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Abstract—We identify and explain a bias-variance dilemma
which exists in the problem of approximate matrix Joint Diago-
nalization (JD) as well as in many related Blind Source Separa-
tion (BSS) problems. We consider solving a blind identification
problem based on JD, where at least one of the matrices under
JD is positive definite. We then compare two methods to solve
the problem: The first method consists of the so-called Hard-
Whitening (HW) followed by Orthogonal JD (OJD), and the
second method is based on Non-Orthogonal JD (NOJD). We
identify a bias-variance trade-off in this problem, and argue that
there is a region depending on the noise level, the number of
sources and the number of (statistics) matrices used in the JD
process, where the method based on OJD can have less estimation
error than the one based on NOJD, while the former always has
higher estimation bias than the latter. Simulations support the
arguments presented. We also report a constraint proposed in
the literature which might be helpful in finding a good trade-off
point between bias and variance.

I. INTRODUCTION

Approximate Matrix Joint Diagonalization or more briefly
Joint Diagonalization (JD) has found many applications in
blind signal processing methodology, and many algorithms for
this problem have been proposed in the past several years.
Simply yet vaguely phrased, a JD algorithm tries to find a
non-singular n × n matrix B such that it jointly diagonalizes
a set of N given n × n symmetric matrices {Ci}N

i=1 “as
much as possible”. Here diagonalization is meant in the sense
of congruence i.e., BCiB

T are ought to be “as diagonal as
possible”, where BT is the transpose of B. The matrices to
be jointly diagonalized are usually statistics matrices (e.g.,
covariance matrices or cumulant slice matrices) formed from
the observed data. The joint diagonalizaton problem can be
divided in two categories with remarkably different properties:
Orthogonal Joint Diagonalization or OJD and Non-Orthogonal
Joint Diagonalization or NOJD. Historically, OJD was intro-
duced before NOJD as a part of the JADE algorithm [1]. In
JADE and the later algorithms such as SOBI [2], first a Hard-
Whitening (HW) step is applied to the data and the remaining
orthogonal part of the un-mixing matrix is found through
an OJD step. It is well-known that this approach leaves an
unresolved bias. To combat the bias the idea of NOJD was
proposed in [3]. Here, we shall describe a scenario where
NOJD due to high variance, and despite its low bias, can result
in a high total estimation error in the underlying BSS problem.
Our arguments are based on the sensitivity analysis developed
in [4]. We mention that another bias-variance dilemma whose

cause is the large errors in estimating cumulants in small
sample sizes has been observed in [3].

The organization of the paper is as follows: In Section II, we
give a brief and rather abstract explanation of the JD problem
as an estimation tool in the context of BSS. In Section III,
we recall the main differences between OJD and NOJD in
terms of sensitivity or variance in estimation. In Section IV
we explain the underlying bias-variance dilemma. In Section
V, we perform some simulations which support the arguments
in Section IV. We conclude the paper in Section VI with
conclusions and suggestions for future work.

II. WHY WE DO JOINT DIAGONALIZATION?
In many blind identification problems the underlying

physics leads to a model in which we have N symmetric
matrices {Ci}N

i=1 of the form

Ci = AΛiA
T , 1 ≤ i ≤ N, (1)

where A is the non-singular n × n mixing matrix and Λ i

is a diagonal matrix. In a typical problem A and Λ i’s are
unknown, and Ci’s are statistics matrices associated with an
observable signal. The goal is to estimate A or its inverse
based on the set {Ci}N

i=1 in order to achieve separation of
sources. Note that (1) means that A−1CiA

−T = diagonal for
1 ≤ i ≤ N . This suggests that if we could find a matrix B,
such that B−1CiB

−T = diagonal for 1 ≤ i ≤ N , then we
might conclude that B = A−1 up to row permutation and
scaling which is usually an acceptable ambiguity. If that is the
only ambiguity, then we say that A−1 and B are essentially
equal. On the other hand, the mentioned conclusion cannot be
valid always and one needs certain uniqueness conditions to
guarantee the essential equality of A−1 and B. In practice,
due to noise or estimation errors or because our underlying
model is not accurate we only have

Ci ≈ AΛiA
T , 1 ≤ i ≤ N. (2)

The main idea behind approximate joint diagonalization is that
if B is such that BCiB

T ≈ diagonal for 1 ≤ i ≤ N , then B is
a good (essential) estimate of A−1 and the more matrices we
use the better the estimate will be. We emphasize that the JD
problem is defined in the context of an estimation problem for
which bias and variance can be defined. The exact analysis of
this estimation problem is very difficult, and we are not aware
of any accurate such analysis. As mentioned earlier OJD and



NOJD are two different forms of JD. In the OJD problem A
and B are assumed to be orthogonal, whereas in the NOJD
problem more freedom is allowed and they are assumed to be
only non-singular. As one expects NOJD can be much more
difficult than OJD both in algorithmic sense (as evidenced by
so many different algorithms proposed for NOJD) and in the
sense of the behavior of the solution (see the next section
and [5] for more details). Also for recent trends on NOJD
algorithms see [6], [7] and [8].

III. WHY ARE NOJD AND OJD DIFFERENT?

Working with an orthogonal matrix (because its condition
number is 1) is easier than a non-orthogonal matrix. This
can be one source of the difference between OJD and NOJD;
however, the main difference between OJD and NOJD is that
OJD is generically a well-defined problem when we have only
N = 1 symmetric matrix and adding more matrices helps
combat the noise in an averaging process. By a generic matrix
here we mean a matrix whose eigenvalues are distinct. The
diagonalization of a single symmetric matrix by an arbitrary
matrix is not a well-defined problem, unless we assume the
diagonalizer is an orthogonal matrix. However, by inclusion
of N = 2 symmetric matrices we can define a well-defined
simultaneous or joint diagonalization problem. Although, with
only two matrices the NOJD problem can have a unique
solution but still it might be ill-conditioned, by which we
mean that a small change in the matrices can change the
joint diagonalizer significantly. As many other problems the
uniqueness and sensitivity issues of the JD problem are closely
related. If the underlying noise-free problem has a unique
solution, then the noisy version of the problem can be robust to
noise; but this is not an abrupt process, i.e., there is a region
where the underling noiseless problem has unique solution
while the solution is not “unique enough”. This leads to a
no-robust solution for the noisy problem. For the OJD this
issue of ill-conditioning is not as severe as is for the NOJD
problem (see [5] for discussion on this issue). To measure the
ill-conditioning of the NOJD problem an important parameter
is the so-called modulus of uniqueness introduced in [4]. Let
{Ci}N

i=1 be as in (1). Denote by Λ an N × n matrix whose
ith row is the diagonal of Λi. The modulus of uniqueness for
{Ci}N

i=1 is defined as the absolute value of the cosine of the
angle between the columns of Λ and is denoted by ρ. Obvi-
ously, ρ measures the co-linearity of the columns of Λ. One
can show that if ρ < 1, then BCiB

T = diagonal(1 ≤ i ≤ N)
implies that BA is essentially a diagonal matrix; hence, the
underlying noiseless NOJD problem has an essentially unique
solution. As one expects and is shown in [4], if ρ is close to
1, then the noisy NOJD problem will be ill-conditioned and
finding a B which approximately diagonalizes all the statistics
matrices will not yield a good estimate of the unknown un-
mixing matrix A−1. The generic behavior of ρ in terms of n
and N is quite interesting. If N is small and n is large, then
ρ will be very close to 1 (e.g., if N = 2 and n = 40, then
ρ > 0.997 [4]). However, as N increases ρ drops very fast in

such a way that a logarithmic relation between N and n will
ensure acceptable ρ or well-conditioned NOJD problem.

IV. A BIAS-VARIANCE DILEMMA

In many occasions, we can assume that at least C1 is
positive definite, e.g., if C1 is a covariance matrix. Now,
assume that our matrices in (1) are contaminated with noise
according to this model

Ci(t) = AΛiA
T + tEi, t ∈ [−δ, δ], δ > 0, (3)

where t measures noise amplitude or gain. We assume that E1

and δ are such that C1(t) remains positive definite. One can
use this model to model noise, finite sample effects or error
in the original model. Two approaches based on JD have been
proposed to estimate A (or A−1): First approach which is a
part of the JADE [1] and SOBI algorithms [2], is based on the
idea of the so-called Hard-Whitening (HW). For this purpose

first we find C
1
2
1 (t), the square root of C1, and then find a

new set of matrices of the form

Ĉi(t) = C
− 1

2
1 (t)Ci(t)C

− T
2

1 (t) = ÂΛiÂ
T + tÊi, (4)

where Â = C1(t)−
1
2 A, and Êi is also found accordingly.

Note that Ĉ1 = I where I is the identity matrix. If noise
is not very strong (i.e., δ is small), then Â is close to an
orthogonal matrix. This step is called Hard-Whitening. In the
SOBI or the JADE algorithm this step is applied to the data
rather than to the statistics matrices directly; however, this
will not have significant effect on our discussion. The next
step in estimating A−1 or an un-mixing matrix is to jointly
diagonalize the set {Ĉi}N

i=1 in an OJD process. As mentioned
in [9] and [3], with the HW we are introducing a bias in the
estimation which is not removable even when we add more
matrices, i.e., increase N or add more samples. The reason
is that we are assuming Â to be orthogonal while it is not.
To avoid this bias, Yeredor suggested to use the other method
which is the NOJD of {Ci(t)}N

i=1 [3]. In this method we try
to jointly diagonalize {Ci(t)}N

i=1. One can show that if ρ < 1
and if Ei’s (for 2 ≤ i ≤ N ) are i.i.d. with zero mean, then the
estimation error will go to zero as N increases. Also when all
Ei’s are positive definite even the estimate produced by the
NOJD process will be biased; however, the source of the bias
is the Ei’s being of non-zero mean. To see these facts please
consult [4]. A vulnerability of NOJD is that when the modulus
of uniqueness ρ is close to unity, then the NOJD problem
becomes very sensitive or ill-conditioned, and the power or
variance of the noise will be amplified in the estimation
process. In particular, as mentioned before, when n is large
and N is small, ρ can be very close to unity and may result
in an ill-conditioned NOJD problem. On the other hand the
OJD process, as mentioned before, does not generically suffer
from this form of ill-conditioning, and it is much more robust
and has less estimation variance. Therefore, when N is small
and n is large we have a bias-variance dilemma in estimating
A−1 in the model (3). Recall that any estimation error has
two components due to the bias and variance of the estimation.
Note that if noise is not very weak (i.e., t is not close to zero),



as N increases the bias-variance dilemma dilutes very fast
since the modulus of uniqueness, in a generic case, improves
very fast by N ; and NOJD will become the favorable method.
Moreover, as t increases the bias in the HW method also
increases; therefore, most likely for strong levels of noise also
NOJD should be the favorable method, even in the case of
large ρ. In summary, sensitivity analysis of the NOJD and OJD
problems predicts that there must be a region in terms of n, N
and t in which HW followed by OJD will outperform NOJD
in estimating A in the model (3). The exact investigation of
this bias-variance dilemma requires an accurate bias-variance
analysis of the related estimation problem. However, in the
next section we perform some experiments which support the
qualitative analysis we gave.

V. EXPERIMENTAL OBSERVATIONS

Now, we perform some numerical simulations to observe
the mentioned bias-variance trade=off. We are interested in
the situation where the method based on OJD outperforms the
method based on NOJD. For this we generate some matrices
according to (3) and apply the two methods to estimate A−1.
We should mention that as many other numerical problems
the observed performance depends both on the conditioning
of the problem and the algorithm used; and for this reason it
can be rather hard to distinguish the source of a low quality of
the performance. This is especially true for NOJD algorithms
which show very different behavior in different scenarios.
For this reason we choose three different NOJD algorithms
QRJ2D, FFDIAG and UWEDGE introduced in [10], [11] and
[6], respectively. Due to space limitations we do not include
more experiments which deal with actual data rather than just
the estimated matrices.

Example 1: In the first example we generate matrices
according to model (3), change t and N , and find the matrix
B with three methods: First, HW applied to the matrices
followed by OJD and we denote this method by HW+OJD;
second, we do NOJD using the QRJ2D algorithm and denote
the method by QRJ2D; and third, we do NOJD using the
FFDIAG algorithm and denote it by FFDIAG. More specific
settings are: We set n = 40 and try N = 2, 3, 4, 5, 10, 40
and t = 0, 10−6, 10−5, 10−4. We choose a random A with
condition number of around 10 so that the conditioning of
A does not act as a major factor. The Λi’s are of i.i.d.
diagonal elements uniformly distributed in the interval [0, 1].
We generate E1 = N1N

T
1 (to make sure C1 is positive

definite) and normalize it such that its Frobenius norm ‖E1‖F

is 1. Here, N1 is a matrix of i.i.d. entries with standard normal
distribution. For 2 ≤ i ≤ N we set Ei = Ni + NT

i and
again normalize it such that ‖Ei‖F = 1, where Ni is a
random matrix with similar distribution as N1. We find B,
the estimate of A−1, via the three mentioned methods, and
repeat the experiment K = 100 times for each value of N
and t. The performance is measured by

Index(P ) =
n∑

i=1

(
n∑

j=1

|pij |
maxk |pik|−1)+

n∑

j=1

(
n∑

i=1

|pij |
maxk |pkj |−1)

(5)

with P = BA. Note that Index(BA) ≥ 0 and equality
happens only when B is essentially equal to A−1. We find
the median of the K Index values for each set of variables
and Figure 1 shows the graphs of Index(BA) in terms of
N for different values of noise gain t. We can explain the
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Fig. 1. Comparison of the performance of three methods HW+OJD, QRJ2D
and FFDIAG in terms of N as noise level varies in Example 1.

graphs based on the bias-variance trade-off explained before.
For t = 0 since the bias introduced by HW is zero, the
only source of error is finite precision numerical errors; and
we see that HW+OJD outperforms NOJD based methods,
because the NOJD methods are numerically more sensitive.
As t increases, e.g., if t = 10−10, the situation changes little
bit, for small N still HW+OJD outperforms the other two
mrthods, but for N ≥ 10, FFDIAG outperforms the other
two methods. Note that QRJ2D underperforms both of the
methods. We do not know its exact source, but it might
be related to certain normalization in the QRJ2D algorithm
which can cause loss of accuracy. Although, we have not
shown it, but when one includes much more matrices (i.e.,
when conditioning improves) and if noise is not too weak
this problem becomes less visible. For stronger noise levels,
such as t = 10−5 we see that at N = 2, HW+OJD and
FFDIAG have very similar performances but as N increases
again FFDIAG prevails. This time the method using QRJ2D
also catches up faster, and soon both the NOJD based methods
have close performances. For t = 10−4 the bias is so strong
that even for N = 2, HW+OJD has worse performance than
FFDIAG. Of course, for both methods the Index(BA)’s are
very high. In the graphs for t = 10−5 and t = 10−4 we clearly
see the harmful effect of the bias that HW causes and cannot be
removed by increasing N , whereas the performance of NOJD
based methods by increasing N improves significantly.

Example 2: In our simulations when we used the recently
proposed UWEDGE algorithm [6] for NOJD, the bias-variance



trade-off when N was above 2 was not as severe as the one
in Example 1. Specifically, the performance of UWEDGE for
N = 3 or N = 4 was not very bad. It seems that a re-
normalization constraint (proposed in [12]) included in the
UWEDGE algorithm and modified in such a way that the
algorithm can accommodate non-positive definite matrices,
is responsible for this behavior. The mentioned constraint,
requires the rows of B, in each iteration of the algorithm, to
be normalized such that the absolute values of the diagonal
elements of BC1B

T are one. Note that this constraint is
automatically satisfied in the first method, i.e., HW+OJD,
where BC1B

T is identity. But in the UWEDGE algorithm,
BC1B

T will not be diagonal, necessarily. Nevertheless, it
seems that for small N the solutions from UWEDGE and
HW+OJD are very close to each other. Also the implication
of this constraint is that UWEDGE will give a biased answer.
It seems that the bias is not significant when N becomes
large while for small N the bias helps to reduce the variance
and hence the total error compared to when FFDIAG or
QRJ2D is used. The graphs in Figure 2 show the results
of the experiments similar to our previous ones except that
here in addition to HW+OJD, we use NOJD using UWEDGE
and its version with no normalization denoted by UWEDGE-
NN. As one can see UWEDGE-NN performs similarly to
FFDIAG; and for small N , UWEDGE and HW+OJD perform
similarly. It is interesting to note that difference between
the performance of UWEDGE and UWEDGE-NN for large
values of N as t increases is not significant, although for
large enough N and higher t, due to the bias, UWEDGE-NN
slightly outperforms UWEDGE. Therefore, the bias introduced
by the re-normalization in UWEDGE is not significant while
it significantly reduces the variance (and hence the error) of
the estimation when N is small.
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Fig. 2. Comparison of the performance of three methods HW+OJD,
UWEDGE and UWEDGE-NN in terms of N as noise level varies in Example
2.

VI. CONCLUSIONS AND FUTURE RESEARCH

We described a bias-variance dilemma which exists in the
problem of JD when at least of one the matrices is positive
definite. We identified a region depending on the noise level,
the number and the dimension of the matrices, where the
NOJD method which introduces low bias can result in more
estimation error than hard-whitening followed by OJD. In
our experiments also we found that a normalization used in
the UWEDGE (and QDIAG [12]) algorithms can serve as a
good method to bring about a good trade-off between bias
and variance. Our arguments and analysis were based on the
sensitivity analysis of the JD problem, and further research
is needed to investigate the bias-variance dilemma based on
detailed statistical analysis. Also whether the mentioned bias-
variance trade-off can have practical implications should be
investigated further. In our experiments the high variance
became significant when we had low to moderate level of noise
and very few very large matrices, which in some practical
problems might be a realistic scenario.
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