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1 INTRODUCTION

IN recent years, face detection algorithms have provided extremely
accurate methods to localize faces in images. Typically, these have
involved the use of a strong classifier which estimates the presence
of a face given a particular subwindow of the image. Successful
classifiers have used Boosted Cascades (BCs) [1], [2], [3], [4],
Neural Networks [5], [6], [7], and SVMs [8], [9], among others.

In order to localize faces, the aforementioned algorithms have
relied on a sliding window approach. The idea is to inspect the entire

image by sequentially observing each and every location a face may

be in by using a classifier. In most face detection algorithms [1], [3],

[4], [6], this involves inspecting all pixels of the image for faces, at all

possible face sizes. This exhaustive search, however, is computa-
tionally expensive and in general not scalable to large images. For

example, for real-time face detection using modern cameras

(4;000� 3;000 pixels per image), more than 100 million evaluations

are required, making it hopeless on any standard computer.
To overcome this problem, previous works in object and face

localization have simply reduced the pose space by allowing only a
coarse grid of possible locations [1], [5], [10]. An elegant improve-
ment to object detection was proposed in [2], where “feature-
centric” evaluation are performed as opposed to “window-centric,”
allowing previous computation to be reused. Such a method,
however, relies on strong knowledge of the classifier used. More
recently, a globally optimal branch-and-bound subwindow search
method for objects in images was proposed [11] and extended to
videos [12]. Here, the classifier and the feature space used to locate
the object are dependent on a single robust feature (e.g., SIFT [13]),
making it difficult to use in the context of faces.

In this paper, we propose a novel search strategy which can be

combined with any face classifier in order to significantly reduce

the computational cost involved with searching the entire space.

The design principle is as follows: We assume that a perfect face
classifier is available, i.e., one which always provides the correct

answer. In practice, however, such a classifier does not exist and an

accurate one (as in [1], [3], [4], [6]) will be used instead. Our goal is
then to reduce the total number of classifier evaluations required to
detect and locate faces in images while still providing similar
performance levels when compared with an exhaustive search.

A proposed strategy for computational shape recognition [14]
argues that the task of visually recognizing an object can be
accomplished by querying the image in a sequential and adaptive
way. In general, this can be regarded as a coarse-to-fine approach to
perception [1], [15], [16], [17]. This “twenty questions” approach
can be described as follows: there is a fact to be verified, e.g., “is
there a face in the field of view,” and each query, which consists of
evaluating a particular function of the image, is chosen to
maximally reduce the expected uncertainty about this fact. In the
context of computer vision, such approaches have led to two
different types of search algorithms: offline and online. In the
offline versions, the “where to look next” strategy is computed once
and for all, anticipating all possible queries. It has led to efficient
algorithms for symbol recognition [15], face [16], and cat [17]
detection. In the online version, the strategy is computed sequen-
tially as information is gathered. It has led to a road tracking
algorithm [14], [18]: This approach is known as Active Testing (AT).

In this paper, we extend the active testing framework in order
to do fast face detection and localization. We provide a way to ask
questions that are general and specific with regard to the face pose
and span different feature spaces. Similarly to the “twenty
questions” game, questions such as “is the object at this location
with this size?” are asked by means of an accurate face classifier
[1], [4], [6], [9], independently of what features are used to guide
the search. We show here that this approach provides a coherent
framework, with few parameters to choose or tune, which
significantly reduces the number of classifier evaluations necessary
to localize faces. Comparison of our method with state-of-the-art
face detection algorithms and the traditional sliding window
approach indicates that our framework reduces, by several orders
of magnitude, the number of classifier evaluation needed while
maintaining similar accuracy levels on localization and detection
tasks. Even though this paper specifically focuses on frontal faces,
this approach can be extended to faces in general [19], [20], [21],
[22], [23], other object categories [24], and to most classifiers in the
machine learning literature.

The remainder of this paper is organized as follows: In Section 2,
the general framework of our method is presented along with
implementation details. Section 3 describes localization experi-
ments, and in Section 4 we compare the performance with state-of-
the-art methods on a detection and localization task. Concluding
remarks are provided in Section 5.

2 ACTIVE TESTING

The goal set forth is to detect and localize a single frontal face of
unknown size, which may or may not be present in the image. We
define the pose of a face as the pixel location of the face center and
a face scale. That is, we treat localization as placing a bounding box
around a face. In Section 4, we detail how this can be extended to
searching for multiple faces.

AT can be regarded as a search algorithm which uses an
information gain heuristic in order to find regions of the search
space which appear promising. The region which is to be observed
next is determined as information is gathered, and thus can be
viewed as an online variation of the “twenty questions” game. The
general approach is as follows: We are looking for a face in an
image, and are provided with a set of questions which help us
determine where the face is located. Questions are answered with
some uncertainty, reducing the search space and eventually leading
to the face pose.

In addition, it is also assumed that a special question regarding
the exact face pose is available. This question is treated as an
“Oracle,” always providing a perfect answer when queried, but is
computationally expensive relative to other questions. Querying
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the oracle at every location would provide the face pose but is

expensive and inefficient as certain questions are more informative
than others and help reduce the search space faster. Consequently, a
subgoal is to determine face pose with as few questions as possible.

2.1 Model and Algorithm

Let Y ¼ ðL; SÞ be a discrete random variable defining the face pose,
where L is the location of the face center (i.e., pixel coordinates)

and S is the face scale such that S can take values f1; . . . ;Mg
corresponding to M face size intervals. Additionally, Y can take
one extra value when the face is not in the image. Let

� ¼ f�i;j; i ¼ 1; . . . ; D; j ¼ 1; . . . ; 4i�1g

be a quadtree of finite size, which decomposes the image space; i

indexes the level in the tree and j designates the cell at that level
(see Fig. 1a). Every leaf is associated with a pixel in the image and
each nonterminal node corresponds to a unique subwindow in the
image, representing a subset of poses (Fig. 1b). When no face is

present in the image, then Y 2 ��1;1, where ��1;1 denotes the
complement of �1;1.

We are interested in refining the estimate of where the face is
located iteratively and hence denote �t as the probability density
of Y at iteration step t. Let ui;j;s ¼ P ðL 2 �i;j; S ¼ sÞ, �i;j � �,
s 2 f1; . . . ;Mg. By construction, calculating ui;j;s can be achieved
by summing the probability of �i;j’s children. Clearly, u1;1;s ¼
u2;1;s þ u2;2;s þ u2;3;s þ u2;4;s and similarly for any other ui;j;s. For
any node, we also denote ui;j ¼ �ð�i;jÞ ¼

PM
s¼1 ui;j;s. Let X ¼

fX1; . . . ;XKg be a set of question families, such that, for each
family k, Xk ¼ fXk

i;j; i ¼ 1; . . . ; D; j ¼ 1; . . . ; 4i�1g, where Xk
i;j is a

query from family k, about the pose subset �i;j.
The generic AT algorithm (Algorithm 1) can then be seen as

following: To begin, �0 and the first query are initialized (lines 1 and
2). Three operations are then repeated: The response is observed
(line 4); the belief of the location of Y is updated using the latest
observation (line 5); a new query is chosen for the next iteration (line

6). The iteration is stopped when a terminating criteria is achieved
(line 7). Each line is explained in detail in the following sections.

Algorithm 1. Active Testing (AT)

1: Initialize: i 1; j 1; k 1; t 0

2: Initialize: �0ð�1;1Þ ¼ �0ð��1;1Þ ¼ 1
2

3: repeat

4: Compute the test x ¼ Xk
i;j

5: Compute �tþ1 using �t and x

6: Choose the next subwindow and test:

fi; j; kg ¼ arg max
i0 ;j0 ;k0

I
�
Y ;Xk0

i0 ;j0
�

7: until Hð�tþ1Þ > 1� � and/or t < �.

2.2 Queries

The AT algorithm requires a set of query families, X ¼
fX1; . . . ;XKg, to be specified. Each query family, Xk, consists of
evaluating a specific type of image functional indexed by k.
Members of a family Xk ¼ fXk

i;j; i ¼ 1; . . . ; D; j ¼ 1; . . . ; 4i�1g are
indexed by a pose index in � (as in [17]). That is, Xk

i;j is an image
functional, where k defines a particular computation and fi; jg
specifies the pose subset. Note that these queries are generic and
need not be binary. Example queries can be seen in Fig. 1c.

In addition, perfect tests—which precisely predict the presence
of a face by using a classifier—are included in X . When this test is
used at a specific pose, either the classifier responds positively and
the face is deemed found, or conversely, the response is negative
and the face is assumed not to be at this pose. That is, we assume
no uncertainty with regard to the response of this classifier.

In order to specify the joint distribution between the face pose Y
and queries X , we make the following heuristic assumptions:

Conditional independence:

P
��
Xk
i;j ¼ x

�
; i ¼ 1 . . .D; j ¼ 1 . . . 4i�1; k ¼ 1 . . .KjY ¼ ðl; sÞ

�
¼
Y
i;j;k

P
�
Xk
i;j ¼ xjY ¼ ðl; sÞ

�
: ð1Þ

Homogeneity:

P
�
Xk
i;j ¼ xjY ¼ ðl; sÞ

�
¼ fks ðx; iÞ; if l 2 �i;j;

fk0 ðx; iÞ; otherwise:

�
ð2Þ

Here, fks characterizes the “response” to the query Xk
i;j when the

center of the face is within �i;j with size s. Similarly, fk0 is the
“response” when the center is not in �i;j. Additionally, even though
KN queries are specified, where N is the number of nodes in �, the
number of densities needed is onlyKD. That is, for each test family,
only one density per level of � needs to be specified. This is why
fks ð�; iÞ is only indexed by i.

Note that these assumptions are a simple way to make the
problem tractable: For example, the conditional independence of
queries given the location of the object Y assumption is clearly a
simplification as the same pixel values are used to compute many
queries at different levels of �. Similarly, the actual responses to
tests might in fact depend on the precise location of the face within
�i;j. The homogeneity assumption simplifies the response model
by assuming a single model for all cases. Even when using these
assumptions, however, the experiments conducted here (Sections 3
and 4) indicate that these simplifications provide a good way to
solve the problem at hand. In addition, this model should be taken
into account when choosing queries to use: Similarly to a Naive
Bayes model, queries should be individually informative.

2.3 Belief Update

Once an observation has been made, the new distribution of the
face location Y must be calculated (line 5 of AT). At initialization
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Fig. 1. (a) Each node in the tree corresponds to (b) a subwindow in the image. The root of the tree, �1;1, represents the entire image space and has four children
(�2;1;�2;2;�2;3;�2;4). (c) Example query: Here, the face center is, Y ¼ l 2 �i;j. The queryXk

i;j counts the proportion of edges in a window twice the size of �i;j, centered on
�i;j. k indicates that we count the proportion of edges on a surface twice the size of the subwindow �i;j, while fi; jg provides the pose subset in �.



(line 1 of AT), �0ð�1;1Þ ¼ �0ð��1;1Þ ¼ 1
2 , indicating that a face is

believed to be in the image with probability 1=2. Note that the

probability �0ð�1;1Þ is uniformly distributed within �1;1 by
construction. Given �t and the query response Xk

i;j ¼ x at time
step t, the updated distribution �tþ1 can then be calculated by
using Bayes formula:

�tþ1ðl; sÞ ¼
P
�
Xk
i;j ¼ xjY ¼ ðl; sÞ

�
�tðl; sÞP

s0
R
l0 P
�
Xk
i;j ¼ xjY ¼ ðl0; s0Þ

�
�tðl0; s0Þdl0

: ð3Þ

Using Assumptions 1 and 2, then

P
�
Xk
i;j ¼ xjY ¼ ðl; sÞ

�
¼ fk0 ðx; iÞ1I��i;j

ðlÞ þ fks ðx; iÞ1I�i;j
ðlÞ: ð4Þ

Let us now define the likelihood ratio as

rðx; sÞ ¼ f
k
s ðx; iÞ
fk0 ðx; iÞ

; s ¼ 1 . . .M; ð5Þ

then (3) can be written as,

�tþ1ðl; sÞ ¼
1

ZðxÞ 1I��i;j
ðlÞ þ 1I�i;j

ðlÞrðx; sÞ
� �

�tðl; sÞ; ð6Þ

where ZðxÞ is the normalizing constant. Note that the evolution

from �t to �tþ1 only relies on rðxÞ and allows for probability mass to
be shifted onto or away from �i;j, depending on the response ofXk

i;j.
In order to reduce the number of nodes to update, only a subtree

is maintained, where only nodes which have probability greater

than some threshold � are included. By construction of �, parent
nodes have probability equal to the sum of their children, hence any
node which has probability larger than � also has parent with
probability greater than � . This guarantees that applying this
threshold forms a subtree within � containing �1;1. This approx-

imation of �t allows for a compact representation of the distribution.

2.4 Query Selection

We choose to select the next query by maximizing the mutual
information gain between Y and the possible queries Xk

i;j (line 6 of
AT). This can be written as

I
�
Y ;Xk

i;j

�
¼ H

�
Xk
i;j

�
�H

�
Xk
i;jjY

�
; ð7Þ

where

H
�
Xk
i;j

�
¼ h

XM
s¼0

ui;j;sf
k
s ð�Þ

 !
: ð8Þ

Here, hðfÞ is the differential Shannon entropy of the density f . We
simplify this expression by substituting hðfÞ with the Gini Index

[25]. The mutual information then becomes

I
�
Y ;Xk

i;j

�
¼
XM
s¼0

XM
m>s

ui;j;sui;j;m

Z �
fks � fkm

�2
; ð9Þ

where ui;j;0 ¼ 1� ui;j. Note that the term
R
ðfks � fkmÞ

2 is the
euclidean distance between the densities fks and fkm, and only
needs to be computed once and then stored for fast evaluation.

Since we are interested in choosing both the region �i;j 2 � and
a query family k which maximizes the information gain, one can
simply evaluate IðY ;Xk

i;jÞ for all possible values of the triple ði; j; kÞ
and select the parameters providing the largest gain. However, as
described in Section 2.3, only a small subset of poses is ever
considered at any iteration. For example, nodes which have little
probability will surely only provide a small information gain.
Consequently, we only need to evaluate (9) for the explicitly
maintained subtree (Fig. 1a). Additionally, once a query has been
chosen, it is removed from the set of possible queries, further
reducing the amount of computation.

2.5 Terminating Criteria

At line 7 of the AT algorithm, two terminating criteria are

presented: 1) The algorithm runs until the entropy of �, Hð�Þ, is

very high, and 2) the algorithm iterates for a fixed number of steps,

�. In the first case, running until the entropy is high corresponds to

two possible outcomes: Either a face has been found and most of

the probability mass is at a single leaf of � or most of the mass is

outside the image ��1;1 and no face is believed to be present in the

image. In general, the choice of which criteria to use (1), 2), or both)

is for the user to decide. Sections 3 and 4 show the behavior of

these scenarios.
In addition, for all cases, the total number of queries is bounded

by the size of the tree and the number of query families. As the

algorithm iterates and the classifier is queried, the number of poses

with strictly positive probability decreases. This provides a

guarantee that, in the worst case, the face will be found after

having observed all the poses.

2.6 Implementation

We now provide some implementation details and give a more in-

depth algorithm for updating � (see Algorithm 2) and choosing

queries.
Before the AT algorithm begins, all features necessary to

evaluate queries from X for a given image are computed and

stored in the form of an integral image making the evaluation of a

query Oð1Þ operations (similarly to [11]). This is particularly

efficient since queries Xk
i;j compute nested subwindows.

In order to form and maintain the subtree of � (line 7), only

nodes which are above a threshold (� ¼ 0:001) are explicitly stored.

To do this, we construct � as a quadtree, and maintain a frontier

set F . F consists of any node �i;j with ui;j > � and with all children

having uiþ1;j0 < � . Applying this rule at each iteration ensures that

the maintained subtree is relevant to where the face is believed to

be located. Additionally, since the probability associated at any

node in the tree is equal to the sum of its children, we only need to

update nodes in F and recurse through the tree to update the

remaining nodes in �.
After having computed the query Xk

i;j, updating any node

�i0 ;j0 2 F is simple: If �i0 ;j0 2 �i;j, then ui0 ;j0 ¼ rðyÞui0 ;j0=Z; otherwise,

ui0 ;j0 ¼ ui0 ;j0=Z. Doing so updates � as described in (6) in an efficient

way. In addition, at any point in the updating of �, the next best

query, S, seen so far is maintained. The denominator Z is calculated

once and for all, and used to calculate (9) when each node is visited.

Only the best score is kept and ultimately chosen for the following

iteration of the AT algorithm. That is, we compute (6) and (9) one

after the other, requiring only one pass through the subtree per

iteration.

Algorithm 2. Update(�i0 ;j0 ;�i;j; x; S;F )

1: if �i0 ;j0 2 F then

2: if �i0 ;j0 � �i;j then

3: ui0 ;j0  rðxÞui0 ;j0=Z
4: else

5: ui0 ;j0  ui0 ;j0=Z
6: end if

7: Maintain F
8: else

9: for Each child, �i0þ1;j00 , of �i0 ;j0 do

10: Update(�i0þ1;j00 ;�i;j; x; S;F )

11: end for

12: ui0 ;j0  
P

j00 ui0þ1;j00

13: end if

14: S ¼ maxðS;maxkIðY ;Xk
i0 ;j0 ÞÞ
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3 FACE LOCALIZATION

To demonstrate that this framework can be used to significantly
reduce the number of classifier evaluations required when
searching for a face in an image, we begin by evaluating the AT
algorithm on a pure localization task (as done in [11]). In the
following set of experiments, each image contains exactly one face.
We describe in Section 3.1 the queries used to localize faces. In
Section 3.3, we show how AT performs in terms of time, number of
classifier evaluations, and accuracy.

We perform the following experiments on the Caltech Frontal
Face data set [26], which consists of 450 images (896� 592

pixels), each containing exactly one of 27 different faces in
variously cluttered environments and illuminations. Face sizes
range from approximately 100 to 300 pixels in width. We choose
M ¼ 4 possible face size intervals (½100; 150�, ½150; 200�, ½200; 250�,
½250; 300�). All experiments are conducted on a 2.0 Gigahertz
machine.

3.1 Face Queries

To locate faces, we first specify the following set of test families,
X ¼ fX1; . . . ;XKg, and their associated distributions (fks ; f

k
0 ). In the

following experiments, K ¼ 30.
The first family of tests, X1, calculates the proportion of edge

pixels (defined and computed as in [15] by means of an edge
oriented integral image) in a window associated with the pose �i;j.
That is, X1

1;1 is the proportion of pixels which are edges within �1;1

and similarly for all �i;j. Test families X2-X5 are similar to X1 in
that they compute the proportion of edge pixels in a window
centered on �i;j, but of larger size, by a factor F ¼ f2; 3; 4; 5g (see
Fig. 1c). Note that this factor is different from the scale S. Using
these pose-indexed tests provides a way to test arbitrarily large
regions, even when �i;j is a small subwindow. These tests also
allow for overlapping �i;j regions and more precise estimation of
the face scale.

Families X6-X9 are similar to X1 but compute the proportion of
edge pixels in a particular direction (four possible directions).
Similarly to families X2-X5, families X10-X25 allow for a scale
factor for tests in a particular direction (four directions � four
factors). Using integral images allows for computation of these
tests with only four additions, making them very efficient.

We choose to model all the fks for s 2 f0; :::;Mg using Beta
distributions. The Beta family permits to model a wide range of
smooth distributions over the interval ½0; 1� with only two
parameters. The parameters of each distribution are determined
offline from a small training data set where the face location and
scale is known (more details are given in Section 3.2).

Finally, families fX26; . . . ;X30g are the perfect tests and involve
testing for a face using a BC. Each family specifies testing for a face
at all scales within a given interval (s 2 f1; :::;Mg). For each
interval, we test for face sizes in increments of 10 percent of the
smallest face size (total of 13 face sizes in the range ½100; 300�). In
terms of operations, evaluating this test requires, on average,
56 additions, one multiplication, and one comparison, per face size,
making it significantly more costly than other queries. Since the BC
is only informative when the pose is very specific, we restrict this
test to leaves in �. These BCs are trained and provided by OpenCv
[27], but modified to restrict testing to specific regions and face
sizes. Even though better classifiers have recently been developed,
we choose this one as it is publicly available and widely used.

3.2 Offline Training

We choose to model each fks ð�; iÞ with a Beta distribution with
parameters ð�; �Þ. To do this, we randomly selected 50 images,
from the Caltech Frontal Face Data set [26]. Note that far fewer
images are used for training here when compared to other search
methods (see [11], [12]) which typically use on the order of

103 images to train their systems. The estimation of the fks ð�; iÞ
parameters is broken into two parts.

We first estimate all the background densities. That is, for each

k and i, we randomly select 100js per image such that the face

center is not in �i;j. We then compute the tests Xk
i;j ¼ x and use

these to compute the parameters using maximum likelihood

estimation with 5,000 datapoints.
To estimate the foreground densities, a similar procedure is

used. We describe the case s ¼ 1. For each k and i, we randomly

select 100js in each image such that the face center is in �i;j. The

parameters of fk1 ð�; iÞ are then estimated from the tests Xk
i;j ¼ x. As

before, 5,000 datapoints are used to estimate ð�; �Þ. In order to

estimate fks ð�; iÞ for 1 < s � 4, we subsample the images and repeat

the same procedure (similar to [16]). Additionally, the
R
ðfks � fkmÞ

2

term from (9) is then calculated by using a Monte Carlo

approximation, and stored in a lookup table.

3.3 Single Face Localization

We set up the AT algorithm with BCs ðATþ BCÞ to run until a face

is found or until 5� 105 classifier evaluations have been performed

(see Fig. 4 for details on how this was chosen). We compare this

with a sliding window approach using the identical BCs

ðSWþ BCÞ and letting it run until a face is found or until all poses

have been observed. Note that both ðATþ BCÞ and ðSWþ BCÞ
have the same pose space: all pixels and face sizes (e.g., pose space

size¼ 896� 592� 13 ¼ 6;895;616). In order to avoid any unfair bias

as to where faces may be located, we randomly pick initial starting

locations in the image for ðSWþ BCÞ, looping around the image in

order to observe all the poses. We report that ðATþ BCÞ allows for

exponential computational gains over the sliding window ap-

proach while keeping similar performance levels.
Fig. 2 shows a typical behavior of the AT algorithm on a given

image. In general, the order in which queries are posed is complex

and, in some cases, counterintuitive—validating the need for an

online search strategy.
In Fig. 3a, we compare the accuracy of ðATþ BCÞ and

ðSWþ BCÞ on the remaining unused 400 images of the data set

using an ROC curve. We observe that generally ðATþ BCÞ does

not suffer much from a loss in performance compared to the brute

force sliding window approach. Note that the difference between

the two methods is not significant.
To compare how much time ðATþ BCÞ and ðSWþ BCÞ take to

locate a face depending on the size of the pose space, we randomly

selected a subset of 50 images from the testing set, subsampled

these to have images of sizes 112� 74, 224� 148, 448� 296,

672� 444, and 896� 592. Fig. 3b shows the average time of both

methods for each image size. Note that the overhead of

ðATþ BCÞ—the time to evaluate all queries tested, the update

mechanism, and the query selection—is included in this plot (the

additional time to compute an integral image for oriented edges is

not included as it is negligible). As expected, we see that ðSWþ BCÞ
is linear in the number of poses. However, the total time ðATþ BCÞ
takes to complete is significantly lower than ðSWþ BCÞ and even

more so at large image sizes. In fact, ðATþ BCÞ remains almost

logarithmic even as the number of poses increases. This suggests

that AT uses a form of “Divide and Conquer” search strategy. Note,

that at image sizes smaller than ð112� 74Þ, ðATþ BCÞ is slower

than ðSWþ BCÞ due to the overhead.
Fig. 3c shows the average number of classifier evaluations both

ðATþ BCÞ and ðSWþ BCÞ perform when changing the image

size. Notice that the difference between ðATþ BCÞ and ðSWþ BCÞ
is even larger than the difference reported in Fig. 3b and that the

AT algorithm significantly reduces the number of classifier

evaluations. For the largest image size, AT requires 100 times

fewer evaluations than SW.
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In Fig. 4a, we show how the accuracy of ðATþ BCÞ is affected
by the total number of classifier evaluations allowed. The dotted
line indicates the performance of ðSWþ BCÞ when the entire pose
space is observed. We see that after observing the entire pose space
(Oð106Þ evaluations), 98 percent accuracy is achieved. Performance
results are shown when ðATþ BCÞ is stopped when either a face
has been located or after (103, 104, 105, and 106) classifier
evaluations have to be performed. After only 104 classifier
evaluations are nearly 90 percent of detectable faces found. By
105 evaluations, AT performs at the same accuracy level as SW. In
general, we can see in Fig. 4b that the number of evaluations
required is approximatively Geometric ðp ¼ 10�4Þ. Hence, on
average, 0.0014 of the total pose space is evaluated by the classifier.

As in [15], Fig. 4c shows a randomly selected test image, and the
corresponding computational image associated (right). The com-
putational image is a gray-scale image, which indicates the number
of times each pixel has been included in a queried window (all
types of queries included). Darker regions show areas where little
computation has taken place, while white regions show important
computation. As expected, we can see that regions of the image
which contain few features (left part of the image) are not
considered for much computation.

4 FACE DETECTION AND LOCALIZATION

We now test the AT algorithm in a much harder setting—a
detection and localization task. We do this by looking for faces in
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Fig. 3. (a) ROC curve of both SW þ BC and AT þBC to find a face in the Caltech Frontal Face data set. The performance of both methods is approximately identical.
(b) Average computation time with varying pose space size. Note that image size is in logarithmic scale. The AT algorithm performs in almost logarithmic time compared
to SW. (c) Average number of classifier evaluations when the pose space increases. Additionally, a zoom of the AT performance is provided.

Fig. 2. Sequence of queries posed by the Active Testing algorithm on a test image from the Caltech Frontal Face Data set. In each image, a test Xk
i;j is computed: White

boxes show the pose, �i;j, queried while black boxes show the subimage queried. The number indicated in the top left of each image is the iteration number of the AT
algorithm. In image 3123, the Boosted Cascade is evaluated and a face is found at a given scale (green box).

Fig. 4. (a) The proportion of faces detected increases with the number of classifier
evaluations: 90 percent of faces are correctly detected with only 104 evaluations
and with 105 classifier evaluations, the AT algorithm performs as well as SW, but
much faster. (b) Histogram of the number of classifier evaluations. The dotted
black line represents the point mass function of the Geometric distribution with
parameter p ¼ 1=9; 248. (c) Face image and associated computation image. This
gray-scaled image indicates the number of times each pixel has been included in a
queried window.



the MIT+CMU data set [28]. This data set contains 130 images, of
various sizes, where some images contain no faces and others
contain an unknown number of faces. Face sizes range from
20 pixels to the width of images. As in the previous experiment, we
initialize the AT algorithm similarly to that in Sections 2 and 3.

To find multiple face instances, we assume that at any point in
time, the remaining number of faces to be found in an image
follows a Poisson distribution with parameter �Q, where Q is the
number of pixels unobserved in the image and � is a face rate. We
have chosen � ¼ 10�4, corresponding to one face per 100� 100
pixel image on average and hence �0ð��1;1Þ ¼ e��Q. We then run the
AT algorithm until �tð�1;1Þ < � ¼ 10�5. When a face is found, edges
from the detected face region are removed from the integral
images and the remaining poses are assigned uniform probability.
The algorithm is then restarted with the updated �0ð��1;1Þ.

Fig. 5a shows the ROC curve of both the ðATþ BCÞ and
ðSWþ BCÞ methods on the MIT+CMU data set. In both cases, no
postprocessing step was applied to these results (i.e., No
NonMaximum suppression). First, we note that the MIT+CMU
testset is much harder than the Caltech Frontal Face set. In general,
the performance of the AT algorithm is comparable to the brute
force approach. There is, however, a slight performance decrease
in ðATþ BCÞ when compared to the exhaustive search. That is, we
notice that even though the classifier used (BC) is not very good
(when compared to state-of-the-art classifiers), little accuracy loss
is observed when used in the AT framework.

From this experiment, ðATþ BCÞ required Oð108Þ classifier
evaluations over the entire testset, while ðSWþ BCÞ required
Oð109Þ evaluations. Fig. 5b shows the number of classifier
evaluations required by both ðATþ BCÞ and ðSWþ BCÞ on each
image. Generally, we see that AT is still able to significantly reduce
the total number of evaluations required even though the number
of faces in the images is a priori unknown. Fig. 5c shows a similar
result in terms of time. Again, computational gains are of one order
of magnitude over the entire testset.

Notice in Figs. 5b and 5c that for images of the same pose space
size, the number of classifier evaluations and time necessary for
ðATþ BCÞ to terminate vary. This variance is due to the fact that
ðATþ BCÞ stops when the estimate of having a face in the image is
very low: �tð�1;1Þ < � ¼ 10�5. Hence, in images which contain

many face-like features, the algorithm will need to visit many more

locations to see if faces are still present. This is precisely what is

observed in Figs. 5b and 5c.

5 CONCLUSION

We have proposed an Active Testing framework in which one can

perform fast face detection and localization in images. In order to

find faces, we use a coarse-to-fine method while sampling

subwindows which maximize information gain. This allows us to

quickly find the face pose by focusing on regions of interest and

pruning large image regions. We show through a series of

experiments that the active testing framework can be used to

significantly reduce the number of classifier evaluations when

searching for an object. Exponential speedup is observed when

detecting and locating faces compared to the traditional sliding

window approach (particularly on large image sizes), without

significant loss in performance levels, indicating that this method is

scalable to larger image sizes.
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