribution Bin (k:, %) We proved that
given {B,, = b,}, Xp41 is distributed as Bin (k, 1) and H™(X,,11|B, = b,) = H (Bin (k, 3)) for
alln=1,..., N — 1. Thus, taking the expectation over all possible realizations of B,,, we obtain

H™(Xp1|By) = H (Bin </<; ;)) . (46)

Since fo(A;) = % under the dyadic policy, according to Theorem 2, X;|Z = z is distributed as
Bin (k, %) for any fixed z and H™ (X;|By) = H (Bin (k, 2)) as well.
Therefore, according to (12) in Lemma 1,

N-1
R(mp, N) = E™2[H(pw)] = Hy — S H™(Xo1|Ba) = Ho — H (Bm (k ;)) N )
n=0

O]

Note that this is the last equality in our main result (8).

5.3 Convergence in entropy under the dyadic policy

In real applications, however, we are concerned not only about the expected entropy E™P[H (pn)|po]
but also about the actual entropy H(py) that we obtain in a specific trial. It would be beneficial
if the actual entropy did not deviate too much from its expected value. It turns out to be the
case for the dyadic policy under the assumptions that the prior density fy is bounded from above.
Lemma 4 provides a decomposition formula for the actual entropy H(p,,) into a sum of two terms.
The first term is a sum of i.i.d. random variables. The second term is a converging martingale as
will be shown in Lemma 5. Finally, Theorem 4 provides almost sure convergence and asymptotic
normality for H(p,) as a direct consequence of Lemma 4 and 5. Note that the dyadic policy is
deterministic, i.e., it does not make use of the random seed Z. As a consequence, in this section,
we use X1., to denote the history up to time n without including Z.
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Lemma 4. Under the dyadic policy, for allm=1,2,..., N,
H(pn) = _sz+12(n)7 (48)
j=1

where I3(n) is a random variable and Z; = k —log (;}) with X following i.i.d binomial distribution
Bin(k, 3).
Proof. Let X1., = x1., be fixed. According to Lemma 3,

po(uik) fo(u1) ... folug)
p ul:k - = ) 49
(k) > Jo(Csm) - fo(Cym) (49)
Se€E,
where (u1.,) € C:= |J Cs.
SeE,
Under the dyadic policy, the support of fj is partitioned into 2" subsets with identical probability
masses after the final step and each U, is one such subset, for i = 1,2,..., k. Thus, we have
fO(CS(i)) =27" fori=1,2,...,kand S € E,,. (50)

Let | E,| be the cardinality of F,. Note that under the dyadic policy, every binary sequence s of
length N corresponds to a nonempty set Cs. Furthermore, in step j, there are (:Z) ways to choose

the j** row in the matrix satisfying the definition in (24), for j = 1,2,...,n. Thus, by the product

rule,
=] (’“) (51)

j=1
By (50) and (51),

(@) = 3 folCu) o Jol(Cun) =27 [ ( ’“) (52)
j=1

Sekbn,
Combining the result above and the definition of the differential entropy, we have

Hpa) = / P (tt1.) 10 (P (1)) dtn i

C

_ pO(Ul:k) o po(ulzk) .

a C/ po(C) : g< po(C) ) dux -
Wc/po(uhk) duy.p | + —po(lc)c/po(ulzk)log (po(u1.k)) duy.k

=I(n) + Iz(n),

where I1(n) and I2(n) denote the first term and the second term in the last equation above. I;(n)
can be easily computed as

_ log (po(C©))

him) po(C)

/po(ulzk) duyy, =log (po(C)) = — | nk = log (j) . (54)
C =t ’
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Now consider Xji., as random variables. By Theorem 2, we see that under the dyadic policy,

X1.n 1s a sequence of i.i.d. random variables Bin (k, %) Moreover, Iz(n) is random through its
dependence on the random support C. Therefore, combining (53) and (54), we prove the claim in
Lemma 4 by setting Z; = k — log ()?]) O

Define I5(0) = H(po) = Hp so that (48) is also satisfied for n = 0. Applying the result above,
we can furthermore analyze the term Iz(n) and derive the following lemma.

Lemma 5. Assume there exists M > 0 such that fo(u) < M for all w € R. Then the random
variable Ia(n) in (48) converges to a random variable I2(c0) almost surely as n — oo, where I5(c0)
is a random variable and E[|I2(c0)|] < oo.

Proof. We prove almost sure convergence using the martingale convergence theorem (see Theorem
35.5 in [28]). First, let us calculate the expected value of Z; as follows.

E(Zj) = Zk: <l<: —log (?)) (?) 27k, (55)

J=0

Therefore, E(Z;) = H (Bin (k, 1)) since

()£ 0w ((e) SO ()

Now, let us verify that Io(n) is a martingale. According to (48),

n+1
E[IQ(n+1)|X1n] =F H(pn+l)+ZZj Xl:n (57&)
=1
= H(pn) — H(Xpn11[[ X1:) + Z Zj + E[Zpt1]X1:0] (57b)
j=1
= Ir(n) — H(Xn1[[X1n) + E[Zny1] X 1] (57c)
~ L(n)— H <Bin <k ;)) + E[Znsi] (57d)
= I»(n), (57e)

where (57b) is true by (11) in Lemma 1 and the fact that Zy., is 0(X}.,)-measurable. (57d) holds
because we have proved under the dyadic policy, X, +1|X1., ~ Bin (k, %), which is independent
of Xi.n, and Z,4; is also independent of X;.,. (57e) holds because we have proved E[Z,11] =

H (Bin (k, 3)).
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Next, we want to show that E[|I3(n)|] < co. Let us fix Xi., = 1., and expand I3(n) in as

Ir(n) = ol - fo(ug)log (fo(ur) ... fo(ur)) dui.
SeEn
/ fO Us log fO uz dqu / fO Uk du] (58)
SGE" =\ I ;)
n(k-1) / fO uz 10g fO UZ))duz
SGEn i=1 c @

Now consider the integral fC fo(u;) log(fo(u;)) du;. Since fo(u;) < M, we can obtain an upper
bound for fC fo(u;) log(fo(ul))aluZ as

fo(ui) log(fo(ui)) du; < log M fo(us) du; = 27" log M. (59)
Gy Oyt
Substituting (52) and (59) into (58), we have
I(n) > —klog M. (60)
Furthermore, define I, (n) = max(Is(n),0), I, (n) = max(—1Iz(n),0) and we have
E(|L(n)]) = E[Iy ()] + ElI; (n)] = ElI2(n)] + 2B[I; (n)] < Ho + 2klog M, (61)

where the last equation follows from the fact that E[l2(n)] = I2(0) = Hy since I is a martingale and
I, (n) < klog M by (60). Therefore, using the martingale convergence theorem, Iz(n) converges to
a random variable I3(00) almost surely with E[|I2(oc0)|] < Ho + 2klog M.

O

From the proof above we can see that if fj is uniform over (0, 1], fo(u;) = 1 for all u; € (0,1]
and thus the term I is 0. Therefore, in this case, H(py) = — (nk — > iy log ()’(2))
Now the following theorem is a direct consequence of the preceding lemmas.

Theorem 4. Assume there exists M > 0 such that fo(u) < M for all w € R. Then under the
dyadic policy,

. H(pn) . 1
A}gnoo N = H <B1n <k, 2)) almost surely, (62)
and .
H NH (Bin (k, 1
i P PN) + NH (Bin (k. 5)) L N(0,02), (63)

N—o0 \/N

where o is the variance of the random variable log ()k() with X ~ Bin (k:, %)
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Proof. According to Lemma 5, limy_ s Lj\j,v) = limpy_seo ]25\?0) = 0 almost surely. Hence, by (48)

in Lemma 4,

N
. Hy) . DLIN) 1 : 1
1 =1 - — Z;i=0—-FE|Zi|]=—H (B k, = 4
L A S O ks (o4
almost surely.

To prove (63), note that

H(py) + NH (Bin (k,3)) _ I2(N) = 32, Z; + NH (Bin (k, 3)) (65)
VN - VN '

Furthermore, since by Lemma 5 Io(N) converges to I2(co) almost surely and E[|I2(c0)|] < oo,

If/(%) — 0 almost surely, which implies Ii/(%) £,0. On the other hand, E(Z;) = H (Bin (k:, %))

and Var(Z;) = Var (log (;)) = 02, where X ~ Bin (k, %) Hence, by the central limit theorem,

_SN g in(k. L
we have =L Zﬁf/\f;(Bln(hQ)) i>./\/'(0,02). Therefore, by Slutsky’s Theorem (Theorem 25.4 in

[28]),

H(py)+ NH (Bin (k, 1))  L(N) -, Z;+NH (Bin(k,}))
N 2/ — \/N+ NI 27 =5 N(0,62). (66)

O

Figure 4 below shows the simulation results for localizing one object, two objects, and three
objects under the dyadic policy, respectively. We assume the prior density fo is uniform over (0, 1]
and ask 100 questions to locate the objects. The top line corresponds to locating a single object.
In this case, the dyadic policy is actually optimal and identical to the greedy policy as was proved
in [5]. Moreover, the entropy process H(p,) is in this case deterministic. The middle and bottom
lines show the results for respectively & = 2 and £ = 3 objects. In this case, the entropy process
H(py,) is not deterministic anymore. The entropy reduction per question which is visualized in the
second column is asymptotically equal to H (Bin (/{:, %)) according to the law of large numbers.

The third column illustrates the asymptotic normality of the entropy process for the dyadic policy.
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Figure 4: Simulation results for localizing one, two, three objects under the dyadic policy. N = 100 and fy is
uniform over (0, 1]. The horizontal graphs above show the actual trajectories of entropy H(p,), average reduction in

in ’,l .
L(ﬁ"), and normality of H(pNHN%B G 2))7 respectively.

entropy —

6 The Greedy Policy for Localizing Multiple Objects

In this section, we will present the second policy of interest—the greedy policy. The greedy policy is
a family of policies (not unique) which pursue a maximal one-step expected reduction in entropy.
Despite having a better performance than the dyadic policy, the greedy policy is difficult for us
to parametrize and implement. A description of the greedy policy will be given in Section 6.1
and an upper bound of its value is shown in Section 6.2, which verifies our claim of the third
inequality in the main results (8). Furthermore, we will provide an example in which the greedy
policy outperforms the dyadic policy in Section 6.3 and thus this inequality cannot be reversed.

6.1 Description of the greedy policy

Unlike the dyadic policy, the greedy policy is adaptive, that is, the actual policy depends on the
previous answers that we already observed, and at each step the question set A,, C R is defined in
(5) to maximize the one-step expected reduction in entropy.
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We prove that this argmin exists below in Theorem 5. The computation of the greedy policy
might be complicated in some cases, however, the greedy policy is strictly better than the dyadic
policy and we will demonstrate this point in Section 6.3.

6.2 The value of the greedy policy

Although deriving the value of the greedy policy seems impossible, we are able to employ Lemma
1 to derive an upper bound of it as the following.

Theorem 5. The argmin (5) defining the class of greedy policies exists. Under any greedy policy
TG,

R(rg,N) < Hy— H <Bin (k ;)) N. (67)

Proof. Fix some history B, = (Z, X1.,) = b,. We first show existence of the argmin from (5),

restated here as
argjnin EH (pp+1)|pn, Ans1 = 4], (68)

where we recall that the minimum is taken over all Borel-measurable subsets of R.
Since conditioning on the posterior distribution p, under any fixed policy is equivalent to
conditioning on {B,, = (Z, X1.,) = by}, using (11) in Lemma 1, we have
E[H(pn+1)|pn, Apy1 = A] = E[H(pn-i-l)‘Bn =bn, Apy1 = A]
= H(pn|Bn = bnv An+1 = A) - H(Xn—&-l‘Bn = bn,An—i-l = A)

Since the first term H (pn|Bpn = bn, Apt1 = A) does not depend on {A,+1 = A}, (68) can be
rewritten as

(69)

argmin H (py,|By, = by, Apy1 = A) — H(Xp41|Bn = bn, Apy1 = A)
A

(70)
= arg;nax H(X,41|Bp = by, Apt1 = A).
When n = 0, according to Theorem 2, we can rewrite the above argmax as
argmax H (Bin (k, fo(A4))). (71)
A

The maximum is achieved by any questions set A such that fy(A) = % For example, the first dyadic
question (Q (3), Q(1)] Nsupp fo is one of such sets. This also proves H™¢ (X1|By) = H (Bin (k, 3)).
When n > 1, using (36) in Theorem 2, we can rewrite the argmax in (70) as

<f0(AﬁCs<1>) fo(AﬂCsm))) ’ (72)

argfr}naxH ( Z a(S)PB T " folCon)

Sebn,
Jo(C (1)) fo(C_(xy)
h S) = . < d S)=1
where a(S) Tén Jo(C1)) - fo(Clry) an SezEna( )
Let S = {s € {0,1}" : Cs # 0}, and fix some arbitrary order of these elements so that S becomes
a sequence rather than a set. For each s € S, let r5(A) = fo(AN Cs)/fo(Cs) so that (72) can be

rewritten as

arg max H ( Z a(S)PB (r,a)(A), ..., 7w (A))) . (73)

A Seb,
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For each Borel-measurable subset A of R, 7(A) = (rs(A) : s € S) is an element of [0, 1]S].
Moreover, for each r € [0,1]I8l] there is a Borel-measurable A C R such that r(A) = r. This is
because the continuity of the prior cumulative density function allows us to construct the desired
subset A as a union of sets, one for each element of S. In this construction, the subset of A
corresponding to s € S is a subset of C containing a fraction rs of the prior mass of Cs. This shows
that the argmax (72) exists iff the following argmax exists:

argmax H Z a(S)PB (r,a),...,rym) | - (74)
TG[O,l]'S‘ ScE,

The function r — H (Y gcp ®(S)PB(r,),...,rm)) is continuous, and the set [0, 17181 is
compact, so this argmax is attained. This shows that the argmax (5) defining the class of greedy
policies is well-defined.

We now show an upper bound on the value of any greedy policy wg by showing a lower bound
on this quantity. The argument above also shows that under any greedy policy ng, for n > 1,

H™(Xo41|Ba = bn) = max H(X 41| By = bn, Angr = A) (75a)

= max H ( Z a(S)PB ('rsu),...,rs(k))) (75Db)

r€[0,1]18]

SeEn
> max a(S) H (PB(ryu),...,7ym)) (75¢)
ref0.1]! ‘SeEn
> oS H <PB <1 1)) (75d)
- 2777772
SeE

_ <Bin (k ;)) | (750)

Above, we use the concavity of the entropy function to obtain the inequality (75c), and that

PB(3,..., ) aspecial case of a Poisson Binomial Distribution to obtain (75d). The last line, (75e),

follows from } 5. (S) = 1 and the fact that PB(3,...,3) is the Bin (k, 1) distribution.
Furthermore, taking the expectation over all possible realizations of By, we obtain for n > 1,

H™ (Xp41|By) > H (Bin (k ;)) . (76)

Recall that we already have H™¢(X1|By) = H (Bin (k, §)) from previous arguments.
Finally, (12) in Lemma 1 shows

N-1

R(ng,N) = E™[H(py)] = Hy— Y H™(Xp41|B,) < Ho— H <Bin <k ;)) N.  (77)
§=0

O

6.3 A setting in which the greedy policy is strictly better than the dyadic policy

In this section, we show that the greedy policy is strictly better than the dyadic policy under some
circumstances.
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Example 3: Suppose 61, 6, are two objects located in (0,1] with the prior fy being uniform over
(0,1], and A; and As the first two questions of the dyadic policy, A1 = (%, 1] and Ay = (i, %] U(%, 1] .
Now consider the following family of questions A3 indexed by 0 < o, 8 < 1:

(1-a 1 2-8 1 3-8 3 4—a
S e |l G K Gl Gl @
According to (36), given X7 = 2 and X3 = 0, the point mass function of X3 is
P(X5=1z)= fee(z;q1 = B,q2 = B), (79)

which is a Binomial distribution with parameter 5. The maximum entropy is then achieved when
5 = 0.5. Note that the dyadic question, corresponding to o = 8 = 0.5, verifies this condition and
as a consequence is also a valid question for the greedy policy.

Now, more interestingly, assume that X; = Xy = 1, then, according to (36), the point mass
function of X3 is

p(Xz=2) = ifPB(l‘;(Il =a,q2 =)+ %fPB(ﬂf; q =pB,02=pB)
+ ifPB(ﬁ(h =B, :5)+ifPB($QQ1 =a,q = ), (80)

which simplifies to

X pQ(Xg = $)
0] 11—-a)?+1(1-75)?
1| al—a)+p(1-0)
APTES T
Now, one can choose values for o and 3 such that po(X3 =) = %, x = 0,1,2. Specifically,
143 1— 3
a= 23 and [ = 23. (81)

In this case H(p2(X3 = -)) = log(3) > 1.5 which shows that the greedy policy is in this case strictly
better than the dyadic policy.

7 Conclusion

We have considered the problem of twenty questions with noiseless answers, in which we aimed
at locating multiple objects simultaneously. There are a variety of applications associated with
this problem, such as group testing, computer vision, stochastic simulation and bioinformatics.
By adopting the approach of minimizing the expected entropy of the posterior distribution, we
derived a lower bound on the expected entropy and studied two classes of policies, the dyadic policy
and the greedy policy. Although the greedy policy, as we have shown, outperforms the dyadic
policy in reducing the expected entropy, the latter employs a series of pre-determined question sets
and thus is easy to implement. In addition, the dyadic policy beats traditional policies such as
the sequential bifurcation policy and is relatively stable in the sense that the average reduction in
entropy converges under certain assumptions (Section 5.3).
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Also, there are several questions calling for future works. First, in real applications, noisy an-
swers provide a more natural and accurate approximation but we only considered noiseless answers
in this paper. Second, we assumed the number of the objects is known, but in a more general
setting, this assumption should be released. Third, another objective function such as the mean-
squared error can replace the expected entropy, which measures the performance of a specific policy
differently. We feel that researches in these and other questions will be prosperous and fruitful.

Acknowledgments

We would like to thank Li Chen for the fruitful discussions and the preliminary work which even-
tually led to this manuscript. Bruno Jedynak was partially supported by NSF I1S-0964416 and by
the Science of Learning Institute at Johns Hopkins University through the research grant untitled
“Spatial Localization Through Learning: An Information Theoretic Approach”. Peter Frazier was
supported by NSF CAREER CMMI-1254298, NSF 1IS-1247696, AFOSR YIP FA9550-11-1-0083,
and AFOSR FA9550-12-1-0200.

A Definition of the Sequential Bifurcation Policy

In this appendix, we define the sequential bifurcation policy used as a benchmark in Figure 1.
This policy is based on the sequential bifurcation policy of [25], but adapted slightly to the setting
considered in this paper.

We define the sequential bifuration (SB) policy as follows. At each point in time n, SB maintains
a disjoint collection of intervals D,, = {Dy 1, ...., Dypm, }. At time 0, Dy = {R}, and for each n, SB
obtains Dyy; and A,4+; recursively as follows. First, SB chooses the interval D} in D,, with the
largest mass under the prior, i.e.,

D, € arg max/ fo(u) du. (82)
DeD, D

Then, SB obtains A,+1 by splitting D}, at its conditional median under the posterior, and taking the
left-hand portion. SB then creates D, 41 by adding to D,, \ D} those intervals 4,1 and D} \ A,,1+1
shown by X, 11 to have at least one object.

This version of the sequential bifurcation policy differs slightly from the policy presented in [25]
in that (1) it is designed for the continuum rather for a discrete domain; (2) it is designed for the
case with known k, while running it for unknown & (as does [25]) would require an additional query
of the number of objects in R at the start; (3) it is generalized for the case of a non-uniform prior
distribution.
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Active Testing for
Face Detection and Localization

Raphael Sznitman and Bruno Jedynak

Abstract—We provide a novel search technique which uses a hierarchical model
and a mutual information gain heuristic to efficiently prune the search space when
localizing faces in images. We show exponential gains in computation over

traditional sliding window approaches, while keeping similar performance levels.

Index Terms—Active testing, face detection, visual search, coarse-to-fine search,
face localization.

+
1 INTRODUCTION

IN recent years, face detection algorithms have provided extremely
accurate methods to localize faces in images. Typically, these have
involved the use of a strong classifier which estimates the presence
of a face given a particular subwindow of the image. Successful
classifiers have used Boosted Cascades (BCs) [1], [2], [3], [4],
Neural Networks [5], [6], [7], and SVMs [8], [9], among others.

In order to localize faces, the aforementioned algorithms have
relied on a sliding window approach. The idea is to inspect the entire
image by sequentially observing each and every location a face may
be in by using a classifier. In most face detection algorithms [1], [3],
[4], [6], this involves inspecting all pixels of the image for faces, at all
possible face sizes. This exhaustive search, however, is computa-
tionally expensive and in general not scalable to large images. For
example, for real-time face detection using modern cameras
(4,000 x 3,000 pixels per image), more than 100 million evaluations
are required, making it hopeless on any standard computer.

To overcome this problem, previous works in object and face
localization have simply reduced the pose space by allowing only a
coarse grid of possible locations [1], [5], [10]. An elegant improve-
ment to object detection was proposed in [2], where “feature-
centric” evaluation are performed as opposed to “window-centric,”
allowing previous computation to be reused. Such a method,
however, relies on strong knowledge of the classifier used. More
recently, a globally optimal branch-and-bound subwindow search
method for objects in images was proposed [11] and extended to
videos [12]. Here, the classifier and the feature space used to locate
the object are dependent on a single robust feature (e.g., SIFT [13]),
making it difficult to use in the context of faces.

In this paper, we propose a novel search strategy which can be
combined with any face classifier in order to significantly reduce
the computational cost involved with searching the entire space.
The design principle is as follows: We assume that a perfect face
classifier is available, i.e., one which always provides the correct
answer. In practice, however, such a classifier does not exist and an
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accurate one (as in [1], [3], [4], [6]) will be used instead. Our goal is
then to reduce the total number of classifier evaluations required to
detect and locate faces in images while still providing similar
performance levels when compared with an exhaustive search.

A proposed strategy for computational shape recognition [14]
argues that the task of visually recognizing an object can be
accomplished by querying the image in a sequential and adaptive
way. In general, this can be regarded as a coarse-to-fine approach to
perception [1], [15], [16], [17]. This “twenty questions” approach
can be described as follows: there is a fact to be verified, e.g., “is
there a face in the field of view,” and each query, which consists of
evaluating a particular function of the image, is chosen to
maximally reduce the expected uncertainty about this fact. In the
context of computer vision, such approaches have led to two
different types of search algorithms: offline and online. In the
offline versions, the “where to look next” strategy is computed once
and for all, anticipating all possible queries. It has led to efficient
algorithms for symbol recognition [15], face [16], and cat [17]
detection. In the online version, the strategy is computed sequen-
tially as information is gathered. It has led to a road tracking
algorithm [14], [18]: This approach is known as Active Testing (AT).

In this paper, we extend the active testing framework in order
to do fast face detection and localization. We provide a way to ask
questions that are general and specific with regard to the face pose
and span different feature spaces. Similarly to the “twenty
questions” game, questions such as “is the object at this location
with this size?” are asked by means of an accurate face classifier
[1], [4], [6], [9], independently of what features are used to guide
the search. We show here that this approach provides a coherent
framework, with few parameters to choose or tune, which
significantly reduces the number of classifier evaluations necessary
to localize faces. Comparison of our method with state-of-the-art
face detection algorithms and the traditional sliding window
approach indicates that our framework reduces, by several orders
of magnitude, the number of classifier evaluation needed while
maintaining similar accuracy levels on localization and detection
tasks. Even though this paper specifically focuses on frontal faces,
this approach can be extended to faces in general [19], [20], [21],
[22], [23], other object categories [24], and to most classifiers in the
machine learning literature.

The remainder of this paper is organized as follows: In Section 2,
the general framework of our method is presented along with
implementation details. Section 3 describes localization experi-
ments, and in Section 4 we compare the performance with state-of-
the-art methods on a detection and localization task. Concluding
remarks are provided in Section 5.

2 ACTIVE TESTING

The goal set forth is to detect and localize a single frontal face of
unknown size, which may or may not be present in the image. We
define the pose of a face as the pixel location of the face center and
a face scale. That is, we treat localization as placing a bounding box
around a face. In Section 4, we detail how this can be extended to
searching for multiple faces.

AT can be regarded as a search algorithm which uses an
information gain heuristic in order to find regions of the search
space which appear promising. The region which is to be observed
next is determined as information is gathered, and thus can be
viewed as an online variation of the “twenty questions” game. The
general approach is as follows: We are looking for a face in an
image, and are provided with a set of questions which help us
determine where the face is located. Questions are answered with
some uncertainty, reducing the search space and eventually leading
to the face pose.

In addition, it is also assumed that a special question regarding
the exact face pose is available. This question is treated as an
“Oracle,” always providing a perfect answer when queried, but is
computationally expensive relative to other questions. Querying
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Fig. 1. (a) Each node in the tree corresponds to (b) a subwindow in the image. The root of the tree, A, ;, represents the entire image space and has four children
(A2, A2, Ao3, Ao y). (€) Example query: Here, the face centeris, Y = [ € A, ;. The query X,.‘:7 counts the proportion of edges in a window twice the size of A, ;, centered on
A;;. k indicates that we count the proportion of edges on a surface twice the size of the subwindow A; ;, while {i, j} provides the pose subset in A.

the oracle at every location would provide the face pose but is
expensive and inefficient as certain questions are more informative
than others and help reduce the search space faster. Consequently, a
subgoal is to determine face pose with as few questions as possible.

2.1 Model and Algorithm

LetY = (L, S) be a discrete random variable defining the face pose,
where L is the location of the face center (i.e., pixel coordinates)
and S is the face scale such that S can take values {1,...,M}
corresponding to M face size intervals. Additionally, ¥ can take
one extra value when the face is not in the image. Let

A:{Ai’j’i:17"'7Daj:17...74j71}

be a quadtree of finite size, which decomposes the image space; i
indexes the level in the tree and j designates the cell at that level
(see Fig. 1a). Every leaf is associated with a pixel in the image and
each nonterminal node corresponds to a unique subwindow in the
image, representing a subset of poses (Fig. 1b). When no face is
present in the image, then Y € A 1,1, where A 1,1 denotes the
complement of Ay ;.

We are interested in refining the estimate of where the face is
located iteratively and hence denote m; as the probability density
of Y at iteration step ¢. Let u;;; =P(L€A;;,S=35), Aij CA,
s€{1,...,M}. By construction, calculating u;;, can be achieved
by summing the probability of A;;’s children. Clearly, ui1, =
Upls + Upos + U s + Usas and similarly for an\y other w;;,. For
any node, we also denote wu;; = m(Ai;) = S" wij. Let X =
{X!,..., X"} be a set of question families, such that, for each
family k, X* = {X},i=1,...,D,j=1,...,47"}, where X}, is a
query from family k, about the pose subset A; ;.

The generic AT algorithm (Algorithm 1) can then be seen as
following: To begin, 7 and the first query are initialized (lines 1 and
2). Three operations are then repeated: The response is observed
(line 4); the belief of the location of Y is updated using the latest
observation (line 5); a new query is chosen for the next iteration (line
6). The iteration is stopped when a terminating criteria is achieved
(line 7). Each line is explained in detail in the following sections.

Algorithm 1. Active Testing (AT)
1: Initialize: : — 1,j — 1,k — 1,t — 0
2: Initialize: mo(A1,1) = mo(Ayy) =1
3: repeat
4:  Compute the test z = X},
5. Compute 7, using 7; and z
6:  Choose the next subwindow and test:

{i,7,k} = arg mai(I(Y; Xf,/j,)
e :

7 until H(m41) > 1 —eand/or ¢t < 7.

2.2 Queries

The AT algorithm requires a set of query families, X =
{X!,..., XK}, to be specified. Each query family, X*, consists of
evaluating a specific type of image functional indexed by k.
Members of a family X* = {X},i=1,...,D,j=1,...,4" '} are
indexed by a pose index in A (as in [17]). That is, X} is an image
functional, where k defines a particular computation and {z, j}
specifies the pose subset. Note that these queries are generic and
need not be binary. Example queries can be seen in Fig. 1c.

In addition, perfect tests—which precisely predict the presence
of a face by using a classifier—are included in X'. When this test is
used at a specific pose, either the classifier responds positively and
the face is deemed found, or conversely, the response is negative
and the face is assumed not to be at this pose. That is, we assume
no uncertainty with regard to the response of this classifier.

In order to specify the joint distribution between the face pose Y’
and queries X, we make the following heuristic assumptions:

Conditional independence:

P{X},=a}i=1...D,j=1..4" k=1...K|Y = (I,9))

= [Pt =aly = (.). )
ik "
Homogeneity:
ko _ _ ff(il?, i), ifl e Aij,
P(Xi,j =alY = (,s)) = {fé"(;c; i), otherwise. @

Here, fF characterizes the “response” to the query X* ; when the
center of the face is within A,; with size s. Similarly, fF is the
“response” when the center is not in A; ;. Additionally, even though
KN queries are specified, where N is the number of nodes in A, the
number of densities needed is only K D. That is, for each test family,
only one density per level of A needs to be specified. This is why
f¥(-,1) is only indexed by i.

Note that these assumptions are a simple way to make the
problem tractable: For example, the conditional independence of
queries given the location of the object Y assumption is clearly a
simplification as the same pixel values are used to compute many
queries at different levels of A. Similarly, the actual responses to
tests might in fact depend on the precise location of the face within
A;j. The homogeneity assumption simplifies the response model
by assuming a single model for all cases. Even when using these
assumptions, however, the experiments conducted here (Sections 3
and 4) indicate that these simplifications provide a good way to
solve the problem at hand. In addition, this model should be taken
into account when choosing queries to use: Similarly to a Naive
Bayes model, queries should be individually informative.

2.3 Belief Update

Once an observation has been made, the new distribution of the
face location Y must be calculated (line 5 of AT). At initialization
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(line 1 of AT), my(A1q1) = mo(Ary) = , indicating that a face is
believed to be in the image with probability 1/2. Note that the
probability m(A;;) is uniformly distributed within A;; by
construction. Given m; and the query response Xffj =z at time
step ¢, the updated distribution 7,,; can then be calculated by
using Bayes formula:

P(X}; =2|Y = (I,5))m(l,s)
Yool P(XE =aly = (U, ) m (U, )dl

Using Assumptions 1 and 2, then

®3)

i (ly s) =

P(X =2V = (,s) = f (2, )Wy, () + (2,0, (). (4)
Let us now define the likelihood ratio as
r(xs)zﬁggig s=1...M, (5)
then (3) can be written as,
1
maal) = 205 (1,0 + T, O 9)m(ds). ©

where Z(x) is the normalizing constant. Note that the evolution
from m; to 741 only relies on r(z) and allows for probability mass to
be shifted onto or away from A, ;, depending on the response of X ;.

In order to reduce the number of nodes to update, only a subtree
is maintained, where only nodes which have probability greater
than some threshold 7 are included. By construction of A, parent
nodes have probability equal to the sum of their children, hence any
node which has probability larger than 7 also has parent with
probability greater than 7. This guarantees that applying this
threshold forms a subtree within A containing A;;. This approx-
imation of 7; allows for a compact representation of the distribution.

2.4 Query Selection

We choose to select the next query by maximizing the mutual
information gain between Y and the possible queries X* ; (line 6 of
AT). This can be written as

I(Y; Xy) = H(XY) - HXLIY), (7)

where

M
H(X})) = h(Z ué,jﬁsf,f(‘)) (8)

s=0

Here, h(f) is the differential Shannon entropy of the density f. We
simplify this expression by substituting h(f) with the Gini Index
[25]. The mutual information then becomes

M M
§ E utjé“t_[ln/

5=0 m>s

I(v; xt) — 1y 9)

where u;jo=1—u;;. Note that the term [(f*— f%)* is the
euclidean distance between the densities f* and f*, and only
needs to be computed once and then stored for fast evaluation.

Since we are interested in choosing both the region A; ; € A and
a query family & which maximizes the information gain, one can
simply evaluate I(Y; X};) for all possible values of the triple (i, j, k)
and select the parameters providing the largest gain. However, as
described in Section 2.3, only a small subset of poses is ever
considered at any iteration. For example, nodes which have little
probability will surely only provide a small information gain.
Consequently, we only need to evaluate (9) for the explicitly
maintained subtree (Fig. 1a). Additionally, once a query has been
chosen, it is removed from the set of possible queries, further
reducing the amount of computation.

2.5 Terminating Criteria

At line 7 of the AT algorithm, two terminating criteria are
presented: 1) The algorithm runs until the entropy of =, H(n), is
very high, and 2) the algorithm iterates for a fixed number of steps,
<. In the first case, running until the entropy is high corresponds to
two possible outcomes: Either a face has been found and most of
the probability mass is at a single leaf of A or most of the mass is
outside the image A;; and no face is believed to be present in the
image. In general, the choice of which criteria to use (1), 2), or both)
is for the user to decide. Sections 3 and 4 show the behavior of
these scenarios.

In addition, for all cases, the total number of queries is bounded
by the size of the tree and the number of query families. As the
algorithm iterates and the classifier is queried, the number of poses
with strictly positive probability decreases. This provides a
guarantee that, in the worst case, the face will be found after
having observed all the poses.

2.6 Implementation

We now provide some implementation details and give a more in-
depth algorithm for updating 7 (see Algorithm 2) and choosing
queries.

Before the AT algorithm begins, all features necessary to
evaluate queries from X for a given image are computed and
stored in the form of an integral image making the evaluation of a
query O(1) operations (similarly to [11]). This is particularly
efficient since queries X7, ; compute nested subwindows.

In order to form and mamtam the subtree of A (line 7), only
nodes which are above a threshold (7 = 0.001) are explicitly stored.
To do this, we construct A as a quadtree, and maintain a frontier
set F. F consists of any node A; ; with u; ; > 7 and with all children
having u;41,7 < 7. Applying this rule at each iteration ensures that
the maintained subtree is relevant to where the face is believed to
be located. Additionally, since the probability associated at any
node in the tree is equal to the sum of its children, we only need to
update nodes in F and recurse through the tree to update the
remaining nodes in A.

After having computed the query X}, updating any node
Ay y € Fissimple: If Ay ; € A, j, then uy y = r(y)uy y/ Z; otherwise,
uyy = uyy/Z. Doing so updates m as described in (6) in an efficient
way. In addition, at any point in the updating of 7, the next best
query, S, seen so far is maintained. The denominator Z is calculated
once and for all, and used to calculate (9) when each node is visited.
Only the best score is kept and ultimately chosen for the following
iteration of the AT algorithm. That is, we compute (6) and (9) one
after the other, requiring only one pass through the subtree per
iteration.

Algorithm 2. Update(Ay j, A 5,2, S, F)
1. if Ay y € F then

2: if Aif‘jf C Am‘ then

3wy (@) /2

4: else

5: Uity — Uy | Z

6: end if

7:  Maintain F

8: else

9:  for Each child, Ajy v, of Ay do
10: Update(Aji1 v, A j, z, 5, F)
11:  end for
120wy Zj” Ui 41,5
13: end if

14: S = max(S, manI(Y§X§]j/))



3 FACE LOCALIZATION

To demonstrate that this framework can be used to significantly
reduce the number of classifier evaluations required when
searching for a face in an image, we begin by evaluating the AT
algorithm on a pure localization task (as done in [11]). In the
following set of experiments, each image contains exactly one face.
We describe in Section 3.1 the queries used to localize faces. In
Section 3.3, we show how AT performs in terms of time, number of
classifier evaluations, and accuracy.

We perform the following experiments on the Caltech Frontal
Face data set [26], which consists of 450 images (896 x 592
pixels), each containing exactly one of 27 different faces in
variously cluttered environments and illuminations. Face sizes
range from approximately 100 to 300 pixels in width. We choose
M = 4 possible face size intervals ([100,150], [150, 200], [200, 250],
[250,300]). All experiments are conducted on a 2.0 Gigahertz
machine.

3.1 Face Queries

To locate faces, we first specify the following set of test families,
X ={X',..., X"}, and their associated distributions (f*, f¥). In the
following experiments, K = 30.

The first family of tests, X', calculates the proportion of edge
pixels (defined and computed as in [15] by means of an edge
oriented integral image) in a window associated with the pose A; ;.
That is, X{ | is the proportion of pixels which are edges within Ay
and similarly for all A; ;. Test families X?-X® are similar to X' in
that they compute the proportion of edge pixels in a window
centered on A, j, but of larger size, by a factor F' = {2,3,4,5} (see
Fig. 1c). Note that this factor is different from the scale S. Using
these pose-indexed tests provides a way to test arbitrarily large
regions, even when A;; is a small subwindow. These tests also
allow for overlapping A;; regions and more precise estimation of
the face scale.

Families X°-X? are similar to X' but compute the proportion of
edge pixels in a particular direction (four possible directions).
Similarly to families X?-X°, families X'°-X* allow for a scale
factor for tests in a particular direction (four directions x four
factors). Using integral images allows for computation of these
tests with only four additions, making them very efficient.

We choose to model all the f* for s € {0,..., M} using Beta
distributions. The Beta family permits to model a wide range of
smooth distributions over the interval [0,1] with only two
parameters. The parameters of each distribution are determined
offline from a small training data set where the face location and
scale is known (more details are given in Section 3.2).

Finally, families {X?,..., X"} are the perfect tests and involve
testing for a face using a BC. Each family specifies testing for a face
at all scales within a given interval (s € {1,...,M}). For each
interval, we test for face sizes in increments of 10 percent of the
smallest face size (total of 13 face sizes in the range [100, 300]). In
terms of operations, evaluating this test requires, on average,
56 additions, one multiplication, and one comparison, per face size,
making it significantly more costly than other queries. Since the BC
is only informative when the pose is very specific, we restrict this
test to leaves in A. These BCs are trained and provided by OpenCv
[27], but modified to restrict testing to specific regions and face
sizes. Even though better classifiers have recently been developed,
we choose this one as it is publicly available and widely used.

3.2 Offline Training

We choose to model each f%(-,i) with a Beta distribution with
parameters («, ). To do this, we randomly selected 50 images,
from the Caltech Frontal Face Data set [26]. Note that far fewer
images are used for training here when compared to other search
methods (see [11], [12]) which typically use on the order of
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10 images to train their systems. The estimation of the f*(-,1)
parameters is broken into two parts.

We first estimate all the background densities. That is, for each
k and i, we randomly select 100js per image such that the face
center is not in A; ;. We then compute the tests X,’.fj =z and use
these to compute the parameters using maximum likelihood
estimation with 5,000 datapoints.

To estimate the foreground densities, a similar procedure is
used. We describe the case s = 1. For each & and i, we randomly
select 100js in each image such that the face center is in A; ;. The
parameters of ff(-,i) are then estimated from the tests X; = x. As
before, 5,000 datapoints are used to estimate («,3). In order to
estimate f*(-,4) for 1 < s < 4, we subsample the images and repeat
the same procedure (similar to [16]). Additionally, the [(f* — f*)?
term from (9) is then calculated by using a Monte Carlo
approximation, and stored in a lookup table.

3.3 Single Face Localization

We set up the AT algorithm with BCs (AT + BC) to run until a face
is found or until 5 x 10° classifier evaluations have been performed
(see Fig. 4 for details on how this was chosen). We compare this
with a sliding window approach using the identical BCs
(SW + BC) and letting it run until a face is found or until all poses
have been observed. Note that both (AT + BC) and (SW + BC)
have the same pose space: all pixels and face sizes (e.g., pose space
size = 896 x 592 x 13 = 6,895,616). In order to avoid any unfair bias
as to where faces may be located, we randomly pick initial starting
locations in the image for (SW + BC), looping around the image in
order to observe all the poses. We report that (AT + BC) allows for
exponential computational gains over the sliding window ap-
proach while keeping similar performance levels.

Fig. 2 shows a typical behavior of the AT algorithm on a given
image. In general, the order in which queries are posed is complex
and, in some cases, counterintuitive—validating the need for an
online search strategy.

In Fig. 3a, we compare the accuracy of (AT + BC) and
(SW + BC) on the remaining unused 400 images of the data set
using an ROC curve. We observe that generally (AT + BC) does
not suffer much from a loss in performance compared to the brute
force sliding window approach. Note that the difference between
the two methods is not significant.

To compare how much time (AT + BC) and (SW + BC) take to
locate a face depending on the size of the pose space, we randomly
selected a subset of 50 images from the testing set, subsampled
these to have images of sizes 112 x 74, 224 x 148, 448 x 296,
672 x 444, and 896 x 592. Fig. 3b shows the average time of both
methods for each image size. Note that the overhead of
(AT 4+ BC)—the time to evaluate all queries tested, the update
mechanism, and the query selection—is included in this plot (the
additional time to compute an integral image for oriented edges is
notincluded as it is negligible). As expected, we see that (SW + BC)
is linear in the number of poses. However, the total time (AT + BC)
takes to complete is significantly lower than (SW + BC) and even
more so at large image sizes. In fact, (AT + BC) remains almost
logarithmic even as the number of poses increases. This suggests
that AT uses a form of “Divide and Conquer” search strategy. Note,
that at image sizes smaller than (112 x 74), (AT + BC) is slower
than (SW + BC) due to the overhead.

Fig. 3c shows the average number of classifier evaluations both
(AT +BC) and (SW + BC) perform when changing the image
size. Notice that the difference between (AT + BC) and (SW + BC)
is even larger than the difference reported in Fig. 3b and that the
AT algorithm significantly reduces the number of classifier
evaluations. For the largest image size, AT requires 100 times
fewer evaluations than SW.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. XX,

XXXXXXX 2010 5

Fig. 2. Sequence of queries posed by the Active Testing algorithm on a test image from the Caltech Frontal Face Data set. In each image, a test Xﬁ‘_'j is computed: White
boxes show the pose, A, ;, queried while black boxes show the subimage queried. The number indicated in the top left of each image is the iteration number of the AT
algorithm. In image 3123, the Boosted Cascade is evaluated and a face is found at a given scale (green box).
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Fig. 3. (a) ROC curve of both SW + BC and AT + BC to find a face in the Caltech Frontal Face data set. The performance of both methods is approximately identical.
(b) Average computation time with varying pose space size. Note that image size is in logarithmic scale. The AT algorithm performs in almost logarithmic time compared
to SW. (c) Average number of classifier evaluations when the pose space increases. Additionally, a zoom of the AT performance is provided.

In Fig. 4a, we show how the accuracy of (AT + BC) is affected
by the total number of classifier evaluations allowed. The dotted
line indicates the performance of (SW + BC) when the entire pose
space is observed. We see that after observing the entire pose space
(O(10°) evaluations), 98 percent accuracy is achieved. Performance
results are shown when (AT + BC) is stopped when either a face
has been located or after (10°, 10%, 10°, and 10°) classifier
evaluations have to be performed. After only 10! classifier
evaluations are nearly 90 percent of detectable faces found. By
10° evaluations, AT performs at the same accuracy level as SW. In
general, we can see in Fig. 4b that the number of evaluations
required is approximatively Geometric (p=10"*). Hence, on
average, 0.0014 of the total pose space is evaluated by the classifier.

As in [15], Fig. 4c shows a randomly selected test image, and the
corresponding computational image associated (right). The com-
putational image is a gray-scale image, which indicates the number
of times each pixel has been included in a queried window (all
types of queries included). Darker regions show areas where little
computation has taken place, while white regions show important
computation. As expected, we can see that regions of the image
which contain few features (left part of the image) are not
considered for much computation.

4 FACE DETECTION AND LOCALIZATION

We now test the AT algorithm in a much harder setting—a
detection and localization task. We do this by looking for faces in
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Fig. 4. (a) The proportion of faces detected increases with the number of classifier
evaluations: 90 percent of faces are correctly detected with only 10! evaluations
and with 10° classifier evaluations, the AT algorithm performs as well as SW, but
much faster. (b) Histogram of the number of classifier evaluations. The dotted
black line represents the point mass function of the Geometric distribution with
parameter p = 1/9,248. (c) Face image and associated computation image. This
gray-scaled image indicates the number of times each pixel has been included in a
queried window.
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Fig. 5. (a) ROC for both the sliding window and the Active Testing approaches on
the MIT+CMU frontal face data set. The AT algorithm achieves similar
performance levels to the exhaustive search. (b) Number of classifier evaluations
for each image in the test set. Clearly the AT approach does not suffer as much
from the increase in pose space. (c) Time performance for each image in the test
set.

the MIT+CMU data set [28]. This data set contains 130 images, of
various sizes, where some images contain no faces and others
contain an unknown number of faces. Face sizes range from
20 pixels to the width of images. As in the previous experiment, we
initialize the AT algorithm similarly to that in Sections 2 and 3.

To find multiple face instances, we assume that at any point in
time, the remaining number of faces to be found in an image
follows a Poisson distribution with parameter A\Q), where @ is the
number of pixels unobserved in the image and ) is a face rate. We
have chosen \ = 1074, corresponding to one face per 100 x 100
pixel image on average and hence 7(A1,;) = e *?. We then run the
AT algorithm until 7;(A11) < € = 10-°. When a face is found, edges
from the detected face region are removed from the integral
images and the remaining poses are assigned uniform probability.
The algorithm is then restarted with the updated (A 1).

Fig. 5a shows the ROC curve of both the (AT 4 BC) and
(SW + BC) methods on the MIT+CMU data set. In both cases, no
postprocessing step was applied to these results (i.e., No
NonMaximum suppression). First, we note that the MIT+CMU
testset is much harder than the Caltech Frontal Face set. In general,
the performance of the AT algorithm is comparable to the brute
force approach. There is, however, a slight performance decrease
in (AT 4 BC) when compared to the exhaustive search. That is, we
notice that even though the classifier used (BC) is not very good
(when compared to state-of-the-art classifiers), little accuracy loss
is observed when used in the AT framework.

From this experiment, (AT + BC) required O(10%) classifier
evaluations over the entire testset, while (SW + BC) required
0(10%) evaluations. Fig. 5b shows the number of classifier
evaluations required by both (AT + BC) and (SW + BC) on each
image. Generally, we see that AT is still able to significantly reduce
the total number of evaluations required even though the number
of faces in the images is a priori unknown. Fig. 5¢c shows a similar
result in terms of time. Again, computational gains are of one order
of magnitude over the entire testset.

Notice in Figs. 5b and 5c¢ that for images of the same pose space
size, the number of classifier evaluations and time necessary for
(AT + BC) to terminate vary. This variance is due to the fact that
(AT + BC) stops when the estimate of having a face in the image is
very low: m(A11) < e=10"5. Hence, in images which contain
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many face-like features, the algorithm will need to visit many more
locations to see if faces are still present. This is precisely what is
observed in Figs. 5b and 5c.

5 CONCLUSION

We have proposed an Active Testing framework in which one can
perform fast face detection and localization in images. In order to
find faces, we use a coarse-to-fine method while sampling
subwindows which maximize information gain. This allows us to
quickly find the face pose by focusing on regions of interest and
pruning large image regions. We show through a series of
experiments that the active testing framework can be used to
significantly reduce the number of classifier evaluations when
searching for an object. Exponential speedup is observed when
detecting and locating faces compared to the traditional sliding
window approach (particularly on large image sizes), without
significant loss in performance levels, indicating that this method is
scalable to larger image sizes.
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Abstract—Methods for tracking an object have generally fallen into two
groups: tracking by detection, and tracking through local optimization.
The advantage of detection-based tracking is its ability to deal with
target appearance and disappearance, but does not naturally take
advantage of target motion continuity during detection. The advantage
of local optimization is efficiency and accuracy, but requires additional
algorithms to initialize tracking when the target is lost.

To bridge these two approaches, we propose a framework for unified
detection and tracking as a time-series Bayesian estimation problem.
The basis of our approach is to treat both detection and tracking as a
sequential entropy minimization problem, where the goal is to determine
the parameters describing a target in each frame. To do this we integrate
the Active Testing paradigm with Bayesian filtering, and this results in a
framework capable of both detecting and tracking robustly in situations
where the target object enters and leaves the field of view regularly. We
demonstrate our approach on a retinal tool tracking problem and show
through extensive experiments that our method provides an efficient and
robust tracking solution.

Index Terms—Unified object detection and tracking, Active Testing,
Instrument tracking, Adaptive Sensing, Retinal microsurgery.

1 INTRODUCTION

Visual tracking has been intensely studied in computer
vision over the past two decades [1]. Informally, the
objective of visual tracking is to provide an accurate es-
timate of the configuration of a target across time, where
the term “configuration” denotes parameters describing
the position, pose, or shape of an object. A general
solution involves solving two subtasks: (i) detecting the
target in the initial image in which it appears, and (ii)
predicting and refining (i.e., tracking) the configuration
of the detected target in subsequent images [1], [2]. While
extensive research in this area has produced excellent
tracking systems, combining these two subtasks remains
difficult when the target appearance is complex or when
the target enters and leaves the field of view frequently.

Indeed, the initial detection of the target is often
the most difficult aspect of a tracking system. This is
particularly the case when object appearance is complex
and many configuration parameters are involved [3]-[5].

R. Sznitman, R. Richa, R. H. Taylor and G. D. Hager are with the Dept. of
Computer Science, B. Jedynak is with the Dept. of Applied Mathematics and
Statistics Johns Hopkins University, Baltimore, MD, 21218, USA.
e-mail:{sznitman,richa,rht,bruno.jedynak hager } @jhu.edu

Even more so, performing detection with accuracy and
at frame rate for objects that have many pose parameters
is often infeasible due to the enormous size of the search
space i.e., easily over a billion hypotheses. In addition,
while object detection and localization algorithms, such
as classifier cascades [6], [7] or branch-and-bound algo-
rithms with SVM based cost functions [8] are expected
to determine parameters that define an object (i.e., a
bounding box [6], or object segmentation [9]), incorpo-
rating prior object knowledge into these frameworks to
improve detection in subsequent images is usually an
ad-hoc adaptation of common filtering paradigms [10],
[11].

Conversely, some tracking approaches have tried to
place detection and tracking under the same umbrella.
Approaches have included strategies for removing faulty
detections by model validation and temporal non-
maximal suppression [12]-[14]. However, in these cases
only restricted regions of the image are considered when
searching for the target, which often leads to tracking
failures when motion models are violated. Other ap-
proaches have performed tracking by using cascades of
detection processes that refine the possible object loca-
tion [15], [16]. While these have generally been shown
to be robust, the construction of these systems has been
hand-crafted for each problem setting with no underly-
ing principle. This in turn makes them challenging to
implement in real-applications.

1.1

In this work, we propose an algorithmic solution for the
task of detection and tracking. Our approach embodies
and extends the Active Testing (AT) paradigm [3], [17]
and allows both detection and tracking to be considered
within the same framework. In particular, in both tasks,
estimating the object parameters is achieved by using the
same sequential entropy minimization procedure, and
hence removes the need for two separate algorithms and
the protocols necessary to join them. By using the AT
framework and Bayesian filtering strategies, the entire
search space of the object is always considered when
searching for the object pose, and informative priors

An Active Testing Approach
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can effectively be used to weigh likely pose candidates
in subsequent images. In addition, within the AT opti-
mization, the parameters of the object are searched se-
quentially, requiring far fewer observation models when
compared to [17]. Consequently, the learning stage of the
framework is significantly simplified. Finally, central to
the tracking problem, we detail how to incorporate tradi-
tional gradient-based tracking methods for this task [1],
[18], [19] within our framework.

In summary, the unique aspects of our framework are:
(i) an information-based heuristic is used to guide the
search process during detection and tracking, allowing
both to be solved using the same optimization strategy
while considering the entire search space at all times,
(ii) traditional local optimization tracking is incorporated
into a larger class of image functions used to gather
information regarding the location of the target and
(iif) the process of learning observation models from
training data is greatly simplified by introducing a new
parametrization of these models.

1.2

We demonstrate our approach on the task of detect-
ing and tracking a surgical instrument during retinal
microsurgery. From a computer vision point of view,
visual tracking of instruments is a challenging problem
within a controlled environment. The instruments used
during surgery are known a priori, making it possible
to learn their appearance and geometry beforehand.
However, the instruments are subject to a large variety of
appearance changes during procedures, making tracking
difficult. For example, an instrument may be partially
blurred, the shadow of the instrument may be similar
in appearance to itself, and local and global illumina-
tion conditions change with time. While one possibility
would be to model the background and detect outliers
to estimate the instrument pose as in [20], modeling
the background in in-vivo settings remains challenging,
particularly when the eye moves during the procedure.

In the context of surgical applications and with the
goal of providing semi-automated assistance for clin-
icians during procedures, tool detection has received
increased attention in recent years. Towards this end, a
number of techniques have been proposed such as in
[20], [21] where kinematic information and instrument
templates were used to detect and track tools in image
sequences. In [22]-[25], instrument models based on
pixel, or local color are learned and used for detec-
tion and segmentation. Other methods, as in [26], [27]
extracted edges and lines to ultimately infer tool tip
position. Yet, to date a majority of methods have relied
on the ability to alter the tool appearance directly by
adding visible markers to facilitate tool detection [28]-
[30].

Unlike other approaches for this task that demand
prohibitively high computational costs [31] or extremely
accurate initialization methods [19], [21], [32], our so-
lution provides a feasible and automatic solution to

Instrument Tracking in Surgery
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tracking retinal instruments without the need for ac-
curate instrument motion models. More importantly,
this remains the case when the instrument enters and
leaves the field of view often. To demonstrate this, our
approach is validated on a microscope platform that
uses a phantom eye and also on images from human
retinal microsurgery. While a preliminary version of our
method was presented in [33], this paper provides a full
description of our approach, integrates gradient-based
tracking methods in our framework, and presents exten-
sive additional empirical results on both phantom eye
data and human in-vivo data. While this work focuses
on this particular application, the approach is relevant
for a number of other applications as well.

The remainder of the paper is organized as follows:
in Sec. 2 we first introduce some notation and describe
the problem formulation. We then introduce tracking as
a Bayesian sequential estimation problem and describe
how our approach embodies this structure in Sec. 3. In
Sec. 4 we describe the AT model for detecting retinal
instruments. In Sec. 5, we perform extensive experi-
mentation to validate our approach on both phantom
and in-vivo data. Finally, we conclude with some closing
remarks in Sec. 6.

2 PROBLEM FORMULATION

The aim of this work is to locate a surgical instrument
in a sequence of monocular images, gathered from the
operating microscope. Similar to most detection and
tracking approaches, we assume that the instrument’s
position and orientation', or pose, can be described by
a relatively small number of parameters. As depicted
in Fig. 1(left), we let the parameters representing the
instrument be defined as Y = (Y1,Y5,Y3), where V)
corresponds to the instruments point of entry in the
image (i.e., a pixel location on the image boundary), Y5
describes the angle the instrument makes with Y; and
Y; is the instruments length measured in pixels. This
particular parametrization is chosen as it is simple and
intuitive to the retinal microsurgery application.

Ultimately, we are interested in determining the values
of Yt = (Y{,Y}, YY), for all images in a sequence, ZT =
(I',...,I7). For this reason, we treat Y as a random
variable that must be inferred and where we want to
compute P(Y*'Z!),t=1,...,T.

To do this, we first describe the pose space of the
instrument. This is achieved in two steps. First, let the
instrument’s pose space when in the field of view, S;, be

Sy =A{[0, L] x [-7/2,7/2] x [0, D]}

where L is the perimeter length of the image, ¢ and
D are the minimum and maximum instrument lengths
measured in pixels. In practice, § is 10% of the width of
the image.

1. The scale or size parameter is assumed to be known given that the
tool must be in focus and microscopes used during procedures have
very large focal lengths. Hence, we assume the tool scale is known.
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Fig. 1. (left) Tool parametrization: the retinal instrument
has three parameters consisting of the point of entry of
the instrument in the image, Y7, the angle the instrument
makes with the image boundary at the point of entry, Y5
and the instruments length, Y3. (right) Diagram of surgical
environment, displaying the positioning of the light pipe
and instrument during surgery.

Second, since the instrument may not be visible in the
field of view of the camera, the separate space Sy = {OJ},
is defined for this event (i.e., the O is a token representing
this case).

Finally, the complete pose space of the instrument is
defined as Y € S =S USp.

3 ACTIVE TESTING FOR TOOL TRACKING

To detect and track an object, we cast the tracking
problem in a Bayesian sequential estimation fashion [10],
[11], [34]. That is, at time ¢, we must infer the random
variable, Y7, given the image sequence observed up to
that time instant, Z*. This can be expressed by,

P(Y'TY) :/P(Yt|Yt‘1,It)P(Yt‘1|It)dYt‘1 (1)
x P(It|Yt)/P(Yt\thl)P(thl|IH)dYH

2

o« P(I'|YY)P(Y?) (3)

where the conditional distribution given the observa-
tions can be rewritten as (1) by including the marginal-
ization of Y'™! and an application of Bayes theo-
rem. (2) follows from (1) by another application of
Bayes theorem, the assumption of Markov dynamics of
the object, and the assumption that P(Y?) is a suffi-
cient statistic for Z*. In (3) we have defined P(Y?') =
[Pyt Pyt hdy L.

In most cases, various elements of the observation
model, the dynamics and the distribution on Y have
been approximated in order to allow both fast and
feasible computation. For example, in methods based on
Kalman filtering [10], the dynamics are assumed to be
linear or are linearized, and both the distribution of YV
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and the observation model are Gaussian. In sampling-
based methods [11], non-Gaussian distributions of Y are
maintained by using particles. In our approach, we rely
on a partitioning of S; (using a conditional binary tree)
to allow exact computation of posterior distributions and
will be achieved by using a slightly adapted histogram
filter [35], [36].

In the context of tracking, image observations are typ-
ically evaluated at a single location or a set of locations
predicted by the distribution of the target (i.e., at particle
locations). But in the case of detection, following such a
strategy is computationally hopeless as the number of
hypotheses to evaluate is enormous. For example, when
using particle filters, this would imply maintaining order
the size of the pose space number of particles. For this
reason, we need a mechanism to efficiently select which
observations to make and the AT optimization scheme
serves this purpose.

3.1 The Active Testing Model

The Active Testing (AT) [3], [17] can be viewed as an
iterative stochastic optimization scheme aimed at reduc-
ing the uncertainty of a discrete random variable by se-
quentially asking “questions” or “queries” in an efficient
fashion. In particular, this optimization scheme provides
an approximation to the maximum likelihood estimate
of the random variable when all possible questions are
answered.

In general, the optimization process is as follows: one
begins with a prior on the random variable to infer,
po, and selects a subset of the pose space to query
using a question regarding this subset. The question
typically consists of computing a simple measurement
on a region of the image, such as the proportion of pixels
belonging to the object in some region of the image.
Hence, a question is a coupling between a computation
type and a region of the search space. The answer to the
question is then used in a Bayesian way to recompute a
new probability distribution or posterior distribution (i.e.,
P1,D2, D3, - - -)-

Selecting a new question for the following iteration,
which we will denote as X, is then achieved by choosing
the question that reduces the expected entropy of the
object as much as possible. This is equivalent to selecting
the question that has the highest information gain,

X =argmax MI(Y; X) (4)
Xex
where M1 is the mutual information [37] and X is the
set of possible questions that are available. This proce-
dure repeats until the entropy of the random variable
drops below a pre-determined threshold, or a set number
of questions have been asked.

Hence, in order to make use of the AT framework
three pieces must be specified: (i) a prior distribution
on the parameter, P(Y"), (ii) a representation for the
distribution of Y and (iii) a set of “questions” (and their
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associated noise models), X, pertaining to the parameter
Y. We will specify these in Sec. 4.

3.2 Active Testing Filtering

At this point, we describe the general form of an Active
Testing Filtering (ATF) algorithm (see Alg. 1). Here, the
user initially provides an instrument dynamics model,
P(Y!Y'!) and a prior on P(Y"). Then, for each image
in the sequence, we first compute P(Y*) (line 3) by using
the provided dynamics model and the previous density.
Depending on the model used, this can be computed in a
number ways. We can then treat P(Y") as an initial prior
for the AT optimization (line 4). That is, instead of using
uninformative priors on the pose of the instrument for
each image, we begin the AT optimization with P(Y*),
which carries information about where the instrument
was previously located and how it may have moved.

Algorithm 1 Active Testing Filtering ( Z )
. Initialize: P(Y?), P(Y?|Y!~1)
: for all I* do
P(YY) = [P(YHY' H)P(Y! )dyt?
P(YYT') = ActiveTesting(I*, P(Y'"))
end for

—_

S

In this work, we select a simple linear instrument
dynamics model of the form,

Y =AY + N(0, @) 5)

where A is the dynamics transition matrix. In the exper-
iments that follow, we use two different models: (i) A
is the identity matrix which corresponds to assuming
the tool has not moved from one frame to another.
(if) A is augmented to allow velocity estimates to be
compounded in the new prior. Given that we know that
the tool will enter and leave the field of view often, we
expect both dynamic models to be consistently violated.
While this may induce inappropriate priors P(Y"), the
active testing framework will still recover the pose of the
instrument.

4 ACTIVE TESTING IMPLEMENTATION

In this section, we describe the aspects of the AT op-
timization that must be specified: the representation of
the probability distribution of ¥ and what “questions”
will be available to localize an instrument. In particular,
we will provide a set of questions, which can be viewed
as a set of features that can be evaluated, combined and
integrated by the framework and which are informative
with respect to different coordinates of Y.

41

To represent py and the sequence of posterior distribu-
tions that will be computed, we make use of an abstract
decomposition of the space S;. Let S denote a binary

Probability Density Representation
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decomposition of the space S;. That is, S is a tree of
subsets

S={S;;,i=0,....,H,j=0,...,2" —1} (6)

The root of tree is Sp o = S1 and 5; ; is a subset of Sy .
The decomposition of the tree is performed by splitting
one coordinate of Y at a time, until a desired resolution
is reached, at which point we repeat the procedure for
another coordinate (e.g., split Y7, then Y, and so on).
Simply put, the tree consists of a series of binary trees
one after the other.

Fig. 2 depicts this decomposition visually. Here, we
show a tree structure specified by (6), where blue nodes
show where only Y; is being decomposed, red nodes
show where Y; has been fully decomposed and Y5 is in
the process of being decomposed, and green nodes show
those with both Y; and Y5> fully decomposed and where
only Y3 is being refined.

Using this decomposition, describing the probability
distribution of Y as a function of S is straightforward.
If we denote the probability P(Y € S; ;) as u; ;. Then
since the node s9; ; are disjoint subsets, u; j = w;11,2; +
Uiy1,2j+1 for every non-terminal (or leaf) node in S.
Hence, observing the probability at a single level of
S provides a piecewise constant representation of the
distribution of Y.

Naturally, the space required to store this tree may
be overwhelmingly large. For this reason, the tree will
be generated in a lazy fashion and will allow us to
represent the distribution of ¥ in a compact fashion.
That is, the AT optimization will only begin with the
root, Sp o and the tree will grow as questions are asked.
This is closely related to Evolving Trees [38] which allow
efficient organization of large amounts of data. Indeed,
a key aspect of this method compared to classification
trees, is that the construction of the tree is done online,
dictated by the data at test time.

4.2 Set of Questions

To determine the pose of the instrument, the AT frame-
work relies on the ability to ask “questions” about the
content in the image. For a particular node S;; € S,
a “question” is a deterministic function of the image,
Xij + Is,, = R, which computes a specific quantity
from the image region specified by the pose subset S; ;.
The answers to the question Xj; ;, denoted Z; ;, is consid-
ered to be random and is interpreted in a probabilistic
manner. In particular, when asking a question X; ; the
answer, Z; ; = z is assumed to follow,

olz; ', ] if Y e Sl ;
P(Ziy = 2IY) = {f ) ()
Jo(z4,5) Y ¢ 8Si;

where f, and f, are two distributions of responses,
corresponding to the case where the instrument pose is
in the space queried, and when it is not. These distribu-
tions are learned from representative labelled training
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data and since the response, Z € R, both f, and f;
are modelled as Gaussian (this will be detailed in the
following subsection).

As in [17], we use two categories of questions in
this framework: (i) noisy questions (Sec. 4.2.1) and (ii)
noiseless or oracle questions (Sec. 4.2.2). These two cate-
gories of questions are motivated by the fact that oracle
questions correspond to evaluating excellent, if not state-
of-the-art, methods for detecting the target when looking
at extremely small regions of the search space, while
noisy questions help reduce the search space in order to
ultimately use an oracle question. As shown in [17] this
has the benefit of being computationally efficient when
locating a target and allows for a simple mechanism to
reject regions of the search space that have been observed
fully. We now specify what questions are available in this
application.

4.2.1 Noisy Questions

To detect our instrument we use five noisy questions
such that each node of S only evaluates a single type
of question. In particular, for S; ; € S we denote the
intervals for each coordinate of Y, as Y] € [a,b], Y>3 € [¢, d]
and Y3 € [e, f]. Also, we recall that ¢ is the minimum
length the instrument must be protruding from the
image boundary to be considered in the image, and let
W Dbe the width of the instrument. Fig. 2 visually depicts
examples of where each question type (A through E) is
evaluated in our decomposition and what computation
is performed:

(A): In this question, X;; computes the proportion
of tool-like pixels in the region defined by [a,b]. This
consists of a rectangular image patch along the boundary
of the image, where the width of the patch is § and is of
length [a, b].

Evaluating if a pixel belongs to the tool is achieved
by evaluating if the RGB color of the pixel is likely to
have come from a 3 dimensional Gaussian representing
the instrument color. The parameters of the Gaussian
are estimated using labeled training data, and pixels
are classified as tool-like if their RGB color is within a
fixed Mahalanobis distance to the Gaussian mean. The
computed score is the proportion of tool-like pixels in
the evaluated § by [a, b] patch.

(B): This question evaluates a series of template
matches in order to estimate the precise location of the
instrument entry point, Y;. Centered on the boundary
at the point (a +b)/2 and in increments of five degrees,
we rotate a template of size ¢ x 3W, consisting of three
0 x W strips stacked together (i.e., similar to [21]). At
each rotation, we evaluate a template match, and then
return maximum score observed over all evaluations.

The template match consists in evaluating a Haar-like
feature [6] such that on each strip we sum the number
of tool-like pixels using the color model described in
question type (A), and subtract the sums of the two outer
strips to that of the center region.
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Fig. 2. Search space decomposition, density represen-
tation and image questions. The above tree represents a
binary decomposition of the search space, where each
node splits half the search space in two, by only spiting
one coordinate of Y at a time. Blue, red and green
nodes show when Y3, Y5 and Y5 are being decomposed,
respectively. By assigning the likelihood of the instrument
parameters being within the search space of a given
node, the tree S provides a representation of p,,. We also
show examples of where different noisy question (types
A through E) types can be evaluated, and what region of
the image space they query. Oracle questions (type F)
can only be evaluated at the leaf of the tree.

(C): This question also computes the proportion of
tool-like pixels. As in (A), tool-like pixels are estimated
by means of the same RGB color model. The region
evaluated by this query type is defined by both [a, b] and
[c, d]. Defining the origin as the location on the boundary
of the image (a+b)/2, we evaluate a restricted sector, by
sweeping from c to d degrees and with length 6/2 to §
to the origin. The proportion of tool-like pixels in this
region is the computed score.

(D): Evaluates a template region, similar to that in (B),
and returns the template matching score. A template of
size 3W x W, consists of three W x W square regions
stacked together. The template is positioned at a distance
¢ from boundary point (a + b)/2, and with an angle of
90 + (c+ d)/2 degrees (i.e., perpendicular to the angle).
The sum of tool-like pixels in the outer square regions is
computed and subtracted to the sum in the inner square.
Again, tool-like like pixels are computed as in (A).

(E): In this question, we evaluate a modified Haar-like
feature. Along a line with intercept on the boundary at
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(a +b)/2 and slope (¢ + d)/2, we position W/2 x W/2
square regions at a distance of e and f pixels. The
average intensity of each square is subtracted from each
other. In addition, perpendicular to the slope and at
a distance e to the boundary point, the average pixel
intensity of two supplementary square regions of the
same size are also computed and then subtracted to the
previous two regions. This final score is then returned.

4.2.2 Oracle Questions

The second category of questions are assumed to be
noiseless (i.e., fi and f, do not overlap), and can only
be evaluated at the leaves of our final tree, i.e., when
the pose of the instrument is explicitly hypothesized (see
Fig. 2 question type (F)). Given that both the detection
and tracking literature present a number of methods that
appear to perform well in certain situations, we demon-
strate the use of using two possible oracle questions: (i)
template match which detects the pose of the instrument
and (ii) gradient-based trackers typically used for tradi-
tional local tracking tasks. In our experiments, we show
the effects and benefits of using either oracle:

Template Matching: We follow a similar approach to
that of [21]. Given a specific hypothesis for the instru-
ment location, we expect to find the instrument on the
boundary at location (a + b)/2, with angle (¢ + d)/2 and
length (e + f)/2. With the instrument width known, WV,
we perform a sum-of-squared difference (S5D) template
match between the hypothesized pose and the projec-
tion of the tool-like color model on the image. That is,
using the hypothesized pose, we construct an instrument
template mask of width 3W and length (e + f)/2+ W,
with value 1 at instrument locations and 0 elsewhere.
Placing the mask on the image, we apply the RGB color
model to the overlapping regions of the image. The SSD
is then computed from the projected tool-like pixel image
and the constructed mask, and normalized by the total
number of evaluated pixels. The final score is 1 if the
normalized SSD is above a threshold and 0 otherwise.

Gradient-Based tracker: We use the recently devel-
oped Sum of Conditional Variance (SCV) objective func-
tion along with the ESM optimization strategy to refine
the tool pose as proposed in [39]. The reference template
used is an image patch describing the instrument tool
tip, of size 40 by 40 pixels, extracted from the previous
frame. Once the optimization scheme finishes, we apply
anormalized cross-correlation template match (returning
“yes or “no”) to verify good convergence (which occurs
when the score is above a threshold).

Naturally, many different classifiers or trackers could
be substituted for those chosen here. Our aim is to
show how to incorporate different oracles within our
framework.

Note that if an oracle responds “yes” to any ques-
tion regarding a hypothesized pose, then the posterior
distribution becomes a Dirac (i.e., all probability mass
is concentrated on a single pose) because the noise
models have non-overlapping support. Consequently,
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the entropy of the ensuing posterior distribution is zero
and the algorithm terminates. Hence, having a good
oracle questions is crucial to avoid the algorithm from
finishing prematurely or erroneously.

4.3 Learning noise models

As described in the previous section, each node 5; ; € S
has an associated question, X; ; with a corresponding
noise model (densities (f,, fp) from (7)). Given that these
densities are indexed by (4, j), it would appear as though
a separate noise model for each node in S is required.
Considering the size of the pose space, the quantity of
training data to achieve this would be overwhelming.

In [17], the problem is somewhat avoided by using
folded models, that take advantage of translational in-
variances within levels of the hierarchy. However, this
trick is not possible in this setting given that the pose
space is much larger and S does not maintain the same
invariance properties.

To avoid the problem here, we propose to parametrize
the noise models and interpolate the parameters based
on the position of a node in the tree. For example, let us
consider the answer to the noisy question of type (A) in
Fig. 2. Given that the size of the object is known, we can
expect to see a certain number of object-like pixels in the
queried region. Similarly, if no object were present, then
we would expect a much smaller number of object-like
pixels to be found in the queried region. In addition, if
the queried region were twice as large, the same intuition
would still apply. For this reason our noise models are
of the form,

fb(xala]) =
folw;4, )

G(; pol Xi g, 00| X 51%)
G(; pa [Y| 4 po (| X 5] — [Y]),
a1|Y]? 4 oo(|Xi i — [Y])?)

®)

where G(-) is a Gaussian distribution, | X; ;| and |Y| are
the number of pixels contained in X, ; and the estimated
instrument size in the image, respectively.

The parameters (u1,01) and (uo,00) are the means
and variances for the likelihood of observing tool-like
pixels for a given question type (assumed to be Bernoulli
random variables). As such, any blue node in Fig. 2
has the same noise model as any other node of the
same color, with its parameters interpolated based on
its placement in the tree. Modeling the noise this way
has the added benefit of being invariant to the fineness
of the decomposition the pose space. For example, if the
depth of the tree changed (e.g., image is twice as large),
we would not need to learn new noise models.

In practice, this type of noise model is learned for
each of the noisy questions. While this clearly does not
benefit questions of type (B), (D) and (E) (since they
are always computed over the same sized area), the
number of parameters needed to learn is greatly reduced
for questions of type (A) and (C). As such, only four
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Fig. 3. Active Testing lterations. Each image pair (top and bottom row) shows a question being evaluated and the
corresponding state of the tree S at that point in time. See Video 1 for the entire image sequence.

parameters need to be learned for each question type and
can be achieved by using an extremely small number of
training images (i.e., 20 labeled training images).

5 EXPERIMENTS

In the following section we show how our approach
performs on a live phantom eye platform, as well as on
human in-vivo images. In both cases, we show qualitative
and quantitative results of our method, and specify
typical situations where our approach has difficulties
maintaining accurate tracking.

Our framework was implemented on a Dell Precision
PC with a Xeon 2.13GHz processor. The algorithm is
coded in C++ and uses Opencv and the CISST library
[40] for image acquisition and handling. Our PC is
connected to receive video from a Grasshopper camera
that is coupled to a microscope. The images acquired
are 1600 x 1200 pixels large, and are captured at 30fps.
The region of interest for the AT optimization is of size
256 x 256 and hence Y; € [1, L = 256+ (3 x 255) = 1021]2.

The initial distribution of Y, P(YY) is set to be an
unbiased prior on the pose of the instrument. That is,
P(Y € &) = P(Y € 8) = 1/2, indicating that a priori,
the instrument has equal likelihood of being in or not
in the image. Note that we assign this probability at
the root of S and assume uniform decomposition of the
probability mass. While a small number of nodes may
therefore be attributed with non-sensible probability, the
practicality of this approximation is beneficial given that
computing the exact probability is non trivial, and would
be time consuming.

Finally, two versions of the algorithm are imple-
mented. The first, ATF-match, uses the template match
oracle question and the second, ATF-track, uses the
gradient-based tracker oracle (as described in Sec. 4.2.2).
With the exception of Sec. 5.1.2, where we observe the
effect of different instrument motion models, we fix A
to be the identity matrix (see Eq. (5)).

2. This is similar to the size of regions of interest during clinical
procedures.

5.1 Phantom Eye Platform

We begin by providing some qualitative results as to
how the proposed approach detects and tracks a surgical
instrument in a phantom eye. To provide some intuition
to the sequential nature of the AT algorithm, we have
provided Video 1 (see additional videos) to visually
depict both the questions asked and the evolution of S
at each iteration of the AT optimization. Some snapshots
of this video are shown in Fig. 3. The top row shows
what question is being evaluated and the associated
queried region (highlighted in each image) at given
iterations of the optimization. The bottom row shows
the corresponding evolution of the state of S. Here, the
area of each node shown is proportional to the mass
contained for that pose subset, and the color of each
node represents which coordinate is being refined (as
in Fig. 2). Additionally, the black node indicates which
node is to be evaluated next.

Initially, only the root Sy exists and is questioned.
Having created children (Fig. 3(a)i-ii), the size of S
is of three nodes. After a few questions, the tree has
grown and refined itself past the first coordinate ¥; and
onto Y5 and Y3 (Fig. 3(b-c)i-ii). Eventually the correct
Y; parameter (Fig. 3(d)i-ii) is refined, leading to a valid
tool detection (Fig. 3(e)i-ii). Note that nodes which are
extremely small are pruned as in [17]. This allows our
search space to remain tractable and computationally
manageable.

We also provided Videos 2-7, which show how our
algorithm detects and tracks retinal instruments in our
phantom environment. Fig. 4 shows a few snapshots
from these sequences. The recorded sequences cover a
wide range situations typically observed during retinal
microsurgery: different types of instruments to track,
severely blurred instruments, challenging non homoge-
neous illumination, no instrument in the field of view of
the camera and the instrument shadow being present.
In each image we have overlayed the AT search domain
with a green box (except for (b) and (g) where the AT
search domain is the entire image shown).
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Fig. 4. Visual tracking examples in phantom environment. A variety of visual conditions typically encountered during
clinical procedures are shown. The green box depicts the AT search region on our phantom platform.

5.1.1  Empirical Comparison

To evaluate the performance of the ATF approach, we
compared it with several other methods: the Active
Testing (AT-match) approach described above with a
template match oracle but without any filtering (follow-
ing [17], a Color-based Detector (CBD) as that in [41]), a
Line-based tracker (LBT) (similar to [21]), and a particle
filter [11] using our template matching oracle. We now
further detail these methods.

The CBD [41] is a color based detector that requires a
color model to evaluate the presence of tool-like pixels.
Here, we set this color model to be the same as that used
by our framework and at evaluation time, the instrument
is segmented using this model. In addition to this, we
also estimate the tool tip position by marching from
the segmented centroid, along the direction of largest
variance until a segmentation boundary is encountered.
This position is considered to be the instrument tip.
The LBT (following [21]) is a strip tracker that performs
gradient based tracking on the color segmented image
and a binary mask of the instrument. Tool motion is
modelled with an image-plane rotation and translation
vector. The particle filter [11] was set to use 1000 particles
to maintain the distribution of the instrument, which
was parametrized as in this application. The observation
model consisted of using the same template match as
in our framework, and used the same motion model as
well. For both the LBT and the particle filter, initializa-
tion was performed by using the CBD.

To compare performances, we annotated by hand the
location of the tool (i.e., Y = (Y7,Y2,Y3)) in an image se-
quence of over 400 images. These annotations provided
ground truth for quantitative algorithm comparison. We
then evaluate each approach by observing the error in
the estimates of each parameter and the tool tip position,
as well as the true positive rate (TPR), the false positive rate
(FPR) and the precision for each approach (where a cor-
rect detection is where the estimated the tool tip location

is within 10 pixels of the ground truth). The average
time required by each method to find the location of
the target for a single frame was also computed. Table 1
summarizes these results for each evaluated method. For
the accuracy errors, we report the means and standard
errors (in bracket) for each instrument parameter and
tip.

In terms of coordinate accuracy, we can observe that
the ATF methods generally performs better than the
alternative methods. In particular, ATF-track performs
better than other approaches when estimating the instru-
ment tip position. This overall improvement can be at-
tributed to the sequential parameter estimation approach
that the active testing framework conducts. By estimat-
ing the first parameter, then the second and so on, each
parameter is individually estimated accurately. This is in
sharp contrast to the more direct LBT approach which
locates the tool tip, and then estimates the necessary
parameters, or the particle filter which simply samples
the space directly.

In terms of detection accuracy, we notice that all
methods tested provide more or less the same detection
accuracy, with the exception of ATF-track which is signif-
icantly better than the others. This increase in precision
is most likely due to the gradient-based tracker oracle
question used. Also, we see that detection is significantly
slower than tracking, as both AT-match and CBD run
at much slower rates than the tracking algorithms. This
confirms the advantage of tracking strategies over track-
ing by pure detection.

When comparing AT-match and ATF-match, we note
that both methods perform similarly from an accuracy
and detection point of view. However, we note that their
speeds differ. Indeed, ATF-match is significantly faster
than AT-match. This is most likely due to the use of
informative priors. In fact, counting the number of nodes
in final trees across all images, ATF-match trees have on
average 75 nodes, while AT-match trees have around 210
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TABLE 1
Comparison of algorithms. We show pixel accuracy of each method when estimating different parameters of the
instrument, as well as the detection accuracy and time necessary for each method to process one frame.

Accuracy Error Detection Accuracy

Method Y1 Yo Y3 Tip [ TPR  FPR (10~%) Precision [ Time (ms) per frame
ATF-track 4.13 (24) 242 (0.07)  4.94 (0.27) 6.78 (0.6) 0.975 2.8 0.811 8.0
ATF-match 2.97 (0.4) 2.37 (0.1) 14.11 (09)  11.03 (0.9) | 0.839 6.6 0.631 8.54
AT-match 3.74 (0.4) 2.01 (0.1) 12.89 (0.8)  13.45(0.8) | 0.812 6.1 0.618 25.21

CBD 83.73 (24) 2944 (0.8)  20.25(0.7) 15.15(0.79) | 0.783 7.1 0.548 26.67

LBT 5094 (7.3)  11.03 (0.9) 21.27 (21) 11.42 (0.2) | 0.839 74 0.597 4.8

Particle Filter | 1.08 (0.05) 11.53 (0.35) 6.64 (0.34)  6.91 (0.31) | 0.841 2.9 0.783 6.28

nodes. This is a significant difference in the number of
operations required to update the posterior distribution
at each iteration of the AT optimization and accounts
for the difference in speed between AT-match and ATEF-
match.

Given that our goal is to provide a tracking system,
we would also like to have an understanding of how
our system performs consecutively. To summarize this
ability, we consider the event of correctly detecting a
number of consecutive frames to follow a Geometric
probability distribution. That is, with some probability
e, we correctly find the pose of the instrument in the
next frame. Hence good tracking should be characterized
by large values of e. Computing this for each method,
we find that ATF-tracker has the largest value with 0.98,
followed by ATF-match (0.94), Particle Filter (0.93), LBD
(0.92), AT(0.82) and CBD (0.82).

5.1.2 Alternative Tool Dynamics Model

We now briefly explore the effect of different instrument
dynamics models (see (5)). As described in Sec. 3.2, we
propose using two A matrices: (i) the identity (used until
now) or (ii) augmented with velocity information.

Table 2 also shows a resume of the performance differ-
ences between the two proposed models. One can notice
that in either case, the performances of the algorithms are
extremely similar to each other. Most noticeably, we see
that in terms of time, both methods run at approximately
the same speed. This suggests that the dynamic models
used in either case do not inhibit instrument localization
and nor do they improve performance. This leads us
to believe that the AT optimization ultimately is what
provides timely solutions, rather than precise instrument
motion models. Note that it could still be the case that al-
ternative dynamics models could provide improvements
in some cases.

5.2 Human In-Vivo Images

To validate the suitability of this approach for clinical
settings, we evaluated our system on a human in-vivo
image sequence. Our system was setup with the same
parameters as previously described and then evaluated
on 850 images. The initial 40 frames of the sequence were
used for training purposes and were not included in the
testing of our method.

Video. 8 show how our framework performs on this
data and snapshots of this video are shown in Fig. 5.
Here, we can see that even in situations where smoke
is present, or when shadows overlap instrument regions
considerably tracking is maintained and the instrument
tip is accurately found. While this sequence is signif-
icantly more challenging than those acquired in our
phantom experiments, reliable tracking is achieved for
significant portions of this sequence.

However, as shown in Fig. 5, there are situations
where our system fails to provide correct instrument
pose. In particular, we can identify two such causes:

o Tool appearance changes due partial illumination
variation. In some cases, the illumination on the
instrument is not regular. Coupling this with the
instrument tip appearing blurry (out of focus), our
algorithm has difficulties precisely localizing the
instrument tip, as depicted in Fig. 5(e).

o Poor oracle question. When using the gradient-
based tracker oracle question, a threshold is used to
validate valid convergence. Incorrect thresholds can
lead to saying that the instrument is at a particular
location when it is in fact not. As shown in Fig. 5(f),
this may lead to being “stuck” on irrelevant image
regions.

To relate the effectiveness of our method in this sce-
nario to that reported on phantom data, we computed
similar performance measures as done previously®. In
all categories computed AT-track performed better than
ATF-match (TPR; 0.6 vs 0.1. FPR; 5.1 vs 7.8 x1076.
Precision; 0.49 vs 0.12. Accuracy Tip; 37.3 vs 82.3. ¢
0.65 vs 0.49.). These results indicate two distinct points.
First, the task of detecting and tracking instruments is
substantially more difficult in in-vivo sequences than
in phantom sequences and is apparent from the drop
in performances across all measures when compared
to Table. 1. Second, the template match oracle, ATF-
match, is in effect not capable of accurately detecting
and tracking the instrument in this sequence. For this
reason, in challenging tracking tasks such as the one at
hand, the possibility of relying on successful gradient-
based trackers is of great benefit.

3. Note that the CBD could not locate the instrument in an over-
whelming number of images in the in-vivo sequence. Given that it
initializes both the LBT and the particle filter, quantitative evaluation
of these methods has been omitted here.
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TABLE 2
Comparison of instrument dynamics models. Two
instrument transition models, A, are tested.

A Identity Augmented | A Identity ~ Augmented
Y1 2.97 (0.4) 2.63 (0.1) TPR 0.839 0.842

Yo 237 (0.1) 1.72 (0.08) FPR (107%) 66 6.4

Y3 14.11 (0.9)  11.65 (0.7) Precision 0.631 0.662

Tip 1103 (0.9)  10.51 (0.7) Time (ms) 8.54 7.21

Fig. 5. Visual tracking example in a human in-vivo image
sequence. The green region depicts the region consid-
ered by the AT optimization. (e-f) show two different cases
where our system fails (see text for details).

(d)

6 CONCLUSION AND FUTURE WORK

In this paper, we have a proposed a novel approach for
the task of instrument detection and tracking in retinal
microsurgery. By using the Active Testing paradigm,
both these tasks can be treated as the same sequential
parameter estimation problem, as opposed to two sep-
arate algorithmic tasks. Using filtering techniques, we
have also shown how to effectively incorporate previous
instrument information for the task of tracking. We have
experimentally shown that the presented algorithm is
capable of detecting and tracking retinal tools efficiently
and robustly in cases where the object enters and leaves
the field of view frequently. This has been demonstrated
on both a live platform and on human in-vivo images.
While presented in the context of retinal microsurgery,
we are confident that this approach may apply to other
surgical procedures, as well as for other object categories.
Future work in this area will be directed to extending
this method to stereo image sequences, as well as mod-
eling illumination changes more consistently.
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1 Introduction

Most of the literature on classification (or decision) trees is about inducing them
from a training set £ of labeled feature vectors in order to classify unlabeled data.
Usually a tree T}, is built in a top-down, recursive fashion from a pool of “tests”

” “questions”) which are functions of a single feature. First the root

(“experiments,
is assigned a test, then each child of the root, and so forth until a stopping rule
is enforced. At each internal node, each test in the pool is ranked according to a
criterion based on information gain (e.g., entropy reduction) and the best test is
assigned to the node; the gains are estimated from £. The construction £ — Tj,.
is then data-driven and based on local optimization. Performance is often measured
by classification error, and sometimes also by the efficiency of the representation (for
example expected depth). Two seminal works are [8] and [25], and applications are
numerous in statistics, pattern recognition, machine learning and other fields.

An alternative approach - the one here - begins with a statistical model M for the
joint distribution of the tests and the classes (labels); then a tree Ty, is characterized
by a global criterion for efficient classification. The construction M — Ty, is then
model-driven and based on global optimization. The model M might be estimated
from data or derived in a Bayesian sense from a “forward model” for the distribution of
the data given the class together with a “prior model” for the marginal distribution of
the class variable. The optimality criterion might involve a tradeoff between accuracy
(e.g., measured by the average entropy at the leaves or misclassification error) and
computation (e.g., the average number of tests performed). A different notion of
optimality based on efficient coding is discussed in [26]. Generally, calculating optimal
trees is computationally prohibitive, whether model-driven or data-driven, and the
literature is correspondingly sparse; see [18], [22] and the approximations in [26].

Our goal is to demonstrate that, in the model-based situation, the performance
of tree classifiers based on recursive designs, e.g., stepwise entropy reduction, can

be markedly inferior to those based on global designs. (The same is true of data-



driven trees, although this is more difficult to demonstrate as explicitly.) Another
analysis of this discrepancy appears in the work of Garey [17] and others in the special
case in which the test outcomes are determined by the classes (“constrained twenty
questions”). The difference is especially pronounced with skewed priors, i.e., when a
priori some classes are much more likely than others.

A simple example is given in Figure 4 for a model M with two classes {a, b}, one of
which (class a) is rare; T}, is on the left and minimizes entropy level-by-level and T,
is on the right and minimizes a criterion based on both accuracy and computation.
Both trees have the same error rate, but the ezpected depth of Tj,. is about twice
that of T,, and the testing strategy in Ty, is virtually the “opposite” of the greedy
one. The expected depth necessary to reach a given level of accuracy is of particular
importance when the tests are costly or when £ is small and hence the estimation of
information gains quickly becomes unstable. In another example (see Figure 5) the
prior is uniform, both trees have average depth around ten, but the error rate of 7},
is many times that of T,.

Exact computations of optimal strategies, whether by brute force or clever reduc-
tions, are scarce, at least apart from the work cited above and a few very special
cases in which they can be expressed in closed form, analytically. The emphasis here
is on direct computation when the tests are repeatable, conditionally independent
given the classes and the cost of a tree is a linear combination of the average terminal
entropy and the average depth. Computing Ty, is then sometimes feasible, although
intensive, because the optimal test to perform at any interior node is determined by
the depth of the node and the conditional distribution on classes at the node. In
other words, the posterior distribution is a “sufficient statistic” in that it carries all
the information in the previous tests which is relevant for deciding how to continue.
Optimal trees can then be generated from dynamic programming and variants thereof.

The complexity of an exact computation depends on the number M of distinct

tests (in distribution) and the maximum depth D of the tree. We focus on complexity



as a function of D for fixed, relatively modest values of M. In one variant, the
complexity is of order D?M | which is feasible, in contrast to M?2”, which is the the
total number of possible trees, i.e., the order of a brute force computation without
exploiting the independence assumption. Some of these observations can be traced
back to DeGroot’s 1970 classic text [15], where fized-length optimal trees are discussed
under the above assumptions, although none are actually constructed, probably due
to a lack of computing resources.

In the following two sections we review the stochastic framework for tree-structured
classification and the standard construction by stepwise entropy reduction; we also
introduce a cost functional which accounts for both mean depth and mean terminal
entropy and describe a simple recursion that characterizes minimal cost trees. A spe-
cial case in which the test results are determined by the class is considered briefly in
Section 4. In Section 5, we specialize to the independent model. We present a simple
characterization of the cost-minimizing testing strategy in terms of the posterior dis-
tribution as well as analyze the resulting complexity of global optimization; in fact,
two algorithms are presented, one top-down and the other bottom-up, for computing
minimal cost trees. Bounds on the information gain are given in Section 6 and in
Section 7 examples are given which illustrate the superiority of global strategies in

several cases. Finally, some concluding remarks are made in Section 8.

2 Tree-Structured Classification

The goal is to assign a class label from a finite set ) = {a, b, ¢, ...} to a “feature vector”
&= (&,&, ..., &). Classification is based on a finite tree graph 7. The terminal nodes
(denoted A7) are each labeled by a class. The internal nodes (denoted 77) are each
labeled by a “test” - a discrete function X (§) of the feature vector. For simplicity we

will use only binary tests, for example X = Iy, ), which is the standard form of the

tests in CART [8] and other algorithms. We write X = { X, Xy, ..., X3/} for the pool



Figure 1: Example of a classification tree.

of available tests. The index of the test assigned to ¢ € 7 is denoted 7(t) € {1,..., M},
the depth of ¢ by d(t) (the depth of the root node is 0) and the set of observations
preceding t by Q.

We regard the set of tests as random variables (relative to a background probability
space) and we assume there is a true class Y € ), another random variable. The class
Y may or may not be determined by the tests or by the underlying feature vector. Let
M denote the joint probability distribution of Y and X; we will write py(y),y € Y, for
the marginal (or “prior”) distribution of Y and g(x|y) for the conditional distribution
PX=x|Y =9),x€{0,1}M ye .

Let T = T(X) denote the resulting random variable taking values in 07 ; thus,
Q: is the event {T" = t},t € 07, and depends on the outcomes of the tests Xy,
at internal nodes s along the branch from the root to ¢. The classifier is denoted
by Y7 = Y7(X) and takes values in ). The class assigned to ¢ € 87 is always the
mazimum a posteriori estimator, i.e., the class y which maximizes P(Y = y|T = t).

Figure 1 is an example of a classification tree with two classes a,b. As indicated,
the test performed at the root is X,. If {X3 = 0} is observed, test X; is performed;
if {Xy, =0} N {X; =0} is observed then class a is inferred; and so forth. The history
of the terminal node ¢ € 97 labeled b is @Q; = {X, = 0} N {X; =1} N {X;3 = 0}.



3 Testing Strategies

For simplicity, we will write P;(.) for conditional probability P(.|Q;), and p; for the
posterior distribution of Y given Q;: pi(y) = P(Y = y|Q:). The conditional (Shan-

non) entropy of ¥ at node ¢ is
H(Y)=H(Y|Q)=—) B(Y =y)log, K(Y =y).
Y

If P(Q:) =0, we set H;(Y) = 0. The entropy at the root of 7 is H(Y).

3.1 Local Optimization

If we perform test m at ¢t € T , the average class entropy given this test and the

previous outcomes is
Hy(Y|Xm) = Po(Xe = 0)Hy, (V) + Pi(X = 1) Hy, (Y),

where ¢y, and t; are the two descendents of ¢. (If ¢ is the root node, we will write
H(Y|X,,) for H(Y|Xy,), and if P(Qy) = 0 or P(Q) = 0, we set H,(Y|X,,) =
Hi(Y).) The standard “one step ahead” testing strategy is

7(t) = arg _n;linMHt(Y|Xm). (1)

It can also be characterized as choosing the test X, which most reduces the mean
Kullback-Liebler distance between the (random) conditional distributions py(y|X,,)
and p;(y|X). Together with a stopping rule, this is the recursive design for building
fZﬂ’lOC'

3.2 Global Optimization

The aim of a global strategy is to build a tree classifier that balances error and

computation. The former is measured by average terminal entropy

H(Y‘T) = Z P(Qt)Ht(Y)

teoT
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and the later by expected depth:
Ed(T)= ) P(Q)d(t) = Y P(Qs)
t€dT seT
(The second equality results from writing d(t) = X, I{s<1}, where s < t indicates
s precedes t in 7, and then interchanging the sums.) One could minimize entropy
subject to a bound on expected depth, or vice-versa, but hard constraints are difficult
to enforce. Instead we introduce a control parameter A > 0 and define the cost of T'

C(T, M) = H(Y|T) + \Ed(T) (2)

We write C'(T, M) to emphasize that the cost depends on the distribution of (Y, X).
One global optimization problem is then to minimize C(T, M) over all T. Instead,
we will minimize C(7, M) subject to a maximum depth D = max;cs7 d(t).

The expected depth is of course the expected number of tests performed in order to
reach a terminal node. Trees minimizing a cost function based instead on the maximal
depth or the total number of tests would be very different. In fact, for a fixed error
rate, reducing the expected depth necessitates increasing the allowable maximum
depth. Notice also that tests with varying costs can easily be accommodated by
replacing Ed(T) by

> c(m(t))P(Qr)

teT

where c¢(m) is the cost of test X,,,. We will always assume c¢(m) = 1.

3.3 A Recursion

Let C*(M, D) be the minimum value of C(T, M) over all trees whose maximal depth
is bounded by D. Consider a tree with test m at the root and let 7, and 7; be the
left and right subtrees, respectively. Then clearly
C(T,M) = A+ P(X,,=0)(H(Y|Ty, X;, =0) + AEd(Ty))
+ P X, =1)HY|T,Xn=1)+ \Ed(T)) .

7



It follows that C*(M, D) obeys the following recursion:

Proposition 1 For D =0,
C*(M,0) = H(po)-

For D >0,

H (po);
C*(M, D) = min P(X,, =0)C*(M(.|Xn =0),D—1)+

A+ minmE{l,...,M}

The minimal cost C*(M, D) is positive and decreasing in D, and hence converges
as D — oo to the minimal cost of an unbounded tree. We approximate this cost by
C*(M, D) for a large enough value of D. Direct evaluation of C*(M, D) is computa-
tionally prohibitive (except for small numbers of tests and small depths). However,
if the tests are conditionally independent, then exact computation becomes feasible

in non-trivial cases, as we shall see shortly.

4 Constrained Twenty Questions

Perhaps the simplest model is the one underlying the familiar parlor game of “twenty
questions”: The class is determined by the tests (in particular M > log, |)|) and
the tests are determined by the class (i.e., there is no randomness once Y is known).
The model M is then determined by py and the binary string of M test results for
each class. Since doing all the tests determines Y, the natural problem is to find the
testing strategy which asks the fewest number of questions on average in order to
determine Y, i.e., the tree T, which minimizes Ed(T") subject to H(Y|T') = 0.

Since Y determines X, we have Hy(Y|X,,) = Hy(Y, X;n) — Hi(Xim) = Hi(Y) —
Hy(X,,). Hence (1) reduces to

7(t) = arg max Hy(Xp,),

m=1,...,

8



which amounts to choosing the test at node ¢ which divides the classes into two groups
whose masses (measured by p;) are as equal as possible.
If there is a test for every subset of classes (“complete tests”), then the best global

strategy is the Huffman code for py and
H(pO) S Ed(Tglo) S Ed(T'loc) S H(pO) + 1.

(We omit the proof of the last inequality.) However, the general problem of com-
puting T, is NP complete [22]. Dynamic programming leads to an algorithm [17]
which is exponential in either M or |Y|, and is feasible for “small” values of these
parameters. Garey and Graham [18] consider the case in which py is uniform and
compare the performance of greedy and optimal strategies over all possible families

of tests, showing that the former can perform very poorly depending on this family.

5 Conditionally Independent, Repeatable Tests

In contrast to constrained twenty questions, suppose the tests are (conditionally)
non-degenerate, an obviously more realistic case. However, in order to achieve com-
putational feasibility, at least for “small” problems, we add the assumption of “re-
peatability” This provides a richer framework than constrained twenty questions in
which to display the disparity in efficiency between local and global strategies.
Specifically, we suppose from here on that the tests are conditionally independent

given Y:

g(x[y) = l__[1 Im(Tmy),

where gm(z|y) = P(X,, = z]Y = y),z € {0,1},y € V. Suppose further that the
tests are infinitely repeatable in the sense that there are many independent copies of
each type of test. We shall continue to write X = {Xi,..., X)s} for a generic set
of distinctly-distributed tests. The full family of available tests is then {X;, X, ...},
where X, j = 1,2, ..., are independent, identically distributed copies of X. The model
is then determined by {po, gm}-



Remarks on Repeatability: i) This differs from constrained twenty questions in
that the same test (in distribution) may now appear several times along the same
branch of 7.

ii) This setting (conditional independence and repeatability) is precisely the one in
[15]. More generally, it is at the intersection of sequential statistics [12], game theory
[6] and adaptive control processes [5]. In these domains, optimal strategies can, in
principle, be computed using dynamic programming; still, cases in which they can be
expressed in simple analytic terms are uncommon and the emphasis is on asymptotic
results (e.g., Ed(T) — oo) for greedy procedures. See also [13], [20] and [11], in which
printed characters are classified with trees based on the assumption the image values
are class-conditionally independent.

iii) This paper was motivated by experiments in pattern recognition (see the Note in
§7). In most such applications, repeatability is not a realistic assumption, and nor
is conditional independence for that matter, at least in strict terms. However, when
the original feature vector is varied and high-dimensional (as in image processing),
and the number of classes is small, it may often be the case that certain subsets
of tests have nearly the same conditional distribution and are nearly conditionally

independent.

5.1 Sufficiency of the Posterior

The key observation is that the evolution of the distribution of (X,Y") as tests are
performed depends only on the evolution of the posterior distribution of Y. More
specifically, if () denotes a history of tests, then the posterior is p(y|@) = P(Y = y|Q)

and

PX=xY=y|lQ) = pylQPX=x|Q,Y =1y)
= p(ylQ)g(x|y)

10



Here X represents a “fresh copy” of tests conditionally independent of those appearing
in (). It follows that, for the independent model, we can just as well index the minimal
cost C* by the posterior p; as M.

Updating the posterior based on a new test X, is very simple:

_. P(Xm =2|Q,Y = y)P(Y = y|Q)P(Q)
PUIQXn =) = e Xm=2l0,Y = ) P(¥ = y|Q)P(0)
gm(2|y)p(y|Q)
Yyey 9m(2|y)p(Y'|Q)

In particular, at the children ¢y, and t; of an internal node t, we obtain p,(y) and

py, (y) from p(y) by choosing @ = Qy,m = 7(t) and z = 0,1, respectively. In a
similar manner, we see that
H(Y|Qt, Xm) = 3 > gm(zly)pe(y) H(Y|Qt, X = 7)) (4)
2=0,1yeY
where p(y|Qy, X;n),y € Y can be expressed in terms of g, and p; as above.

The consequence for the local strategy (1) is that computing H(Y |Qy, X)) under
the model {py, gm} is the same as computing H(Y |X,,) under the model {py, g }. One
implication of this was pointed out in [15]: If there is a dominating test X,,« in the
sense that H (Y| X)) < min,, H(Y|X,,) under any prior py, then only this test would
appear in both 7j,. and Ty,. Needless to say, such tests never exist in practice.

Turning to global strategies, the test assignment 7* of the optimal tree now has a
very simple characterization. Let Py = {po} and, for k£ > 0, let P, denote the set of
all possible posterior distributions after k tests, i.e., all possible distributions p(.|Q)
where () is a conjunction of % test results. In particular, p; € Py). Then depending

on A and the model {pg, g, }, there is a sequence of functions
Uy P —{1,2,.., M}, 0<k<D-1

which gives the optimal test at depth k£ as a function of the posterior after k tests.
Here again D is the maximum allowable depth. In other words, at any internal node

t of the optimal tree:
T (t) = Ya (pr) (5)

11



Consequently, due to conditional independence, the complexity of computing a global
strategy reduces to counting posteriors, which, as we shall see in the following sections,

is further simplified by the assumption of repeatability.

5.2 Computational Complexity

If the number of tests M and the maximum depth D are small enough we can compute
C*(po, D) and the corresponding tree 7y, very efficiently. The interest of this cost
analysis is that within these constraints one can display comparisons between exact
and virtually exact minimal cost trees Ty, and the corresponding greedy trees Tj,.
and thereby asses the performance loss as well as the feasibility of alternatives to
stepwise entropy reduction.

The important computational issue is the growth of P, as k increases and how
finely we quantize it if we forgo an exact computation (as in Example 3 in the following
section). For example, in the simplest case of just two classes {a, b}, suppose we
quantize p(a|Q) € [0,1] into L levels; obviously p(b|@) = 1 — p(a|Q). The complexity
of using dynamic programming in order to compute the minimal cost tree (under the
approximation resulting from this quantization) is then only O(M LD). However, this
a priori quantization induces errors and a better approximation to Ty, is discussed
in §5.2.2.

We can compute the complexity of an exact recursion. In order to determine
C*(po, D) we need C*(p(.|X,, = z),D — 1) for x = 0,1 and m = 1,..., M. In other
words, we need C*(p, D — 1) for

pePr={p(.|Xi=2),1<i< M,ze{0,1}}
which in turn requires C*(p, D — 2) for

and so forth. Hence we need to compute the size of each P,. This is of course

also evident from a backwards induction argument based on the characterization of

12



Tree Depth [0 | 1] 2| 3| 4] 5| 6 7 8 9| 10 | total
No. Posteriors | 1 | 4 | 10 | 20 | 35 | 56 | 84 | 120 | 165 | 220 | 286 | 1001

Figure 2: Possible posteriors after &k tests, £k =0...10.

the optimal strategy given by (5); see §5.2.1 below. If k tests are performed, the
posterior obviously depends only on the number of events of each “type” (m,zx),
where m = 1,2,..., M and = € {0,1}. The order in which these events occur along
the branch is irrelevant. Let 71; be the number of events of type j = 1,2,...,2M
relative to some ordering of the 2M pairs (m,z). Then of course 0 < n; < 2M
and Y-;7; = k. We want the number of distinct sequences (71, ..., 721). But there
is a 1-1 correspondence between these and sequences a; = m + --- +1n; + 7 for

j=1,2,...,2M — 1. Since
1<y <ag <~ <oy <k+2M -1,

we have

k+2M -1
|P’“|_< oM —1 )

Values for M = 2 and k = 0,...,10 are given in Figure 2. Notice that |Py| grows
slowly with k& compared with (2M)*, which is the number of possible situations after
k tests. This simple argument allows us to compute optimal trees in reasonable time
for 1I0< D <20 and 2< M < 4.

The computation of T}, can be organized either iteratively and “bottom-up” using
standard dynamic programming or recursively and “top-down” using (3). The latter
is slower in simple cases but has the advantage that it can be easily modified to yield
an approrimation of the optimal tree when the number of tests gets relatively large.
This approximation is different from, and superior to, the one mentioned earlier based

on a priori quantization of the posterior.
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5.2.1 Bottom-up Computation

We start at the terminal nodes and work up:
e Step 0: For each p € Pp, compute and store C*(p,0) = H(p)

e Step 1: For each p € Pp_ 1, compute and store C*(p, 1) using equation (3) and
the values stored in Step O.

e Step D — 1: For each p € P;, compute and store C*(p, D — 1) using equation

(3) and previously stored values.
e Step D: Compute C*(py, D) using equation (3) and previously stored values.

Hence, the algorithm amounts to filling in a table with D + 1 rows corresponding
to different depths. The entries in row k are a variable length set of vectors - all the
distributions in Py - and the minimal costs; the first row has only py. The first row
filled is row D; it has |Pp| entries. Then row D — 1 is filled using the entries in row
D; it has |Pp_1| entries, and so on. After the table is made it is a simple matter to
generate the functions {U;} and hence Ty, itself (equivalently, the optimal testing
strategy 7) by a top-down pass collecting the minimizing tests at each level.

Since at each step there is a loop over posteriors and possible tests, the total

complexity as a function of D and M is proportional to

MZ\Pk\—MZ<k+2M 1):M(D+DQM> (©)

The first equality was derived in the previous section and the second one can be found
for example in [23], p. 54. Consequently, the complexity in D is bounded by D?M,
Notice that this bound is independent of the number of classes.

In case of M = 2 and D = 10 the effective computing time on a 225 Mhz PC
is one-tenth of a second. Figure 3 shows the value in (6), in thousands, when the

number of tests is M = 2, 3,4 and the maximal depth is D = 10, 20, 30.

14



2 3 4
10| 2 24 175
20 | 21 691 | 12,432
30 |93 | 5,843 | 195,613

Figure 3: Value of équation (6), in thousands, for 2, 3 or 4 test types and maximum

depth 10, 20 or 30.

5.2.2 Top-down Computation

The computation can also be organized recursively, but top-down. The algorithm still
involves completing the table mentioned above, but the computations are performed
in a different order corresponding to a depth-first examination of the M-ary tree
associated with (3). Thus the core of the program is a recursive procedure that
computes C*(p, k). Start with £ = D and p = py; if this value is in the table return
it. If not, go to (3) and look for C*(p, k) for k = D—1 and p = p(.|X,;, = z) forz =0
and m = 1; p is computed from {pg, g} as indicated above. If this entry is not in
the table, call the same procedure again for £k = D — 2, each time computing the new
posterior and checking to see if it is in the table. At the beginning the procedure is
called D times until we simply compute C*(p,0) = H(p) for posterior corresponding
to the event @ = {X1;1 = 0,X12 = 0,...,X1p = 0} where X3;,1 < j < D are
independent copies of X;. The main program is a call to this procedure with the
parameters p = py and k = D.

Although this implementation is more demanding than dynamic programming,
the amount of computation is much less than it appears. Very quickly most, and
then all, of the entries needed to compute C*(p, k) are found in the table. Moreover,
the recursive method can be easily modified to approrimate an optimal tree as follows:
Instead of looking for an exact match for the posterior, check if the optimal cost has

been already computed at the given depth for a distribution sufficiently close to the
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desired posterior. This provides a much better approximation to the optimal tree
than a priori quantization of the posterior, which is problematic as the number of

classes increases.

6 Bounds on the Information Gain

In this section we consider maximum possible gains and minimum possible costs due
to a set of tests. Let t € 7. The information gain at node t is Hy(Y) — Hy(Y| X)),
and the information gain due to T is H(Y) — H(Y|T). Note that since the tree 7
already provides a binary coding of the values of 7', and since the mean code length

of a random variable is always larger than its entropy, one always has
H(Y) - H(Y|T) < H(Y,T) - H(Y|T) = H(T) < Ed(T).

Proposition 3 provides a better bound in the case of conditionally independent, re-
peatable tests. It is based on the following identity, the proof of which follows easily

by induction on the number of leaves.

Proposition 2

H(Y)-HY|T)=}_ PQ)H(Y) - H(Y|Xzq)) (7)

teT

In the case of conditionally independent tests, there is a simple, tractable bound on
the information gain of any 7". For each m = 1, ..., M, define the “channel capacity”
14]

c(Xm,Y)=max[H(Y) — HY|X,)]

po
The maximum is over all possible distributions for Y. Let ¢ be an internal node of
T; the information gain Hy(Y) — Hy(Y | Xz()) is determined by p; and {gx«)}. Hence
the information gain at ¢ is bounded by ¢(X,(;),Y’). Substituting this bound into (7)
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and using the characterization in §3 of expected depth as a sum over internal nodes,
we arrive at the following bound on the total information gain, which may also be

interpreted as a coupled constraint on H(Y'|T) and Ed(T):

Proposition 3 For any tree T and any model {py, gm},

HY) - H(Y|T) < Ed(T) max c(Xm,Y) (8)

me{l,...,M}

Since ¢(X,,,Y) < 1, this bound is better than the general one given earlier.

7 Experiments

We now give several examples to illustrate the difference in performance between 7,
using the recursion (1) and 7}, using the cost functional (2). The behavior we exhibit
remains the same if Shannon entropy is replaced by another “purity measure”; indeed,
changing the splitting criterion does not seem to have a great effect on performance
in general ([8],[10]). Moreover, although the examples are based on the independent
model of Section 5, we believe the disparity observed might be even greater with a
non-trivial, conditional dependency structure among the tests. However, constructing

globally optimal trees for general models is not practical.

Example 1: The performance of classification trees made using (1) may degrade
considerably if max,cy po(y) is near one. Here is a toy example in which the greedy
strategy selects the “wrong” tests at small depths, resulting in an expected depth 1.6
times larger than Ty, in order to achieve the same error rate or final entropy.

There are two classes with po(a) = 107* and po(b) =1 — 10~* and two tests with
91(1la) =1 and g1(1b) = 0.5

g>(1]a) = 0.5 and g(1|b) = 0.
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Figure 4: Left: Locally optimal tree. Right: Globally optimal tree. The error rates

are the same but the mean depth of the global tree is smaller.

In other words, X; always answers “yes” on the rare class and answers randomly on

the common class, and vice-versa for X5.

Note: This example was motivated by experiments with learning algorithms for vi-
sual selection [3]; the rare class corresponds to an “object” being present at a fixed
location in a large scene and the common class to “background.” The first test has
false negative error zero (i.e., “loses” no objects) but has false positive error 0.5, and
vice-versa for X,. Given such tests are available (and of equal cost) and given a
dynamic testing strategy, how does one minimize computation subject to an error

constraint?

The cost function for the globally optimal tree is (2) with maximum depth D =6
and A = 10~*. The tree which minimizes cost is displayed in Figure 4; it was computed
using the exact top-down recursion discussed in Section 5.2.2. The terminal nodes are

labeled according to the mode of the posterior distribution. The error rate is 0 when
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Y =bandis % when Y = a, concentrated in the deep node labeled b which is reached
with probability approximately i. The mean depth is small because the probability
of reaching the depth one (resp. depth two) terminal is nearly % (resp. i), resulting
in Ed(Ty,) ~ 3. (The righthand side of (8) is 2.5 x .32 which is much larger than the
actual information gain because the starting entropy is small: H(Y") = 0.0015.)
The locally optimal strategy always prefers test Xy because
H(Y|X)) ~ H(Y) and H(Y|X,) ~ %H(Y).
(In contrast, the global strategy puts X at the top even though it provides much less
average information about Y.) The depth is determined by matching the error rate
of T4, and the resulting tree is shown in Figure 4. The probability of exiting at the

deepest terminal nodes is nearly one, which makes Ed(T},.) = 4.

Example 2: Consider now a less extreme example, still with two classes and two

tests. The prior is po(a) = po(b) = 0.5 and
g1(1]a) = 0.9 and ¢,(1]b) = 0.4

g2(1]a) = 0.6 and g5(1]b) = 0.1.

The maximum depth for Ty, is D = 30 and the tree is constructed the same way as
in Example 1.

The performance of Tj,. and Ty, in several cases is given in Figure 5. We adjusted
the parameter A\ to make either H(Y |Ty,) ~ H(Y|Tio) or Ed(Ty,) ~ Ed(Ti,).
Recall, we estimate Y by the most likely class at the leaves, denoted V. In this case

H(Y) =1 and max{c(X1,Y), c(Xs,Y)} = 0.21, which leads to the constraint
1< H(Y|T) + 0.21Ed(T).

This is consistent with the values in Figure 5.
Again, there is generally a significant difference in performance between 7, and

Ty10, as well as in the shape of the trees; for instance, T}, is very unbalanced relative
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P(Yp #£Y) | HY|T) | Ed(T)
Toc 0.014 [ 0.083| 10.2
Tyio 0.010 |  0.080 6.6
Tyio 0.001 [ 0.012 | 10.2
Toc 0.051 | 0.237 5.6
Tyio 0.021 |  0.147 5.4
Tyio 0.038 |  0.228 45

Figure 5: Comparing performance of local and global strategies for the model in

Example 2 with maximal depth 30.

Classy | a b c| d e| f
po(y) [05[01]01]0.1]0.1]|0.1

g1(1ly) 10.9]0.1]0.90.1/0.1|0.1
go(1]y) 10.9]0.1]0.1]09]0.1]0.1
g3(1]y) [0.1]0.9]0.1]01]0.9]0.1
gs(1]y) 10.1]0.9]0.1]0.1]0.1]0.9

Figure 6: The model in Example 3. There are 6 classes and 4 types of tests.

to Tj,c. It seems that the expected depth with balanced priors needs to be larger than
with skewed priors in order to see a very sharp difference. For example, see Figure 5
in the case Ed(Tj,.) = Ed(Ty,) = 10.2.

Example 3: Examples with more classes and more tests show the same qualitative
behavior. We use the approximation procedure outlined in Section 5.5.2. in order to
compute Ty, with six classes and four tests; the model is presented in Figure 6 and

the results in Figure 7.
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P(Yp #£Y) | HY|T) | Ed(T)
Toe 0.037 |  0.190 6.6
Tyio 0.023 |  0.180 5.4
Tyio 0.010 |  0.087 6.5

Figure 7: Comparing performance of local and global strategies for the model in

Example 3.

8 Discussion

Classification trees are a popular method for addressing problems arising in non-
parametric estimation, especially in domains such as pattern recognition ([4],[19],
[21], [28]) in which the data are often high dimensional. Artificial neural networks
are more popular, but tree-structured decision-making is easier to interpret; another
advantage is the natural way in which “feature selection” is performed during tree
construction [9]. As a result, there is a continuing interest in improving methods for
constructing tree classifiers, especially in the data-driven case in which trees are “in-
duced” from samples in a training set L, i.e., test statistics and conditional entropies
are estimated from L. For example, from time to time new purity measures, split-
ting rules and pruning recipes are proposed and existing ones are compared ([8],[10],
[24],]27]). And recently the dramatic gains from using multiple trees have been doc-
umented and analyzed from the point of view of randomization, negative correlation
and the bias/variance decomposition ([1],[2],[7],[16], [29]).

We have analyzed the limitations of the basic induction method itself, at least
in cases in which the greedy designs are likely to lead to very inefficient trees when
measured by global criteria such as mean path length. Such cases arise when some
classes are very rare and when the training set £ is small; the benefits of choosing
good tests are then accentuated since the amount of data available at a node for

estimating information gains and class likelihoods is rapidly decreasing with depth of
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the node. Indeed, we would argue that the interesting limit in pattern recognition
and other applications is |£| — 0 rather than |£| — oo, and that the most effective
way to introduce problem-specific knowledge into the design of the classifier is by
“hard-wiring” global constraints.

Finally, how might global optimization be relevant for inducing trees either from
data or from more complex models, especially in applications to pattern recognition
and machine learning where assumptions such as independence and repeatability are
usually violated? The natural path would appear to be £L — M — Tgy,: First es-
timate a model from the data and then calculate an efficient tree from the model.
But unless M is severely restricted a priori, it will not be sufficiently elementary
to deduce Tg,. Yet it is precisely the rich dependency structure in the feature vec-
tor which makes the underlying classification problem interesting and challenging.
Perhaps globally optimal strategies which are derived from simplified, approximate
models (for instance assuming conditional independence but using the actual marginal
test statistics) might serve as “blueprints” for recursive tree construction. Given the

disparities we have illustrated, the rewards could be significant.
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We propose a new method for estimating the probability mass function
(pmf) of a discrete and finite random variable from a small sample. We
focus on the observed counts—the number of times each value appears
in the sample—and define the maximum likelihood set (MLS) as the set
of pmfs that put more mass on the observed counts than on any other set
of counts possible for the same sample size. We characterize the MLS in
detail in this article. We show that the MLS is a diamond-shaped subset
of the probability simplex [0, 1]* bounded by at most k x (k — 1) hyper-
planes, where k is the number of possible values of the random variable.
The MLS always contains the empirical distribution, as well as a family
of Bayesian estimators based on a Dirichlet prior, particularly the well-
known Laplace estimator. We propose to select from the MLS the pmf
that is closest to a fixed pmf that encodes prior knowledge. When using
Kullback-Leibler distance for this selection, the optimization problem
comprises finding the minimum of a convex function over a domain de-
fined by linear inequalities, for which standard numerical procedures are
available. We apply this estimate to language modeling using Zipf’s law
to encode prior knowledge and show that this method permits obtain-
ing state-of-the-art results while being conceptually simpler than most
competing methods.

1 Introduction

Let p be a probability mass function (pmf) over a set {1, ..., k} of finite
cardinality. This may represent a set of numerical values for a quantitative
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Maximum Likelihood Set 1509

variable or a set of indices for a qualitative variable. The latter situation
is often qualified as nonmetric, as will be the case in section 4, where the
indices will refer to words in the English vocabulary.

Suppose that we observe n samples x1, . .., x,, that are independent and
identically distributed (i.i.d.) with common pmf p, which is unknown and
needs to be estimated from the observed samples. Prior information may
be available about p and, in particular, a specific estimate, or an estimate of
a certain form, may be preferred when n = 0.

For the case when n > k, a very satisfactory answer is the empirical
distribution or type p, namely:

. 1 ) i .
f?(X:z):fai:EZth:z)z%, ie(l,... k), (1.1)
t=1

where 1(-) is an indicator function and, hence, #; is the number of times the
value i is observed in the sample.

When 7 is small, the pioneering work of Laplace (for k = 2) has led to the
well-known Bayesian estimates as alternatives to the type. During World
War II, while working on cracking German cryptographic systems, Jack
Good and Alan Turing invented a method for regularizing the type (Good,
1953; Orlitsky, Santhanam, & Zhang, 2003). In their case, k = 26 was the
number of letters in the Latin alphabet, and n =~ 100 — 1000. In section 4,
we consider a case where k is the number of words in the English vocab-
ulary, which is set to about 10°, and the training sample is n ~ 10® words.
Many smoothing techniques, most being variations on the Good-Turing
idea, have been compared for such a case by Chen and Goodman (1996) and
Chen and Rosenfeld (1999). Excellent empirical performance is obtained by
using Good-Turing-like estimators. With the exception of the Bayesian esti-
mates, however, there is often only a heuristic justification and no principled
derivation of the estimation formulae.

There have, of course, been numerous studies of the pmf estimation prob-
lem since Laplace, and it is not our intention to present a comprehensive
survey of the literature here, which begins at least as far back as Lidstone
(1920) and continues to be an active area of investigation (Ristad, 1995;
Poschel, Ebeling, Froemmel, & Ramirez, 2003).

We propose the following new method for estimating p. We consider the
counts—the number of times each value appears—and define the maximum
likelihood set (MLS) as the set of probability mass functions that put more
mass on the observed counts than on any other set of counts possible for
the given n. In a second step, an element is chosen from this set. It can
be the one with maximum entropy or another based on available prior
information. This view of the problem, we believe, is very natural—indeed,
so much so that when we first arrived at this view, we expected that someone
had already investigated it. We have not found any evidence of this in the
literature.
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1.1 The Empirical Distribution. The empirical distribution, or type, of

a sample xi, ..., Xy, as briefly mentioned earlier, is
A ni Ny . £
p:(—,...,—),wnhn:Zni, (1.2)
n n =

where 1n;, 1 <i < k, are the counts, that is, the number of times the value i
appeared in the sample. We write P* the set of pmfs over a set of cardinality
k and P¥ the set of types with denominator 1 over a set of cardinality k. The

probability, under p € P¥, of observing xi, ..., x, is
k
p(x1, ..., xy) = 1_[ pit, (1.3)
i=1

where n; are the counts as above. The right-hand side of equation 1.3, viewed
as a function of the pmf p, is called the likelihood function and may be
rewritten as

pli = 21D p+H(P) (1.4)

lem

where

k .
D(p,q):Zpi logzg, (1.5)

i=1

with Olog, g =0 and plog, § = oo for p > 0, is the Kullback-Leibler dis-
tance of p from g, and

k
H(p) = —Zpi log, pi, (1.6)
i=1

with 0log, 0 = 0, is the Shannon entropy of p.

It is clear from equation 1.4 that the type p is a sufficient statistic for
estimating p. Also note that p is the maximum likelihood estimate (MLE) of
p, that is, the choice of p for which the likelihood equation 1.3 of x1, ..., x,,
is maximum. Indeed, D(p, p) > 0, with equality iff p = p (cf, e.g., Cover &
Thomas, 1991).

For k fixed and n — oo, the type is a strongly consistent and efficient
estimate of the pmf. However, the type may not be the best possible estimate
for finite n. For example, one may have prior information about the true
distribution that is captured in the type only for very large n. There is also
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a more structural objection: when k is large, there might be many values
1 <i <k, for which p; « % In this case, with high probability, we will
observe n; = 0. Hence, low-probability events tend to be underestimated
and high-probability events overestimated by p. One manifestation of this
effect is that the expected entropy of the type underestimates the entropy
of the original pmf. Indeed,

k 2.
E[H()] = —E [Z pilog %pl} — —E[D(p, p)l + H(p) < H(p).

i=1

In section 2, we therefore construct a set of pmfs that contains the type as
well as other pmfs that are close to it. In particular, it contains pmfs with
larger entropy than the type. We will then choose an estimate from this set
based on available prior knowledge.

1.2 Bayesian Estimates. Bayesian analysis offers an alternative to MLE.
The Dirichlet family, indexed by a parameter g, is a family of prior distri-
butions over pmfs given by

k

_ 1 -1 K
nﬁ(p)—z(ﬁ)i]lpi , pePr, BeR, 1.7)

where Z(p) is a normalizing constant. Note that for 8 = 1, equation 1.7 re-
duces to the uniform distribution over P¥. Now, if the Bayesian cost function
is quadratic, that is,

k
Lp.q) =Y (pi — )% (1.8)

i=1

then the Bayesian estimate corresponding to the Dirichlet prior is the pos-

terior expectation of p given x1, ..., x,,, which can be shown to be
o . n + B .
= , V1<i<k. 1.9
pp(i) T Bk <i< (1.9)

This is often referred to as an add- S rule. The special case of 8 — 0yields the
MLE p, and B = 1—the so-called Laplace rule (cf. e.g. Lidstone, 1920). Esti-
mators with 8 = 0.5and 8 = % have also been considered (see Nemenman,
Shafee, & Bialek, 2002). Note that all such estimators with g > 0 assign a
strictly positive mass to every value in {1, ..., k}, and they all converge to
the type as n — oo.

We will see that the set from which we will choose our estimate contains
all add-p rules in equation 1.9 for 0 < g < 1.
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1.3 Minimax Estimates. An alternative to Bayesian analysis is minimax
analysis where one seeks an estimate that would be optimal in the worst
case over the underlying model and in average over the observations. More
precisely, if p is the underlying model and 4 an estimate of p, one builds
the functional

n! "
R(@@) = sup > L. (1.10)
p:(pl""’pk)m,...,nk;ZLl ni=n 1 e

For the quadratic cost, equation 1.8, as well as for the standardized quadratic
cost,

k

. q:)2
Lp.g)=>_ %, (1.11)
i=1 !

the minimum of R(g) is achieved by an add-B rule, with g = k~1/n (Stein-
haus, 1957) and g = 0 (Olkin & Sobel, 1979) respectively.

1.4 Maximum Entropy Estimates. Maximum entropy estimation is
another standard solution to data sparseness. Instead of estimating p,
the maximum entropy method first estimates p(A;) =4; for select sets
Ajc{l,..., k}, for which we have sufficient evidence in the n samples.
Fixing the probability of some subsets of {1, ..., k} in this manner typically
underspecifies the pmf of interest, leading to a set M of admissible pmfs,

M={peP:pA)=d;, j=1,....T}, (1.12)

in which the estimate p is but one member. From this admissible set, the
pmf with the highest Shannon entropy is then chosen as the estimate of p.
It is well known (see, Berger, Della Pietra, & Della Pietra, 1996) that the pmf
with the maximum entropy has an exponential form:

o 1 J . .
pMme(i) = 7 exp {]Z:;Ajl(z c Aj)} , V1 <i <k, (1.13)
where the parameters A = (A1, ..., Aj) are chosen to satisfy the constraints

of equation 1.12.

It can be shown that for every i, as long as at least one p € M satisfies
pi > 0, it follows that pyg(i) > 0. Thus, the maximum entropy estimate is
inherently smooth.

There are several heuristics but few principles for selecting the sets A;
or even J. In language modeling, some A;’s are typically singleton, specify-
ing, for instance, the probability of words that have been seen sufficiently
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often in the sample; some A;’s may contain all words that can take on a
certain grammatical part of speech (e.g., adjectives), and some A;’s may
overlap with others, for example. Therefore, while maximum entropy es-
timation eliminates the need for some of the ad hoc assumptions made by
other techniques, it leaves open the problem of selecting the sets used to
define M.

Another weakness of the classical maximum entropy method, as others
have pointed out, is that the specification of M via equality constraints
leads to an ad hoc choice for any candidate A;: one must either constrain
its probability to be exactly 4 ; or leave it completely unconstrained. This is
unsatisfactory. For instance, if one were considering as candidate sets A; all
singleton sets, then the naive act of including all of them in the definition
of M leads to M = {p}. On the other hand, leaving out all i for which,
say, n; = 1 from the definition of M may result in an estimate under which
n; > 0and ny =0, but pMe@i) = pme(i’). Maximum entropy estimation has
therefore been proposed with inequality constraints (cf. Khudanpur, 1995;
Kazama & Tsuijii, 2003):

MZ{piﬂjfp(Aj)Eb]‘,j=1,...,]}. (1.14)

To the best of our knowledge, there has not been much discussion in the
literature of a principled way to make the choice of a; and b;, particularly
of a way that depends on only the observed sample, and not on other ad
hoc assumptions about p.

Yet another variation on maximum entropy consists of minimizing a
functional of the form

~—

> wid (p(Ap, ;) — H(p), (1.15)

=1

whered(., .) is some metric of deviation from the constraints of equation 1.12
and the parameters u = (u1, ..., uj) are estimated, usually, from held-out
data. Yetanother way torelax the constraints in equation 1.12is to note, using
convex duality (Berger et al., 1996), that the parameters A that satisfy the
constraints are exactly the parameters for which the model of equation 1.13
assigns maximum likelihood to the observed sample. One may then choose
a penalized likelihood approach with a regularizing function of A. Still,
several parameters need to be estimated from held-out data in either case.
Several such methods are compared in Chen and Goodman (1996) for the
estimation of bigram and trigram language models.

In section 2, we will seek to provide a principled way of relaxing the
linear equality constraints in maximum entropy estimation.
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1.5 Good-Turing and Other Held-Out Methods. In Jelinek (1998,
p- 258), the author asks, “How much larger a probability should be as-
signed to an event observed once than to one not observed at all, or, in gen-
eral, whether the ratio of probabilities of events observed n and m times,
respectively, should really be n/m?”

Considering pmfs that put more mass on the observed counts than on
any others, which we do in section 2, will lead to one answer to this ques-
tion: equation 2.7. The Good-Turing and other held-out methods answer
the question in a different way.

The basic idea is to divide the data into two parts. The first part, called
the development set, is used for the collection of counts {rn;}. The second
part, called the held-out set, is used to estimate additional parameters. A
typical structure is as follows:

ax Zoifnp > M,
pi = (1.16)
qi ifn; < M,

where the (usually small) threshold M, and smoothed probability estimates
gi,1 =0, ..., M, are the additional parameters.

The Good-Turing estimate (Good, 1953; Orlitsky et al., 2003; McAllester
& Schapire, 2000) is obtained by setting

, i+ 1
qi:rm_+1”l+ : ie{l,... k), (1.17)
T, n
where 7. is the number of symbols j € {1, ..., k} whose count n; = c. Thus,

g; for a symbol i depends not just on its count #; and 7, but on the counts
of all other symbols.

Note that if n; > n;, it is not necessarily true that g; > q;, though this
frequently holds in practice for symbols with very small counts. In other
words, g; may not respect the rank ordering implied by the empirical counts
{n;}, particularly for symbols with large counts. For this reason, the threshold
M s often chosen to be small enough so as not to have this undesirable effect.
In language modeling, for example, M is typically chosen to be 10 or less,
depending on n. The parameter « is then computed so that p; sums to unity.

The Good-Turing estimate performs remarkably well for pmf on words.
However, its derivation is somewhat ad hoc and unsatisfactory.

2 The Maximum Likelihood Set

One of the simplest and driving ideas in statistics is as follows: what we
observe has to be fairly likely; otherwise we would not have observed it.
One way to quantify this is to say that what we observe has to be more
likely under the true pmf than any other comparable event. Let’s define the
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MLS as the set of pmfs that put more mass on the observed type than on
any other type given n. Let p = (p1, ..., px) be a pmf over {1, ..., k}. The
p-probability of observing the type p = (3L, ..., %) is

N n! "

i=1

The MLS, with these notations, is defined as
MP)={peP" :V§ePr flp.p) = f(p.d)}. (2.2)

We will see in section 2.3 that this set always contains the type p, which
is the MLE for p, and that it shrinks down to it as n — oc. For finite n, it
contains pmfs that might reflect prior information such as smoothness or
other desirable properties in a better way than the type, but still remain
close to the observed counts. Moreover, this set is a close convex subset of
P¥, opening the way to numerical optimization.

Using Stirling formulas, as well as equation 1.4, one can check that

A 1 ;
f(p, p) =27PPP where u, =v, & lim - log Do, (2.3)

n—oo 1 Uy

Hence, for n sufficiently large, the MLS associated with a type p is roughly
{[peP" : D(p,p)<D@,p), Y§jeP}, (2.4)

leading to the loose description that the MLS is the set of pmfs that are
“closer” to the observed type than to any other.

2.1 Characterization of the Maximum Likelihood Set. The MLS admits
a simpler though still implicit representation. Given the observed counts
(1, ..., nx), define a neighborhood relationship on the set of types with de-

nominator n: theneighbors of (111, . . ., 1) are the types obtained by changing
a single sample from one value to another one. That is, assume that for a
pair of indexes 1 <i, j <k, we have n; > 0 and n; < n; then (1], ..., 1),
defined by

n; =mn; +1, n’j:nj—l, and m=m Il#iorj, (2.5)
is a neighbor of (11, ..., ng).

If a pmf is in the MLS, then it has to put more mass on the observed type
than on any of its neighbors. It turns out that the converse is also true, which
leads to the following result:
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Proposition 1. Apmfp = (p1,..., px) ontheset {1, ..., k} belongs to the MLS
M(p) associated with the counts (ny, . .., ny) if and only if

nipi < (ni +1p;j, Vi<i#j <k, (2.6)

or equivalently,

P

Pi
pi+L T p; pj

, Vi<i#j <k, (2.7)

where, by convention, % = 400 whenevera > 0.

The proof uses elementary algebra and is relegated to the appendix.

2.2 Motivating Examples. For k = 2, the MLS is

M= (.1 1)

n

. om n +1
—{P—(Pl,l—Pl),n—prlf n+1}-

Note that this set contains the type and shrinks down to it as the number of
samples goes to infinity. Beside the connection with Dirichlet priors men-
tioned in section 1, the MLS in this case can be obtained through Bayesian
estimation of a proportion with quadratic cost function and a beta(«, B) prior
distribution. It is the set of estimators corresponding to the prior parameters
(e, B) satisfying o 4+ B = 1 (see Hogg & Craig, 1995, p. 368).

The MLSs for k = 3 are illustrated in Figure 1 for two different values
of n. The MLSs are convex cells with linear boundaries. They have at most
k x (k — 1) boundaries, one corresponding to each neighboring type.

In order to select an estimate from the MLS, one could choose the pmf
with maximum Shannon entropy. This choice will be motivated further in
section 3. We use it here to illustrate properties of the MLS. For example,
if the counts (11, ..., ;) are made of Os and 1s only, then the pmf selected
is the uniform distribution over {1, ..., k}, since it is of maximum entropy
over all pmfs over {1, ..., k} and it is included in the MLS, as one can check
from equation 2.6. In contrast, if there is one value, say the first one, that
gets all the counts, then the selected estimate is, for n > 0,

n and . 1
=, n =,
n+k—1 P n+k—1

*

pi V1 <1 <k. (2.8)
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Figure 1: Illustration of the maximum likelihood sets for all the possible types
for alphabet size k = 3. (A) n = 3 samples. (B) n = 10 samples. Each “cell” is an

MLS containing exactly one type marked with a cross.
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If n <k, then note that p; < 0.5, which stands in sharp contrast with the
estimate p; = 1 given by the type. Equation 2.8 is a direct consequence of
the property 3.4.

2.3 Properties of the Maximum Likelihood Set. We now present some
insightful and useful properties of the MLS.

Proposition 2. Let p = (%1, ..y 55) be a type. The elements p = (p1, ..., px) of
the MLS M(p) defined by p satisfy the following:

pLyp ie. n>0=>p >0 VI<i<k, (2.9)
n<nj=p<p; V1<i, j<k, (2.10)
— P =S it Visizk @11)
lp— Pl = i|pi—ﬁi|s2(k;”, 2.12)
i=1
p e M(p), (2.13)
but no other type with denominator n is an element of M(p). If x1, ..., x, are

independent samples with common pmf q € P*, then the MLS defined by their
type p is such that

sup [lp—qllhi— 0 as n— oo with probability 1. (2.14)
peM(p)

Proposition 2 is essentially a corollary of proposition 1. Details of the
proof are in the appendix. Properties 2.9 and 2.10 are desirable for any
estimate of the pmf generating x1, .. ., x,,. Properties 2.11 and 2.12 show how
the elements of the MLS may deviate from the underlying type. Property
2.14 shows that for a fixed k, as n gets large, all the elements in the MLS get
closer to the pmf generating the samples.

Itis easy to see, by comparing equation 2.11 and 1.9, that the MLS contains
the Bayesian estimates for 0 < g < 1.

3 Selecting an Element from the Maximum Likelihood Set

Every pmf in the MLS satisfies a number of properties, as outlined above,
that one would consider desirable in an estimate of the pmf generating the
samples x1, ..., x,,and we advocate M(p) as an admissible set from which a
particular pmf may be selected using secondary criteria. One such criterion
is outlined next.
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Proposition 3. Let p = (%1, ..., °F) be a type and M(P) its associated MLS. Let
q =(q1,-..,qk) be a pmf such that p << q. Then there exists a unique element
p* € M(p) such that

D(p*,q) = in D(p,q). 3.1
(p*.q) pg\ﬁ?@ (p,q) 3.1

Note from equation 2.6 that M(p) is convex and closed in the Euclidean
topology on P*. The existence of p* therefore follows from theorem 2.1
in Csiszar (1975), and the uniqueness follows from the convexity of p
D(p, q).

The pmf g may be viewed as a means of incorporating a prior estimate
in the estimation process. In the case when n >> k, the MLS has a very small
radius, and the choice of g has a negligible effect on the choice of p*. In
the limit as n — 0, p* — g by continuity. Therefore, in the small sample
situation, the choice of g will greatly influence p*.

One may choose for q the uniform pmf over {1,...,k}. p* is then the
element of M(p) with maximum Shannon entropy. It has been argued by
Nemenman et al. (2002) that entropy might be the nonmetric (categorical
data) analog of smoothness. Other compelling arguments for this choice
have been made by Jaynes (1994).

In a situation where one needs to estimate a conditional pmf p(:|y) and
the marginal pmf p(-) is known, a viable prior estimate is 4(-) = p(-). See
Jelinek (1998) for related smoothing methods in language modeling.

If one chooses a measure such as the Kullback-Leibler (K-L) distance to
selecta pmf from the MLS, an additional satisfactory property of the selected
pmf emerges.

Proposition 4. Let M(p) be the MLS defined by the counts (ny, . .., ny). For any
pmfq > p, the pmf

* in D(p, 3.2
p argp]g}}l?f?) (p,q) (3.2)

has the “monotonicity” property:

ni=n;j and qi>=q; = p;izp; VI=<i#j=<k (3.3)
Furthermore,
nj=n; and gqi=q; = p;=p; V1<i#j<k. (3.4

The proof is again relegated to the appendix.
Every pmf p € M(p) has been shown, via equation 2.10, to be faithful
to the evidence. The monotonicity property, equation 3.3, characterizes the
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selection rule of proposition 3: if i is a priori more likely than j, then, in
the absence of evidence to the contrary, it continues to be more likely under
the selected p*. The special case, equation 3.4, has significant implications
for the numerical computation of p*, as will be discussed in the following
section.

Note that the K-L divergence of equation 3.1 is not the only “distance”
one may use to select a pmf from the MLS. Any other function D(., -) with
a projection theorem that guarantees the existence and uniqueness of p*
in equation 3.1, together with an algorithm that computes the projection,
may be used. An obvious choice is the Euclidean distance, which leads to a
standard quadratic programming problem.

3.1 Numerical Optimization Issues. The optimization problem, equa-
tion 3.1, cannot in general be solved in closed form and in practice requires
a numerical procedure. The setting is known in numerical optimization lit-
erature as general linearly constrained optimization (cf., Fletcher, 1981, and
Bazaraa, Sherali, & Shetty, 1993). Stated briefly, one needs to minimize a
convex function over a domain defined by linear inequalities such as equa-
tion 2.6. We minimize the K-L distance of equation 3.1 subject to p satisfying
equation 2.6 using the numerical optimization package CFSQP developed
by Lawrence, Zhou, and Tits (1997).

The number of constraints specifying the MLS is k(k — 1). A typical lan-
guage modeling situation requires a vocabulary of k &~ 10° words. Checking
just once that a pmf is inside the domain therefore may in general require
about 1010 operations. Fortunately, choosing g to be piecewise constant con-
siderably reduces the dimensionality. To see this, consider the extreme situa-
tion where g is the uniform pmf. Twoindexes1 < i, j < k may be considered
equivalentif n; = n;, and the optimization may be performed over the set of
pmfson {1,..., k} modulo this equivalence relation, thanks to equation 3.4.
What is the number of indexes in this set? With n samples, it contains no
more than +/2n indexes. This is therefore the “effective” k when g is uni-
form. For other pmfs g, the corresponding equivalence relation is n; = n;
together with q; = g;.

4 Language Modeling

Statistical language models are a key component in applications such as
automatic speech recognition, machine translation, spelling correction, and
document retrieval. Language modeling entails estimating a probability
distribution over word sequences, and this is typically done by modeling
the sequence of words in a sentence by a finite memory Markov chain. An
n-gram model is a set of conditional pmfs P(w,|w;, ..., w,_1), one for every
conditioning event. In applications such as document retrieval, where word
order is not of paramount importance and a bag-of-words representation is
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adequate, i.i.d. models, called unigram models, are used. In all cases, there
is a need to estimate a pmf, marginal or conditional, on the vocabulary. In
this section, we present experimental results for the estimation of unigram
models.

If obtaining smooth estimates is the primary goal, one would naturally
use the uniform distribution in the role of g4 in equation 3.1. We obtain
empirical results for this (maximum entropy estimation) case as a first step.
It should be clear to the reader, however, that all words are not equally likely
even a priori, and it is known from several studies that the count n; and the
rank of a word i, when the vocabulary is sorted in order of decreasing counts,
has aroughly inverse relationship. The relationship, sometimes called Zipf’s
law (cf. Li, 1999), makes for a natural prior estimate g for estimating the
unigram pmf via equation 3.1. Specifically, we consider

a (k)

rank(i)’ @1

qgzipf(i) =

where a(k) is a normalizing constant. Empirical studies (Ha, Sicilia, Ming,
& Smith, 2002) show that this is a good initial estimate for unigrams. Note
that o need not be computed, since it plays no role in the minimization of
equation 3.1. Theresulting estimate p* in the MLS may then be interpreted as

the pmf supported by the evidence x1, ..., x,, which is closest to Zipf’s law
in the sense of K-L divergence. This seems a plausible choice for language
modeling.

A problem, however, remains: for a given vocabulary, there is no a priori
way of determining the rank ordering of words. One could possibly use
word length to perform such ordering. We take a simpler approach and
use the rank ordering empirically observed in x1, ..., x, to determine 4.
We make a further modification to break ties: all words that have the same
count in xp, ..., x, get a rank, namely, the mean of the ranks spanned by
those equal-count words. This modification results in an important numer-
ical simplification. By assuming words with the same observed counts to
have the same g-probability, we are assured that they will have the same
p* probability, reducing the number of free variables in the numerical op-
timization of equation 3.1 and indeed the specification of p*. Without this
modification, p* would have up to k — 1 free parameters, and in case of
most language models, this is impractical.

We have conducted experiments on English text from the Wall Street
Journal corpus, which contains articles from the general news and finan-
cial domain. A particular subset of this corpus, the UPenn Treebank cor-
pus (http:/ /www.cis.upenn.edu/~treebank/home.html), has been widely
used by many researchers in language modeling, and we use this for our ex-
periments as well. The corpus is divided into sections, numbered 00 through
24. We use sections 00 to 20 as our training corpus; it contains 900,000 word
tokens. Sections 21 and 22, containing 100,000 tokens, are used variably as a
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training or a held-out corpus as needed, and sections 23 and 24, containing
100,000 tokens make up our test corpus. For the purpose of studying the
variability of the estimates, we divided sentences in sections 00 to 22 into 10
roughly equal parts, and results will be presented on these smaller corpora
in the following.

We made a list of all seen words from sections 00 to 22 and augmented
this vocabulary with a set of “unseen” words. The decision on how many
unseen words to include is ad hoc. We use a leave-one-out estimate of the
number of unseen words by asking, for each x; in xy, ..., x,, whether it
would be an unseen word if the vocabulary were to be extracted from
{x1, ..o X1, X4, .., X}, £ =1, ..., n It is easy to see that this procedure
yields ng = ny; the number of unseen words is exactly equal to the number of
words seen only once in the corpus. This procedure, while not theoretically
satisfactory, is performed out of necessity.

We remark that the MLS of equation 2.2 is well defined even for an infinite
vocabulary, and with a suitable prior estimate g, it may be possible to let
the vocabulary size be unbounded for the estimate of equation 3.1 as well.

4.1 Empirical Results. The box at the top of Figure 2 illustrates, using
crosses, the empirical pmf p obtained from sections 00 to 22, where the
words have been (re)ordered along the abscissa in decreasing order of p;.
Specifically, fori =1, ..., ko, the ordinate shows the logarithm (to the base
2) of

n n
o Zek) (4.2)

n n

with n,q) > ... > n,4,). ko = 37,001 is the number of distinct words seen in
sections 00 to 22. The Zipf prior of equation 4.1 is shown in the same box
using dots: it is a straight line with slope —1. A uniform prior would be a
horizontal line on this plot. Finally, in the same box, the lower and upper
bounds on each p; in the MLS, per equation 2.11, are also illustrated using
a solid and a dashed line, respectively:

o(i . o(i 1 .
{(logi,log :f}() and <logl,log %) 1<i< ko}, (4.3)

where the number of words in the vocabulary k = 52,743 is estimated us-
ing the procedure described above. Note that the envelope of the MLS
has a trumpet-like shape. For large counts, the upper bound of the MLS
is essentially indistinguishable from the type. The estimated pmf p* may
decrease the mass for these outcomes but cannot increase it significantly.
However, for small counts, the envelope of the MLS has a flared bell shape
showing the statistical variability of the corresponding probabilities and
that the type tends to underestimate rare events. Any pmf chosen from
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Figure 2: Plot of the empirical pmf from data, the Zipf prior, and the lower
and upper envelopes of the MLS on a log-log scale. (A) Full range of ob-
served counts. (B) Zoom top left (= high counts). (C) Zoom bottom right (= low

counts).

the MLS corresponds to a curve that lies between the upper and lower

envelopes.

To measure the efficacy of an estimate p of p, we compute the average
code word length (in bits) that the estimate p achieves on the type pr of the

test set, that is,

1 & 1
«p) = — ) log—
P ny ; & pxr)

= D(pr, p) + H(pr),

(4.4)
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Table 1: Code Word Length in Bits for pmf Estimates.

ppB=1 ppB =1 bp B =1 ety
140 10.21 10.21 10.52 10.19
p* 1q = unif p*:q = Zipf p* 19 =paT
140 10.21 10.20 10.19
ppB=1 ppB=1 ppB=1 [Zeqy
Average £(-) 10.58 10.42 11.31 10.37
SD 0.017 0.017 0.036 0.016
p*:q = unif p*:q = Zipt P*:q = pGr
Average €(-) 10.58 10.40 10.37
SD 0.015 0.017 0.018

Notes: Upper table: n = 10° words. Lower table: average and standard deviation
over 10 training sets with n = 10° words. pg is the add-g rule of equation 1.9. pgT
is the Good-Turing estimate of equations 1.16 and 1.17. p* is the MLS estimate of
equation 3.1 with the prior g as indicated.

where ny is the size of the test set, the x;s are the words of the test set, and
H(-) is the Shannon entropy.

Experimental results, for the Wall Street Journal data, along with standard
deviations, when available, are shown in Table 1.

Looking at the average code word lengths in Table 1, the reader un-
familiar with language modeling might be surprised to see how well the
Good-Turing (G-T) estimate (fifth column) performs compared to the add-g
rules. Three MLS-derived estimates are presented. In the first of these, we
have used the uniform pmf as a prior. The estimate thus obtained has com-
parable performance with the add-1 rule but not as good as the add-§ rule
for the smaller training set. Next, using a Zipf prior, we increase the perfor-
mance to outperform all add-g rules considered so far and come closer to
the GT estimate. Third, we use the GT estimate itself as a prior. We then get
an average code word length that is indistinguishable from the GT estimate.
In our experiments, the GT estimate has never been inside the MLS. We have
thus shown empirically that there exist pmfs that are “closer” to the empiri-
cal pmf than to any other type whose code word lengths are undistinguish-
able from those of the GT estimate. Furthermore, unlike the GT estimate,
these pmfs are guaranteed not to contradict the observed counts in the data.

Note as an aside that the effective-k for numerical optimization is about
600 for n = 10° and about 180 when n = 10° for all priors used.

5 Conclusion

We have proposed a new method for estimating a probability mass function
from a sample: we consider the observed counts; the maximum likelihood



Maximum Likelihood Set 1525

set is defined as the set of pmfs that put more mass on the observed counts
than on any other set of counts; the closest element from the MLS to a prior
estimate in the Kullback-Leibler sense is then selected.

The MLS is an admissible set for estimating a pmf that has the following
properties: it is built from first principles, and it is strongly consistent (see
equation 2.14) and faithful to the evidence (see equations 2.9 and 2.10).

The way we select a pmf from the MLS permits encoding domain-specific
information in a very natural way, as demonstrated with the Zipf law for lan-
guage modeling. Moreover, it is practical, as it entails minimizing a convex
function over a domain defined by linear inequalities. This is a classic prob-
lem in numerical analysis, with known solutions. This way of incorporating
domain information is a novel alternative to Bayesian or minimax methods.

Experiments with pmfs on English words show that the proposed
method is competitive with state-of-the-art methods.

Appendix: Proofs of Propositions 1, 2, and 4

Proof of Proposition 1. First, we establish that if p € M(p), then p satisfies
equation 2.6. Toward this end, for any i and any j # i such that n; > 0, let

41 1
a,:(ﬂ,...,””L L @> (A1)
n n n n

By definition, f(p, ) > f(p,§), and hence

n! "
1
] K N 11_[p1
Vl]."']’lz."'i’l]."'nk. l
I

n ni+1_nj—1 m
> . .
=l A D =Dl P ,1;[].’7’
(R T
Vljp]_ni-i-lpl.

Property 2.6 follows. If n; = 0, then equation 2.6 follows trivially.
Next, we establish that if p satisfies equation 2.6, then p € M(p). Toward
this end, again, let

il l
07=(—1,...,—") (A2)
n n
be an empirical pmf associated with any other set of counts (1, . . ., i) for
an n-length sample. We construct a sequence of pmfs 4@, ..., 4" such that
19 =a. f(p.a?) = f(p.0%) =... = f(p.4"™) and 37 =}p.

(A.3)
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In particular, we begin with §© defined by the counts

0 0 _ ~
(ng),...,n,(())=(n1,...,nk), (A4)
and, form=1,...,n,
e If4"~V = p, then we set ™ = 40D,
® Otherwise, choose i and j such that ngm_l) > n; and n(]m_l) <nj, and
define § by the counts
n" =n" 1, ng.m) = n(].m_l) +1, and
n™ =n""" for all other . (A.5)
Note that a suitable pair i, j is guaranteed to exist whenever 4"~V # p.
It is clear that form = 1, ..., n,if §™D # p, then by construction,
o=l -
Hq I, =14 Pl
2m
= A(O)_AH <m
q Pl —

Since [|§ — pll1 < 2, it follows that 4™ = p.

Finally, note that form =1, ..., n,if "~V # p,

flp.g™ n! n" P ﬁpn;w_n;m—w
=N — I
fCp. g1y yl™r ™ n! X
(m=1)
_ 1 n; pi
n(jm_l) +1 1 pi
ni+1p;
S Hr P
nj pi
>1,
where the first inequality holds by construction, since ngm_l) > n; and

(m—1)

nj

< nj, and the second inequality holds due to equation 2.6.

Proof of Proposition 2. Let us suppose that thereisanindex1 < j < k such
that 7n; > 0 and p; = 0. Replacing in equation 2.6, it implies that V1 <i <
k,i # j, pi = 0 which is impossible since p; = 0. This proves equation 2.9.
Equation 2.10 is also a consequence of equation 2.6, as the reader can check.
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We remark that equation 2.6 still holds for indexes i = j. Then, summing
out, we obtain, for any subset A C {1,...,k},

k k 1
ZZ?’jPiSZZ(fH—i—E) p; and (A.6)
k K 1
Zf’jr’ii ’ Z(f)ﬂr;) pi, (A7)

from which we obtain

n

A A #A
VACI{L,... k}, p(A)n+k < p(A) < p(A + - (A.8)

where # Ais the number of elements in A. Setting A = {i} gives equation 2.11.
Now, from Cover and Thomas (1991, p. 300),

Ip— Pl =2(p(A) — p(A); A={1 =i <k; pi > pi}. (A.9)
Using equation A.8, we obtain

#A 20k —1
lp—plh <2— < ( ) ) (A.10)
n n

Using equation 2.6, one can directly check that p € M(p). If another type in
Pk is also an element of M(p), then p has a neighbor that is an element of
M(p), following the argument in the part (<) of the proof of proposition 1.
Let’s call 4 this neighbor. It is such that §; = % and §; = "fn_l for some
indexes 1 <i, j <k such that n; <n and n; > 0. Now, as an element of

M(p), it satisfies

(n; +1)g; > n;g;. (A.11)

But this is equivalent to saying that n; < —1, which is impossible.
Finally,

2(k — 1)

sup [lp—qlh < +1p—ql, (A.12)

peM(p)

using the triangular inequality as well as the bound, equation 2.12.
Equation 2.14 follows from the fact that the type converges to the true dis-
tribution in ||.||1.



1528 B. Jedynak and S. Khudanpur

Proof of Proposition 4. Assume, to the contrary, that p; < p7 for some
i # j withn; =n; and q; > q;. Define a pmf p** by

p; forl=i,
pir=yp forl=j, (A.13)
pi forl #iorj.
In other words, construct p** by “switching” the ith and the jth entries of
p*.Since p* € M(p), p* satisfies equation 2.6. But n; = n; then implies that,

by construction, p** also satisfies equation 2.6. Thus, p** € M(p). Next, note
that

DG 1) — D) =3 pilog - Zpi‘*log’f]’

I=1

* *

* pl p p Pl
=pilog - + ptlog L — ptlog L — prlo
p gq P Sq P gq Pi gq]
qj qj
=p;lo lo
p gq p; 8q

=(P§‘—P}’-‘)10g% >0

which contradicts proposition 3, since p* is the unique minimizer of D(p||q)
in M(p).
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Abstract

We study conditions for the detection of an N-length iid sequence with unknown
pmf p1, among M N-length iid sequences with unknown pmf po. We show how the

quantity M2~ N P®1llPo) determines the asymptotic probability of error.

Keywords: reliable detection, probability of error, Sanov’s theorem, Kulback-

Leibler distance, phase transition.

1 Introduction

Our motivation for this paper has its origins in Geman et. al. (1996), where an algorithm
for tracking roads in satellite images was experimentally studied. Below a certain clutter
level, the algorithm could track a road acurately, and suddenly, with increased clutter level,
tracking would become impossible. This phenomenon was studied theoretically in Yuille

et. al.(2000 and 2001) . Using a simplified statistical model, the authors show that, in an
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apropriate asymptotic setting, the number of false detections is subject to a phase transition.
Our objective in this paper is to generalize these results. First, we demonstrate, in the same
setting, that the phase transition phenomenon occurs for the error rate of the maximum
likelihood estimator. Second, we consider the situation where the underlying statistical
model is unknown; i.e., there is a special object among many others but it is not known
how it is special (it is an outlier, in some sense). We show that the same phase transition
phenomenon occurs in this case as well. Moreover, we propose a target detector that has
the same asymptotic performance as the maximum likelihood estmator, had the model been

known. Simulations illustrate these results.

Let
Xi X3 XY
X! X2 XN
X 2 2 2 (1)
le\4+1 XJ2\4+1 XJ\]}I+1

be a (M + 1) x N matrix made of independent random variables (rvs) taking values in a
finite set. We denote by X,, = (X},,..., X}¥) € XV the rvs in line m and by X,,) the ones
that are not in line m. There is a special line, the target, with index ¢t. All the other lines
will be called distractors. The rvs X; are identically distributed with point mass function
(pmf) p;. The other ones, X, are identically distributed with pmf py # p1. The goal
is to estimate t, the target, from a single realization of X. If py and p; are “close”, the
target does not differ much from the distractors, a situation akin to “finding a needle in a

haystack”.



2 Known distributions

Let = be a realization of X. Then, the log-likelihood! of z is

N M+1 N
W) = > logpi(ef)+ > ) logpo(al,) (2)
n=1 m=1,m#tn=1
N (@) M+1 N
1 n
= ) log ( 2) + > logpo(ai,) (3)
n=1 PolTy m=1n=1

The maximum likelihood estimator (mle) for ¢ is then

1o 21 ()
t(z) = arg  max Zlogpliz‘ (4)

L<m<M+1 £~ po(an)

We call the reward of line m the quantity

iilog pl(m?n) (5)
N n—1 po(z?n)

The mle entails choosing the line with the largest reward. The quantity of interest is the

probability that the mle differs from the target:
e(M,N) = P({(X) #1) (6)

which is the probability that a distractor gets a reward which is greater than the reward of

the target. If M is fixed , letting N — oo, and using the law of large numbers, we obtain

N

1 pi(ay)

— lo —  D(p1,p9) and 7
Nn§:1 8 ool (p1,p0) (7)
! EN lo (@) - =D ) for eve £t (8)
— — , T every m

N 2 g po(zn) Po, D1 y

Logarithms are base 2 throughout the paper.



almost surely, where

—~

T

(z

is the Kulback-Leibler distance between p and ¢q. Hence, as long p # ¢, D(p,q) > 0, and

~

D(p.q) =Y p(x) log‘; )

~—

the reward of the target converges to a positive value while the reward of each distractor
converges to a negative value which allows us to show that the error of the mle goes to zero.

One can even bound e(M, N) from above for any fixed M and N as follows

Theorem 1

e(M,N) < M (Z \/po(x)p1($)> . (10)

Note that

0< Z vV po(z)p1(z) = 1 — Hellinger(po, p1) < 1, (11)

where Hellinger(pg,p1) is the Hellinger distance between py and p;. The proof, using
classical large deviations techniques, is in Section 6. Note that if the right-hand side of (10)
goes to 0 as M — oo and N — oo, the probability that the mle differs from the target goes
to 0. This condition, however, is not necessary. As we show below, there is a maximum
rate at which M can go to infinity in order for the probability of error to go to zero (if M
increases faster, then the probability of error goes to one). A similar result, i.e., that the
number of distractors for which the reward is larger than the reward of the target follows a
phase transition, was also shown by Yuille et. al.(2000). We present below the same analysis
for the convergence of the mle. The phase transition, or in other words, the dependence of
the probability of error on the rate at which M goes to infinity, is expressed in the following

theorem:

Theorem 2

If Je > 0, such that lim M2 NP@ELP)=8) — 0 then lim e(M,N) =0, (12)

,N—o00 M ,N— oo



and

If 3¢ >0, such that lim M2 NP@E1P)+Te) — Log then lim e(M,N)=1. (13)

,N—o00 M,N—oco

The intuition is as follows. First, as N goes to infinity, if M remains fixed, the probability
of error goes to zero (exponentially fast, following a large deviation phenomenon) since the
reward of the target line converges to a positive value, while the reward of the distractors
converges to a negative value (as was mentioned earlier). On the other hand, as the num-
ber M of distractors increases, when N remains fixed, the probability that there exists a
distractor with a reward larger than the reward of the target increases as well. These are
two competing phenomena, whose interaction gives rise to the “critical rate” D(p1,po). The

detailed proof appears in Section 6.

Note: In order for the limits of functions of M, N to be well-defined as M, N — oo, we
assume that M is, in general, a function of N. Hence, all limits limp; y— oo should be
interpreted as limy_,oo, With the proviso that M is increasing according to some function

of N. We kept the notation limy; y_,o for simplicity.

3 Unknown Distributions

We now look at the case where py and p; are unknown. It is clear that the error rate of
any estimator in this context cannot be lower than the error rate of the mle (with known
po and p1). Hence, (13) holds even when e(M, N) is the error rate of any estimator. Can
one build an estimator of the target for which the error rate will satisfy (12) ? The answer
is yes as we shall see now.

A simple way of building an estimator of the target when py and p; are unknown is to

plug-in estimators of py and p; in the previous (mle) estimator (4). Hence, let us define



t(r) = arg max Zl (14)

1<m<M+1 P(m) x")
where p,, and p(,,) are the empirical distributions of the rvs in line m and in all the other

lines, respectively. lL.e.,

N
. 1 n
pm(z) = N 7;1 l{Xm = ’JJ}, (15)
and
M+1
Py (@ Z > Xy = (16)
n=1j=1,7#4m
Note that
t(z) = arg X D (D, Dim))- (17)

Hence, t is the line that differs the most (in the Kulback-Leibler sense) from the average

distribution of the other lines. (The reader may be more familiar with the variant

f(x) = arg ,max  D(pm,p), (18)

where p is the empirical distribution over all rvs, including line m; both £ and ¢ are similar
in the sense that they pick the sequence which differs the most from the rest.)

It turns out that the error rate of ¢, that is

é(M,N) = P(H(X) # 1), (19)

where, as before, ¢ denotes the target, has the same asymptotic behavior as the mle (4) in

the case of known distributions.

Theorem 3

If 3¢ >0, such that _lim M2~ NDELP)=8) — (0 then lim &(M,N)=0 (20)

,N—o00 M,N— o0
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Figure 1: Estimates of the probability of error for various N, for the case pg = (0.9,0.1), p; =
(0.8,0.2), M = 1000. The two plots correspond to the cases of known and unknown distri-
butions, respectively. The red line represents the upper bound as established by Theorem
1.

and

If 3e>0, such that lim M2 NPW@Lp)+e) — 400 then  lim &M, N)=1. (21)

M,N— o0 M,N— o0

The proof uses the same large deviations techniques as the proof of Theorem 2 but is
slightly more complex due to the fact that the rewards are not independent anymore. The

proof appears in Section 6.

4 Simulations

We now provide simulations that show Theorems 1, 2 and 3 in action.

We generated M = 1000 binary sequences with probabilities py = (0.9,0.1) and p; =
(0.8,0.2) for the background and the target, respectively. We varied the number N from
10 to 500, and we observed the probability of error decreasing to zero. We performed the

random experiment 100 times for each value of N. The procedure was replicated 20 times in
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Figure 2: Estimates of the probability of error for various N, for the case pg = (0.9,0.1), p; =
(0.7,0.3), M = 1000. The two plots correspond to the cases of known and unknown distri-
butions, respectively. The red line represents the upper bound as established by Theorem
1.

order to compute error bars. The plots in Figure 1 show the (estimated) probability of error
versus N, for the two maximum likelihood detectors (known and unknown distributions,
respectively), along with 1 standard deviation error bars. As expected, the error for the
case of unknown distributions is somewhat higher, as there is an additional error due to the
inaccuracy in estimating the two distributions. The KL divergence is D(p1,po) ~ 0.064.
The dashed line shows the phase transition “boundary”, i.e., the value of N such that
M = 2NDPpupo) | For M = 1000, this value is equal to 155.5. For the known distributions
plot, the red line corresponds to the upper bound established by Theorem 1, and it is equal
to 1000(0.98)". Similar plots for the case py = (0.9,0.1) and p; = (0.7,0.3) are shown in
Figure 2. As expected, the error curves of Figure 1 are higher than the ones in Figure 2,
since the former detection case is “harder” than the latter. The phase transition boundary is
depicted in Figure 2 with the dashed line at value N = 44.9. The upper bound of Theorem
1 is given by 1000(0.9349)".

L
500




5 Conclusions

We have considered a statistical model with M + 1 sequences of independent random vari-
ables, each of length N. All random variables have the same point mass function pgy except
for one sequence, the target, for which the common point mass function is p;. The error
of the maximum likelihood estimator for the target converges to 0 if there exists an € > 0
such that M2~ N(P@1ro)=¢) 5 0 and it converges to 1 if there exists an € > 0 such that
M2-ND®ipo)te) _ 450, Moreover, when py and p; are unknown, we are able to build
an estimator of the target with the same performace; this allows us to study the important
practical problem of outlier detection. We conjecture that these results can be generalized
to the case of ergodic Markov chains, and we plan to report the more general results in a

subsequent publication.

6 Proofs

Without loss of generality, we assume that the target line is line number 1.

Proof of Theorem 1:

(MN) = P (milg ot > ik’g iéﬁfézi) 2
< MP (;log z;EXZL; n:11 plE){;;) (23)
- MP (ﬁ (Z;ggiigg) > 1) , forall s > 0 (24)

N o
Gl e
- o[ () | e

where (25) is due to the Markov inequality.



Let us define

2 p1(X3)po(X1)\° and o(s) 2 In (s
s 2 p | (B ) | ad oo 2w s (27)

One can check that f/(1/2) = ¢’(1/2) = 0. Moreover, using Hélder’s inequality, Grimmett

et. al. (1992), it is easy to show that, for any s, > 0 and 0 < o < 1,

(i)™ = (i) D) (o] (s ])M

By taking the log on both sides, we deduce that g is a convex function of s. Hence, it achieves

E

its minimum value at s = 1/2 (therefore, f achieves its minimum value at s = 1/2). This

leads to the tightest upper bound in (26), i.e

2N
(MM<WW (Zwmm >. (29)

In order to prove Theorems 2 and 3, we start with two technical lemmas that will be

useful later on.

Lemma 1 Let U and R be two rvs, and y € IR. Then, for any e > 0,
PU>y+¢e)—P(R< —)<PPU+R>y)<IP(U>y—¢)+IP(R>¢) (30)

Proof of Lemma 1:

PU+R>y) = PU+R>y,R<e)+PU+R>y,R>¢) (31)

< PU>y—¢)+P(R>¢) (32)

10



and

PU+R<y) = PU+R<yR<-e)+PU+R<y,R>—¢) (33)
< PU<y+e)+PR< —¢) (34)
which allows us to obtain the lower bound by computing the complementary event. ]

Lemma 2 Let (V{V,..., VA]/[V) be a sequence of M independent, identically distributed, dis-
crete random variables. Moreover, assume that the following large deviation property holds

for some z € IR,
1
PV > 2) = 27NG yhere I(2) > 0 and ay = by < lim  —log X =0.  (35)
N—+oco N bN

Then, if

de >0 s.t. lim M2 VUG = then lim P max VN >2z)=0. (36)

M,N—+o0 M,N—+o0 1<m<M
Also, if
Je>0 s.t lim M2 NUGT) — Loo then lim P( max VYN >z)=1.
M ,N——+o0 M,N—+o00 1<m<M

(37)

Proof of Lemma 2: Let ¢ > 0 be arbitrarily small. Then, there exists Ny(¢) > 0 such

that

(38)

1 PWVYN > 2)
V/.ZV>.Z\7'O7 ‘Nlog (21VI(Z)

To prove the first part, we start with the following claim:

(3’ >0) (VN >0) BN>N'): P( max VN>2)>¢.
1<m<M(N)

11



Then, using the union bound, we obtain

M(N)

S PV >z

m=1

(e’ >0) (VN'>0) (3N > N'):
By picking N’ > Ny(e), (39

) becomes

(e’ >0) (VN> No(e)) (3N > N'):

= M(N)P(VN >z2)>¢<.  (39)

M2—N(I(z)—a) > <.

Hence, M2-NU(2)=¢) does not converge to zero for any £ > 0, as required.

To prove the second part, we first assume that N > Ny(e), as above. Then,

P(lglnagM Voi>z = 1- P(1<Hnl1a<XMV <2z) (40)
= 1-PMWVN <2) (41)
— ] _ 9Mlog(1-P(V{¥>z)) (42)
> 1 9=MP (V¥ >z) (43)
> 1o 2_M2—N(1<z)+s>’ (44)

where the first inequality is a consequence of the inequality log(1 —z) < —z, and the second

inequality arises from (38). Note that (44) is true for any arbitrary € > 0. Hence, if there

exists &€ > 0 such that M2~ NU(2)+€) — oo then necessarily IP(max;<,<y V,N > 2) — 1.

This concludes the proof of the second part, and the proof of the lemma. [ |

We are now ready for

Proof of Theorem 2:

e(M,N) =

L <2<m<1\/l+1 N Z g X”

P(UM + RN > D(plvp()))a where

12

Zl p1 ) (45)

(46)



1o, pi(X2)
N 1 m
Un = 2<m§"z’v‘f+1NnZ:11°g po(xXny d (47)
N
1 p1(XT)
Ry = D(pi,po)— — > lo 48
N (p1 Po) Nn:l gpo(X{l) ( )

From the law of large numbers, Ry — 0 in probability. Hence, for all > 0 and a > 0,

and for N sufficiently large, using Lemma 1,

P(UR > D(p1,po) +n) —a < e(M,N) < P(U; > D(p1,po) — 1) + (49)

Let us define

N
1 p1(X7)
VNA2 — N L 50
N nzz:l ng(X;}l (50)
Now, using Sanov’s theorem, Dembo at. al.(1998),
P(V{ = D(p1,po)) = 27 VP Prro) (51)
Indeed,
P(V5Y > D(p1,po)) =27 NP w0 (52)
where
D(p*, po) = Ii)relgD(pmo), with C = {p; Ej log% > D(p1,po)}, (53)
and for p € C,
_ p P
D(p,po) = E,log— = D(p,p1)+ E,log— (54)
Po Po
> D(p,p1) + D(p1,po) = D(p1,po). (55)
Now, by continuity of the rate function, there exists € > 0 such that
P(V5" > D(p,po) —n) = 2~ NP @rwe)=s) (56)

13



and there exists ¢’ > 0 such that
P(V3Y > D(pi,po) + 1) = 27 NP o))

Finally, since

UN = max VY
M acm<mr ™
and the rvs V&V, ... V& . are iid, we obtain the required result from Lemma 2.
2 » YM+1 ) q

(57)

Proof of Theorem 3: We proceed along the same lines as for the proof of Theorem 2.

1SN p(Xn) 1
§(M,N) = IP =N log lm s = N pg S
é(M, N) <z<nr?3§2+1 N n; % b (Xn) ~ N n; °8
< P(Up + Ry > D(p1,po)), with
N
1 P (X2
N . — m
Un = 2<mEnt +1 N;IOg po(X12)
RY, = AN +BY+cCV
N
1 po(Xn)
AN = — log 222 7m/
M 2<menr+1 N HZ::I % B (X2)
N .
1 Pay(XT)
BY = N logtLl
NHZ::I po(XT)
N
1 p1(XT)
cN = D(pi,po)— = Y lo
(p1,P0) N; ng(X{L)

For all n > 0, from Lemma 1,

Let
N
1 Pr(X1)
VN = — Y logt 2™ 2<m< M+ 1.
N Z s pO(X’}}L)

n=1

14
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Using Sanov’s theorem,

P(Vy¥ > D(p1,po)) =27 VP @rro), (68)
Indeed,
PV > D(py,po)) = 2~ NP po), (69)
where
D(p*,po) = inf, D(p.po). with € = {p; By log - > D1, )} (70)
And for p € C,
p
D(p, po) = Eplog - > D(p1, o). (71)

Now, by continuity of the rate function, there exists € > 0 such that

P(V5Y > D(p1,po) — 1) = 27N PEuro)=e), (72)

To show that (66) approaches zero as M, N — oo with M2N@D(p1po)=) 5 () it suffices
to prove that RY; — 0, since the term IP(UL, > D(p1,po) — 1) of (66) goes to zero by virtue
of (72), Lemma 2, and the fact that

N _ N
Un = 2§nr?£1\)§+1 Vi (73)

N N .
and the rvs Vo¥, ...,V are iid.

Using the law of large numbers, CN — 0 in probability. Also,

P(AY; >n) < < Zlog ?0)((); a n) (74)
po(X3)
< e (g 208 ) ®
o PO(XQ)
< MNP <1 o (K1) > n) (76)

15



< MN max P <log Apo(x) > 17) (77)
@ P2y ()

= MN mjxﬂj(ﬁ(z)(a:) < 27py(x)) (78)

< MNmax2 NM-DI@n) = jyNo-NM-DI) (79)

x

where I(z,n) > 0 is a rate function, and J(n) = min, I(x,n). The last inequality comes

from the fact that p(2)(x) — po(z) in probability. A similar argument shows that BY — 0

in probability as well.

Note that the result would still hold if we replaced p(,,) with p, i.e., with the empirical

distribution over the full data. ]
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Abstract Finding correspondences between images by
template matching is a common problem in image under-
standing. Although a variety of solutions have been pro-
posed, most of them rely on the arbitrary choice of a tem-
plate and a matching function. Often, different cost func-
tions lead to different results, and the choice of a good cost
for a specific application remains an art. Statistical mod-
els on the other hand, allow us to derive optimal learning
and matching algorithms from modeling assumptions using
likelihood maximization principles. The key contribution of
this paper is the development of a statistical framework for
learning what function to optimize from training examples.
We present a family of statistical models for grayscale im-
ages, which allow us to derive optimal template-matching
algorithms. The intensity at each pixel is described by a ran-
dom variable whose distribution is encoded by a deformable
template. Firstly, we assume the intensity distribution to be
Gaussian and derive an intensity-matching algorithm, which
is a generalization of the classical sum-of-squared differ-
ences. Then, we introduce a hidden segmentation variable in
the probabilistic model and derive a segmentation-matching
algorithm that can handle photometric variations. Both mod-
els are exemplified on the automatic detection of anatomical
landmarks in brain Magnetic Resonance Images.

Keywords Statistical learning - Deformable template -
Image registration - Anatomical landmark detection
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1 Introduction

Image registration and matching refer to the problems of
finding a transformation f that puts, respectively, two im-
ages or two sets of points into correspondence. These prob-
lems are central to numerous applications in several areas of
pattern analysis, such as computer vision and medical imag-
ing. For instance, an early application of image registration
is image stitching, which refers to the problem of building
a panorama of a natural scene from a collection of images
of the scene (Szeliski 2006). More recently, feature match-
ing has been one of the key technologies behind advances in
object recognition based on extracting and matching scale-
space invariant features from a collection of images, e.g.,
Lowe (2003), Dalal and Triggs (2005).

In medical imaging, one of the objectives is to build com-
putational models of anatomical structures from a collection
of images of different individuals (Grenander and Miller
1998). Image registration is central to the estimation of these
models, firstly because the images are often acquired under
different conditions, which means that the images need to be
aligned before analysis. In addition, with the recent advance-
ments in computational anatomy, the amount of deformation
between a template image and an instance image is used as
a way to build metrics and statistical models on a collection
of images, e.g., Qiu et al. (2007).

Several registration and matching algorithms have been
proposed and tested on different image analysis problems
achieving great performance. Most of these algorithms find
an optimal transformation by minimizing an energy func-
tion. However, we will argue below that different energy
functions lead to different results, and the choice of a “good”
energy function often depends on the application. There is a
need of developing a unifying framework for image regis-
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tration and a generic method to derive matching and regis-
tration algorithms.

1.1 Registration by Energy Minimization

Most of the proposed methods for image registration rely on
an energy minimization formulation. The template or image
source, denoted by x is deformed by f, so that it looks alike
with the target image x. The energy function used for image
matching or image registration,

J(x, x0, f,v) = Alx, x0, )+ yR(f), )]

is usually composed of two terms related by a weighting
factor by a y € R. The data term A measures the similarity
between the deformed template xo o £ ! and the target im-
age x. The regularization term R is used to reduce the set of
possible deformations and ensure uniqueness of the solution
by, for instance, penalizing non-smooth or large deforma-
tions.

The matching result intrinsically depends on the choice
of the energy function 7. The solution of this optimization
problem minimizes the trade-off between matching the de-
formed template and the target image and satisfying the reg-
ularization constraint. Changing the data attachment term or
the regularization term generally modifies the solution of the
problem. Most of the time these choices are made arbitrarily.
Although numerous possibilities have been explored, e.g.,
Zitova and Flusser (2003), Goshtasby et al. (2003), Szeliski
(2006), it is not known in general how to choose the appro-
priate cost-function. We summarize below the most com-
monly used data attachment and regularization terms.

1.1.1 The Data Attachment Term

Similarity measures are typically classified into two cate-
gories: feature-based and image-based.

The first group is based on sparse feature matching,
where matching generally starts with extracting the adequate
features from the source and target images. Ideally these fea-
tures should be invariant to scaling and other usual trans-
formations. The solution to the registration problem is the
deformation that minimizes the distance between the posi-
tion of the features in the deformed image and their position
in the target image, while fulfilling the chosen regulariza-
tion constraint. The main advantage of this method is its
low computational load due to the sparseness of the infor-
mation, which allows its usage in real-time applications. On
the other hand, precisely because the information to perform
the matching is sparse, in regions with low level of infor-
mation the matching will probably be less accurate. Never-
theless, this type of similarity function performs well in the
presence of numerous matching features and for relatively
simple deformation models.

@ Springer

The second category of similarity functions, so-called
image-based measures, compares the intensity, in the sim-
plest case, of the deformed template xo o f~! to the inten-
sity of the target image x. As opposed to the feature-based
measures, this type of cost function relies on a dense com-
parison between the deformed template and the image. Al-
though the computational load is higher, this type of match-
ing cost is more appropriate to local non-rigid deforma-
tions. Classical similarity functions are the absolute inten-
sity difference (Barnea and Silverman 1972), the sum of
squared intensity difference (SSD) (e.g., Friston et al. 1995;
Ashburner and Friston 1999) or the correlation coefficient
(Pratt 1974). Additional cost functions are based on other
functions of the image such as local Fourier coefficients
(Glasbey and Mardia 2001), edge distribution (Li et al.
1995), to cite only a few of them. Finally other image-
matching functions are based on information theoretic crite-
ria, such as comparing the intensity distribution of the source
and the target using joint entropy (Studholme et al. 1995;
Collignon et al. 1995) or mutual information (Collignon et
al. 1995; Viola 1995; Wells et al. 1996; Maes et al. 1997).

1.1.2 The Regularization Term

The choice of the regularization term is usually motivated
by the type of deformations that need to be considered in
the problem at hand. If a global alignment is sufficient, rigid
or affine transformations will be favored as it is defined by a
small number of parameters. On the other hand, these trans-
formations are generally not “flexible” enough to model sub-
tle deformations, such as the ones observed in medical imag-
ing.

Non-rigid deformation models are often preferred to
model subtle changes in these images. There exist nu-
merous representations for non-rigid (and non-affine) de-
formations. Low-dimensional representations such as free-
form deformations, or more generally spline-based defor-
mations, are parameterized by the displacement of control
points (Bookstein 1992; Joshi and Miller 2000; Rohr et
al. 2001). The deformation is obtained by interpolating the
control point displacements to the rest of the image using
smooth basis functions. The choice of the basis function
influences significantly the properties of the resulting de-
formation (Wahba 1990; Bookstein 1989; Arad et al. 1994;
Rohr 2001).

Alternative approaches model the image as a physical
continuum, whose deformation follows a mechanic model
such as an elastic or a fluid deformation. In that case, the
deformation field (or the velocity field) is the solution of
a Partial Differential Equation (PDE). Examples of image
registration using these models can be found in e.g., Bajcsy
and Kovaci¢ (1989), Davatzikos (1997), Bro-Nielsen and
Gramkow (1996), Lester et al. (1999).
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Finally the weight parameter y in (1) is most of the time
manually tuned. Sometimes y is modified as the optimiza-
tion proceeds in order to favor first rigid deformations and
then allow for non-rigid deformations that provide a more
accurate matching result. It is generally believed that such
techniques prevent the optimization algorithm from getting
trapped in local minima.

1.2 Statistical Models for Image Registration

Although many registration algorithms have been proposed,
the design of registration algorithms for a new task or
modality remains an art. In general, it is not clear what cost
function should be used. The choice is frequently based on
intuition or trial and error, depending on the specific task at
hand.

Viola (1995), Roche et al. (2000), Glasbey and Mardia
(2001) studied the case of intensity images with limited
changes of illumination from a statistical point of view. As-
suming that the noise between the template image and the
target image is Gaussian, they showed that the maximum
likelihood estimator of the deformation corresponds exactly
to the deformation minimizing the sum of squared differ-
ences.

Recently, there have been several works on developing
generative statistical models for different tasks such as im-
age classification (Allassonniere et al. 2007) or image seg-
mentation (Levin and Weiss 2006). They learn the model pa-
rameters from learning samples and estimate by likelihood
maximization the variable of interest, respectively the class
of the image or the segmentation. Our work follows similar
principles and applies them to the case of image matching,
which means that the variable of interest is the deformation
that maps the template onto a new image.

1.3 Paper Contributions

We present different examples of model for normalized
gray-level images and for gray-level images with intensity
variations (i.e. coming from different acquisition protocols).
Using maximum likelihood principles, we derive simple al-
gorithms for image matching based on the modeling as-
sumptions and provide the corresponding optimal match-
ing function. Because the matching function is derived from
the generative model following maximum likelihood princi-
ples, it is possible to understand how the modeling assump-
tions relate to the final cost function. In all cases the de-
rived matching functions are very intuitive and correspond
in some cases to well-known energy functions such as the
sum-of-squared differences.

We illustrate the different models on the specific problem
of landmark detection in brain MRI. The landmark detection
task consists of localizing a set of anatomical landmarks de-
fined by an expert and manually located on training images.

Using the technique proposed in this paper, we have been
able to derive generic adaptive algorithms for the simultane-
ous detection of one or more landmarks. As opposed to other
existing methods for landmark detection (Thirion 1996;
Frantz et al. 2000; Worz and Rohr 2006), the proposed al-
gorithm adapts automatically to all types of landmarks for
which a training set can be obtained.

2 Anatomical Landmark Detection

An anatomical landmark is a point in the image that corre-
sponds to a specific part of the anatomy (Bookstein 1992;
Thirion 1996; Frantz et al. 2000). They are defined by an
expert and commonly used to set correspondences between
images. We denote by y € R?K a vector containing the po-
sition of K landmarks in an image. The position of the land-
marks in the template is fixed and denoted by y € RYX

2.1 Landmark Detection as a Local Registration Problem

We model a landmarked image as the result of a bijective
deformation acting on a template xo, such that the landmark
locations in the template y are mapped onto y in the target
image, i.e. f(y) = y. To simplify the problem, we assume
that the deformation f is fully characterized by the corre-
spondences of the landmarks in the template and in the im-
age. Therefore, when y is fixed, it is equivalent to estimate
the location y or to estimate the deformation that maps the
template onto the target image. We formulate the landmark
detection as an image matching problem:

f=arg1]p€a;«4(x,xo,f>+y72<f> and §=7F@F).

The deformation f : R¢ — R? is parametrized by the land-
mark displacements from the reference location y to the im-
age location y. Using spline interpolation, the displacements
of the landmarks is interpolated to the rest of the image sup-
port. The resulting deformation depends on the choice of
the interpolation function used. Therefore we reduce the set
of possible deformations by fixing « the interpolation func-
tion of the spline-based deformation. It can be shown that
there exists a unique deformation that satisfies the landmark
matching constraint f(y) = y and that can be written:

K
Vi, f@O)=t+) k(. 3w, with f R 3)
k=1

According to Mercer’s theorem, it is equivalent to fix
the basis function x or a regularization term of the form
| f — Id]| F, with F a Hilbert space of smooth functions
of RY. For simplicity, we fix arbitrarily the deformation
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model. It would be interesting though in future work to in-
clude the deformation model as a parameter of the statistical
model to be learnt from the training set.

We choose for our application to landmark detection to

work with a Gaussian kernel of variance o 2:
SN2
t J—
Vi, 0 = exp — =Y 4)
202

The main advantage of this kernel over the commonly used
Thin-Plate Spline approach (Bookstein 1989) is that the de-
formation has a local support, controlled by the variance of
the kernel. Other locally defined spline models may be used
such as B-spline or Clamped Plate Spline (Wahba 1990;
Twining et al. 2002).

2.2 Landmark Detection

We propose to take advantage of a training set of annotated
images, in which the landmarks have been manually posi-
tioned. The proposed method consists of learning the model
parameters from a training set. Then, the estimated model is
used to detect landmarks in new images.

We denote by 6 € ® the model parameters, x{v e RSN
the training set of N images, le € Y C RN the location
of the landmarks in the training images and x € RS a new
image. The model parameters are estimated by likelihood
maximization

6= exN,yN:0). 5
arg max (x1",y1:0) (35)

As for the landmark detection, it is carried out by maximiz-
ing the likelihood of a new image with respect to the land-
mark locations, while using the previously learnt model pa-
rameters:

$ = argmax £(x, y; 0). ©6)
yey

3 Deformable Intensity Model
3.1 The Gaussian Image Model

Roche et al. (2000), Glasbey and Mardia (2001) propose to
build a simple statistical model for registering two images.
The target image x is modeled as the result of the action
of a random bijective deformation f applied to the template
image xg, corrupted by an additive Gaussian noise. Denoting
by A the support of the target image and s a pixel (or voxel)
included in A,

Vse A, x(s)=x0(f" () +es), )

with €(s) ~ N (0, t2), the centered Gaussian distribution of
variance 72, and x(s) the real random variable representing
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the image intensity at pixel s, and xo(f~!(s)) the intensity
in the template at pixel # = f~!(s). In terms of probabil-
ity distribution, it means that the intensity at pixel s, given
the registering deformation f, follows a Gaussian distribu-
tion, whose mean is given by the intensity at the correspond-
ing location of the template. Assuming the intensity at each
pixel is independent given the deformation f, the whole im-
age likelihood is:

>en lx(s) —x0(f! <s>)|2>. ®

212

P(XIf)0<eXP<—

In this formulation, the deformation f and the image x are
random variables, while x( the template image and the noise
variance 72 belong to the parameters of the model. There-
fore, given two images, a source image x( and a target image
x, the registration of xo onto x consists of finding the defor-
mation f that maximizes the conditional likelihood of the
observation x. The best deformation, in terms of likelihood,
is given by:

N

f= arg;neajglnp(ﬂf), ©)
=argmin Y " [x(s) —xo(f " ()% (10)
fe}-seA

The maximum likelihood estimator f corresponds to the
deformation that minimizes the sum of squared intensity
difference (SSD) of the two images, as originally defined
in Barnea and Silverman (1972). SSD has since then been
broadly used for image matching and tracking in video se-
quences, and is considered as a benchmark for image match-
ing.

In what follows, we present a model which is closely re-
lated to the Gaussian image model and demonstrates with
this simple example how to derive a landmark detection al-
gorithm.

3.2 Description of the Generative Model

The generative model relies on the joint distribution of the
observations and of the variable of interest. We have made
the assumption in Sect. 2 that the deformation is parame-
trized by the landmark locations y, thus the joint probability
by p(x,y). The template xq is a parameter of the statistical
model, to be estimated from the training data.

Using Bayes’ formula, the joint probability of the image
x and the location of the landmarks y is

px,y)=pxly)p(y). (11)

As it is often the case in generative models for images,
we assume statistical independence of the image intensities
given the location of the landmarks such that the conditional
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probability can be written as a product over all the pixels of
the image support. Assuming that the image is defined on a
finite grid A € RY,

px, ) =[] rE®IypG). (12)

seA

In the above Gaussian model, the noise 72 is a global pa-
rameter of the model and is independent from the location
in the image. Thus the template or source image is a deter-
ministic function defined on Ar, a finite grid of R. In our
approach, we choose to work with probabilistic templates,
because we believe that the deformations defined by few
landmarks are not “flexible” enough to model the geomet-
ric variability of real images. Probabilistic templates contain
more information and allow us to capture both the photomet-
ric and the geometric variations, while working with a sim-
ple deformation model. We propose to model the intensity
value as a Gaussian distribution whose mean and variance
depends on the pixel location:

Vs, x($)]y ~NGolfy  6)), 15, (5)), (13)

with f) the deformation that maps the landmarks of the tem-
plate y to y in the image.

It means that the template contains at each pixel of A7 an
intensity value and a standard deviation. As a consequence,
the likelihood of an image is similar to the expression de-
rived from the Gaussian model (8), except that the intensity
variance depends on the pixel location:

(x(s) — xo(f; 1 (s)))?
Cx,y) ==Y loged(fy () + 2
’ XA: o 272(f5  (5))

1
— Zzloan +log p(y). (14)
seA

The log-likelihood of an image increases when the intensity
observed in the image corresponds to the one contained in
the deformed template. The weight of each pixel varies de-
pending on its position in the image. Regions with lower in-
tensity variance in the template have more importance than
the regions with larger variance.

In order to generate images using this model, one first
randomly samples a grayscale image from the Gaussian dis-
tribution NV (x(2), rg (#)). The landmark position is sampled
from p(y) and used to determine the deformation f,. The
final image is obtained by deforming the randomly sampled
grayscale image by f). The landmarks of the template are
by construction mapped to the position y in the final image.

3.3 Model Selection Using a Training Set

Model selection consists of learning the parameters 6 of the
deformable model from the training set of annotated images

(va , y{v ). The model has two sets of parameters: the tem-
plate parameters, for all ¢, xo(¢) and rg(t), and the landmark
prior distribution p(y). The training images are considered
as independent samples of p(x, y). Thus, the likelihood of
the training set:

N N
e,y o)=Y Py + Y pir®). (15)
i=1 i=1
The likelihood function is a sum of two independent terms,
therefore the optimization with respect to the template and
the estimation of the prior distribution of the landmarks can
be performed independently.

3.3.1 Direct Estimation of the Deformable Template

The template is learned by likelihood maximization with re-
spect to (xo, rg):

N

e Iy sx0, ) = > InpG@(o)ly). (16)

i=1seA;
Using the deformable model assumption,

xD )y ~ N(xo(0), 73 (1))  witht = f};,.i (s). (17)

We denote by 7 (x, t) the probability density for the intensity
value x at 7. Thus,

N

e Iy ixo ) =D Y na D), £ (). (18)

i=1seA;

Because the deformation fy_([% depends on the image, it is
not possible to change the order of sums. In consequence the
estimation of the template parameters is a complex joint es-
timation problem. We propose to approximate the likelihood
function (18) by performing a change of variable. The sum
over the pixels of the image is approximated by an integral
over the support of the image.!

N
z(x{V|y{V;x0,f§)~ZfRd 1nn(x<f)(s),f};,.§(s))ds. (19)
i=1

For each image i, we perform the change of variable
s = fy(i) (¢), and denote by |J £ (t)| the absolute value of
the deformation Jacobian at . -

N, N 2
E()ﬁ |)’1 » X0 T())

N
= Z /Rd lnﬂ(x(i)(fy(i) 1)), t)Iny(‘.) (t)|dt. (20)
i=1

IFor sake of simplicity, we assume that all the images are defined on
R padding them with zeros and using linear interpolation if necessary
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Finally, we approximate the likelihood by exchanging the
order of the sum and the integral. After discretization of the
integral:

N, N. 2
Z(xl |)’1 ,XO,T())

N
=D > O (fya0 @), D5, Ol @1

teAr i=1

The above approximation of the likelihood function will ap-
pear regularly in the estimation of the model. From now
on we will refer to it as the “approximated integral change
of variable”. This approximation allows us to transform
the joint optimization with respect to all the pixel parame-
ters in as many independent problems as pixels in the fi-
nite grid Ar. The likelihood optimization with respect to
(x0(2), rg (1)) becomes separable. The computation of (21)
requires to interpolate the grayscale image to extend the de-
finition of x( fym (1)) to all possible values of ¢ and y. Thus,
the log-likelihood of the training set is:

e (fo@) —x0F
272(1)

Moo
Z Z[—Elnrz(t)

teAr i=1

}ufy(,.) o).
(22)

and its maximization at each pixel ¢, with respect to x(#)
and ‘L'g (1) has a closed form solution:

YL x(fyo ), O

Xo(r) = (23)
’ vazl |Jf‘(,) (t)l
N 2
i=1[x(fyo (1) = x0T 7, ) ()
220 = 2 izilx fyoN X0, |' o4
Zi:l |ny(,') (t)|

The Maximum Likelihood Estimator (MLE) is similar to the
classical MLE of a Gaussian sample, except that each sam-
ple is weighted by the Jacobian of the corresponding trans-
formation. If the Jacobian is locally equal to 1, it is locally
equivalent to averaging the observed intensities, after regis-
tration of the training images.

3.3.2 Learning the Distribution of the Landmark Locations

Classical density estimation methods can be used to estimate
the prior distribution of the landmarks in the image based on
the training samples. As the number of landmarks increases
and the size of sample stays limited, one might need to in-
corporate some regularization in the density estimation. In
practice, in all the experiments presented in this paper, we
did not incorporate any prior information.

@ Springer

3.4 Local Intensity Matching for Landmark Detection

We use the model learnt in the training phase to predict
the location of the landmarks in a new image. The log-
likelihood of a new grayscale image is

£(x|y; %o, T3)

1
= |:ln27'r +In5 (£, ) +
seA

x(s) —fo<zgf‘<s))|2]
207 5)) '
(25)

We use the MLE to predict the location of the landmarks:

y = argmax £(x|y; Xo, fg). (26)
y

3.4.1 Local Intensity Matching Algorithm

When using SSD for image matching, it is implicitly as-
sumed that the noise parameter 7 is constant throughout
the template. Therefore all the image pixels have the same
weight. Because the variance in the Deformable Intensity
Model (DIM) varies depending on the location in the tem-
plate, the pixels with lower variance have greater weight in
the cost function than the pixels for which the intensity vari-
ance is large. Pixels around the landmarks generally corre-
spond to regions of low variance. In consequence, the cost
function focuses on matching the intensity around the land-
marks. This is well illustrated in Fig. 2.

3.4.2 Optimization by Gradient Ascent

The optimization is performed by a steepest gradient ascent.
We initialize the gradient ascent with the identity deforma-
tion, or equivalently y < y:

1. Initialize the gradient ascent with y <— y,
2. Iterate until convergence:
(a) Compute V,£(x, y; Xo, fg),
(b) Find a > 0 such that:
e(x, y+aVyl(x, y; Ko, 23); R0, 1) = £(x, y; Ro, ).
(©) y < y+aVyllx, y; R0, T, ().

We assume that the algorithm has converged when the likeli-
hood does not increase significantly between two iterations.

3.4.3 Computation of the Likelihood Gradient

The derivative with respect to y of the likelihood func-
tion (25) can be written analytically. The inverse transfor-
mation though, fy_l, in the case of spline-based deformation
does not have a closed form expression. To overcome this is-
sue we perform the integral change of variable: s = f,(¢). It
gives:
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L(x|y; X0, T)

2 2
o — Z [1nf§(z)+ (5 @) = Xo(@)] :||ny(t)|. (27)

22(1)

teAT

Hence, the intensity x(fy(¢)) and the deformation Jacobian
|Jf,(t)| depend on the location of the landmarks. Without
entéring in the details of the computation, it is possible to
obtain an analytical expression of the Jacobian gradient with
respect to y. As for the intensity, we model the image as a
continuous function x : R? — R, such that its derivative can
be written as the derivative of the composition x o f, with
respect to each landmark coordinate:

8f(l) >

a—x(f (t))—<8—x(f 1)), —— () (28)
Vil Y N acy Y ' Ykl

a

with g—fl( fy(#)) the derivative of x with respect to the /-th

0
. . afs . .
Cartesian coordinate and 3);’](] (#) the partial derivative of the

[-th coordinate of the deformation with respect to the /-th
coordinate of the k-th landmark.
The complete gradient expression is:

9L (x|y; Xo, To)

Yk
1 (x(fy (1)) — x0()? 31T, (1)
— __ 1 2 + y i| )
2 teXA:T|: nTo T3 (1) Ykl
B Z x(fy(t))_x0(1)|va(t)|ax(fy(t)). (29)

2
= 75 (1) ki
When necessary, we use linear interpolation to estimate the

image intensity for all values of y and ¢.
3.5 Detection Results

We use 47 T1-weighted Magnetic Resonance (MR) brain
images acquired on a Philips-Intera 3-Tesla scanner, with
an isotropic resolution of 1 mm?>. The images were first
manually transformed into standardized Talairach space (Ta-
lairach and Tournoux 1988) using Analysis of Functional
Neuroimages (AFNI) (Cox 1996) to provide a canonical ori-
entation and an approximate alignment.

To manually locate the landmarks in the training set, the
images were viewed in continuously synchronized sagittal,
axial, and coronal planes. An expert located 2 sets of land-
marks in each image. The first set of landmarks is located
around the corpus callosum. The posterior extremity, de-
noted SCC1, is located in the 3D volume as the posterior
extremity of the corpus callosum. SCC2 is defined on the
same sagittal slice as SCC1, marking the lower extremity of
the splenium of the corpus callosum. The second set of land-
marks is located around the hippocampus. The expert marks

Fig. 1 (Color online) Top: Sagittal slice of a brain MR image. The
central white structure corresponds to the corpus callosum, the crosses
represents the position of landmark SCC1. Bortom: Sagittal slice at the
level of the hippocampus. The bottom left cross represents the head of
the hippocampus HoH while the top right cross marks the location of
the tail of the hippocampus HT

the anterior extremity of the hippocampus, called the head
(HoH). The tail of the hippocampus, denoted HT, is defined
on the same sagittal slice, marking the posterior extremity of
the hippocampus. In the case of the corpus callosum, there
is a clear boundary around the structure of interest, but in the
case of the hippocampus, it is very difficult even for a spe-
cialist to trace the boundary between the hippocampus and
the surrounding amygdala, making it challenging to detect
the head of the hippocampus. Figure 1 depicts the sagittal
slices of an image and the position of the landmarks.

The images were acquired with different contrast set-
tings. Since the Deformable Intensity Model does not handle
variations of intensity, we first normalize the image intensi-
ties. A set of 30 randomly sampled images is used for train-
ing, the learnt model is tested on the 17 remaining images.

3.5.1 Detection in Brain Magnetic Resonance Images

Estimated Model 1In the first set of experiments, we choose
a Gaussian kernel with o = 7. We simultaneously detect
SCCI and SCC2 in 2D slices extracted from the 3D volume.
Figures 2(a) and (b) depicts the intensity averages and vari-
ations across the stack of 30 training images before regis-
tration. For comparison, Figs. 2(c) and (d) represents the es-
timated intensity average and intensity variance of the tem-
plate. The edges around the landmarks are sharper in the es-
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o

(a) Average intensity (b) Standard deviation

(d) Standard deviation: 7o

(c) Average intensity: xo

Fig. 2 (Color online) Estimated Intensity Template (o = 7). Intensity
distribution in the training image, before (fop) and after (bottom) regis-
tration. The crosses represent the location of the landmarks: top-right
SCC1, bottom-left SCC2 after registration

timated template than in the intensity average before learn-
ing. This is due to the landmark-based registration of the
training images. We chose a deformation with a small ker-
nel variance because the point correspondences provide very
sparse and local matching information. Therefore the defor-
mation is very local and so does the sharpening of the inten-
sity edges around the landmarks.

Landmark Detection The prediction of the landmark loca-
tions is performed on a testing set composed of 17 images.
The likelihood is maximized by gradient ascent with respect
to the landmark locations according to (29). We define the
initial localization error of a landmark by the Euclidean dis-
tance between y, the position of the corresponding landmark
in the template and the location marked by the expert. The
prediction error of the detection algorithm is defined as the
Euclidean distance between the predicted landmark and the
ground-truth given by the expert. We compare the perfor-
mance of the Deformable Intensity Model (DIM) with the
detection using SSD. In both cases we use the learnt tem-
plate and the same deformation model to detect the location
of the landmarks.

Table 1 presents the performance of the 2 methods on the
detection of SCC1 and SCC2. There exists a clear improve-
ment between the initial error and the detection results ob-
tained by each of the 2 detection methods. The difference of
performance between DIM and SSD is significant for SCC1
but not for SCC2. Recall though that SCC1 was located in
the 3D volume while SCC2 is identified in the same already
selected sagittal slice.
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Fig. 3 Performance of the detection algorithm using DIM for differ-
ent choices of kernel standard deviation: 3, 5, 7, 10 and 15. The land-
marks are detected by pair: SCC1 and SCC2, HoH and HT. Initial cor-
responds to the prediction error if one uses the average location of the
landmarks in the training set to predict their location in a new image

Table 1 Statistical Comparison of Detection Performance. The left
side of the table contains the mean and standard deviation of the pre-
diction error (mm) of SCC1 and SCC2 for each of the methods, on a
common testing set composed of 17 images. The righthand side of the
table contains the p-value of the Wilcoxon Signed Rank Test for each
couple of detection methods. The p-values above the first diagonal of
the table represent the test results for SCC1 and below the diagonal
the p-value associated to the prediction error of SCC2. The bold fig-
ures emphasize the tests validating a difference of performance (with
a=10%)

Prediction Error (mm) Wilcoxon Test p-value

SCC1 SCC2 DIM SSD Initial
DIM 1.14 (0.88)  1.23(0.86) N/A 0.0850  0.0002
SSD 1.61(0.83) 1.23(0.74) 1.0000 N/A 0.0014
Initial  3.62(1.80)  2.80(1.14)  0.0002  0.0002 N/A

3.6 Choice of the Deformation Model

In this section we investigate how the choice of the ker-
nel influences the performance of the algorithm. We keep
a Gaussian kernel but vary its standard deviation: o = 3, 5,
7, 10 or 15 pixels. We perform a set of experiments on both
the corpus callosum and hippocampus data sets. With a large
variance, the number of pixels included in the deformation
support increases. Thus more pixels contribute to the likeli-
hood variations. It can be interpreted as increasing the size
of the discriminative intensity pattern used for detection.
Figure 3 represents the performance of DIM when the
kernel variance varies. For most of the landmarks the best
choice is 0 = 10. For some landmarks the detection perfor-
mance does not depend strongly on the choice of the ker-
nel width. This is the case for SCC2. However for HoH,
the width of the kernel modifies the algorithm performance.
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Fig. 4 Distribution of the detection errors around top: SCCI and
SCC2 when o =7, bottom: HoH and HT when o = 10. The large
crosses represent the location of the landmarks, the smaller crosses
represent the error before detection and the circles represent the er-
ror distribution after detection. Notice how they are aligned along the
edges of the intensity image

This can be explained by the fact that the intensity pattern
around HoH is rather homogeneous, and has a low discrimi-
native power. By increasing the size of the kernel width, we
increase the size of the discriminative pattern and with it the
specificity of the detection.

Figure 4 represents the spatial distribution of the detec-
tion error of DIM around the real location of the landmarks.
The error is greatly diminished compared to the localization
error before detection. We also notice that the residual error
is oriented along the local intensity edge. It is particularly
visible in the case of SCC1 and SCC2, but we have observed
it in the case of the hippocampus detection as well. This ori-
ented error diminishes when the size of the discriminative
pattern increases.

3.7 Discussion

The Deformable Intensity Model is a very simple intensity
matching model. Yet, it illustrates well how, by building
a statistical generative model of an image, we can derive
learning and matching algorithms to estimate the model pa-
rameters from training data and detect landmarks by tem-
plate matching in new images. The derived algorithms are
very simple: the learning step consists of a weighted aver-
age of the training set after registration, while the testing al-
gorithm is based on gradient ascent. As the proposed mod-
els become more complex, both the learning and the test-
ing phases become more challenging, but as the result the
matching algorithms inherit of interesting properties.

4 Tissue-Based Deformable Intensity Model

The proposed Deformable Intensity Model (DIM), as any
model based on intensity comparison, is not robust to inten-
sity variations. Nevertheless it is often the case that the in-
tensity distribution varies significantly between images, de-
pending on the acquisition protocol. Instead of introducing
a normalization step in the preprocessing of the image, we
propose to build a statistical model that can deal with the
intensity variability and derive the appropriate algorithms.

We propose to build the Tissue-based Deformable Inten-
sity Model (T-DIM), using the same statistical framework
and modeling principles. We introduce a non-observed im-
age segmentation in the generative model and derive both
the learning algorithm and the template-matching algorithm.
The main underlying modeling assumption is that while the
intensity distribution of an anatomical tissue varies depend-
ing upon the image, the spatial arrangement of the tissues
is common to all the images up to some deformation, para-
metrized by the displacement of the control points or land-
marks. Therefore we propose to build a probabilistic de-
formable model on the tissue-types rather than working di-
rectly on the intensity values.

4.1 Description of the Generative Model

We denote by x and y the random real vectors representing
respectively the intensity vector of an image and the vec-
tor of the K landmark locations. x takes values in RS and
y takes values in R?X . Let z be a discrete random vector
of the same dimension as the image that represents the im-
age segmentation. z(s) is the tissue type at pixel s and takes
values in {1,..., J}, with J the number of tissues. Since
the segmentation of the image is unknown, z is a hidden
variable. Finally, we introduce u a discrete random variable
that characterizes the photometry variations. It allows us to
model different acquisition settings, such as high contrast,
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low contrast, darker or brighter images, or even an image
modality. Since the acquisition parameters are unknown, u
is a hidden variable.

The following assumptions are made to simplify the es-
timation problem. The intensity at a pixel s is assumed to
be independent from the intensity at the other pixels, given
the corresponding tissue type z(s) and the photometric para-
meters u. We also assume that the intensity x(s), given the
tissue type z(s) and the photometry u is independent from
the location of the landmarks. Finally we assume that the
tissue type z(s) is independent from the tissue type at the
other pixels, given the location of the landmarks y. Figure 5
illustrates with a Bayesian network the complete generative
model of an image.

Remark I The different random variables of the generative
model have different roles. The intensity variables, x(s), i.e.
the images, are observed. The landmark locations y are ob-
served in the training set but need to be estimated in the test-
ing set. The segmentation variables z(s) and the photometry
variable u are never observed, neither in the training images
nor in the testing ones.

The training set xlN is composed of N images on which
N landmarks yfv have been located. Each image of the
training set is modeled as a sample of the joint distribution
p(x,y, z,u), in which both the segmentation z and the pho-
tometry u are missing.

Using the Bayesian network of Fig. 5, the joint distribu-
tion can be written as:

p(x,y,z,u)
=p)p(y) ]_[ p(x(s)|z(s), u) p(z(s)]y). (30)

seA

Therefore, the joint likelihood of the intensity value and the
landmarks is:

£(x,y)

J
=pM Y p@) [ D] pee)lz(s) = j,w)p(s) = jly).

u seA j=1

€19

Hence, to compute the MLE of the landmark locations, y =
argmax, £(x, y), it is necessary to learn the model £(x, y)
by estimating the probability distributions involved in the
likelihood function (31). The four terms to be estimated are:

— the prior distribution of the landmark locations, p(y):
since y is observed in the training set, it can be estimated
from the training data;

— the prior on the photometry, p(u): u is unobserved thus
it needs to be estimated during training;
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Fig. 5 Bayesian Network representing the Deformable Tissue-Based
Intensity Model. y is the location of the landmarks and characterizes
the geometry, z(1), z(2), ..., z(S) represent the tissue-types at differ-
ent locations in the image and x(1), x(2), ..., x(S) the corresponding
intensity values. u characterizes the photometry

— the photometric model, p(x(s)|z(s), u): it is modeled as
a Gaussian distribution N (u(j, u), oz(j, u)). The para-
meters of the Gaussian distributions have to be learnt dur-
ing training;

— the geometric model, p(z(s)|y): We assume that the im-
ages arise from a common probabilistic deformable tis-
sue model 7 (j,t),Vt € Ar,Vj. At each r € A7 the tis-
sue type probability is modeled by a point mass func-
tion, ) j 7w (j,t) = 1. Therefore the conditional distribu-
tion p(z(s) = j|y) at s is given by the point mass func-
tion: m(J, fy’] (s)). The probabilistic template 7 contains
the geometric model of the images

We first detail each of these distributions and then discuss
how to estimate them from the training data.

4.1.1 Prior on the Landmark Locations

Since the landmark locations are observed in the training
set, the estimation of p(y) is performed independently from
the estimation of the rest of the model. The same methods
as in Sect. 3.3.2 can be used. Again, we will not use the
prior information in the case of our application to landmark
detection.

4.1.2 Prior on the Photometry

u is assumed to be a discrete variable, representing dif-
ferent acquisition methods. We model its distribution as a
point mass function p(u). Contrarily to the landmark loca-
tions, the photometry variable is not observed in the training
set. Thus, its marginal distribution needs to be learnt during
the training phase, simultaneously with the geometric model
and the photometric parameters.
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4.1.3 Deformable Tissue Template

The geometry of the image is modeled by a deformable tis-
sue template. It means that the distribution of the tissue types
in an image is given by their distribution at the correspond-
ing location in the template, using the image-specific defor-
mation to set the correspondences between the template and
the image. The probabilistic template is a function which as-
signs to each node 7 of a finite grid A7 C RY, a point mass
function 7(j,1),1 < j < J, such that Y7_, 7 (j.1) = 1.
The template definition is extended to a bounded domain
of R? by linear interpolation.

The location of the landmarks is fixed in the template y,
such that given a family of deformations F, there exists a
unique bijective deformation fy € F which maps the tem-
plate onto the image under the constraint that f},(y) = y.

In the deformable model setting, the tissue types are as-
sumed to follow a common distribution across the registered
images. Since the registering deformation is characterized
by the landmark correspondences, the geometry is in prac-
tice encoded by the location of the landmarks. If there are
only few landmarks, it is likely that the registration will be
precise around the landmarks but potentially inaccurate at
further distance. This aspect is taken care of by defining a
probabilistic template, able to encode the post-registration
geometry variations better than a deterministic template.

Using a deformable model consists in assuming that the
spatial distribution of the tissue types given the landmark
location follows the distribution given in the template at the
corresponding location:

Vse A, pis)=jly)=m(, fy_l(S))- (32)
4.1.4 Photometric Model

Often in medical imaging, anatomically different tissues ap-
pear in different intensity ranges. It is the case in brain im-
ages in which 3 anatomically distinct tissues can be easily
identified. The 3 tissue type intensity distributions are mod-
eled as a mixture of Gaussian distributions as it is commonly
done in brain segmentation methods. We make the same
simplifying assumptions as in Wells et al. (1996): the inten-
sity value at a pixel s depends only on the tissue type z(s)
and the global photometric variable u. It is assumed that the
intensity distribution, given the tissue type, depends neither
on the location in the image nor on the landmark location.

Given an image x and the photometric variable u, for all
s and for all u:

px()|z(s) = j,u) = g(x(s); u(j, w), 0> (j, w)), (33)

with g(x(s); u(J, u),az(j, u)) the probability of observ-
ing the intensity value x(s) when the tissue model is a
Gaussian distribution of parameters w(J, u), o?( J,u). While

the model is similar to the mixture model used in image seg-
mentation, the estimation of the Gaussian distribution para-
meters is coupled with the estimation of the geometry as the
proportions of each tissue type comes from the deformable
model.

Thus, the likelihood function of an image using the
Tissue-based Deformable Intensity Model is:

L(x,y; 1, 0%, )
=p(y)

J
X Y p) [0 ete(s) nli,w), oG w)m (i, £ (5)).

seA j=1

(34)
4.2 Model Selection

As usual the purpose of model selection is to estimate the
model parameters using the training set of landmarked im-
ages. The T-DIM, as described in Sect. 4.1, is a complete
generative model of the joint distribution of image inten-
sity x, the landmark location y, the tissue type or image seg-
mentation z and the photometry u.

Both x and y are observed in the training set but z and
u are missing. The model parameters are composed of the
geometric parameters: 7 (j,t),Vj, V¢, the photometric pa-
rameters w(j,u), az(j, u),Vj,Yu and the marginal distri-
butions of the photometric variable p(x) and of the land-
mark locations p(y). Since the model parameters, the im-
age segmentation and the photometric parameters are un-
known and need to be estimated jointly, we propose to use
the Expectation-Maximization (EM) algorithm to perform
the model selection. Because y is observed in the training
set we work on the conditional model x|y.

The EM algorithm is an iterative method to maximize
a likelihood function with missing variable. The algo-
rithm iterates between the computation of the expected log-
likelihood with the previous estimate of the model parame-
ters, denoted by Q and maximizing that function with re-
spect to the model parameters. In practice the first step, also
called E-step consists in computing the posterior distribu-
tion of the hidden variables, in our case the segmentation z
and the photometry model u.

4.2.1 Expected Log-Likelihood

The expected log-likelihood is the expectation of the joint
log-likelihood with respect to the posterior distribution of
the hidden variables:
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N
Q0.0 =Eulln po el 2 ul Iy v 1= "> "N 1A+ B+ Clpy P (s) = j.u@x 3, (35)
i=1 s j u

with:
A=Ing(xD(s); n(j, u™), o2, u?y),
B =Inm(j. f ().

C =1npou®).
4.2.2 Details of the E-step

The E-step consists of computing the posterior distribution
of the hidden variables given the data x{v and the land-
marks y{v . We firstly simplify the log-expectation with the
following proposition derived from the modeling assump-
tions.

Proposition 1

Vse A, Vie{l,...,N},

por @Ol 1 ) = por @D D),y u®).
Using Proposition 1 and Bayes’ formula:

por @D (), u@|xY, y)
= por GO @)[xD(s), yO, uD) pgr D )x D, y©). (36)
Vse A,

Given the set of model parameters 6’ and the distribution
por (u) estimated at the preceding iteration, the posterior dis-
tribution is written as the product of two terms:

o 2V (s) = jIxD (), y@, u®)
oc g (V) /(o u ), 02 (Gou NG fr (). BT
and,

por (@@ x®, y @)y
o pyr ) T

seA
x [Z gV (o), 0N (G S (s))]
J
(38)

The posterior distribution is computed for each image i,
each tissue type j, at each location s and for each photo-
metric model u.

@ Springer

4.2.3 Details of the M-step

The maximization of the Q-function in (35) can be decom-
posed in three independent maximization problems. Each
of them admits a closed form solution. The solution for the
photometric parameters, coming from the maximization of
the first term of the Q-function (35) are:
i, u)

Y x D) per(zs) = jLulx D, y©)

> 2o por(2(s) = julx®, y®)

, (39)

&2(j,u)
_ Y D) — ! (o) per(2(s) = joulx @, y @)
Yo > per(z(s) = julx @, y@) .

(40)

The number of photometric intensity models U and the
number of Gaussian distributions J used to describe the
intensity variation is manually chosen before learning the
model parameters. If U < N, several images may contribute
to the estimation of the photometric parameters correspond-
ing to the intensity model u. The contribution of each image
to the estimation of the photometric parameters is weighted
by the posterior probability of u given the specific image.
The images that are unlikely to come from the intensity
model u will not contribute to the estimation of its para-
meters 1(j, u), 02(j, u). The solution of the maximization
of the third term of the Q-function (35) is:

Pow) oY pyr(ulx®, y ). (41)
i

At each iteration, the point mass function of u is updated by
computing the proportion of images that are well explained
by this model. A normalization term ensures that the result
is a probabilistic distribution.

The template update comes from the maximization of
the second term of the Q-function (35). Since each image
i comes from a specific deformation of the template, the
estimation of the template is a complex joint problem. To
overcome this difficulty the sum over each image is approx-
imated using for each image the integral change of variable:
s = fy(i) (t), as detailed in Sect. 3.3.1. In consequence, the
joint maximization with respect to 7 becomes a set of in-
dependent maximizations. The solution can be written in
closed form:

7(j, 1)
oY > P Gy M) = joule® (fyo 1), YT, O,
C 42)
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The update is a weighted average of the posterior probabili-
ties of each tissue type at each location ¢. The contributions
of the images are weighted by the local Jacobian value. Im-
ages whose grid locally contracts during the registration, i.e.
(J]J] < 1), have a smaller contribution than images whose
grid expands locally, i.e. (|J| > 1). In regions with no grid
deformation (|J| = 1), the update consists of computing the
average proportions of the different tissue types. Notice that
while the change of variable leads to an important simpli-
fication of the maximization, it becomes necessary to use
some interpolation method on the image support.

4.3 Prediction of the Landmark Location

The prediction problem consists of locating y in a new im-
age x, using the model learnt previously in the training
phase. The specificity of the tissue-based model is that the
tissue z(s) at each location is unknown. Using the aforemen-

tioned model, the log-likelihood of a new image is given by:
L(x,y)

=1Inp(y)
+ ) I pw) Y g(x(s): (w0 *(ou)mw(f £y (s)).
seA u J

(43)

The maximum likelihood estimator is used to predict the lo-
cation of the landmarks in the new image. The model pa-
rameters {Vj,Vu, u(j,u),o(j, u);¥j,Vt,(j, 1)} and the
marginal distributions p(u) and p(y) were learnt during the
training phase. Therefore, the likelihood function is opti-
mized with respect to y using a gradient method.

To avoid computing the inverse of the transformation fy,
we perform the approximated integral change of variable t =
fy_1 (s), such that the likelihood expression becomes:

€, y) =Inp(y)+ Y [J5,0)] [mZp(u) D e (fy @) nGyw), 0> u)m(j, r)] (44)
u J

teAT

After the change of variable, the intensity values x ( f} (¢))
and the Jacobian depend on the location of the landmarks.
As we did in Sect. 3.4.3, we derive the image and the Ja-
cobian with respect to the landmark locations to obtain the
gradient expression (45). We initialize the gradient ascent
with y < y.

Algorithm 1 summarizes the learning and landmark de-
tection algorithm associated to the complete generative
model.

4.4 Combining Segmentation and Registration

Two main approaches compete in brain MRI segmentation.
The first approach assigns to each pixel a label depending
on its intensity. This line of work, pioneered by Dempster
et al. (1977), Wells et al. (1996), can be used as presented
in Leemput (2001) to perform precise segmentation. The
competing template-based approach aims at warping a seg-
mented image or an atlas onto the image to be segmented.
This approach allows to define regions that span different
intensity ranges.

T-DIM belongs to a new set of models combining im-
age segmentation and template-based registration. If the im-

dx,y) _ap(y) 1

ax(fy(1) 2w P 25 8 (fy(0): p(jo), 0> (. u))m (j. 1)

ages are pre-registered, T-DIM boils down to a simple mix-
ture of Gaussian distributions with the prior information
given by the template. Similarly, if the image segmenta-
tion is known, the model boils down to a template-based
registration problem using the segmentation as registration

cue. The combined model is aimed at performing simultane-
ous segmentation and registration of images. In the practi-
cal example we present, the registration is computed locally
only since the purpose is to detect landmarks. Recent efforts
have been made to perform the registration of the image
onto the atlas and the image segmentation simultaneously,
using combined intensity- and template-based models, see
e.g., Pohl et al. (2002, 2006) Ashburner and Friston (2005),
Fischl et al. (2004), Wang et al. (2006). Notice though that
the common objective of these methods is to perform seg-
mentation while in our case, the segmentation is used as a
cue for registration. In Wang et al. (2006), the template was
independently learnt by averaging manually segmented im-
ages. In our work, the template is estimated from the training
set which is only composed of images in which few land-
marks have been located.

w(j,u)=x(fy (@)
o2(j.u)

+ Jr (t
dy ay  p) Z|f‘()| dy

teAT

+ Y [ln Y p) Y g (fy(®): w(j. ), 07 (w7 (. r)]

teAr u J

> P 32 8 (fy () (s u), 02, ) (j, 1)

317, )]

oy (45)
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Algorithm 1 Deformable Tissue-Based Intensity Model

LEARNING

Let (x}, yV) be a training set, 6 = {7 (j, 1), V,j, Vt; u(j, u),
o2(j,u),Vj,Vu} the set of photometric and geometric para-
meters, and py(u) the distribution of the photometric vari-
able.

Initialize Vj, Vu, u(j, u),02(j, u), 7(j,1),Vt € Ar, and

po(u).
Iterate until convergence

e E-step: Vj, Vu, Vi, Vs, compute the posterior distribu-
tion from (37) and (38):

po(z(s) = joulx®, y®)
= po(z(s) = jIxV ),y u) - po(ulx®, yO).

e M-step:
— Update the photometric parameters, Vj, u,
X Zxx(i)(s)pg(j, ulx®, y(@y
Zi Zs pe(j, ulx("),y(i)) ’

¥ 2, D) = n, w)2po i, ulx®, y©)
> poGoulx®, y®) )

— Update the distribution of the photometric model

n(j,u)=

o2(j,u) =

pou) o< poulx®, y @),
i

— Update the template estimate, V, t,

T(j 1) o<y g 01D po(a(s) = joulx®, y ).
TESTING

Let x be a testing image and Vt,Vj,m(j,t),V],Vu,
w(j,u),02(j,u), p(u) the parameters and distributions
learnt during training,

Initialize y =y
Iterate until convergence

¢ Compute the gradient direction Mgi;y) using (45),

e Determine the step size a such that,
aLl(x,
e<x, y +a¥> > 0(x. y),
y

e Update the location of the landmarks,
al(x,y)

= —|—a~
y=Jy dy
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5 Tissue-Based Deformable Intensity Model with
Image-Specific Photometric Parameters

In the complete generative model presented in what pre-
cedes, the images are modeled as samples of the joint dis-
tribution p(x, y, z, u). The learning phase allows us to es-
timate this joint distribution and thus, if desired, to gen-
erate random images. The model relies on a fixed and fi-
nite’ number of photometric models U, learnt during train-
ing. Because u is modeled as a hidden variable, one needs
to integrate with respect to u in order to optimize the log-
likelihood. This leads to a computationally involved gradi-
ent expression (45). The choice of the number of possible
photometric models is balanced between reducing the com-
putational load and capturing the training image intensity
variations. Whichever the number of values of u, if the new
image intensity distribution does not correspond to the in-
tensity distribution in the training set, the detection of land-
marks will be prone to errors.

5.1 Parameter Versus Hidden Variable

One way to address these concerns is to model the photome-
try as a nuisance parameter rather than as a hidden variable.
In our case it makes sense to model it this way, because the
intensity parameters may vary tremendously between im-
ages. In terms of likelihood, modeling u as a nuisance pa-
rameter means that it is enough to work with the conditional
distribution:

In p(x, ylu)
=Inp(y)+1In)_ plx, zly,u)
Zz

=Inp()+Y Y plx()lz(s), w)pE(s)ly).  (46)

seA  z(s)

During training, the problem is reduced to estimating on
the one hand the landmark distribution p(y) and on the
other hand the conditional joint probabilities p(x|z, u)
and p(z|y). As for the testing algorithm, the predicted land-
mark location is obtained by optimizing the image and the
landmark likelihood p(x, y|u), with respect to y and the nui-
sance parameters u. We keep modeling the intensity of the
image as a mixture of Gaussian distributions, except that in
this model the parameters are image specific. We denote the
parameters of the j-th Gaussian distribution of the i-th im-
age by u(j,i), o2(j,i). For the sake of simplicity in the no-
tation we sometimes refer to the set of photometric parame-
ters of the i-th image by u®). Since u") is a set of nuisance

2Note that if u were a continuous variable, the E-step of the EM algo-
rithm would not be tractable in general. In that case it is necessary to
use an approximation of the EM. This problem is studied in Glasbey
and Mardia (2001), Allassonniere et al. (2006).
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Fig. 6 Probabilistic

Tissue-based Deformable
Intensity Model. Left to right:

a random segmentation sampled
from the template distribution,
the deformed segmentation, the
gray scale image

parameters, it not only needs to be estimated on the training
data but also on the testing images. Therefore, the optimiza-
tion of the likelihood with respect to y cannot be carried out
directly and we propose to use the EM algorithm to perform
the joint optimization in the learning phase and in the testing
algorithm. Figure 6 illustrates the deformable model.

5.2 Model Estimation by the EM Algorithm
5.2.1 Expected Log-Likelihood

Using the same reasoning as in Sect. 4.2.1, we write the ex-
pected log-likelihood of a sample of N images in which the
location of the landmarks y has been identified. We denote
X fv the set of N images and use similar notations for the set
of landmark locations y{v , segmentations z{v . We denote by
6 the model parameters 7 (j, t) for all j and ¢ and the nui-
sance parameters (j, i), o%(j, i) forall i and j. Finally, we
denote by 6’ their estimates at the preceding iteration,

0,6
N N N

=B [Inpex, 2 |yM)|xN, vV, ul

=> Y D [A+Blpe V() = jlxl, y u), 47)
i s

with:

A=Ing(xD(s): w(j, u), o2(j, u)),
B=Inn(j, f)},} (5)).

The Q-function (47) differs from the Q-function of the com-
plete generative model (35) in several aspects. Because the
photometry is modeled as a nuisance parameter and not as a
hidden variable, we do not need to estimate its distribution,
which greatly simplifies the expression of the posterior dis-
tribution. On the other hand though, there are as many mix-
tures of Gaussian distribution to estimate as there are images
in the training set.

5.2.2 Details of the E-step
Similarly to Proposition 1, one can prove that

Vse A,Yiell,...,N},

. N NG
por GO,y u) = py (2D () D(9), O, u®).

Jy

e
L

The E-step consists of computing the posterior distribution
of the tissue type for each image i, each tissue j, and at
each location s, using the parameters learnt at the preceding
iteration.

—_—
(u(5), (1))

P @) = jlxV ),y u)
oc g5 ! (i), 0 (i)' (o f iy (5))- - (49)

5.2.3 Details of the M-step

The M-step consists of maximizing each term of Q(6,6")
with respect to p(y), w(j,t), n(j,i), o2(j,i) for all i €
{1,...,N}, je{l,...,J} and for all t € Ar. The first term
(A) of the Q-function (47) is maximized with respect to each
image photometric parameters. For each image i and each
tissue-type j:

a(j, i)
_ 2 xD6)pe ) = jlxD(s), y D, u)
Zs PQ’(Z(S) = ]Ix(’) (S)’ y(i)’ u(l))

; (50)

&2(j, i)
_ LN GOW) = WG D)pe ) = jlk ), yD u®)
> por(z(s) = jlxD(s), y©, u®) :

61y

Notice that contrarily to the expression in the complete gen-
erative model (39), the update is performed independently
for each image.

The estimate of the template parameter is unchanged, ex-
cept that there is no need to sum over all possible values of u.
At each pixel ¢ of the template, and for each tissue-type j:

7(j. 1)
o Y por @(fyo )= j1x O (0 @), YDy, @)1
" (52)

5.3 Landmark Detection

We use the Maximum Likelihood Estimator to predict the
location of the landmarks. Denoting 6 the set of nuisance
parameters:

6,9 = arg max In ps(x|y). (53)
0,y
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Contrarily to the MLE with the complete generative model,
we need to estimate the nuisance parameters simultaneously
with the variable of interest. Therefore it is necessary to em-
ploy a joint estimation technique. We propose to do so using
the EM algorithm.

5.3.1 Expected Log-Likelihood and E-step

Using the same type of computation as in the training phase,
we write the log-expectation to be maximized by the EM
algorithm:

0@,y;.0.y)
=E;[In pj(x, z|y)|x, y]
=YY [A+ Blpy (z(s) = jlx(s), ¥, (54)

J

with:

A =1ng(x(s); n(j), 07 (j)),
B=n(j. fy'(s)).

During the E-step the posterior distribution of each tissue
type j is computed at each pixel s, using the template 7 (j, t)
learnt during the training phase.

Py (2(s) = jlx(s), ")
o g(x(s): 1/ (). 02N f ). (59)

5.3.2 Modified M-step

The classical M-step would consist of maximizing (54) with
respect to y, (), o2(j), for all j. While the maximization
with respect to the photometric parameters has a closed form
solution, the optimization with respect to y is performed by
gradient ascent. Unfortunately the expression of the deriva-
tive of the Q-function with respect to y is rather complex in

N

that case. Therefore, we propose to modify the M-step, start-
ing with the maximization with respect to the nuisance para-
meters and then maximizing the log-likelihood with respect
to y using the current estimates of the nuisance parameters.
Algorithm 2 summarizes the modified EM.

Theorem 1 V(6', y'), by choosing 6,y as described in Al-
gorithm 2,

Inps(x[y) = In pg, (x|y").

Proof According to the properties of the EM algorithm,
choosing 6 that maximizes Q(0,y;6’,y’) leads to
lnpé(x|y) > In pg (x|y’). Since in addition, for all y, § is

such that: pé(xl)?) > pé(x|y), it follows that: In Ps (x|y) >
In pg (x|y"). O

Therefore, the Modified EM algorithm can be used in lieu
of the EM algorithm and the likelihood increases at each
iteration.

In the case of the photometric parameters, the maximiza-
tion of the Q-function (54) leads to the same expressions as
in the training algorithm: (50) and (51).

The optimization with respect to y is performed on the
likelihood function, using the updated values of the nui-
sance parameters. For simplicity, we use the change of vari-
able s = f () and maximize the following expression of the
likelihood with respect to y:

J
DO Y w (i, Dgx (f0); 4(), 82()).  (56)

teAr ]=1

The gradient of the likelihood function can be written
analytically (57). The gradient expression is similar to
the expression of the gradient of the complete generative
model (45), except that there is no need to sum over all pos-
sible values of u. In consequence the computation of the
gradient expression is less demanding, but the optimization
needs to be carried out by an EM algorithm.

7 (j, N (fy(1); (), 52 ()

dex.y:0) _dp(y) 1

n Z |ny(t)|BX(fy(t)) Z pn(j) —x(fy(@))

dy oy P A oy o ) X w(nge (1) AU, 62()
gl N o
+ ZA — ln;”(” Ngx(fy()); (), 62())). (57)

Algorithm 3 summarizes the training and testing algo-
rithms derived from the Tissue-based Deformable Intensity
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Model when the photometry is modeled as a nuisance para-
meter.
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Algorithm 2 Modified EM Algorithm
Starting from some initial values of the model parameters:
6 = {0, y}, iterate until convergence:

E-step: Posterior distribution
Given the current estimates of the parameters 8 = {0, y'}
compute the posterior distribution:

pi(x1z, Y pg (zy")
ZZ Py (xlz, y’)P{g/,y/}(Z) ’

Py (zlx, y) <

M-step: Maximization
Update the model parameters:

6 =argmax 0(6,y;6',y), §=argmaxinps(x|y).
g y

5.4 Initialization

The algorithm proposed in Algorithm 3 relies on the EM al-
gorithm for learning the model parameter on the one hand,
and for estimating the location of the landmarks on the other
hand. Since the result of the EM algorithm depends on the
initialization, the choice of the initialization is important to
achieve stable and reliable results. We detail below the ini-
tialization of both the learning and prediction algorithms.

5.4.1 Initialization of the Learning Algorithm

As described in Algorithm 3, the learning phase alternates
between estimating the photometric parameters of each im-
age and estimating the proportions of the tissue types at each
pixel. One needs to provide to the joint algorithm an initial
guess of the intensity parameters as well as of the propor-
tions. We use a Uniform distribution to initialize the tissue
proportions at each pixels. As for the photometric parame-
ters, we use a classical EM algorithm as proposed in Wells
et al. (1996) to individually estimate for each image a set of
photometric parameters. However, because the tissue types
are estimated independently on each image, the label of the
tissues do not need to match across images. Therefore, in or-
der to recover the correspondence between tissues, we pro-
pose to build the following similarity matrix between two
images i1 and i>, whose elements are:

S k) =) pE(s) = jlx(s)pE2(s) =klx(s)).  (58)

The probability p(z(s) = j|x(s)) are computed from the
estimated photometric parameters with the individual EM.
S(j, k) compares the probability of one pixel to belong to
the tissue type j in image i1 and to belong to the tissue type
k in image ip. If both probabilities are high the similarity

Algorithm 3 Tissue-Based Deformable Intensity Model
(Nuisance Parameters)

LEARNING

Let (x{v,yfv) be a training set, 8 = {Vj, Vi, n(j,i), az(j,i);
Vj,Vt, w(j, 1)} the set of photometric and geometric parameters.

Initialize Vj, Vi, u(j.i),02(j. i), and Vj, ¥t € A7, 7(j.1)
Iterate until convergence

e E-step: compute for all j, i, and s,
Po P (s) = jlxD(5), y)
oc gD 5): (i), 02 (G DTG f 5 (5))

e M-step:
— Update the photometric parameters, for all i and j:
s xP©)pe D (s) = jlxD (), yD)
Y po D (s) = jlxD(s), y©)

n(j,i)=

0?(j.1)
_ 2 GD6) = uG )PV s) = jlx D). y )
35 po D () = @ (), y)

— Update the template estimate, for all j and 7,

)

()oY 17 Olpe ) = jlx ), yO).
TESTING

Let x be a testing image of unknown photometric parameters
0= (u(j), az(j), 1 <j < J) and & the parameters learnt during
training,

Initialize Vj, 1(j), 02(j) and y < ¥
Iterate until convergence
e E-step: for all j and s compute,
py(a(s) = jlx(s), y) o g (); (). 2 (GNT( f 1 ().
o M-step:
— Update the photometric parameters for all j,
> s X()pga(s) = jlx(s), )
Yy pE(s) = jlx(s). y)

S D (s) = ()2 pya(s) = jlx(s). y)
Y5 Pya(s) = jlx(s), )

u(j) =

o2(j) =

)

— Compute the gradient direction % (x,y; 6) from (57).
— Determine the stepsize a such that,

80(x,y;0) =~ -
E<x,y+a%;9>zm,y;9),
y

— Update the location of the landmarks,

3e(x, yl6)

=y+
y=yta —
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increases. This similarity function relies on the assumption
that, in general, the pixels at the same locations belong to the
same tissue type. To match corresponding tissues across im-
ages, one simply needs to search the label permutation that
maximizes the sum of the diagonal term of the similarity
matrix.

When all the images come from the same modality one
can simply order the tissue types of each images by ranking
them based on their respective Gaussian mean.

5.4.2 Initialization of the Landmark Detection Algorithm

The detection algorithm also relies on an EM algorithm, al-
ternating between the estimation of the position of the land-
marks and the photometric parameters. We use the position
of the landmarks in the template as initial value for the land-
mark position. Indeed, it corresponds to assuming that the
deformation of the template to the image is the identity. As
for the photometric parameters, they are estimated by the
EM algorithm on the new image, similarly to what is done
during training. The labels used in the EM to identify the
tissue need to be matched to the tissue type of the estimated
template. To do so, we compare the probability of observing
a specific tissue type in some parts of the image to the most
probable tissue given by the template:

S* G k) =) pa(s) =klx()m(j, 5). (59)

The best correspondences between tissues are given by the
label permutation that maximizes the diagonal terms of the
similarity matrix (59).

In simple cases, it is enough to reorder the tissue types
based on their estimated Gaussian mean.

6 Experiments

In the following experiments we present some detection re-
sults on the database of 2D images containing the corpus cal-
losum that we refer to as 2D-SCC. This data set contains one
2D sagittal slice of 47 3D MR images. The position of SCC1
and SCC2 is given by an expert as described in Sect. 3.5. We
use 30 images for training and 17 images for testing. We also
present some results on the detection of SCC1 in the whole
3D volume. Since T-DIM models the intensity distribution
of each image as a nuisance parameter, there is no need to
normalize the image intensities.

Figure 7 pictures few images and the corresponding his-
tograms of 2D-SCC to illustrate the large intensity variations
encountered in the database.

We keep working with a Gaussian spline deformation
model, and present results for different values of o rang-
ing between 3 and 15 pixels. The number of tissues used
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to model the images is fixed before learning the probabilis-
tic deformable tissue template. The brain is usually modeled
with 3 major tissues: the Cerebro-Spinal Fluid (CSF), the
Gray Matter (GM) and the White Matter (WM). In some
cases it is also interesting to consider 2 additional tissue
types to model the partial volume effect which generates
pixel with mixed intensities. In our experiments the number
of tissue types will vary between 23 and 5.

6.1 Template Estimation

We use the estimation and testing algorithm described in Al-
gorithm 3. We compare the performance obtained with this
joint algorithm with that obtained with the simplified ver-
sion introduced in Izard et al. (2006). The simplified model
essentially decouples the estimation of the photometry and
the geometry in the learning and in the testing algorithms.
In terms of algorithms, it means that the intensity distribu-
tion of each image is modeled by a specific Gaussian mix-
ture, learned independently in each image using the EM al-
gorithm. This set of parameters is used to learn the tissue
template at each pixel independently. We compare the two
algorithms in terms of likelihood evolution during learning
and in terms of detection performance.

Figure 8 illustrates the evolution of the likelihood of the
training set composed of 30 images of 2D-SCC during learn-
ing. The template estimation is initialized by a Uniform dis-
tribution at each pixel, i.e. 7 (j,t) = % for all ¢t and j. The
photometric parameters are initialized with the output of a
classical EM for Gaussian mixture model estimation per-
formed on each image independently. We compare the like-
lihood evolution when using the joint optimization as de-
scribed in Algorithm 3 and the decoupled algorithm. In only
few iterations both the joint algorithm and the decoupled op-
timization converge, except that the decoupled optimization
is trapped in a local maximum of the likelihood. We use the
parameters estimated at iteration 25 with the decoupled al-
gorithm to initialize the joint algorithm. The likelihood gets
out of the local maximum and reaches the same maximum
as the joint algorithm. Figure 9 illustrates the template esti-
mated by the decoupled and joint algorithms at iteration 25.
The result of the joint optimization is sharper than the one
obtained by the decoupled algorithm. For example, in the
top right part of the template estimated by the decoupled
algorithm, there exists a region with mixed probabilities to
observe dark or bright tissue. By coupling the estimation of
the template and of the photometric parameters, the latter
are more precisely adjusted using the current estimate of the
template as prior information. In consequence, the mixed re-
gion tends to be assigned to one type of tissue by adjusting
the photometric parameters accordingly.

3We will use 2 tissue types only in the first experiments to simplify the
representation of the learnt template and of the segmentation results.
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Fig. 7 Top: 3 sagittal slices of MR images containing the corpus callosum. Bottom: Intensity histograms of the corresponding grayscale images
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Fig. 8 (Color online) Evolution of the likelihood function during
learning. The red curve represents the evolution of the likelihood by
joint optimization. The blue curve represents the likelihood evolution
when using the decoupled algorithm and finally the green curve rep-
resents the evolution of the likelihood when using the joint algorithm,

6.2 Detection Performance

We present the performance of the detection algorithm on
SCC1 and SCC2. To assess the advantage of the joint opti-
mization compared to the decoupled optimization in terms
of detection, we performed 4 experiments. In the first ex-
periment, denoted by DD, we use the decoupled algorithm
detailed in Izard et al. (2006) to perform the detection. In
the second experiment, denoted by JD, we use the joint esti-
mation to select the model parameters but perform the land-
mark detection using the decoupled algorithm. DJ refers to
the opposite experiment and finally JJ refers to the complete
coupled algorithm. The learning phase is initialized by es-
timating the intensity parameters on each image using an

25 30 35 40 45 50

Iteration

initializing with the template estimate given by the decoupled algo-
rithm presented in Izard et al. (2006). The experiment was performed
around SCC1, using 30 images for training, modeling two tissue types.
The deformation model is a Gaussian spline with o = 10

EM algorithm. Since the EM result depends on its initializa-
tion, it is itself initialized by a K-means algorithm and run
3 times. We keep the best set of parameters to initialize the
template estimation, i.e. the set of parameters that approxi-
mate the best the observed intensity histogram. We repeated
the template estimation 5 times and have obtained similar
results.

Figure 10 illustrates the cumulative distribution of the
prediction error for the experiments JJ, DD, JD and DJ.
All 4 algorithms improve significantly the localization of
the landmarks, but this is the joint method that achieves the
best performance with 50% of the landmarks detected with
less than 1 mm of error. Table 2 confirms these observations
and shows that there exists a statistically significant differ-
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Fig. 9 Estimated Templates in the case of T2-DIM (2 tissue types).
We represent the probability at each pixel to observe the brighter tissue.
White represents a probability close or equal to 1 and black represents
a probability close or equal to 0. The different shades of gray repre-

sent intermediate probabilities. The crosses shows the location of the
landmark SCCI1. Left: Template estimated by the decoupled algorithm.
Right: Template estimated by the joint algorithm

Fig. 10 (Color online) 100
Distribution of the prediction
error on the set of 17 testing
images (5 estimates per images). 80
We compare 4 algorithms
composed of a learning and N N A A N
testing phases, joint J or 2 60
decoupled D, to the initial g
distribution of the landmark g
localization error E 40
———————————— DD
o' - . JD -
20 o DJ
------------ Initial
0 | | | | | | |
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Table 2 Prediction performance of each algorithm. p-value associated
to the Wilcoxon test comparing the average of the algorithm results

Alg.  Performance (mm) Statistical Significance
1 DD JD DJ
1 1.23 (0.91) N/A
DD 1.80 (0.84) <0.0001 N/A
JD 1.79 (1.06) 0.0001 09466 N/A
DJ 1.55(0.84) 0.0007 0.1225 0.1776  N/A
Initial 3.62 (1.80) <0.0001 <0.0001 <0.0001 <0.0001

ence between JJ and the other algorithms (using a Wilcoxon
test). The detection results suggest that there is a significant
improvement by working with a unified model rather than
proceeding sequentially.

6.3 Combining Registration and Segmentation

Although the main purpose of T-DIM in our application is
to locate landmarks by learning and locating characteristic
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Prediction Error (mm)

patterns in the image, the algorithm also provides us indi-
rectly with a segmentation of the image. The image segmen-
tation is obtained by assigning each pixel to the tissue with
the highest likelihood. The template serves as prior informa-
tion. Locating the landmarks in a new image is equivalent to
finding the best deformation from the template to the image
assessing the adequacy of the image segmentation to the de-
formed tissue template. Figure 11 illustrates on two testing
images how the segmentation serves as a cue for the estima-
tion of the landmark location. At first, there is a mismatch
between the template and the image segmentation because
the template is not well registered with the image. Since the
template is used as prior, it produces a poor segmentation of
the tip of the corpus callosum. By deforming the template
in a way that the segmentation mismatch is minimized, the
landmark is brought to the appropriate location in the image.

6.4 Choice of the Parameters

The T-DIM model requires to set by hand two parameters:
J the number of tissue types and o the standard deviation of
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Fig. 11 Combining Registration and Segmentation. Each line repre-
sents an image of the training set. The leftmost image depicts the orig-
inal grayscale image and the position of the landmark given by the
expert. The middle column represents the initialization of the optimiza-
tion algorithm. Notice how the segmentation does not corresponds well
with the leftmost image. This mismatch will be corrected by deforming
during the template grid during the optimization. The cross represents

the Gaussian kernel used to model the image deformation.
By increasing the number of tissue types, on the one hand it
is expected that the precision of the learnt model increases,
but on the other hand the number of parameters increases.
The size of the Gaussian kernel standard deviation is related
to the support of the deformation. If o is small the tissue
pattern used for detection is small too. But if ¢ increases,
so does the size of the tissue pattern. It is expected that the
specificity of the detection increases with the kernel width.
We already observed this phenomenon in the experiments
presented in Sect. 3.5.

We test the algorithm on the detection of SCC1 and
SCC2, with J varying between 2 and 5 and with o vary-
ing between 3 and 15 pixels. Similarly to the preceding ex-
periments, the detection is performed 5 times for each im-
age with random initialization. The lowest error for SCC1
is 1.26 mm (0.85 mm) with J = 5,0 =7 and for SCC2,
1.04 mm (0.58 mm) with J =5, 0 = 5. These numerical re-
sults are comparable to the performance obtained with DIM,
cf. Table 1. Recall that T-DIM contrarily to DIM, does not
require any intensity normalization. Figure 12(a) represents
the cumulative distribution of the prediction error for differ-
ent values of the parameters in the case of SCC1. Similar re-
sults were obtained for SCC2. We conclude from this exper-
iment that in the case of SCC, the precision increases when
the number of tissues in the model increases. The optimal
choice of the kernel is related to the amount and the speci-
ficity of the information contained around the landmark.

A
2N

the expert location and the x the tentative location of the landmarks.
In the rightmost column, the segmentation is obtained using the esti-
mated deformation to register the template to the image, and using the
optimized photometric parameters. The changes are mostly noticeable
in the region of the landmark. The x represents the predicted location
of the landmark, the cross shows the location marked by the expert

We repeat the experience on 3D-SCC for the detection of
SCCI. (Since SCC2 is defined in 2D only, we did not use
it in this experiment.) The number of tissues varies from 2
to 5 and the Gaussian kernel parameter from 5 to 10. The
experiment is repeated 5 times on each image of the train-
ing set. In order to reduce the computational load, in this
experiment we compute the likelihood variations using a
neighborhood of the landmark of diameter equal to o. The
best performance is achieved for J/ =5 and o = 7. The pre-
diction error is in average 1.48 mm with a standard devia-
tion of 0.82 mm. Before detection the localization error was
3.66 mm (1.69 mm). Figure 12(b) represents the cumulative
distribution of the error.

6.5 Performance Evaluation

When assessing the performance of the algorithm in terms
of anatomical landmark detection, one needs to keep in mind
that the localization of the landmarks, even when located by
an expert, is not perfect. To assess the repeatability of the
specialist at positioning the landmarks in the anatomy, we
asked him several weeks apart to locate again the landmarks
in the same images. For SCC1, the average localization er-
ror is 0.7 mm with 0.6 mm of standard deviation. Recall that
the image resolution is 1 mm?>. The average error for HoH
is higher: 1.2 mm with 0.9 mm of standard deviation. Be-
cause we use a probabilistic model to represent the geomet-
rical pattern around the landmarks, and learn it from training

@ Springer



210

Int J Comput Vis (2010) 88: 189-213

100 100
90} 901
80| 80F
70l e 70t
< 60t ® 60t
S >
g sof £ 50f
5 2
g 40k S 40 T5-DIM3
! T2-DIM7 , —— T5-DIM5
30 g T3-DIM7 30 i e T5-DIM7 ||
P 4
” ” T4-DIM7 20 N = T5-DIM1Q. |
S T5-DIM7 T5-DIM13
10 . = [pitial 10 == nitial
0 i i i 0 : . ‘
0 1 2 3 4 0 1 2 3 4 5

Prediction Error (mm) Prediction Error (mm)

(a) Distribution of the prediction error of SCC1 in 2D

100 100

90 [ 90 L

80 [ 80 .

70+ 70k
g 60 g 60}
Q Q
g g
£ sof £ sof
Q Q
© ©
& 4o} & 4of

30 3ok

) —T2_DIM7
20 USSP g — T3-DIM7|] 201 USSR —T5-DIM5 ||
K4 ——T4-DIM7 o ——T5-DIM7
10 ——T5-DIM7|] 10 ——T5-DIM10[]
----- Initial == |nitial
o ‘ ‘ : 0 ‘ ‘ ‘
0 1 2 3 4 5 () 1 2 3 4 5

Prediction Error (mm)

Prediction Error (mm)
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Fig. 12 (Color online) We use the notation T5-DIM7 for example
to refer to the T-DIM algorithm with J/ =5 and o = 7. Initial in all
the graphs represents the distribution of the error before detecting the

examples, we expect that the initial localization error is av-
eraged out at the time of learning. As for the evaluation of
the algorithm performance, we compare the average detec-
tion performance of the algorithm with the performance of
a trained expert.

6.5.1 Qualitative Assessment
In order to assess the quality of the detection, we present in

Fig. 13 the “average” images obtained before registration,
when the registration is performed using the automatic land-
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landmarks. Left: Error distribution when the number of tissues varies.
Right: Error distribution when the standard deviation of the kernel
varies

marks and when the registration is based on the landmarks
located manually. We use the same model for registration
and for prediction, i.e. the Gaussian spline deformation with
o = 7. If the images are well registered the corresponding
structures should coincide and therefore the average image
should be sharp. We observe that the average images ob-
tained using the automatic landmarks and the manual land-
marks are similar. This shows that the precision of the detec-
tion around the corpus callosum is adequate for registering
images based on the automatically detected landmarks.
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(a) Before Registration

Fig. 13 Testing Image Registration. Each subfigure represents the
pixel-by-pixel intensity average of the 17 testing images. The crosses
represent the landmark locations y. Subfigure (a) is computed be-
fore detecting the landmarks, i.e. the images have only been globally
aligned to Talairach’s atlas. Before computing the average image de-

Table 3 Prediction performance for each algorithm. “+ Norm” means
that the image intensities were normalized before running the algo-
rithm, “+ Flip” means that the intensity of the testing images have
been modified as described in Sect. 6.5.2

Performance (mm)

(b) Automatic Registration

(c) Expert Registration

picted in Subfigures (b) and (c), the images were registered to the
template based on the landmark correspondences, using a Gaussian
spline deformation (o = 7). In (b) the correspondences are set using
the automatic landmarks while in (¢) we use the manual landmarks

N

sccl scc2
DIM + Norm. 1.14 (0.88) 1.23 (0.86)
SSD + Norm. 1.61 (0.83) 1.23 (0.71)
DIM 1.95 (1.74) 1.77 (1.12)
SSD 1.88 (1.64) 1.76 (1.25)
T-DIM 1.31 (0.85) 1.26 (0.72)
T-DIM -+ Flip 1.23 (0.86) 1.33 (0.85)
Tnitial 3.62 (1.80) 2.80 (1.14)
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6.5.2 Robustness to Intensity Variations

Table 3 summarizes the performance of SSD, DIM and T-
DIM for the detection SCC1 and SCC2. Both DIM and
SSD lack robustness to intensity variation. In contrast, T-
DIM achieves the same performance as DIM + Norm., but
without normalizing the image intensities. Therefore T-DIM
has the potential to be applicable to images from different
modalities. To further evaluate the robustness of T-DIM to
the change of intensity range, we create a synthetic data
set from the testing images. We modify the image intensity
such that the pixels belonging to the white matter appear at
low intensity and the pixels belonging to the CSF appear
with high intensity. Using the same training set, we learn
the model parameters and use the learnt model to predict the
location of the landmarks in the synthetic testing set. The
results for TS-DIM7 are given in Table 3. Using a paired
test, we found no significant differences between the perfor-
mance on the original testing set and the synthetic testing
set, wheno =5,7or 10 and J =2, 3,4 or 5.

Fig. 14 Prediction performance. x-axis: error before landmark detec-
tion, y-axis: residual error after landmark detection. The dashed line
represents y = x. Each symbol corresponds to the detection of SCC1
or SCC2 in one of the 17 testing images

6.5.3 Robustness to Deformations

Different measures, e.g., in Schmid et al. (2000), Hartkens
et al. (1999), have been proposed to assess the quality of
matching algorithms. For example one measures the re-
peatability of the detection when the image undergoes differ-
ent types of transformations and/or deformations. Because
we used a simple deformation model, we do not expect the
resulting algorithm to be robust to large rotations, or changes
of scale. Nevertheless, it is possible to look at the predic-
tion performance as a function of the distance between Yy,
the origin of the gradient descent, and y* the actual loca-
tion of the landmarks. Figure 14 is a scatter plot with the
prediction error on the y-axis and the initialization error on
the x-axis. Each cross or circle represents the detection of
SCCI or SCC2 in one of the testing images. A vast major-
ity of the detection results are below y = x illustrating the
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reduction of the localization error. This plot allows us to de-
termine that, as expected, the prediction of the location of
landmarks is more accurate if the initialization is close from
the actual landmark location.

It would be possible to improve the robustness of the
detection algorithm to affine registration by changing the
spline model to the Thin Plate Spline or any other kernels
containing an affine component. In both cases though, one
needs to reduce the domain of computation as the support of
the deformation is infinite.

7 Conclusion

We have illustrated how by building generative models and
applying classical statistical learning techniques, it is possi-
ble to learn a model from training data and derive an optimal
matching algorithm from the learnt model. In the particular
case of landmark detection, the method allows us to learn
the distinctive intensity pattern automatically by training the
model using annotated images, without any prior informa-
tion on the type of landmarks. It easily adapts to the simul-
taneous detection of one or more landmarks.

Although the method has been illustrated on MR images,
it can be extended to other image modalities and more in-
terestingly to non-scalar image modalities. In the latter case,
one may need to build statistical models on non-Euclidean
spaces in order to model the likelihood of an image. It is also
necessary to understand how deformations act on this type
of images.

Finally, in this paper we focus on the problem of land-
mark detection, which is equivalent to a registration problem
with a small number of control points. If the number of con-
trol points increases so that the whole image support can be
deformed, the proposed methods can be used to derive regis-
tration, segmentation or even joint segmentation-registration
algorithms.
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Abstract

We consider a sequence of three models for skin detection built from a large col-
lection of labeled images. Each model is a maximum entropy model with respect
to constraints concerning marginal distributions. Our models are nested. The first
model, called the baseline model is well known from practitioners. Pixels are con-
sidered independent. Performance, measured by the ROC curve on the Compaq
Database is impressive for such a simple model. However, single image examina-
tion reveals very irregular results. The second model is a Hidden Markov Model
which includes constraints that force smoothness of the solution. The ROC curve
obtained shows better performance than the baseline model. Finally, color gradient
is included. Thanks to Bethe tree approximation, we obtain a simple analytical ex-
pression for the coefficients of the associated maximum entropy model. Performance,
compared with previous model is once more improved.

Key words: maximum entropy models, skin detection, Markov random field.

1 Introduction

Skin detection consists in detecting human skin pixels from an image. The
system output is a binary image defined on the same pixel grid as the input
image.

* This work was partially supported by European Community TAP 2117/27572-
POESIA www.poesia-filter.org

I Bruno Jedynak is within the Laboratoire de Mathématiques Paul Painlevé, USTL,
Bat M2, Cité scientifique, 59655 Villeneuve d’Ascq, France. He is currently Visiting
Associate Professor at the Center for Imaging Science, The Johns Hopkins Univesity.

Email: bruno. jedynak@jhu.edu

2 Huicheng Zheng and Mohamed Daoudi are within MIIRE Group, INT/LIFL
(CNRS UMR 8022), Rue G. Marconi, Cité scientifique, 59655 Villeneuve d’Ascq,
France.

Email: (Zheng,Daoudi)@enic.fr

Preprint submitted to Elsevier Science 20 May 2005



Skin detection plays an important role in various applications such as face
detection [1], searching and filtering image content on the web [2][3]. Research
has been performed on the detection of human skin pixels in color images
and on the discrimination between skin pixels and “non-skin” pixels by use of
various statistical color models. Some researchers have used skin color models
such as Gaussian, Gaussian mixture or histograms [4] [5]. In most experiments,
skin pixels are acquired from a limited number of people under a limited range
of lighting conditions.

Unfortunately, the illumination conditions are often unknown in an arbitrary
image, so the variation in skin colors is much less constrained in practice. This
is particularly true for web images captured under a wide variety of conditions.
However, given a large collection of labeled training pixels including all human
skin (Caucasians, Africans, Asians) we can still model the distribution of skin
and non-skin colors in the color space. Recently, in [6], the authors proposed to
estimate the distribution of skin and non-skin color using labeled training data.
The comparison of histogram models and Gaussian mixture density models
estimated with EM algorithm was analyzed for the standard 24-bit RGB color
space. The histogram models were found to be slightly superior to Gaussian
mixture models in terms of skin pixel classification performance.

A skin detection system is never perfect and different users use different cri-
teria for evaluation. General appearance of the skin-zones detected, or other
global criteria might be important for further processing. For quantitative
evaluation, we will use false positive rate and detection rate. False positive
rate is the proportion of non-skin pixels classified as skin and detection rate is
the proportion of skin pixels classified as skin. The user might wish to combine
these two indicators his own way depending on the kind of error he is more
willing to afford. Hence we propose a system where the output is not binary
but a floating number between zero and one, the larger the value, the larger
the belief for a skin pixel. The user can then apply a threshold to obtain a
binary image. Error rates for all possible thresholding are summarized in the
Receiver Operating Characteristic (ROC) curve.

We have in our hands the Compaq Database [6]. It is a catalog of almost
twenty thousand images. Each of them is manually segmented such that the
skin pixels are labeled. Our goal in this paper is to explore different ways in
which this set of data can be used to perform skin detection on new images.
We will use Markov random field approach [7] [8] combined with Maximum
Entropy Modeling [9] [10], referred to as MaxEnt.

Maximum Entropy Modeling (MaxEnt) is a method for inferring models from
a data set. See [9] for the underlying philosophy. It works as follows: 1) choose
relevant features 2) compute their histograms on the training set 3) write down
the maximum entropy model within the ones that have the feature histograms



as observed on the training set 4) estimate the parameters of the model 5)
use the model for classification. This plan has been successfully completed
for several tasks related to speech recognition and language processing. When
working with images, the graph underlying the model is the pixel lattice. It
has many nodes and many loops. Task 4) is much more difficult. A break
through appeared with the work in [11] on texture simulation where 1) 2) 3)
4) was performed for images and 5) replaced by simulation.

We adapt this methodology to skin detection as follows: in 1) we specialize in
colors and skinness for one pixel and two adjacent pixels. In 2) we compute
the histogram of these features in the Compaq manually segmented database.
Models for 3) are then easily obtained. In 4) we use the Beth tree approx-
imation, see [12]. It consists in approximating locally the pixel lattice by a
tree. The parameters of the MaxEnt models are then expressed analytically
as functions of the histograms of the features. This is a particularity of our
features. In 5) we use the Gibbs sampler algorithm for inferring the probability
for skin at each pixel location.

We consider a sequence of three maximum entropy models with respect to
various constraints concerning marginal distributions. The first model imposes
constraints on one-pixel marginals. The solution is a baseline model in which
pixels are considered independent. This model is well known from practition-
ers[6]. The baseline model is certainly too loose and does not take into account
the fact that skin zones are not purely random but are made of large regions
with regular shapes. Hence, in the second model, we add constraints on the dis-
tribution of neighboring labels in order to smooth the solution. Finally, color
gradient is included in building the third model. We hope that the changes in
neighboring colors will help discriminate skin pixels from non-skin ones.

The rest of this paper is organized as follows: After setting up the notations in
section 2, we present in section 3 the baseline model. In section 4, we present
the second model, which is a hidden Markov Random Field model. A novel
method for parameter estimation is explored. In section 5, we examine the
third model which takes into account the color gradient. Finally, in Section 7
we present concluding remarks.

2 Notations

Let us fix the notations. The set of pixels of an image is S. The color of a
pixel s € S is x,. It is a 3 dimensional vector, each component being usually
coded on one octet. We notate C' = {0, ...,255}3. The ”skinness” of a pixel s,
is y; with y, = 1 if s is a skin pixel and y; = 0 if not. The color image, which
is the vector of color pixels, is  and the binary image made up of the y,’s is



notated y. The letter “p” will denote “probability of”. The actual probability
measure will depend upon context.

Let us assume for a moment that we knew the joint probability distribution
p(z,y) of the vector (z,y), then Bayesian analysis tells us that, whatever cost
function the user might think of, all that is needed is the posterior distribution
p(y|z). From the user’s point of view, the useful information is contained in
the one pixel marginal of the posterior, that is, for each pixel, the quantity
p(ys = 1|z), quantifying the belief for skinness at pixel s given the full color
image.

In practice the model p(z, y) is unknown. Instead, we have the Compaq Database.
It is a collection of samples

(@D, 50), ..., @,y ™))

where for each 1 < i < n = 18,696, @ is a color image and 3 is the associ-
ated binary skinness image. We assume that the samples are independent of
each other with distribution p(z, y). The collection of samples is referred later
as the training data. Probabilities are estimated by using classical empirical
estimators and are denoted with the letter g.

In what follows, we build models for the joint probability distribution of color
and skinness image using maximum entropy modeling.

3 Baseline Model

3.1 Defining the model

First, we build a model that respects the one pixel marginal observed in the
Compaq Database. That is, consider the set of probability distributions p(z, y)
that verify:

Co: Vs € SV, € C,Vy, € {0,1}, (s, ys) = q(xs, ys) (1)

In (1), the quantity on the right side of the equal sign is the proportion of
pixels with color z, and label y, in the training data. The MaxEnt solution
under Cy is the independent model:

p(z,y) = H q(zs,Ys) (2)

sES



The proof is postponed to Appendix A. Using Bayes formula, one then obtains:

pylz) = IT a(ys|zs) (3)

SES

We call the model in (3) the baseline model. It is the most commonly used
model in the literature [4] [5].

4 Hidden Markov Model
4.1 Defining the model

The baseline model is certainly too loose and one might hope to get better
detection results by constraining it to a model that takes into account the
fact that skin zones are not purely random but are made of large regions with
regular shapes. Hence, we fix the marginals of y for all the neighboring pixels
couples. We use 4-neighbor system for simplicity in all that follows. For 2
neighboring pixels s and ¢, the expected proportion of times that we observe
(ys = a,y; = b) should be ¢(a,b) for a = 0,1 and b = 0,1, the corresponding
quantities measured on the training set. We assume that the model is isotropic,
aggregating the cases where s and ¢ are in vertical position to the cases where
s and t are in horizontal position. Hence let us define the following constraints:

where < s,t > defines a couple of neighbor pixels.

The MaxEnt model under Cy N D is then the following Gibbs distribution:

p(z,y) ~ [ a(zs|ys) expl D (ao(1 — ys) (1 — y¢) + a1ysy:)] (5)

SES <s,t>

Here and thereafter, the sign ~ means equality up to a function that might
depend on x but not on y. ag et a; are constant that must be set up such that
the constraints are satisfied. The proof is in Appendix A. From (5) one then
obtains the following model:

y|x H q x5|y5 (6)
with 1
p(y) = Z(ao.a1) exp| Zt (ao(1 — ys) (1 — ye) + a1ysy:)] (7)



where Z(ag, a1) is a normalization function also known in statistical mechanics
as the partition function:

Z(ag,a1) = > _{exp[ _ (ao(1 = ys)(1 = 1) + arysye)l} (8)

Y <s,t>

The model in equation (7) is known as a special case of a Potts model, see
[7] and [13]. It is a Hidden Markov Model (HMM) if we consider y to be
the hidden layer. This model is also simply referred to as a Markov Model
elsewhere.

4.2 Parameter estimation

Parameter estimation in the context of MaxFEnt is still an active research
subject, especially in situations where even the likelihood function cannot be
computed for a given value of the parameters. This is the case here since
the partition function cannot be evaluated even for very small size images.
One line of research consists in approximating the model in order to obtain
a formula where the partition function no longer appears: Pseudo-likelihood
[14] [15], mean field methods [16] [17], as well as Bethe Trees models [12] are
among them. Another possibility is to use stochastic gradient as in [18]. Here
we explore a related method based on the concept of Julesz ensembles defined
in [19]. We learn from this work that one can sample an image from the model
defined in (7) without knowing the parameters ay and a;. This is true only
in the asymptotic case of an infinite image but we will apply the result for a
large image, say 512x512 pixels. In a second step, we use this sample image in
order to estimate the parameters ay and a;. This is done using the quantity
p(ys = 1|y(s)) which is the probability to observe the label 1 at pixel s given
all the other values y;, for t € S and ¢ # s. For the model in (7), this quantity
can be easily analytically computed as

P(Ys = 1ly(s)) = ¢((a1 + ao)ns(1) — 4ao) 9)

where ¢(z) = (1 + e %)~! is the sigmoid (also known as logistic) function
and n,(1) is the number of neighbors of s that take the label 1. This sum
can take only five different values. For each one, the quantity p(y, = 1|y())
can be estimated from the sample image, leading to five linearly independent,
equations from which parameters ag and a; can be estimated. Now, returning
to how to obtain a sample from the model in (7). The key idea which originated
in statistical physics [20], is that the MaxEnt model we are looking for is, in
an appropriate asymptotic meaning, the uniform distribution over the set of
images that respect the constraints D. Now, in the absence of phase transition,
sampling from this set can be achieved numerically using simulated annealing,
see [21].



database values | image values

Pr(Y,=0,Y, = 0) 0.828 0.827991
Pr(Y,=1,Y,=1) 0.159 0.151646

Fig. 1. Top: a sample image from the prior distribution used in the Hidden Markov
Model. Bottom: probabilities estimated from the training set and from the image
on the top.

Figure 1 shows a 512 x 512 sample of the prior model defined in equation
(7). One can qualitatively appreciate how well it models skin regions. No-
tice that vertical and horizontal borders are preferred. This is a bias of the
neighborhood system. Choosing 8 neighbors could improve it at the expense
of computational load. The quantities Pr(Y; = ys, Y; = y;), for neighboring
pixels s and ¢ are presented in Figure 1, first, as estimated from the training
set, and secondly, as estimated from the image in the same Figure. The con-
straints are nearly respected. Parameter estimation from the image in Figure
1 leads to the numerical values: ay = 3.76 and a; = 3.94.

5 First Order Model

5.1 Defining the model

The baseline model was built in order to mimic the one pixel marginal of the
joint distribution of color and skinness as observed on the database. Then,
in building the HMM model we added constraints on the prior skinness dis-
tribution in order to smooth the model. Now, we constrain once more the
MaxEnt model by imposing the two-pixel marginal that is p(xs, x4, ys, ¥;), for
4-neighbor s and ¢, to match those observed in the training data. Hence we
define the following constraints:

Cr:V<s,t>e 8 xS Vo € CVay € C,Vy, € {0,1},Vy; € {0,1}, (10)

p(xsa Tty Ys, yt) = q(-Ts, Tty Ys, yt)



The quantity q(zs, 2, ys, y¢) is the expected proportion of times we observe
the values (zs, x4, ys, y:) for a couple of neighboring pixels, regardless of the
orientation of the pixels s and ¢ in the training set.

Clearly, C; C (Co N D) C Cy. The solution to the MaxEnt problem under C; is
then, see Appendix A, the following Gibbs distribution:

p(z,y) ~ exp| Z Mzs, T4, Ys, )] (11)

<s,t>

where A(s,t, x5, 1, ys, y;) are parameters that should be set up to satisfy the
constraints. From (11), one gets

p(ylz) = exp[ Y A(s,t, x5, T1, Ys, Ur)] (12)
<s,t>

Assuming that one color can take 256° values, the total number of parameters
is 2563 x 2563 x 2x 2. The previously mentioned parameter estimation methods
clearly do not apply. In [12], the authors present a tree approximation to the
pixel grid, called “Bethe tree”, after the physicist H.A. Bethe who used trees in
statistical mechanics problems. Bethe trees permit us to compute analytically
an approximation of the parameters in the model (11) and consequently in
(12) as we shall see now.

5.2 Parameter estimation and Bethe Tree Approximation

Bethe tree have been introduced in computer vision as a way of approximating
estimators in Markov Random Field models in [12]. We shall revisit this work
in connection with maximum entropy models. The key idea is to provide a tree
that approximates locally the pixel lattice. More precisely, for each pixel s, we
consider a sequence of trees 7](5), 7;(5), ... of increasing depth. The construction
is as follows: the root node of the tree is associated with s. For each neighbor
t of s in the pixel-graph, a child node indexed by t is added to the root
node. This defines 7'1(5). Subsequently, for each u, neighbor of a neighbor of s,
(excluding s itself), a grandchild node indexed by u is added to the appropriate
child node. This defines 7;*), and so on, see [12] for a detailed account. An
important remark is that a single pixel might lead to several different nodes in
the tree! For example 7;(3) is built with s, the neighbors of s and the neighbors
of these. Using 4-neighbors, and assuming that s is not in the border of the
image, this makes up 13 pixels, but the associated tree has 17 nodes, 4 pixels
being replicated twice each, see Figure 2.



Fig. 2. Left: a Bethe tree of depth 1 rooted at s. Right: a Bethe tree of depth 2
rooted at s.

Let us consider the following model

x,y) ~ exp H(x;y) with
p(z,y) p H(z;y) (13)

H(z;y) = Yy logq(s, 2, ys, yr) — (n(s) — 1) X,z log (s, ys)

where n(s) is the number of neighbors of s and § is the set of interior pixels
of S, that is the ones that have exactly four neighbors. First, remark that the
model in (13) is a special case of model in (11). Second, under the Beth tree
approximation, with arbitrarily finite depth, the model in (13) satisfies the
constraints. Indeed, this is a particular case of a more general result, see [22],
saying that any pairwise MRF defined on a tree graph can be written as a
function of it’s marginal distributions as in (13). We can then conclude that
under the Bethe Tree approximation, (13) is the MaxEnt solution for C; .

Now, let us see how in practice one can use the model in (13). As for the
HMM model, we fall back on the Markov Chain Monte Carlo algorithm. This
requires to compute the conditional distribution of a label y; given all the
other labels and the image of the colors z. For s € S , We obtain

p(ys = 1|y(s), 2) = ¢(U(z;y)) with

q(ys=1,ys|2s,2¢) q(ys=1|zs)

(14)
Ulz;y) = Ltev(s) 198 (g mognionay — (7(5) — Dlog gai=5iz

6 Experiments

All experiments are made using the following protocol. The Compaq database
contains about 18,696 photographs. It is split into two almost equal parts
randomly. The first part, containing nearly 2 billion pixels is used as training
data while the other one, the test set, is left aside for ROC curve computation.



6.1 FEzxperiments Baseline model

Each term of the product on the right side of (3) can be computed using
probabilities estimated on the training data as follows using Bayes formula:

Q(uslzs) = ﬁqmws)q(ys) (15)

S
with

q(z,) = Z_Oq(xslys)q(ys)

Evaluation of the quantities in (15) is based on two 3-dimension histograms,
q(zs|lys = 1) and g(zs|ys = 0) describing the one pixel color skin regions and
non-skin regions respectively. Several authors have tried to get a parametric
expression for these histograms as a mixture of Gaussian distribution [6] [1].
Our experience is that the Compaq Database is large enough so that crude
histograms made with 512 color value per bin uniformly distributed do not
over-fit. Each histogram is then made of 323 bins. The ROC curve for this
model is presented in Figure 3. Experiments for this model, as well as for
the other ones were made using the following protocol. The Compaq database
contains about 18,696 photographs. It was split into two almost equal parts
randomly. The first part, containing nearly two billion pixels was used as
training data while the other one, the test set, was let aside for ROC curve
computation. In Figure 4, first column displays test images. The second col-
umn displays grey level images. The grey-level is proportional to the quantity
p(ys = 1|z) evaluated with the Baseline model. On the top image, skin pix-
els are not detected, especially on the neck of the rightmost person. On the
bottom image, we notice many false positives. Figure 3 shows ROC curves
computed from 100 images (around 10 millions pixels), randomly extracted
from the test set. The Baseline model (with crosses) permit to detect more
than 80% of the skin pixels with less than 10% of false positive rate.

6.2 FExperiments HMM

For a new image z, skin detection requires to compute for each pixel the
quantity p(ys|z). We use Markov Chain Monte Carlo. We generate, using the
Gibbs sampler algorithm [7], a sequence of label images



Algorithm 1. Markov Chain Monte Carlo algorithm
u<<=0
randomly initialize the binary image y!
for j=1ton—1do
y<=y
for all s € S do
if p(ys = 1|ys), =) > 0.5 then

=1
else
1=
end if
end for
if 7+ 1> ny then
u<u+ gyt
end if
end for

u<=u/(n—ng)

with stationary distribution (6). Then, we estimate the quantity p(ys|z) by

the empirical mean
1

n .
>4
=10 j—not1
The Monte Carlo algorithm used in our experiments is presented in detail in
Algorithm 1. Note that u and y are matrices defined on the pixel lattice S and

pys = 1y, z) = % = ¢(U(z;y)) with "

U(z;y) = Tiev(s) (@19: — ao(l — 1)) + log LE=p)
where ¢ is the logistic function and V(s) are the neighbors of s. The algorithm
is consistent in the sense that as n — +o00,Vs € S, us — p(ys = 1|z), see [7].

Our working parameters are nyp = 1 and n = 100. Three output images are
presented in Figure 4. It compares favorably with the Baseline model. The skin
zones detected with the baseline model are generally blended with background
false alarms in complex images. The HMM outputs are cleaner with real skin
zones emphasized. There is obvious misclassification of non-skin pixels as skin
pixels on the dog of the third image for both models. The ROC curve in Figure
3 indicates an increase close to 2% in detection rate for the same false positive
rate as the Baseline model. For example, setting 10% of false positive rate,
the Baseline model permits to detect 81% of skin pixels in average, while the
HMM permits to detect 83% in average. We show now that this is significative.
The test set is made of 100 images disjoint from the training set. This amounts
to about 107 pixels, out of which about 6% are labelled as skin. These 6 x 103
pixels cannot be considered as independent since the color values of the images

11



are correlated at small distance. Hence, we choose one out of ten of these pixels
leading to a sample size of 6 x 10*. The standard deviation around the Baseline
value is then y/0.81(1 — 0.81) x (v/6 x 10%)~! < 2 x 1073, The hypothesis that
the proportion of 83% was due to random fluctuations is then rejected with a
p-value close to 0.

The running time of Algorithm 1 is as follows: there are n — 1 loops over the
image. During each loop, for each pixel, the conditional probability in (16) is
evaluated once. The logarithmic operation as well as the logistic function can
be tabulated. The labels of the four neighbors as well the color value have to
be read from the current image. All these lead to 7 access to look-up tables
and 4 additions. Hence the complexity of the algorithm is about 11 x 100 x | S|
operations for an image made of |S| pixels.

6.3 FEzxperiments FOM

Now let us see how each term in (14) can be evaluated. First,

qys = Uzs) _ glaslys = 1) glys = 1)
a(ys =0lzs)  q(zslys = 0) q(ys = 0)

(17)

and the quantities on the right side of (17) are easily obtained from the
database as before. Second,

Q(ys = Lydlws, 2e) _ q(@s, zelys = 1,4) q(ys = 1, 1)
q(ys = 0, ys|ws, 2)  q(ms, 2elys = 0,9) q(ys = 0, y1)

(18)

Now the quantities on the right side of (18) involving the color values can-
not be directly extracted from the database without drastic over-fitting since
the histogram involved have a support of dimension six. Hence some kind of
dimension reduction is needed.

One natural solution is to assume conditional independence, that is

Q@5 mlys = 1,y0) _ q(@slys =1) (19)
Q(xé’: $t|y5 = 07 yt) q($$|y5 = 0)

The obtained model is then a HMM model, as in equation (6). Hence, Bethe
tree method gives another way to estimate parameters ay and a;. Obtained
values are ag = 3.94 and a; = 4, which are close to the values obtained in
section 4. The performances obtained with these values are not distinguishable
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to the ones obtained previously, which give some indication of the robustness
of the model.

A more promising dimension reduction procedure is the following approxima-
tion:

Q(xsa xt|ysa yt) ~ q(xs‘ys)Q(mt - xs|ysa yt) (20)
That is, we assume that the color gradient at s, measured by the quantity
Ty — Ts, 18, given the labels at s and ¢, independent of the actual color z;.
Evaluation of the right side of the sign ~ requires to compute 6 histograms
with a support of dimension 3 only. We use 323 bins of 512 colors each. Then
we have:

Ue:) = Treves 108 G Snje - hecnimitensn

_ _ a(zslys=1)q(ys=1)

(n(s) —1)log q(zs]ys=0)q(ys=0) (21)
_ 9@t —Ts|ys=1,9¢)q(ys=1,yt) 2zslys=1)
— EtEV(S) log q($: —$s|ys:Oyyi)q(ys:05y:) + Og Q(zs|yS:0)

_ _ a(ys=1)
(n(s) —1)log q(ys=0)

Experiments with this model are presented in Figures 3 and 4. The setup
is the same as for the HMM. In Figure 4, one can visually appreciate the
improvement in localization of the skin zones compared to the HMM. The
detected skin regions are more precise. It is easier to recognize the shapes of
the faces and hands than with the HMM results. The mouth of the right hand
character in the first image is not detected as skin, as well as the eyes in the
second image or the mustache in the third image.

Bulk results in the ROC curve of Figure 3 show an improvement of perfor-
mance of around 1%. At 10% of false positive rate, the HMM permits to
detect around 83% of skin pixels and the First Order Model around 84%. This
is evaluated in the same setting as described in Section 6.2. In particular, the
number of independent skin pixels is around 6 x 10%. The standard deviation

around the HMM value is then 1/0.83(1 — 0.83) x (v/6 x 10*)™* < 2 x 1072,

The hypothesis that the proportion of 84% was due to random fluctuations is
then rejected with a p-value close to 0.

Another to compare classification algorithms over multiple thresholding values
is to compute the area under the roc curve (AUC). Using [.04;.11] for integra-
tion interval, the normalized AUC, that is, the AUC divided by the length of
the interval of integration is .79 for the baseline model, .81 for HMM and .82
for FOM confirming the results obtained above for a single false positive rate.

The running time for the FOM can be evaluated in the same way as HMM.
The only difference is the operations involved in the U(z;y) function in (21).
As for the HMM, the logarithmic operation as well as the logistic function can

13
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Fig. 3. Receiver Operating Characteristics (ROC) curve for each model. x-axis is
the false positive rate, y-axis is the detection rate. Baseline model is shown with
crosses, HMM model with triangles, while the First Order Model is shown with

squares.

be tabulated. The values of the current pixel and its four neighbors have to be
read from the current image. All these lead for an image to about 15 access
to look-up tables and 30 additions/subtractions and 1 multiplication. Hence
the complexity of the algorithm is about 46 x 100 x |S| operations which is
about 4 times the running time of the HMM. As an example, using a PC with
a Pentium 4 processor at 1.7 Ghz and 256 MB memory, the processing time
for a 100 x 100 pixels image is .008 seconds for the baseline model, 1.3 seconds
for the HMM and 2.3 seconds for the FOM.

7 Conclusions

We have considered a sequence of three models for skin detection built from
a large collection of labeled images. For a given color image, such a model
puts weight on binary images defined on the same pixel grid. Each model is a
maximum entropy model with respect to constraints. These constraints con-
cern marginal distributions. Our models are nested. The first model, called the
baseline model is well known from practitioners. Pixels are considered as inde-
pendent. Performance, measured by the ROC curve on the Compaq database
is impressive for such a simple model. However, single image examination re-
veals very irregular results. The second model is a Hidden Markov Model. It
includes constraints that force smoothness of the solution. The ROC curve

14



Fig. 4. First column: original color images. The image on top is 225 x 180 pixels
. The image on the bottom is 541 x 361 pixels. Second column: Baseline model.
Third column: hidden Markov model. Fourth column: First Order Model. In
the computed images, the grey level is proportional to the skin probability evaluated
with the specified model.

obtained shows an increase in detection rate from 81% to 83% for the same
false positive rate of 10%. Finally, color gradient is included in the set of con-
straints. Thanks to Bethe tree approximation, we obtain a simple analytical
expression for the coefficients of the associated MaxEnt model. The resulting
detection rate increases to 84%. The same qualitative behavior is observed
when comparing the area under the ROC curve.

For many applications involving skin detection as an intermediate stage, pro-
cessing time is of major importance. In future work we plan to replace the
stochastic sampling algorithm by a deterministic scheme as Mean Field method
[16] or Belief Propagation [23] method in order to meet the required time con-
straints.

Detailed examination of the pictures reveals that the discussed models are
still far from reaching human performances. For example, the left arm of the
right-most person in the first image of Figure 4 is visible in the baseline model
and not in the subsequent ones. Remark that the grey values indicating the
probability for skin are very low. A zoom is provided in Figure 5. It is un-
derstandable that the regularizing models, HMM as well as the First Order
Model, operating at the level of pixels, have produced a posterior probability
that put very low likelihood for skin in this region. Indeed, the local evidence
for skin is low and the neighboring values are also indicating low evidence. A
high level model of limbs might be able to overcome these difficulties.
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Fig. 5. Zoom of top row, second image in Figure 4. Result of the Baseline model
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A Appendix

Here we shall derive a MaxEnt solution for the joint distribution p(z, y) under
the constraints Cy. See (1).

Remark that the constraints in (1) are expectations with respect to p. Indeed,

p(Ts,Ys) = Ep[0s, (Xs)dy, (Y5)] (A1)
with
lifa=0
Oifa#b

Then, following Jaynes’ argument [9], the MaxEnt solution under Cy is unique
if it exists, and can be obtained using Lagrange multipliers. One gets:

p(z,y) = exp(Xo + D A(s, s, Us)) (A.2)

SES

Where the parameters A should be set up such that the constraints are satis-
fied. Now if
Vs € C,Vys € {0,1}, q(x5,ys) > 0 (A.3)

then one can choose
Ao = 0 and A(s, x5, ys) = log q(xs, ys) (A.4)

which leads to the unique solution of the MaxEnt problem:

p(il?, y) = H Q(xs’ays) (A5)

sES
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Condition in (A.3) is saying that there is no empty bin in the empirical joint
histogram ¢(zs,ys). This will be our case. MaxEnt solutions still exist when
(A.3) is not verified.

Here we shall obtain a MaxEnt solution for the joint distribution p(z, y) under
CoND, see (1) and (4).

As for Cy, the constraints in D are expectations. Indeed,

Vys € {0, 1}, Vye € {0, 1}, p(Ys, ye) = Ep[0y, (Y5)dy, (Y2)] (A.6)
Using once more Lagrange multipliers, one obtains that the MaxEnt solution,
if it exists, is
p(z,v) = exp H(z,y, Ao, A1, A2, A3) with
H(z,y, Aoy A1, A2y A3) = Ao + Dses M (S, Ts, Ys)+
Do <st>eSXS A2 (8, 8) (1 —ys) (1 — o)+

Y s i>esxs A3(8, 1) ysyi

(A7)

where < s, > is a couple of 4-neighbors pixels and Ay, A1, A2, A3 define pa-
rameters that should be set up such that the constraints are satisfied. Starting
from (A.7),remark that

plas,ys) = Y, Y, px,y) =exp[ho+ M(s, 25 5)]9(5,y5) (A8

T4 tES tF#S Yy t€ES t#£s

with g(s,ys) a function that doesn’t depend on z;. Now,

p(ys) = Zp(xsa ys) = eXP[)\o]g(Sa ys) Z exp[)\l (S, Tg, ys)] (A9)
hence
p(xslys) = p(Zs,Ys) _ exp[Ai (s, Ts, Ys)] (A.10)

p(ys) B Ews eXp[)‘l(S:msays)]

Since p(z,y) lies in Cy, it verifies: p(zslys) = q(xs|ys). Assuming positivity
(A.3), we can choose
/\l(saxsa ys) = logq(xs‘ys) (All)

Now, constraints in D, see (4), do not depend on the location < s, ¢ >. Hence,
one can reduce to translation invariant models as in (5).

Constraints in Cy, see (10) are also expectations. Indeed,

(s, Tt, Ys, Yt) = Epl6(ey) (Xs)0(2y) (X)) (Ye) Sy (Y2)] (A.12)

Using Lagrange multipliers, one obtains (11).
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thus has potential to stage individuals according to their state of disease progression relative to a population
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Introduction of AD). It is widely believed that these early stages are the most

promising for therapeutic intervention, before irremediable neuronal

Neurodegenerative diseases such as Alzheimer's disease (AD),
Parkinson disease (PD), Huntington disease (HD) and amyotrophic
lateral sclerosis (ALS) involve the loss of structure or function of neu-
rons, including neuronal death (see Martin (2002); Shaw (2005)).
During the earliest stages of these diseases, the progression is slow,
on the time scale of years, (see Sperling et al. (2011) for the case
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loss occurs. Developing a therapeutic remedy requires a precise measure
of disease progression, i.e., a quantity which would be specific to a partic-
ular disease and sensitive to subtle changes. However, obtaining accurate
measures of disease progression during the earliest phases of the disease
is difficult. Indeed, these phases are essentially non-symptomatic and
the clinical tests which characterize the acute phase of the disease are
not sensitive enough to qualify as a measure of disease progression. In re-
sponse, the medical research community has contributed to developing
and validating biomarkers. Biomarkers for neurodegenerative diseases
include protein counts (in the cerebrospinal fluid), blood analysis,
brain imaging, including molecular and MR, genetic analysis and neuro-
psychological tests. Structural imaging biomarkers are unique in that
they allow one to characterize the size, shape, and health of various
brain substructures at the organ level while being noninvasive (see
e.g. Qiu et al. (2008) for AD, Rizk-Jackson et al. (2011) for HD). Functional
imaging provides a spatially localized image of the physiological
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processes occurring in the brain. See Brooks and Pavese (2011) for
a review of imaging biomarkers in PD and Turner et al. (2011) for
ALS. Due to the complexity of the neurodegenerative diseases and
variabilities within the human population, research efforts have been
pooled in order to create datasets with a large number of subjects,
time-points and biomarkers. The Alzheimer's Disease Neuroimaging
Initiative (ADNI), see http://adni.loni.ucla.edu/, was launched in 2003
by the National Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, the Food and Drug Administration, private
pharmaceutical companies and non-profit organizations, as a $60 mil-
lion, 5-year public/private partnership. A related effort is taking place
for PD. The Parkinson Progression Marker Initiative (PPMI), see http://
www.ppmi-info.org/, is a comprehensive observational, international,
multicenter study designed to identify PD progression biomarkers
both to improve understanding of disease etiology and course and to
provide crucial tools to enhance the likelihood of success of PD modify-
ing therapeutic trials. Huntington disease is caused by a mutation in a
single gene, HTT, with full penetrance, making it feasible to identify
presymptomatic individuals who will develop the disease but do
not show yet any clinical symptoms, see Hayden (1981). At least two
large studies (Predict-HD, see https://www.predict-hd.net/ and
TrackOn-HD, see http://hdresearch.ucl.ac.uk/current-studies/trackon-
hd/) are underway to identify sensitive biomarkers for HD. Similar ef-
forts are recently taking place for ALS, see Turner et al. (2009); Labbe
(2012). The availability of large datasets for neurodegenerative diseases
opens new opportunities for computational methods which could have
a strong impact in the study, the development of therapeutics and the
follow-up of patients with neurodegenerative diseases.

We present in this article a generic computational method for
computing a disease progression score (DPS) by combining bio-
markers. ADNI is, as of today, the largest publicly available longitudi-
nal dataset of biomarkers related to a neurodegenerative disease. It is
therefore the dataset which we have chosen to evaluate our method.
Since we will work with the ADNI dataset, we recall some preliminary
information on AD as well as the validated biomarkers for AD in
Section 2. The method for computing a DPS, which is the main contri-
bution of this paper, is presented in Section 3. Results with the ADNI
dataset appear in Section 4 and finally in Section 5, we discuss the
results in the context of ADNI, and their consequence in the study of
AD and other neurodegenerative diseases.

Alzheimer's disease

Although this paper describes a method applicable to any neurode-
generative disease, our current evaluation involves the ADNI dataset
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and therefore it is informative to use this disease as a framework
for motivating the method. The classical characterization of late-
onset Alzheimer's disease progression is a time-ordered succession
of three stages: normal (N), mild cognitive impairment (MCI), and
AD. Physical measurements of disease progression, i.e., biomarkers,
are used to classify patients into these three stages, but it has been
challenging to reliably define finer stages of the disease. As a result,
staging of the disease remains coarse and the evaluation of therapies
are difficult at the earliest stages when intervention is most likely to
be effective, see Hampel et al. (2008).

Cognitive biomarkers such as the clinical dementia rating sum-
of-boxes (having scores from 0 to 18) and the mini-mental state
exam (having integer scores from 0 to 30) have finer discrete levels,
see Berg et al. (1988); Folstein et al. (1975). But it has been reported
in Mungas and Reed (2000) and Duara et al. (2011) that these mea-
surements have poor dynamic range in the earliest stages of AD. On
the other hand, Mosconi et al. (2007) has shown that the early stages
of AD can be characterized using both imaging and biochemical bio-
markers. Following these observations, Jack et al. (2010) proposed
that there is a single disease progression and that different bio-
markers characterize the disease during different stages. They hy-
pothesized the biomarker changes and disease progression shown
in Fig. 1 (reproduced with permission from Jack et al. (2010)). In
this hypothesized model, the amyloid beta (AB4;) protein changes
first, followed by changes in the protein Tau, then structural changes
in the brain (gray matter loss), and lastly a deterioration of cognitive
function resulting in dementia. Based on Fig. 1 we expect to find that
no single biomarker has the dynamic range to cover the full spectrum
of the disease. Given the limitations of any single biomarker, there is
likely benefit in developing methods that can combine multiple bio-
markers in a nonlinear fashion in order to represent—using a single
measure—progression throughout the entire disease. This is a key
motivation for the process we report in this paper. An important
byproduct of this effort is a plot similar to that of Fig. 1, but derived
from data using multiple biomarkers which reveal key differences in
the ordering of the biomarker dynamics over the course of disease.

Method
Principles for temporal standardization of multiple biomarkers

The available data are longitudinal measurements of multiple bio-
markers for hundreds of subjects. Our research first describes and

then evaluates a disease progression score, notated DPS, which stan-
dardizes subject time-lines onto a common temporal scale. The DPS

Cognitively normal

i MCl Dementia

_—
Clinical disease stage

Fig. 1. This graph represents a conceptualization of the timing of key biomarkers transitions from “Normal” to “Abnormal” as subjects go through the three stages of Alzheimer's
disease: “Cognitively Normal”, “MCI”, and “Dementia.” This plot is reproduced from “Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade,” Jack CR]r,
Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW,Petersen RC, Trojanowski JQ., Lancet Neurol. 2010 Jan;9(1):119-28.
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serves as a new (derived) biomarker enabling both disease staging
in single subjects and a data-driven characterization of biomarker
dynamics in the entire population.

The method we use to achieve standardization is based on three
assumptions:

1. All subjects follow a common disease progression but differ in their
age of onset and rate of progression;

2. As the disease progresses, each biomarker changes continuously
and monotonically following a sigmoid shaped curve; and

3. In the longitudinal period over which biomarkers are observed, the
rate of progression of a given subject is constant.

The proposed computation assigns to each subject and each time-
point a score denoted the DPS. Note that all subjects are expected to
undergo the same biological and cognitive changes when they reach
the same DPS.

Statistical model for DPS

The age t of subject i is to be transformed into the DPS s; as follows
si(t) = ogt + 3 (1)

upon estimation of the subject dependent parameters ¢«; and f3;,
which indicate rate and onset of disease, respectively. A linear trans-
formation is justified when the interval over which longitudinal
observations of subjects occur is short relative to disease duration
(true at present in the ADNI database). This could be generalized to
nonlinear functions in the case of cohorts with longer longitudinal
base. Our objective is to standardize all I subjects by estimating ac=
(ay, ..., oq) and B= (B4, ..., By). The subject dependent parameters o
and 3 are deliberately modeled as fixed effects, not random effects,
as the DPS may ultimately be used as a covariate.

The longitudinal dynamic of each biomarker is assumed to be the
same across the population and can be represented as a sigmoidal
function f of DPS s. Sigmoidal functions capture the relative quiescent
states of a biomarker in the early and late parts of the disease progres-
sion while being parsimonious. Using 0, = (ay, by, cx, di) to represent
the vector of sigmoid function parameters for the k-th biomarker, we
can write the form of the k-th biomarker as

F5:60 = a(1+e77) . )

The minimum and maximum values of the sigmoid function are dj
and d; + ay, and the value of s for which the biomarker is the most dy-
namic, having maximum slope ayb,/4 corresponding to its inflection
point, is ¢, A closely related model is the trilinear model in Brooks
et al. (1993). Caroli et al. (2010) and Sabuncu et al. (2011) noticed
that sigmoids offer a parsimonious parametric model which is
often a better fit than linear models for biomarkers. Sigmoids are
also similar in form to the conceptual evolution of biomarkers
envisioned in Jack et al. (2010) for AD (Fig. 1). Among parametric
models, alternatives include the generalized sigmoid in Richards
(1959) and polynomials of low order.

Databases for neurodegenerative diseases contain measurements
Yijk of biomarker k for subject i at visit j. Since there are often irregu-
larities in data collection, we use 7 to denote the set of triples (i, j, k)
for which measurements are available. Each biomarker observation
can then be written as

Vi :f(aitij +Bi; 9k> + Oeije, - (1,1, K)EZ, 3)
where ¢; is the age of subject i at visit j. Observation noise in each

biomarker is modeled for simplicity by the product of e, which
are independent random variables with zero mean and unit variance.

oy is the standard deviation of biomarker k. The collection of standard
deviations o= (07, ..., Ox) comprise another unknown that must be
estimated.

The unknowns in this problem are ¢, 3, 6, and o and the least
squares problem associated with the observation model in (3) is

1 2
la.,0,0) = (u%:g logoy + 202 (Yijk _f<aitij + Bi; 9k>) (4)
Parameter fitting

Parameter fitting is performed using alternating least squares
wherein the parameters 6, «, (3, and o are optimized iteratively
starting from the values computed in the previous step. The details
of the fitting algorithm are shown in Alg. 1. Because of the additive
form of (4), optimization over 6 is done serially over each of the K bio-
markers. Similarly, optimization over (¢, 3) is performed serially over
each of the I subjects. Fitting of 0, ¢, and 3 requires optimization of con-
tinuously differentiable nonconvex functions, which is carried out using
the Levenberg-Marquardt algorithm (Lines 4 and 8), see Levenberg
(1944). 7, (line 4) is the number of subjects and visits available for
biomarker k. The denominator in the equation of Line 5 is the number
of degrees of freedom. Because unconstrained optimization can pro-
duce unfeasible parameters, parameters are projected onto the feasible
space after the main loop (Lines 12-16), see (5) below. This does not
change the value of the objective function in (4). Our experiments
presented in Section 4 confirm that successful fitting is accomplished
in 15 iterations for the ADNI dataset; i.e.,, L=15 on Line 2, standard
optimization stopping criteria can be used otherwise. The parameters
a and 3 are centered and rescaled in Lines 17-19 in Alg. 1 for
identifiability reasons which are explained in the next section.

Identifiability

The units of DPS are arbitrarily defined, which implies that we
must choose two specific numerical values in order to fully specify
the DPS. This situation is analogous to the selection of a scale for tem-
perature, where the numerical values of the freezing and boiling
points of water determine the scale. Note that calibration is not spe-
cific to the DPS. It is in fact needed for most if not all biomarkers
(see Hughes et al. (1982)). In our experiments with ADNI, we chose
to fix the DPS such that after computation of DPS for the entire pop-
ulation, the computed DPS for all visits of subjects with normal clini-
cal assessment - subjects of type N -had a median (my) and a median
absolute deviation (oy) which are set respectively to zero and one.
This is accomplished in Lines 17-19 in Alg. 1.

Algorithm 1. Algorithm for fitting of the parameters

1: Inititialize o(©), 3(©)

2: for [ =1to L do

3: for k=1to K do

4 0 =argming, 3 5 cr, (igk — F(al "t + B0 00))?

5 o = ey Y en e — f0lty + 805 0))?

6:  end for

7 fori=1to I do

8 (V. 8) = argmin,, 5, 2 Gk)ET: ﬁ(yuk — flaiti; + B 01)))?
k

9

end for
100 a0 =M, g0 = 31
11: end for

12: for k =1to K do
13:  if by <0 then

S s TR R L )
15:  end if

16: end for

17: for i =1 t(()nl do o

18 o) =2 g = Ay

19: end for
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Note that (3) is invariant with respect to the following two trans-
formations, for two constants ©y; # 0 and 7y,:

(akvbk’ckvdkvaivﬁivo-k) H<akﬂylbkv7;]Ckﬂdk=Y;laiﬁ’Y;lBivok>
= (@, by, Y2 + € Ay, 04, Y2 + By, O)

Note also that the sigmoid function verifies
f(t;—ay, =by, ¢y, dy +ay) =f(t; a1, by, 1. dy) (3)

In order to build an identifiable model, we define the restricted
parameter set

I i
0= {p:(a,b,a,[i.a);lilza,-: ozo‘lflz[ji:ﬁ.o,bk>0,ak;é0 for all kEI}
i

i=1

for some o 7# 0 and Bg. Necessary conditions on the available data 7
for guaranteeing the identifiability of the parameters are as follows:

1. For each biomarker, there is at least one subject i with ¢;# 0 and
with at least 4 distinct time-points in Z.

2. For each subject, there is at least one biomarker which is available
at 2 time points in 7

A proof is provided in the Appendix A. In practice, a sufficient
number of data points per parameter are needed in order to obtain
tight estimators. Examining first the case with no missing data, the
number of equations in (3) is IJK. The number of parameters is
21+ 5K, counting two parameters per subject, and five per bio-
markers: four for the sigmoid and one for the standard deviation. In
applications where I is large compared to K, the number of data points
per parameter is close to JK/2. Note that longitudinal data (J>1) is
critical for such modeling. However, a small number J of time-points
together with a small number K of biomarkers is acceptable. The sub-
set of ADNI that we used in our results has numerous missing data
points. Nevertheless, the identifiability conditions are met. The tight-
ness of the estimators of the biomarker parameters is measured using
bootstrapping as reported in the Results section.

The ADNI dataset

Data used in the preparation of this article were obtained from
the ADNI database (adni.loni.ucla.edu). The ADNI was launched in
2003 by the National Institute on Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical companies and
non-profit organizations, as a $60 million, 5- year public-private part-
nership. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer's disease (AD). De-
termination of sensitive and specific markers of very early AD pro-
gression is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of California — San Francisco.
ADNI is the result of efforts of many co-investigators from a broad
range of academic institutions and private corporations, and subjects
have been recruited from over 50 sites across the U.S. and Canada. The
initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to partic-
ipate in the research, approximately 200 cognitively normal older
individuals to be followed for 3 years, 400 people with MCI to be
followed for 3 years and 200 people with early AD to be followed
for 2 years. For up-to-date information, see www.adni-info.org.

The ADNI, ADNI GO, and ADNI 2 biomarker datasets were
downloaded from the ADNI server (http://adni.loni.ucla.edu/) on
November 24, 2011. The following seven biomarkers were selected
for use based on their relevance in assessing the progression of AD.
HIPPOis the sum of the two lateral hippocampal volumes (Freesurfer
version 4.4.0 for longitudinal data http://surfer.nmr.mgh.harvard.
edu) normalized by dividing by the intracranial volume. ADAS is the
Alzheimer's Disease Assessment Scale-cognitive subscale. MMSE is
the Mini-Mental State Examination score. TAU and ABETA (our abbre-
viation for AB4) are protein levels measured from the cerebrospinal
fluid. CDRSB is the Clinical Dementia Rating Sum of Boxes score and
RAVLT30 is the Rey Auditory Verbal Learning Test, 30 minute recall.
A detailed description of the ADNI population, protocols and bio-
markers is provided at http://adni.loni.ucla.edu/. Of the seven bio-
markers, only ADAS and RAVLT30 were available at the time of
download from the ADNI 2/GO dataset. The protocol for these bio-
markers is the same in ADNI, ADNI 2, and ADNI GO. All visits without
date information were removed. Subjects not having at least two mea-
surements for at least one of the seven biomarkers were also removed.
Finally, subjects not having at least two measurements of the HIPPO
biomarker were removed. The total number of subjects remaining
was 687, where 389 were male, 275 were female, and 23 had un-
known gender. The total number of visits was 3658, and the clinical di-
agnoses at these visits were 1103 N, 1513 MCI, and 1010 AD. There is
an average of 26.92 (sd=5.52) and a minimum of 11 data points
available per subject for estimating the parameters of the model.

Results
DPS computed for ADNI subjects

The Alzheimer's DPS (ADPS) was computed for all subject visits in
the combined ADNI, ADNI 2, and ADNI GO datasets (with minimal
exclusions as was described in Section 5). Seven biomarkers—HIPPO,
MMSE, TAU, ABETA, CDRSB, RAVLT30, and ADAS—were used together
in the computation in order to compute an ADPS score for each visit
of each subject (Fig. 2). The initial values (Line 1 of Alg. 1) are
obtained as follows: firstly, we set «'® =1 and p(®?=0; secondly, the
sigmoids are replaced by linear functions. The main loop (line 2), is
then executed 15 times. In this case, the optimization problems in
lines 4 and 8 are least squares problems which are solved exactly.
At the end of this initialization step, ' and B(? are set to the corre-
sponding values obtained and the sigmoids are initialized using the
linear fits. The running time of the Algorithm 1, which was coded in
Matlab, was 125 seconds using an Intel Core i7 Q820 running at
1.73 GHz (quadcore). In Fig. 2, overall, N subjects (black) have the
smallest ADPS, MCI subjects (red) have moderate ADPS, and AD sub-
jects (green) have the largest ADPS. Lower ADPS scores are therefore
consistent with the normal population and higher ADPS scores are in-
dicative of increased presence of dementia. Those subjects whose
clinical status changes from MCI to AD (blue) are found mostly be-
tween the red and green colors.

The estimated sigmoidal behaviors of each biomarker were also
computed as part of the normalization process (gray curves on each
plot in Fig. 2). It is observed that individual subject trajectories
fall near these curves and have similar slopes in most cases. This is
expected due to the nature of the optimization criterion used to de-
fine ADPS. However, since ADPS is computed as a joint optimization
considering all seven biomarkers, some data falls fairly far from the
estimated characteristic biomarker curves.

We used bootstrapping via Monte Carlo resampling to quantify
the variance of the estimated parameters. We drew 100 resamples
of the observed dataset by random sampling (with replacement)
from the original collection of subjects, and then recomputed the
ADPS for the entire population. Bootstrap replicates of the estimated
biomarker sigmoids are shown in Fig. 3 and 90% confidence intervals
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Fig. 2. The values of seven biomarkers, measured at all visits of all ADNI subjects, are plotted on the normalized ADPS. Each connected polyline represents the consecutive visits of a
single subject, and each line segment is colored according to the subject's clinical diagnoses between visits (see legend). The gray curves are the sigmoid functions representing the

fitted behavior of each biomarker in the normalized space.

for the parameter c, i.e. the inflection point of each sigmoid, are
presented in Fig 5(b).

The empirical variance of the residuals ¢ in (3) is the compo-
nent of the variance which is unexplained by the model. It accounts
for about 38% of the total variance. Hence the model explains 62%
(£1.37%) of the total variance (i.e., 62%=100% —38%.), the stan-
dard deviation (sd) of 1.37% being computed using the bootstrap

samples. If instead of the ADPS, ADAS or MMSE was used as a disease
progression score, fitting sigmoid curves as previously described,
the percentage of explained variance would be respectively 49.4%
(+1.4%) and 46% (4 1.4%). The percentage of explained variance
is larger with the ADPS than with the ADAS (p-value<0.01) or the
MMSE (p-value<0.01); p-values being obtained using the bootstrap
replicates in both cases.
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Fig. 3. Bootstrapping yields different biomarker sigmoids with each random substitution. These plots give all the computed sigmoids over the entire bootstrapping exercise. Tight

agreement overall is observed.
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Fig. 4. Rate of the ADPS as function of the ADPS for baseline visits. Black: Normal subjects.
Red: MCI subjects. Green: AD subjects.

Table 1
Mean value (standard deviation) of ADPS and rate of change of ADPS for N,MCI and AD
subjects in ADNI at baseline.

ADPS: Mean (sd) Rate of change of ADPS: Mean (sd)

N —0.03 (1.48) —0.08 (0.81)
MCI 2.85 (1.98) 0.76 (1.11)
AD 6.49 (1.61) 1.46 (1.38)

Relation between ADPS and rate of progression

The rate of progression ¢; of each subject i is also computed as part of
the ADPS parameter fitting algorithm. We plotted the rate of progression

of each subject against their ADPS at baseline to see whether a relation-
ship might exist (Fig. 4). A clear trend of increasing rate of ADPS as a
function of ADPS is observed. The third column of Table 1 provides the
mean rate of change of ADPS in unit of years for each status. AD subjects
progress faster on average than MCI subjects. MCI subjects progress
faster on average than N subjects. Observed during 3 years, an MCI sub-
ject would progress on average at 0.76 ADPS per year. The corresponding
ADPS would then increase by 0.76 x3=2.28 units. In our model, the
ADPS of each subject is a linear function of age, or equivalently the rate
of change of ADPS is constant over the time a subject is observed. Retro-
spectively, it is therefore a reasonable approximation for N and MCI
subjects. It might be too simple a model for AD subjects. It is important
to recall that these observations are made in light of the optimization
criterion of ADPS, which uses the commonality of biomarker trends as
a basis for determining rate. Thus, an increasing rate of ADPS truly
means that subjects are progressing through degrading biomarkers at
a faster rate.

Biomarker dynamics

The sigmoidal functions representing common behavior of bio-
marker dynamics of the entire ADNI population can be compared by
scaling (and inverting if necessary) each of them independently to
range from —1 (Normal) to +1 (Abnormal). Plotted as a function
of the normalized ADPS (Fig. 5(a)), these scaled sigmoidal functions
provide a plot similar to the conceptual plot in Jack et al. (2010)
(Fig. 1). Our plot is data driven, of course, representing what the
entire ADNI dataset predicts under our model assumptions. Its sig-
moidal functions also provide information about the time of initial
biomarker change (represented by the heels of the sigmoidal func-
tions), the time of maximum biomarker change (represented by the
inflection point of the sigmoidal functions), and the rate of biomarker
change over the course of its activation (represented by the slopes of
the sigmoidal functions).

In addition to their interpretation as the time of maximum bio-
marker change, the inflection points also could represent a threshold
between normal and abnormal. Therefore, we use them as an indicator
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Fig. 5. (a) Estimated biomarker dynamics as a function of the normalized ADPS. Estimation of the normalized ADPS for all ADNI subjects was carried out, and common biomarker
dynamics represented by sigmoidal functions were simultaneously fitted as part of the ADPS normalization algorithm. Each sigmoidal function was scaled and flipped in order to fit
on a scale going from -1 representing “Normal” to 1 representing “Abnormal”. The positions of vertical lines representing progression from Normal to MCI and MCI to AD were fitted
as optimal separating thresholds between the clinical diagnoses provided in the ADNI database. (b) 90% confidence intervals for the inflection point of each biomarker.
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of biomarker timing in the disease process. We recomputed the inflec-
tion point of the normalized biomarker sigmoids for each bootstrap
sample and plotted 90% confidence intervals (Fig 5(b)). Furthermore,
counting pairwise ordering within the bootstrap samples, we find that
RAVLT30 precedes all other 6 other biomarkers (p-value<0.01) and
HIPPO, ABETA and TAU precede MMSE and ADAS (p-value<0.02).

Relation between ADPS and clinical status

Conditional probability densities of ADPS given the clinical status
of each subject were computed using Gaussian kernel density estima-
tion (Fig. 5(a)). Since N subjects tend to have a smaller ADPS than
MCI subjects who in turn tend to have a smaller ADPS than AD sub-
jects, this plot confirms that ADPS provides a scale that correlates
strongly with clinical classification of disease. The mean and standard
deviation of the baseline ADPS for N, MCI and AD subjects in ADNI is
provided in Table 1, column 2. The means are well separated from
each other. There is overlap in the baseline ADPS value between N
and MCI and also between MCI and AD, but essentially not between
N and AD. It is worth restating the clinical diagnosis is not used in
computing the ADPS except to determine its units.

Discussion

We combine multiple biomarkers to provide a neurodegenerative
disease progression. In contrast, in the case of AD, Brooks et al. (1993);
Stern et al. (1994); Ashford et al. (1995); Mitnitski et al. (1999) and
others use MMSE or ADAS as measure of disease progression. In Yang
et al. (2011a), the authors synchronize subjects onto a time-line
constructed using ADAS scores. The core assumption is that the rate of
change of ADAS is linear with respect to the ADAS score, resulting in
an exponential model of disease progression. In Walhovd et al. (2010);
Hinrichs et al. (2011), multiple biomarkers are combined to diagnose
AD. In Fonteijn et al. (2011) the progression of AD is divided into discrete
events based on the atrophy of different structures in the brain provid-
ing a probabilistic framework for estimating the global progression of
AD as well as for estimating the position of a single subject's measure-
ments. Longitudinal measurements are not used. In Ververidis et al.
(2010), a Bayesian classifier selects the set of biomarkers which are
most informative for classifying the current state of the disease.
Time-series models are used to predict the future state of the disease.
Yang et al. (2011b) use independent component analysis and support
vector machines to classify subjects into N versus MCI or AD. Our statis-
tical model is related to so-called single index models (see Hardle et al.
(1993); Carroll et al. (1997) and the references therein). However,
our models differ from these, as we assume parsimonious parametric
forms for the index function and allow for multivariate outcomes.

Our modeling technique applied to the ADNI has provided confirma-
tion of existing results: Jack et al. (2011) binarized each biomarker into
either normal or abnormal using a threshold or cut point. Cut points
were determined for each biomarker at autopsy and with an indepen-
dent cohort. When using these cut point to determine the ADPS at
which a biomarker changes from normal to abnormal, we find that
ABETA precedes both HIPPO and TAU which is consistent with the results
in Jack et al. (2011). We have also obtained surprising results. The fact
that the inflection of RAVLT30 precedes that of all other biomarkers,
and in particular that of ABETA is surprising, compared to Fig. 1, but con-
sistent with some predictions. Jicha and Carr (2010) refer to the study in
Bennett et al. (2006) stating, “Retrospective analysis of their neuropsy-
chological test performance demonstrated significant differences in
only delayed recall tasks between subjects with pathological AD autopsy
findings and those with normal autopsy findings, suggesting that mem-
ory decline may be present, albeit subtly, in persons with (preclinical)
AD before sufficient cognitive decline to warrant the diagnosis of either
MCI or dementia.”Also, Dubois et al. (2007) advocate that the presence

of an early and significant episodic memory impairment should consti-
tute one of the core diagnostic criteria for AD.

Conclusion

We report a multiple biomarker, data-driven approach to assess time-
dependent changes of biomarkers in neurodegenerative disease and to
localize subjects on a scale of disease progression, the DPS, over the entire
range of progression. The statistical model is shown to be identifiable
and bootstrap replicates show that the parameters are estimated tightly
in case of the ADNI dataset. The DPS integrates information from multiple
biomarkers into a single composite biomarker. Using this approach the
conceptual plot of Jack et al. (2010) can be recreated using the ADNI
data. The sequence of biomarkers obtained by comparing the inflection
point of each biomarker is similar to that in Jack et al. (2010) with an
exception: the RAVLT30 becomes dynamic before all other biomarkers.
The DPS provides a continuous measure of progression over the whole
course of disease, and it could therefore be used to stage individuals for
prognosis and to evaluate the effects of novel drugs at all stages of the dis-
ease. The method is generic and is applicable to all neurodegenerative
diseases pending availability of the data.
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Appendix A. Proof of Identifiability

Theorem 1. The model {P,; p € o} is identifiable as long as the following
2 conditions are verified:

1. For each biomarker, there is at least one subject i with o; % 0 and with
at least 4 distinct time-points at which this biomarker is available.

2. For each subject, there is at least one biomarker which is available at 2
time points.

The proof uses the invertibility of a multivalued function closely
related to f. This property is deferred to lemma 1.
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Proof of Theorem 1. Let us assume that the model is not identifiable.
Then there exists 2 sets of parameters in o, p=(a, b, ¢, d, ¢, 3, 0) and
p'=(a, b, c,d, o, pB, o) which differed by at least 1 component,
while verifying P, = P,. Equivalently,

F (et + Bis @, by, G ) = f (it + B @ by € ) (A1)

for all (i,j, k)€Z and o} = o}, for all k

We proceed in steps until we verify that necessarily p=p’. Since
Oy = O}, for all k=1...K, we concentrate on the other parameters.
For each k, let i be a subject such that o;> 0 and for which biomarker
k is observed at four different time points t;y, tj, ti3, tis . Notate uy=
bray;, vir=bi(Bi — c),uy = biai and vy, = by (Bj—c}). Rearanging the
arguments of f and using (A.1),

-1 - L1
f(tiﬁakxuikv — U Vikadk) :f(tiﬁakvuik»_uik vik7dk>

forj=1...4. Note that since a; 7 0 and by, # 0, u; 7 0 and u #0. Now,
using Lemma 1, a; = a, d = dj, Uy = Wy, Ui~ Vi = Wy~ Vi Sum-
ming up over i and dividing by I in by«; = b).;, we obtain byog =
by, and since oy #0, by = b). Since b, # 0, it follows that o; = ¢}
and uy = uj. Replacing in v, = v and summing up over i and divid-
ing by I, we obtain thatc, = c}. We have then obtained that for all bio-
markers, a, = ay, by = b\, ¢, = ¢k, dy = di and 0}, = 0. Now, for each
subject i, there is at least one biomarker k for which two time-points
t;; and t;, are available. Replacing in (A.1),

f(aifij + Bi?ak»bkvckvdk> :f<a/itij + B,i?akvbkvckadk> (7)

forj=1,...,2.Since a; # 0 and b, # 0, t — f(t; ay, by, ¢, d) is invertible
which, together with (7), implies that; = a’,. and gB; = ﬁ',» concluding
the proof.

Lemma 1. The vector values function R*— R* for fixed X <x,<X3<Xa:
defined by
(a,b,c.d)—(f(xy;a,b,c.d).f(xy;a,b,¢,d), f(x3:a,b,¢,d), f(x4:0,b,¢,d))

with a#0, b>0 is invertible.

Proof of Lemma 1. We verify that the Jacobian determinant of this
function is nonzero, which is enough to prove invertibility using the
inverse function theorem of multivariate calculus. Let ¢’ = e’

a
x:a,b,c.d)=——
fesab.c.d) 1+ce b
It is equivalent to show the Jacobian determinant of
(a‘, b7 C’? d)ﬁ(f(x] ;a, b7 C/s d),f(X2; a, b7 C’v d)?f(XB; a, b7 C/a d),f(X4‘, a, b> C’v d))

is non zero.
The ith row of the Jacobian matrix is:

. —bx.\ —2 — . —bx; —bx: , —bx: 2 —2bx:
(1+ce b"’) [1+e i acxe ™, —ae ™ 1+ 2ce” ™ 4 ¢l N

Column linear transformation will not change the singularity of
the Jacobian matrix. After some linear transformations, the ith row is:

. —bx;\ —2 _ —bx: —2bx:
(1+ce ) [1, xe e e Zb"']

)

Suppose the Jacobian matrix is singular, i.e. there exists (not all
zero) coefficients k, I, m, n such that

—2bx;

k+ Ixe ™ +me ™ 4+ ne =0;i=1,....4
then the function
X —bx —2bx

g(x) =k+ Ixe ™ + me™™ 4+ ne
must have four real roots. Differentiating twice,
2b*ne™ —1b

would need to have 2 real roots. Since it is not the case, the Jacobian
matrix is invertible, which concludes the proof.
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28. Neuroscience 2011 Conference, Washington D.C., November 16, 2011.

29. Pfizer Inc. , Invited talk, January 2012.

30. Johnson & Johnson, Invited talk, January 2012.

31. Alzheimer’s Association International Conference, accepted abstract, July 2012

32. Joint Statistical Meeting, accepted abstract and invited presentation, August 2012.

33. Colloquium du département de Mathématiques et Informatique, Université Paris
Descartes, January 11, 2013.

34. Séminaire du laboratoire Psychologie de la Perception, Université Paris Descartes,
January 24, 2013.

35. IPAM Summer School in Computer Vision, invited tutorial, UCLA, Los angeles,
July 31, 2013.

36. Third annual seminar on Molecular Imaging of Infectious Diseases, invited talk,
JHU, September 23, 2013

Professional societies:

Société Frangaise de Statistique (SFDS) [French Statistical Society].

Société des Mathématiques Appliquées et Industrielles (SMAI) [French Applied and
Industrial Mathematics Society].

IEEE Computer Society.

American Statistical Association
Recent and current participation in Grants as PI, coPI or senior personnel:

(PI: B. Jedynak) 2008-2009
1. Potts Memorial Fundation
Quantitative Imaging Methods for the Discovery of Surrogate Markers of M. tuberculosis Infec

(PI: B. Jedynak) 2008-2010
2. Allocation Grant from Bill and Melinda Gates Foundation Grant
Quantitative Imaging Methods for Tuberculosts

(PI: B. Jedynak) 2010-2012
3. Allocation Grant from NIH Grant PI: Sanjay Jain
Quantitative Imaging Methods for Tuberculosis



(PI: B. Jedynak) 2012-2015
4. Allocation Grant from NIH Grant PI: Sanjay Jain
Molecular Imaging for Macrophage-Associated Pulmonary Diseases

(PI: B. Jedynak) 2010-2011
5. Research grant from Pfizer Inc.
Modeling of Alzheimer’s disease Neuro-imaging Initiative Study

(PI: B. Jedynak) 2011-2012
6. Ossoff scholar award
Developing the Alzheimer’s Disease Progression Scale (ADPS) and further characterizing the c

(PD: R. Winslow) 2007-2010
7. NIH 1R24 HL08534301A1
Cardio Vascular Research Grid (CVRG)

(PI: J.L. Prince) 2006 - 2016
8. NIH/NINDS 1 R0O1 NS056307
Automatic Cerebellar MRI Labeling in Health and Disease

(PI:J. DiRuggiero) 2009-2011
NSF Award 0842636

Communaity structure, genomic heterogeneity and metabolic dwersity of the microbiome
of the oldest and driest desert on Earth, the Atacama Desert in Northern Chile
10 (PI:D. Geman) 2010-2014

Actwe Scene Interpretation by Entropy Pursuit

(PI:J. Flombaum) 2013-2015
11. Science of Learning Institute, Johns Hopkins University
Spatial Localization through Learning: An Information Theoretic Approach

(PI: B. Jedynak) 2014-2015
12. M.J. Fox Foundation
A machine learning analysis of the progression of Parkinson Disease

Postdoc Advising and Co-advising:
Camille Vidal, September 2008-September 2009.
PhD. Advising and Co-advising:

1. Huicheng Zheng, "Maximum entropy modeling for skin detection: With an appli-
cation to Internet filtering", December 2001- November 8, 2004, Computer Science,
USTL, France.

2. Camille Izard, "Automatic Landmarking of Magnetic Resonance brain Images",
September 2004 - June 2007, Mathematics, USTL, France.

3. Joshua Vogelstein, "Uncovering Neuromechanisms of the Dorsal Cochlear Nucleus",
Neurosciences, JHU, September 2006-December 2009.



7.

. Raphael Sznitman, September 2008 - September 2011, Computer Science, JHU.
. Andrew Lang, January 2011 - present, Electrical and Computer Engineering, JHU.

. Lee Chen, September 2013 - January 2014, Applied Mathematics and Statistics,

JHU.

Ehsan Variani, January 2014 - present, Electrical and Computer Engineering, JHU.

Master’s Advising:

1.

10.

11

Ivan Keller, “Recherche d’un meilleur modéle a priori pour une méthode d’extraction
des routes dans une image satellite” [A better prior model for extracting roads from
remote sensing images|, Statistics, Paris XI, Spring 1994.

. Mohamed Obeid, “Indexation d’'images par le contenu” [Content Based Image In-

dexing], Computer Science, USTL, Spring 2001.

. Didier Barret, “Détection de la peau dans des images en couleurs” [Skin Detection

From Color Images|, Computer Science, USTL, Spring 2002.

Rhanem Jbilat, “Images naturelles et images de synthése” [Natural Images vs Syn-
thetic Images], Applied Mathematics, USTL, Spring 2003.

. Camille Izard, “Automatic Landmarking of Magnetic Resonance brain Images” Math-

ematics, USTL, Spring 2004.

. Neeraja Penumetcha, “Applications of semi-automated methods for cortical analy-

sis”, Biomedical Engineering, JHU, 2005-2006.

Raphael Sznitman, "Sequential Mutual Information Maximization for Face Detec-
tion", Computer Sciences, JHU, 2008.

. Saumya Gurbani, September 2012 - July 2013, Biomedical Engineering, JHU.

. Han Weidong, January 2013 - present, Applied Mathematics and Statistics, JHU.

Zhou Ye, January 2013 - present, Applied Mathematics and Statistics, JHU.

Fan Zhou, September 2013 - present, Applied Mathematics and Statistics, JHU.

Thesis advising committees

1.

2.

Hailiang Huang, BME, JHU, 2006-January 2012.

Joshua Vogelstein, "Uncovering Neuromechanisms of the Dorsal Cochlear Nucleus",
Neurosciences, JHU, September 2006-December 2009.

Reviewing journal papers:
Annales des Telecommunications.
Ecological Modelling.
IEEE transactions on Pattern Analysis and Machine Intelligence.



IEEE Transactions on Image Processing.
Journal of Machine Learning Research.
Journal of the Royal Statistical Society.
Neural Computation.

Pattern Recognition.

Statistics and Probability Letters.

Member of the Program Committee:

CVPR 2008

ICCV 2009

ECCV 2014

Workshop: "Information Theory in Computer Vision and Pattern Recognition" ICCV2011

Chairman for Session 753 "Data analysis and Statistics IV", Neuroscience 2011
Reviewing grant proposal:

NSF Computer Vision panel

Swiss National Science Foundation

Fonds de la Recherche Scientifique (Belgium)

Human Brain Project (European Commission, Seventh Framework Program)

Teaching:

1.

2.

9.

10.

Calculus I, UMASS at Amherst, Spring 1992.

Calculus I, Graphs, Linear algebra, Probabilities, Statistics and Logic, Université
Paris V, Fall 1995 and Spring 1996.

. Calculus I-II, Graph theory, Linear algebra, Probabilities, Statistics, Logic, IUT A,

USTL, September 1997 to June 2003.

Information Theory for Image Processing and Computer Vision, Dept. of Mathe-
matics, USTL, Spring 2002 and 2003.

. Probability and Statistics, (550.310 and 550.311), AMS, JHU. Spring and Summer

2005 and 2006, Fall 2007, 2008, 2009 and 2010.

. Statistical Methods in Imaging, (580.466 and 550.431), Dept. of Biomedical Engi-

neering and AMS, JHU, Spring 2006, 2007, 2010,2011, and 2012.

Data Mining (550.461) AMS, JHU, Fall 2007, 2008, 2009, 2010, 2011, 2012 and 2013.
Introduction to Statistics (550.430), AMS, JHU, Spring 2007, 2008 and 2009.
550.211 Statistics for the Life Sciences, Spring 2011,2012, 2013 and 2014.

Statistical Theory II (550.631) Spring 2014.

Skills:

e Languages: French (native), fluent English, some Spanish.



e Computers skills: C,C++,Unix,¥TeX, Mupad, Mathematica, Matlab, R.

e Musical skills: active practice of jembe, congas and drums.



