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Abstract. The problem of estimating probabilistic deformable template models in the
field of computer vision or of probabilistic atlases in the field of computational anatomy
has not yet received a coherent statistical formulation and remains a challenge. In this
paper, we provide a careful definition and analysis of a well defined statistical model based
on dense deformable templates for gray level images of deformable objects. We propose
a rigorous Bayesian framework for which we can derived an iterative algorithm for the
effective estimation of the geometric and photometric parameters of the model in a small
sample setting, together with an asymptotic consistency proof. The model is extended
to mixtures of finite numbers of such components leading to a fine description of the
photometric and geometric variations. We illustrate some of the ideas with images of
handwritten digits, and apply the estimated models to classification through maximum
likelihood.

1. Introduction

Modeling the geometric variability of object classes with deformable templates has
proved to be a powerful tool in image analysis. Important applications can be found
in general object detection and recognition problems in vision, ([6], [12], [1], [4]), where in
addition to explicit modeling of geometric variability the deformable template framework
facilitates the formulation of credible generative models for the data. Another important
application is in medical imaging involving the quantitative analysis of anatomies [11, 19].
Here deformable models offer two important contributions: the possibility of generating
digital anatomical atlases and the emphasis on deformation “costs” as the core of a quan-
titative analysis of shape variability. Over the last decade progress has been made in
formulating a metric approach to shapes. Shape manifolds and their metrics have been
properly defined using deformation costs and actions of infinite dimensional transforma-
tion groups [16, 18, 17, 5, 20]. Originating in Grenander’s pattern theory this direction of
research has produced a rich family of shape spaces, and the study of their properties and
intrinsic geometries is now an active field of research.

On the other hand the probabilistic and statistical side of the deformable template
framework has received less attention. In [3] a coherent probabilistic deformable model is
proposed using Gaussian random vector fields to model the deformation process with i.i.d
noise added to the deformed template at the observation pixels, but no proposals are offered
for estimating the relevant parameters. In general very little can be found on estimating a
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dense deformable model from a relatively small training set of images. Of interest are the
estimation of the covariance structure of the random deformation field (i.e. the metric) as
well as the template image. As we will see there are some non trivial conceptual problems
that arise in a rigorous formulation of these issues which are often ignored or buried in ad
doc approximations.

In terms of estimating the metric (covariance structure of the deformation field) one finds
little beyond the wide spread use of PCA analysis: assume that the template is known,
then build a PCA model from the optimal deformations computed between the template
and each observation. This point of view suffers from two important drawbacks: in the
small sample setting, the empirical covariance is degenerate leading to ad hoc smoothing
and thresholding methods; furthermore, this cannot provide a coherent statistical scheme
since the initial optimal matchings are no longer compatible with the updated covariance
structure. This problem seems to be generally ignored despite the fact that these algorithms
fail to be statistically consistent as the sample size grows.

Even less can be found on the problem of estimating the template. A trivial possibility,
used quite often, is to choose one of the observed images. This option can be viewed as an
‘apriori’ guess with the drawback that the resulting template will be corrupted by noise
and only defined on a discrete set of pixels. A more involved solution in the context of
metric shape spaces is to compute a template as an ‘average’ image (Karcher mean) for
the Riemannian metric on the space of images. Specifically one searches for the point on
the image manifold that minimizes the distances to all samples.

It is important to emphasize that the space of templates is typically distinct from the
space of observed images (noisy and discretized). Templates are smooth functions defined
on continuous domains whereas images are defined on discrete domains, and are not neces-
sarily smooth. Usually this problem is ignored and one considers the initial template as a
smoothed (“denoised”) and interpolated version of one of the observations. Other observa-
tions are “projected” on the orbit of this template by computing the optimal deformation
given a noise model. The Karcher mean is then computed yielding a template. In some
cases this process is iterated. Even if this provides an effective algorithm to compute a
template, it is sensitive to the choice of the initial observation and to the noise present
there.

An important step towards the statistical formulation of template estimation is developed
in [10] through a maximum likelihood point of view leading to an approach analogous to
generalized Procrustes analysis. The stochastic model for the observed image is

y(x + u(x)) = I0(x) + εx, εx ∼ N (0, σ2), x ∈ X

where X is the pixel grid, I0 is the template, u is a random deformation field with a given
distribution and (εx)x∈X is white noise (a more complex Fourier-Von Mises image model is
also provided but we work here with the simpler Gaussian model since it does not change
the overall analysis). In this model, σ is fixed, u is a hidden variable, and the model
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parameter I0 is estimated from data as

Î0 = argmax
I0,u1,··· ,un

pI0(u1, · · · , un|y1, · · · , yn) = argmax
I0,u1,··· ,un

n
∑

i=1

(

log(pI0(yi|ui)) + log(p(ui))
)

The above approach gives interesting results in several template estimation problems but
is not entirely satisfactory if we want to define a coherent statistical framework (see also
comments in subsequent discussion [15].) Indeed, since the image y is observed on a discrete
grid of pixels, the variables (y(x + u(x)))x∈X are not observed for a generic displacement
u. This problem is handled by interpolation. However this still does not provide a well
defined statistical model for the observed data. Furthermore no proposal is provided for
estimating the metric together with the template, nor is the noise parameter (σ) estimated.
A similar approach is proposed in [14].

In [8, 9] a related problem is addressed in the context of object detection. Objects are
modeled through a sparse representations consisting of an object specific probabilistic data
model around interest points on the object and a generic background model everywhere
else. A model for the geometric arrangement of the interest points is introduced as well.
The Bayesian formulation enables the estimation of models from small data sets using
variants of the EM algorithm. The sparse framework using interest points raises some
complications in formulating well defined statistical models. It also requires the computa-
tion of matches between point sets leading to difficult combinatorial optimization problems
in the estimation procedure.

In this paper our goal is to propose a coherent statistical framework for dense deformable
templates both in terms of the probability model, and in terms of the estimation procedure
of the template and of the deformation covariance structure. The framework is extended to
mixtures of template models, which prove useful for modeling heterogeneous object classes.
The observations are modeled on a fixed discrete grid but the template and the deformation
field are defined on continuous domains. For simplicity we assume an additive Gaussian
noise model, but the theoretical and algorithmic setting can be easily generalized to other
forms of data models.

We do not parameterize the template through its values on the observation grid, rather
as a finite linear combination of kernels defined on the continuum. The deformation field
is defined in a similar form and the covariance structure reduces to a finite dimensional
covariance matrix. Estimation is formulated in a Bayesian framework with priors both
on the template parameters and on the covariance parameters. We show that such apriori
smoothing is essential in small sample problems. Estimation is formulated as a well defined
maximum a-posteriori problem, with missing data - the deformations. We show that with
some mild assumptions this procedure is consistent.

An EM formulation is proposed for estimation with finite samples. The expectation
(E) step cannot be computed analytically due to the complex nature of the conditional
distribution on the missing variables. A simple approximation is proposed using the mode
of this distribution. For a different form of approximation to the estimation procedure and
alternative photometrically invariant data models see [4].
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The paper is organized as follows. In section 2 we present the probabilistic model and
define the priors on the various parameters. Some properties of the maximum posterior
estimate are provided in section 3, where we state a consistency theorem which is proved
in the appendix. In section 4 we formulate the EM estimation procedure and offer a simple
approximation which allows for efficient computation, this is then generalized in section 5
to the mixture case. In section 6, to illustrate some of the issues raised in the paper, we
present some experiments on estimating mixtures of deformable template models for hand
written digits from small samples.

2. The observation model

We observe a gray level image sequence yn
1 = (yi)1≤i≤n defined on a grid of pixels Λ.

Assume that Λ ↪→ R
2 where for each s ∈ Λ, xs is the location of pixel s in R

2. The points
xs are all in some fixed domain D (typically the square [−1, 1] × [−1, 1].) The template is
defined as a function I0 : R

2 → R, and for each observation y, we assume the existence of
an unobserved deformation field z : R

2 → R
2 such that

y(s) = I0(xs − z(xs)) + σε(s)

where ε(s) are i.i.d N (0, 1), independent of all other variables. We denote by zI0 the vector
of observations of the deformed template at the grid points:

zI0(s) = I0(xs − z(xs)), s ∈ Λ,

so that

y = zI0 + σε

2.1. The template model. The template I0 : R
2 → R is assumed to belong to a re-

producing kernel Hilbert space Vp with kernel Kp. We focus on a fixed finite dimensional
sub-space determined by a set of landmark points (pk)1≤k≤kp

. These points will typically
cover a domain Dp which contains D since the deformations at times require template val-
ues outside the observed domain. (Typically Dp = [−1.5, 1.5] × [−1.5, 1.5].) The template
is defined as a linear combination of the kernels centered at the landmark points, and is
therefore parameterized by the coefficients α ∈ R

kp . We write

Iα = Kpα, where (Kpα)(x) =

kp
∑

k=1

Kp(x, pk)α(k) .(1)

2.2. The deformation model. We use the same framework to describe the deformations.
Let Vg be a reproducing kernel Hilbert space of vector fields with kernel Kg. Pick a fixed
set of landmarks (gk)1≤k≤kg

∈ D. For β = (β(1), β(2)) ∈ R
kg ×R

kg we define the deformation
field

zβ(x) = (Kgβ)(x) =

kg
∑

k=1

Kg(x, gk)(β
(1)(k), β(2)(k)).(2)
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If we assume that the underlying deformation field is Gaussian it induces a Gaussian
distribution on β.

In the experiments below both Kp and Kg will be radial Gaussian kernels but any smooth
kernel vanishing at infinity could be used.

2.3. Parameters and likelihood. The parameters of interest are α - the coefficients
which determine the template (equation (1)), σ - the standard deviation of the additive
noise, and the covariance matrix Γg of the variables β which determine the deformation
(equation (2)). Let θg = Γg and let θp = (α, σ2). We assume that θ = (θg, θp) belongs to
the parameter space Θ defined as the open set

Θ = { θ = (α, σ2, Γg) | α ∈ R
kp , σ2 > 0, Γg ∈ Σ+

2kg ,∗(R) }.

Here Σ+
2kg ,∗(R) is the set of strictly positive symmetric matrices which is identified through

its upper triangular part and hence is viewed as an open subset of R
kg(2kg+1), inheriting

the standard Lebesgue measure.
Note that the likelihood of the observed data has the form of an integral over the unob-

served deformation parameters:

q(y|θ) =

∫

q(y|β, θp)q(β|θg)dβ ,

where

(3)

q(β|θg) = exp
(

−βtΓ−1
g β/2

)

(2π)−kg |Γg|−1/2

q(y|β, θp) = exp
(

− |y−zβIα|2

2σ2

)

(2πσ2)−|Λ|/2 .

2.4. The Bayesian model. Even though the parameters are finite dimensional it is un-
reasonable to compute a maximum-likelihood estimator when the training sample is small.
Our goal is to demonstrate that with the introduction of apriori distributions on the pa-
rameters, estimation with small samples is still possible even within the rather complex
framework described here, yielding good results in some concrete examples. We use stan-
dard conjugate priors - an inverse-Wishart νg on Γg, a normal prior with fixed mean µp

and covariance matrix Γp on α and an inverse-Wishart prior on σ2 as well. All priors are
assumed independent. More formally we have























(Γg, θp) ∼ νg ⊗ νp with θp = (α, σ2)

βn
1 ∼ ⊗n

i=1N (0, Γg) | Γg, θp

yn
1 ∼ ⊗n

i=1N (zβi
Iα, σ2IdΛ) | βn

1 , θp, Γg
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where

(4)



























νg(dΓg) ∝

(

exp(−〈Γ−1
g , Γ0

g〉/2)
1

√

|Γg|

)ag

dΓg, ag > 2kg + 1

νp(dσ2, dα) ∝

(

exp

(

− σ2
0

2σ2

)

1√
σ2

)ap

exp
(

(α − µp)
t(Γp)

−1(α − µp)
)

dσ2dα .

Note that for two matrices A,B we have 〈A,B〉 .
= tr(AtB).

The model interpretation is simple. Generate (α, σ2) from νp, form the template Iα =
Kpα, and independently draw a covariance matrix Γg from νg. Next draw βi, i = 1, . . . , n
independently from N (0, Γg). The variables βi determine the deformations zβi

through
equation (2). Finally generate zβi

Iα and add i.i.d Gaussian noise with variance σ2 to form
the observations yi.

2.4.1. Choice of Gaussian priors. A natural choice for the apriori covariance matrices Γp

and Γ0
g is to consider the matrices induced by the metric of the spaces Vp and Vg. Define

the square matrices

(5)
Mp(k, k′) = Kp(pk, pk′) ∀1 ≤ k, k′ ≤ kp

Mg(k, k′) = Kg(gk, gk′) ∀1 ≤ k, k′ ≤ kg

Setting Γp = M−1
p and Γ0

g = M−1
g we see that the exponent in the distribution defined

in equation (3) corresponds to the norm of the function Kgβ in the space Vg and the
exponent in the distribution defined in equation (4) corresponds to the norm of Kpα in
the space Vp. This has a more precise justification as the restriction of a random Gaussian
linear functional on the space Vp (Vg) to the subspace spanned by Kp (Kg). This has the
advantage of giving a prior that is essentially independent of the number of landmarks
kp and kg, and that only depends on the global choice made for the reproducing kernel
Hilbert spaces Vp and Vg. In this context, the number of landmarks used determines a
trade-off between accuracy of the approximations of functions in the respective spaces and
the amount of required computation.

3. Estimation

The parameter estimates are obtained by maximizing the posterior density on θ condi-
tional on yn

1 .

θ̂n = argmax
θ

q(θ|yn
1 ).

We first show that for any finite sample the maximum posterior will lie in the parameter
set Θ, this is non-trivial due to the somewhat complex relation between the parameters and
the observations. We then state a consistency theorem which is proved in the appendix.

Theorem 1 (Existence of the MAP estimator). For any sample yn
1 , there exists θ̂n ∈ Θ

such that
q(θ̂n|yn

1 ) = sup
θ∈Θ

q(θ|yn
1 ) .
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Proof. From equation (3) we have that for any θ = (θp, θg) ∈ Θ

q(y|β, θp)q(β|θg) ≤ (2πσ2)−|Λ|/2(2π)−kg |Γg|−1/2

so that

log(q(θ|yn
1 )) ≤ −ag

2
〈Rg, Γ

0
g〉 +

n + ag

2
log |Rg| −

apσ
2
0

2σ2
− n|Λ| + ap

2
log(σ2)

− 1

2
(α − µp)

tΓ−1
p (α − µp) + C

where Rg = Γ−1
g , and C does not depend on the parameters. If we denote η0

g the smallest

eigenvalue of Γ0
g and ‖Rg‖ the operator norm of Rg (which is also its largest eigenvalue),

we get

〈Rg, Γ
0
g〉 ≥ η0

g‖Rg‖ and log(|Rg|) ≤ (2kg − 1) log ‖Rg‖ − log ‖Γg‖
so that

lim
‖Rg‖+‖Γg‖→∞

−ag

2
〈Rg, Γ

0
g〉 +

n + ag

2
log |Rg| = −∞ .

Similarly, we can show

lim
σ2+σ−2→∞

−apσ
2
0

2σ2
− n|Λ| + ap

2
log(σ2) = −∞

and

lim
|α|→∞

−1

2
(α − µp)

tΓ−1
p (α − µp) = −∞ .

Now considering the Alexandrov one-point compactification Θ ∪ {∞} of Θ, we have

lim
θ→∞

log(q(θ|yn
1 )) → −∞ .

Since θ → log(q(θ|yn
1 )) is smooth on Θ, we get the result. ¤

3.1. Consistency. We are interested in the consistency properties of the MAP estima-
tor without making strong assumptions on the distribution of the observations yn

1 . In
other words we do not assume that the observations are generated by the model described
above. We denote the distribution governing the observations by P and seek to prove the
convergence of the MAP estimator to the set Θ∗ of model distributions ‘closest’ to P :

Θ∗ = { θ∗ ∈ Θ | EP (log q(y|θ∗)) = sup
θ∈Θ

EP (log q(y|θ))}.

Theorem 2 (Consistency). Assume that Θ∗ is non empty. Then, for any compact set
K ⊂ Θ,

lim
n→+∞

P ( δ(θ̂n, Θ∗) ≥ ε ∧ θ̂n ∈ K ) = 0 ,

where δ is any metric compatible with the usual topology on Θ.
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Proof. The theorem is an immediate application of Wald’s consistency Theorem (see The-
orem 5.14, pg. 48 in [21]). We only need to verify that y → log q(y|θ) is P a.s. up-
per semi-continuous and that for any θ ∈ Θ, there exists an open set U 3 θ such that
EP (supθ′∈U log+(q(y|θ′))) < ∞ (where log+ is the positive part of log). This is straightfor-
ward in our setting since θ → log(q(y|θ)) is smooth for any y. Furthermore for any θ ∈ Θ,
there exists an open set U 3 θ such that supy,θ′∈U log(q(y|θ′) < ∞. ¤

The previous result is not entirely satisfactory. One would like to show that Θ∗ is non
empty and that the map estimator does not escape to the boundary of Θ as n → ∞.
Interestingly, without specific assumptions on P , such unexpected behavior can indeed
occur, especially if we do not assume the templates to be uniformly bounded. We propose
below a reasonable framework in which the convergence towards the set Θ∗ is guaranteed.

To this end we extend the previous model by introducing a baseline image Ib : R
2 → R

and define

(6) Iα = Kpα + Ib .

In the previous framework Ib ≡ 0.
Let Σ+

2kg
(R) be the set of non-negative (possibly degenerate) symmetric matrices on R

2kp .
For any R > 0 denote

(7)























ΘR = { θ = (α, σ2, Γ) | α ∈ R
kp , |α| ≤ R, σ2 ∈ R

∗
+, Γ ∈ Σ+

2kg
(R) }

v(R) = supθ∈ΘR EP (log q(y|θ))

ΘR
∗ = { θ ∈ ΘR | EP (log q(y|θ)) = v(R) }

Following the proof of Theorem 1, we conclude that for any R > 0 the set of MAP
estimators is a subset of ΘR. Let θ̂R

n denote any MAP estimator. Let

(8) dimβ = 2kg, dimy = |Λ|
be the dimension of the β variables and of the observed images y respectively.

Theorem 3 (Consistency on bounded prototypes). Assume that dimβ < dimy, that
P (dy) = p(y)dy where the density p is bounded with exponentially decaying tails and that
the observations yn

1 are i.i.d under P . Assume also that the baseline Ib (see (6)) satisfies
|Ib(x)| > a|x| + b for some positive constant a. Then ΘR

∗ 6= ∅ and for any ε > 0

lim
n→∞

P (δ(θ̂R
n , ΘR

∗ ) ≥ ε) = 0 ,

where δ is any metric compatible with the topology on ΘR.

Proof. See appendix. ¤

The condition dimβ < dimy implies that the dimension of the deformations is less than
the number of observed image pixels. This condition is quite weak and fulfilled in our
applications.
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The condition on the baseline image is somewhat less natural but without this assump-
tion very large deformations can occur at no cost in terms of the likelihood, and it may
happen that the best model is not achieved inside ΘR but with covariance Γ → ∞. In
practice such degenerate behavior has not been observed in any of our numerical examples
in which we have used Ib ≡ 0.

4. Estimation with the EM algorithm

Since the deformation coefficients βi are unobserved the natural approach is to use
iterative algorithms such as EM ([7]) which we briefly summarize. Assume the conditional
distribution on the unobserved variable u (in our case β) for any value of y and θ has
a density with respect to some reference measure µ(du). We can write the log-marginal
density on y as follows:

(9) log q(y|θ) = max
ν

[∫

log q(y, u|θ)ν(u)µ(du) −
∫

ν(u) log ν(u)µ(du)

]

,

where ν is any density over the variable u. The maximum is achieved for ν(u) = q(u|y, θ).
Thus maximizing the log-likelihood of the observed data with respect to the parameter
becomes a double maximization

(10) max
θ

max
ν

[∫

log q(y, u|θ)ν(u)µ(du) −
∫

ν(u) log ν(u)µ(du)

]

.

The EM algorithm consists of iterating these two maximization steps. Given a current value
θc of θ, the maximization with respect to the density ν is seen to yield νc(u) = q(u|θc, y),
or with multiple independent observations,

νc(u
n
1 ) =

n
∏

i=1

q(ui|θc, yi).

This is often called the posterior density. Once νc is determined the second maximization
- updating the parameters - involves only the first term in equation (10).

In the present context we assume here that Ib ≡ 0 (the introduction of a non vanishing
baseline in the following computation is straightforward), we initialize the algorithm with
the prior model θ0 and we iterate the following two steps:

E step: Define the a-posteriori density:

νl(β
n
1 ) = q(βn

1 |θl, y
n
1 ).

Since the observations are independent νl is the product of the following densities

(11) νl,i(β) =
q(yi|β, θp,l)q(β|θg,l)

∫

q(yi|β′, θp,l)q(β ′|θg,l)dβ ′
.

M step: Update the parameters:

θl+1 = argmax
θ

Eνl
(log q(βn

1 , θ|yn
1 ))) = argmax

θ

∫

log q(βn
1 , θ|yn

1 )νl(β
n
1 )dβn

1 .
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4.1. Details of the maximization step. The maximization step is divided in two, one
involving geometric parameters and the other the photometric parameters. Writing the
joint density we get

q(yn
1 , βn

1 , θ) = q(θg)q(θp)q(β
n
1 |θg)q(y

n
1 |βn

1 , θp) .

So that,

argmax
θg

Eνl
(log q(yn

1 , βn
1 , θ)) = argmax

θg

{Eνl
(log q(βn

1 |θg)) + log q(θg)} ,

argmax
θp

Eνl
(log q(yn

1 , βn
1 , θ)) = argmax

θp

{Eνl
(log q(yn

1 |βn
1 , θp)) + log q(θp)} .

4.1.1. Updating the geometric parameters. The geometric parameter is simply the covari-
ance matrix Γg of the Gaussian distribution of the β variables. For convenience we intro-
duce the inverse covariance matrix Rg = Γ−1

g . Plugging in the definitions in (4) and (3) we
get

Eνl
(log q(βn

1 |θg)) + log q(θg) =

− n

2
〈Rg, [ββt]l〉 +

n

2
log |Rg| −

ag

2
〈Rg, Γ

0
g〉 +

ag

2
log |Rg| + Const,

where the empirical covariance matrix is defined as

(12) [ββt]l =
1

n

n
∑

i=1

∫

ββtνl,i(β)dβ,

with νl,i(β) defined in (11). Setting the gradient with respect to Rg equal to 0 we get

θg,l+1 = Γg,l+1 =
1

n + ag

(n[ββt]l + agΓ
0
g).(13)

4.1.2. Updating the photometric parameters. Here we are interested in the α variables that
determine the template and in the noise parameter σ. Given a deformation field zβ = Kgβ
defined by the variables β, define the matrix Kβ

p ∈ M|Λ|×kp
as:

Kβ
p = zβKp(·, pk), i.e Kβ

p (s, k) = Kp(xs − zβ(xs), pk), s ∈ Λ, 1 ≤ k ≤ kp .

Thus when applying the deformation field zβ to Iα and evaluating at the image pixels we
have,

zβIα = Kβ
p α .

This yields

log q(yn
1 |βn

1 , θp) = − 1

2σ2

n
∑

i=1

|yi − Kβi
p α|2 − n|Λ|

2
log(σ2) − n|Λ|

2
log(2π) ;
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and

Eνl
(log q(yn

1 |βn
1 , θp) + log q(θp))

= − 1

2σ2

n
∑

i=1

Eνl
(|yi − Kβi

p α|2) − n|Λ|
2

log(σ2) − ap

2

(

σ2
0

σ2
− log(σ2)

)

−

1

2

(

(α − µp)
tΓ−1

p (α − µp) − log(|Γp|)
)

+ Const.

Define the following three statistics, where the last two involve integrating out the unob-
served deformations based on the current posterior νl.

(14)



























[Y tY ]l = 1
n

n
∑

i=1

|yi|2
[

(

Kβ
p

)t
Y
]

l
= 1

n

n
∑

i=1

∫ (

Kβ
p

)t
yiνl,i(β)dβ

[

(

Kβ
p

)t
Kβ

p

]

l
= 1

n

n
∑

i=1

∫ (

Kβ
p

)t
Kβ

p νl,i(β)dβ .

Now setting the derivatives in α and σ to zero we get

(15)















n
σ2

([

(

Kβ
p

)t
Kβ

p

]

l
α −

[

(

Kβ
p

)t
Y
]

l

)

+ Γ−1
p (α − µp) = 0

1
2σ4

(

n
(

[Y tY ]l + αt
[

(

Kβ
p

)t
Kβ

p

]

l
α − 2αt

[

(

Kβ
p

)t
Y
]

l

)

+ apσ
2
0

)

− n|Λ|+ap

2σ2 = 0

Solving for the unknowns in ((15)) yields

(16)















α =
(

n
[

(

Kβ
p

)t
Kβ

p

]

l
+ σ2Γ−1

p

)−1 (

n
[

(

Kβ
p

)t
Y
]

l
+ σ2Γ−1

p µp

)

σ2 = 1
n|Λ|+ap

(

n
(

[Y tY ]l + αt
[

(

Kβ
p

)t
Kβ

p

]

l
α − 2αt

[

(

Kβ
p

)t
Y
]

l

)

+ apσ
2
0

)

.

This system can be solved iteratively in α and σ initialized with the current values αl, σl.
In the absence of training images, i.e. n = 0 the updates of equations (13), (16) yield

θg = Γg
0 and θp = (µp, σ

2
0).

4.2. Fast approximation with modes. The expressions in the M step require the com-
putation of expectations with respect to νl which have no simple form. A classic approxi-
mation consists of replacing the distribution νl,i by the Dirac law ν∗

l,i(dβi) = δβ∗

i
with:

β∗
i = arg max

β
log q(β|αl, σl, Γg,l, yi) = arg min

β

[

1

2
βtΓ−1

g,l β +
1

2σ2
l

|yi − Kβ
p αl|2

]

,(17)

recalling that Kβ
p α = (Kpβ)Iα. This is a standard template matching problem, with ob-

servations yi, template Kβ
p αl, noise level σl and covariance matrix Γg,l. The approximation

can be formally interpreted as constraining the maximization over ν in equation (9) to
Dirac delta functions. This is only formal since whatever distribution µ is chosen not all
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point mass distributions on β will have a density with respect to µ, so that the entropy
term becomes infinite. In any event this approximation reduces the EM algorithm to an
iterative maximization of q(yn

1 , βn
1 , θ) in θ and β. It is important however to note that the

matching problem is a difficult non-linear optimization problem and we can at most expect
to obtain local minima.

As indicated in the introduction the proposed approximation is similar to the iterative
maximization proposed in [10]. However as seen from the example below, the true EM
iterations can provide better estimates, indeed it appears that in some cases the iterative
maximization is not consistent and can yield wrong estimates of the template. Consider
a simple 1d setting where the deformations are a discrete set of translations. Here the
expectations with respect to the posterior can be computed explicitly.
Example: Let Λ be the set of integers between [−L,L]. Let I0(x) = 1[−K,K] for some
K < L and consider a discrete set of translations τ ∈ [−∆, ∆], with ∆ < L − K. The
generative model involves sampling a random translation, shifting the template to I0(x+τ)
and adding i.i.d noise of variance σ2 at every location between [−L,L]. In figure 1 we show
the result of full EM vs. iterative maximization for a range of values of K,L and the
variance σ2 of the observation noise.

It emerges from this simple experiment that for high noise levels the template is poorly
estimated especially near the boundaries between the two intensity levels. This seems to
be due to the fact that high noise levels produce locations with high intensity gradients
between neighboring pixels and the optimal shift tries to move the template to fit them.
Consequently the values at the boundaries are over estimated for the higher values and
under estimated for the lower values.

4.3. Relation to PCA estimation. Using the approximation with modes, [ββ t]l is sim-
ply the empirical covariance of the deformations (β∗

i )1≤i≤n estimated with respect to the
observations. A common approach found in the literature is to perform a PCA analysis on
this covariance matrix and generate a representation of the Gaussian distribution governing
the deformations in terms of the components with non-zero eigenvalues. This corresponds
to setting the prior weight ag = 0. This approach suffers from several drawbacks.

• Lack of regularization of the covariance estimates. With small training
samples the empirical covariance matrix is degenerate and many of the eigenvalues
are very small and inaccurate. An ad-hoc solution which is often employed is to
threshold the eigenvalues at some small positive value. However using a well defined
prior one has better control on the direction of the non-degenerate correction of the
degenerate estimate. For example in our case the correction is with Γ0

g, which
captures some apriori assumptions on the smoothness of the deformation fields.

• Degenerate iterations. Most algorithms do not go beyond the estimation of the
empirical covariance. However, this cannot provide a consistent statistical scheme
since the optimal β’s have been computed with a wrong initial covariance structure.
Note that even when the procedure is iterated interchanging the estimation of the
template and of the geometric covariance matrix, in the absence of regularization
the deformations are constrained to always lie in the subspace spanned by the
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Figure 1. Comparison between the iterative maximization algorithm and
the full EM algorithm. Top right σ = 1, top left σ = .5, bottom σ = .1. Red
dashed line - Template estimated with iterative maximization. Blue dashed
line - template estimated with EM algorithm. Solid line - true template.

initial covariance structure thus limiting the proper estimation of the photometric
template.

5. Mixtures of deformable template models

In many situations object classes can not be described as smooth deformations of one
template. Classes are often defined as a combination of structures with distinct topological
characteristics. As a simple example consider hand written ‘2’s with a loop in the base
and without, or faces with or without glasses. It is therefore natural to extend the model
framework to include mixtures of deformable templates and extend the EM framework
to estimate the models of each mixture component as well as the weights of the different
mixtures. We introduce the following notation:

η = (θ, ρ) with θ = (θτ )1≤τ≤T and ρ = (ρ(τ))1≤τ≤T ,
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where T denotes the number of model components, and ρ = (ρτ )1≤τ≤T are the mixture
coefficients. As before each model θτ is composed of a photometric part θτ

p and a geometric
part θτ

g .
For each observation yi, we consider the pair ξi = (βi, τi) of unobserved variables. Im-

posing a prior on the probability distribution ρ we define an extended generative model as
follows. Draw ρ according to an a priori law νρ and independently generate models (θτ )
for each 1 ≤ τ ≤ T as described in section 2.4. Then for each observation yi a component
τi is drawn from ρ. The remaining variables are drawn as described in section 2.4. This is
summarized below:



















































ρ ∼ νρ

θ = (θτ
g , θ

τ
p)1≤τ≤T ∼ ⊗T

τ=1(νg ⊗ νp) | ρ

τn
1 ∼ ⊗n

i=1ρ | η = (θ, ρ)

βn
1 ∼ ⊗n

i=1N (0, Γτi
g )| η, τn

1

yn
1 ∼ ⊗n

i=1N (zβi
Iαi

, σ2
τi
IdΛ) | βn

1 , η, τn
1

with θτ
p = (ατ , σ

2
τ ), Iαi

= Kpατi
and zβi

= Kgβi for all 1 ≤ i ≤ n.
For the a priori law νρ we choose the Dirichlet distribution with density

D(aρ) : νρ(ρ) ∝
(

T
∏

τ=1

ρ(τ)

)aρ

,

with parameter aρ.
We seek the MAP estimate given the observed images - yn

1

η̂ = argmax
η

q(η|yn
1 ) .

The EM update, ηl → ηl+1, has the same form as before
E Step: Compute the posterior law on (βi, τi), i = 1, . . . , n as a product of the following

distributions which have a density in β for each τ and are discrete in τ for each β:

νl,i(β, τ) =
q(yi|β, ατ,l)q(β|Γτ

g,l)ρl(τ)
∑

τ ′

∫

q(yi|β′, ατ ′,l)q(β ′|Γτ ′

g,l)ρl(τ ′)dβ ′

M Step:

ηl+1 = argmax
η

Eνl(dξn
1
)(log q(η, βn

1 , τn
1 |yn

1 )).

5.1. Details for the M step. Let

νl,i(τ) =

∫

νl,i(β, τ)dβ,
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be the posterior marginal on component τi given the current parameter estimates. Letting
nτ,l denote the weight of component τ ,

nτ,l =
n
∑

i=1

νl,i(τ),

the update of the component parameters takes the standard form of EM updates for
mixture models in the presence of a prior:

ρl+1(τ) =
nτ,l + aρ

n + Taρ

.

Now define the empirical covariance matrix for each component:

[ββt]l,τ =
1

nτ,l

n
∑

i=1

∫

(ββt)νl,i(β, τ)dβ.

This corresponds to the definition in equation (12) where the sample yi contributes νl,i(τ) to
component τ and then the unobserved deformation variables β are integrated out according
to νl,i(β|τ). With the prior regularization we obtain as in equation (13)

θτ
g,l+1 =

1

nl,τ + ag

(nl,τ [ββt]l,τ + agΓ
0
g) .

5.1.1. Photometry update. With the same reasoning as above, adapting the definitions in
equation (14) to each cluster we define



























[Y tY ]l,τ = 1
nl,τ

n
∑

i=1

|yi|2νl,i(τ)
[

(

Kβ
p

)t
Y
]

l,τ
= 1

nl,τ

n
∑

i=1

∫ (

Kβ
p

)t
yiνl,i(β, τ)dβ

[

(

Kβ
p

)t
Kβ

p

]

l,τ
= 1

nl,τ

n
∑

i=1

∫ (

Kβ
p

)t
Kβ

p νl,i(β, τ)dβ .

The final update equations are the same as in (16)























ατ =

(

nl,τ

[

(

Kβ
p

)t (
Kβ

p

)

]

l,τ
+ σ2

τ (Γp)
−1

)−1
(

nl,τ [K
t
pY ]l,τ + σ2

τ (Γp)
−1µp

)

σ2
τ = 1

nl,τ |Λ|+ap

(

nl,τ

(

[Y tY ]l,τ + (ατ )
t
[

(

Kβ
p

)t
Kβ

p

]

l,τ
ατ − 2(ατ )

t
[

(

Kβ
p

)t
Y
]

l,τ

)

+ apσ
2
0

)

,

which again can be solved iteratively for each cluster τ starting with the previous values
ατ,l, σ

2
τ,l.
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5.2. Fast approximation with modes. For efficiency in training we again consider an
approximation of the probability distribution νl,i(β, τ), using the mode over the β param-
eter. Specifically for each component τ let β∗

i,τ maximize the conditional distribution on
β:

β∗
i,τ = arg max

β
log q(β|ατ,l, στ,l, Γ

τ
g,l, yi) = arg min

β

{

1

2
βtRτ

g,lβ +
1

2σ2
l,τ

|yi − Kβ
p ατ,l|2

}

,

where Rτ
g,l = (Γτ

g,l)
−1. We then approximate the joint posterior on (βi, τi) as a discrete

distribution concentrated at the T points β∗
i,τ with weights given by

wl(τ) =
q(yi|β∗

i,τ , ατ,l)q(β
∗
i,τ |Γτ

g,l)ρl(τ)
∑

τ ′ q(yi|β∗
i,τ ′ , ατ ′,l)q(β∗

i,τ ′ |Γτ ′

g,l)ρl(τ ′)
.(18)

Thus we keep the weighting on the clusters after approximating each conditional distri-
bution on the deformation parameters with a delta distribution at the mode. It is of
interest to note that this procedure can also be viewed as the iterative maximization of
a well defined function. Assume that the reference measure µ(dβ, dτ) in equation (10) is
a product of Lebesgue measure in β and the counting measure on {1, . . . , T}. Write the
entropy term as

∫

ν(β, τ) log ν(β, τ)µ(dβ, dτ) =

∫

ν(β|τ) log ν(β|τ)ν(τ)dµ(dβ, dτ)(19)

+

∫

ν(τ) log ν(τ)µ(dτ).(20)

We formally restrict the maximization in ν to the set of distributions P of the form

ν(dβ, dτ) =
∑

τ

w(τ)δτ ⊗ δβτ
,

i.e. a weighted sum of Dirac delta functions at points βτ . The first term on the right hand
of equation (19) is infinite and is ignored. The second term is the nentropy

H(w) = −
∑

τ

w(τ) log w(τ),

of the marginal on τ i.e. the discrete measure defined by the weights w(τ), τ = 1, . . . , T .
Now the iterative maximization in equation (10) becomes

max
θ

max
ν∈P

∫

log q(y, β, τ |θ)ν(dβ, dτ) − H(w)

= max
θ

max
β1,...,βT ,w

∑

τ

log q(y, τ, βτ |θ)w(τ) − H(w).(21)

Maximizing first in βτ does not depend on the weights w, and is done separately for each
term q(y, τ, βτ ). This yields β∗

τ as defined above. Then maximizing in the weights yields

wc(τ) = q(τ |β∗
τ , y, θc),
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which is computed in equation (18). To summarize the fast EM iterations proposed here
are equivalent to the iterative maximization of equation (21).

6. Experiments

In this section we illustrate some of the issues raised above in the simple context of
images of handwritten digits. In this context it is possible to compare various model
settings in terms of classification rates, although our goal here is not to obtain optimal
results. The experiments are performed on the US-POSTAL data base which contains a
training data set with about 7000 (16× 16)-pixels handwritten digit images and a test set
with about 2000 images. For information on a number of discriminative approaches to the
classification of these digits see [13]. In figure 2 we present the images of 40 digits in each
class which are used for training.

After estimating the parameters of a deformable template model for each class, classifi-
cation should be performed by computing the maximum posterior on class given the image.
The likelihood term involves an integral over the unobserved deformation variables which
is difficult to compute, and is replaced again by the mode. Specifically for each class c let
Iαc

be the estimated template, σc the estimated variance, and Rg,c the estimated inverse
geometric covariance matrix. Define

Uc(β) = −1

2
|y − zβIαc

|2 − |Λ|
2

log(2πσ2
c ) +

1

2
βtRg,cβ,

Assuming a flat prior on the 10 classes set

ĉ = argmax
c

Uc(β
∗
c ), where β∗

c = argmax
β

Uc(β).

The justification of this form as an approximation of the marginal likelihood is provided
in the appendix.

All images are rescaled to have intensities in the interval [0, 2], and it is assumed that
observation domain is the square [−1, 1] × [−1, 1]. The template domain is infinite but
we restrict the control points to the larger square [−1.5, 1.5] × [−1.5, 1.5]. We use radial
Gaussian kernels to represent the template and the deformation fields:

Kp(x, y) = exp

[−‖x − y‖2

2σ2
p

]

, Kg(x, y) = exp

[−‖x − y‖2

2σ2
g

]

.

The width of the kernels, i.e. σp, σg, depends on the overall smoothness we expect for the
template and deformation fields respectively. The number of control points depends on
the choice of the width parameters. At each iteration of the approximate EM algorithm
the deformations β∗

i are computed using a straight-forward gradient descent algorithm on
the cost function given in (17).

6.1. The estimated templates. In figure 3 we show the templates of the 10 classes
estimated with 20 images per class - the first 20 images of each row in figure 2. For
the prior distribution on templates we choose a mean µp = 0, which is constant at the
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Figure 2. Training set : 40 images per class

‘background’ value, and a covariance Γp given in equation (5) and determined by the
interpolating kernel Kp.

In this setting the first iteration of the EM algorithm yields deformations β∗
i ≡ 0 so

that the resulting estimated template is the simple mean of the training images. These

Figure 3. Left: Simple average images, Middle and right: Estimated pro-
totypes (20 images/class), σg = 0.2 (Middle), σg = 0.3 (Right)

means are shown in the left panel of figure 3. They are blurred because of the geometric
variability within each class. As the iterations proceed the estimated prototypes present
higher contrast thanks to the nonrigid registration which enables better fits. In the middle
and right panels of figure 3 we present the estimated prototype for two different values of
the width parameter σg, (0.2 and 0.3). Note that the templates seem similar to the initial
means modulo some deblurring or contrast enhancement.

6.2. The photometric variance. The variance σ in the data model is estimated and
evolves throughout the EM iterations. Initially the estimated variance is influenced both by
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photometric variations but even more by the geometric variability, which is not accounted
for. As the estimates evolve the variation in photometry at a given pixel is less and less
a function of geometric variability and reduces to the inherent photometric noise in the
data. Thus we can see in figure 4 how the estimated variance decreases with iteration for
all classes. Those classes (‘2’,‘4’)which are more heterogeneous and perhaps require more
than one template exhibit higher final variance estimates.
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Figure 4. Evolution of estimates of σ for each class with iteration.

6.3. The estimated geometric distribution. Below are data pointing to the effect of
the hyper-parameters of the geometric prior - ag (the constant in the Wishart prior on
covariance matrices (4)) and σg the width of the kernel Kg. Table 1 shows the error rate
on a set of 1000 images randomly sampled from the training set outside the 200 used for
training. 1 There is a clear decrease of performance as the weight ag decreases. This may

ag 0.01 0.1 1 5 10 ∞
σg = 0.3 13.1 3.3 3.1 3.1 3 3.4
σg = 0.2 15.5 10.1 8.3 4.5 8.4 8.3

Table 1. Error rate for different values of σg (rows) and of the geometric
prior weight ag (columns). The training set contains 20 images per class, 20
iterations of EM were performed.

1It is well known that the test set of the USPOSTAL database contains more difficult images than the
training set which explains the high classification rates we are able to achieve with a very small training
sample set. Results on the full test set are presented below.
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Figure 5. 20 examples of synthesized images from each class using esti-
mated template and geometric covariance.

be due to the fact that with a small number of examples and a relatively flat prior, the
estimated covariance matrix Γg is quasi-singular (see equation (13)). This restrains the
possible displacements in a low dimensional subspace. On the other hand, as ag increases
there is essentially no estimation of the geometric covariance structure, i.e. Γg = Γ0

g, the
center of the covariance prior. Note that all values of ag are admissible but as can be
expected, the best performance is obtained for an intermediate value of this parameter.
The effect of ag can be important when the choice of other parameters is not optimal (see
σg = 0.2).

Figure 6. Synthesizing 3’s with the estimated covariance class 2.

To illustrate the form of the geometric distribution estimated by the algorithm in figure 5
we show 20 synthesized examples of each class using the estimated photometric prototype
and the estimated geometric covariance. By contrast, in figure 6, we show simulations
using the estimated prototype of class 3 with the geometric distribution of class 2. This
should be compared to the 3rd row of figure 5. The deformed 3’s are not at all realistic
implying that the estimated geometric covariances are non-trivial, and differ significantly
from one class to the other.

6.4. Classification rates and number of iterations. As mentioned above, the EM
algorithm for the computation of the MAP estimator of the photometric and geometric
parameters leads to a natural and well defined iterative procedure. As the iterations
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proceed the model fit to the data improves. This was shown earlier in terms of the reduction
of the variance estimate (see figure 4) and is seen here in the decrease in error rates using
the successive models produced at each iteration, (see table 2). The results are provided
for a fixed value of all the hyper-parameters and a training set of 20 images per digit.

Nb of iter 1 2 3 4 5 10 15 20
Error rate 14.9 9.3 7.4 5.5 4.5 4.2 4 3.3

Table 2. Error rate while increasing the number of iterations, same test set
as in table 1, 20 training examples per class, ag = 0.1, σg = 0.3

6.5. Mixture models. Here we consider the computation of a mixture of deformable
models for each class. In figure 7, we show the two components per class estimated with
40 training examples per class. It appears that for each class, the two chosen prototypes

Figure 7. Templates of the 2 components (40 images per class, 20 itera-
tions, 2 components per class).

correspond to a meaningful clustering of the training data (displayed in figure 2). Note in
particular the case of class 2 with two topologically different versions (with and without
loop), the European prototype appearing for class 7 or the ‘broken’ 8.

It is harder to visualize the geometric distribution estimated for each component. For
two classes 0 and 7, and for each of the two components we display in figure 8 the evolution
of the symmetrized Kullback distance between N(0, Γg,l) and N(0, Γ0

g), i.e. the value

d(Γ0
g, Γg)

.
= (K(N (0, Γ0

g),N (0, Γg))/2 + K(N (0, Γg),N (0, Γ0
g))/2)

1/2 .

The estimated covariance matrix Γg clearly moves away from the prior and the final distance
is fairly different between the two components of each class. Note however that the first
component of class seven shown in figure 7(the European seven) is based only on two
sample points in the training set (coincidentally, the last two in the corresponding row of
figure 2). In this small sample case the Bayesian estimate is strongly biased towards the
initial Γ0

g as is seen by the plot on the lower left-hand panel.
This behavior is of particular interest in its ability to reveal two different geometric

behaviors within a given population with a homogeneous photometric behavior. In other
words within the framework of the mixture model we are able to identify a situation where
the photometric template is unique but the distribution of the deformations is modeled as
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Figure 8. Evolution of the symmetrized Kullback distance between the
current value of Γg and the prior center Γ0. (40 observations per class, 2
components, 20 iterations). Top row: class 0, Bottom row: class 7. Left
column: first component, Right column: second component.

a mixture of Gaussians as opposed to a simple Gaussian. Moreover since at times it can be
difficult to make a clear separation between the photometric part and the geometric part
of the variation, the ability to handle both simultaneously is an important feature.

Figure 9. Top: Synthesized 2’s with template from second component of
figure 7 and proper covariance. Bottom: Same template using covariance
matrix of other 2 component.

In figure 9 we show synthesized images from class 2 with the template from the second
component of figure 7 (with a loop at the bottom). The top shows samples with the correct
geometric parameters and the bottom shows samples with the geometric parameters of the
other component. Although the samples produced in the second row look like 2’s they are
not as natural looking as those of the first row, again indicating a non-trivial difference
between the geometric covariance estimated for each of the components.

6.6. Results on the full test set. We present some error rates on the original test set
as a function of the number of training images and the number of mixture components.
Note that the largest training set we use has 100 digits per class and is a small fraction
of the full training set of over 7000 images. The results are comparable to those obtained
employing discriminative methods and trained with the full training set. Note that here
classification is performed by simply choosing the most likely class, based on the estimated
models, no decision boundaries are precomputed in training. The results are summarized
in table 3, along with reported results for nearest neighbor and discriminative methods
from [13]. The misclassified digits are shown in figure 10.
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Nb. of components 1 2 3 5 10
20 per class 6.58 6.13 5.28 9.57 9.72
40 per class 6.43 5.18 5.38 5.23 7.075
100 per class 9.42 4.98 4.58 5.13 4.136

Neural Least square Tangent distance
network nearest Nbrs. nearest nbrs.

4.9 5.5 2.6
Table 3. Top: Error rates for different numbers of components (column)
and different numbers of training images (rows) per class. ag = 0.1, σg = 0.3,
20 iterations. Bottom: Error rates using a neural network, nearest neighbors,
and tangent distance nearest neighbors with full training set, as reported in
[13].

Figure 10. Misclassified digits from test set, error rate 4.136%. 10 compo-
nents per class.

7. Discussion

We have provided a coherent statistical formulation for dense deformable template mod-
els and described an approximation to maximum-posterior estimation. The results on
likelihood based classification of handwritten digits, with very small training sets, demon-
strate that this formulation is of practical use. One major drawback of the current setting
is the additive noise model. This model does not allow for photometric variations due to
changes in lighting on an object or simply a change in the gray level map. Moreover it is
not possible to use this type of data model to formulate a credible background model for
observations off the object. In previous work [1], [2], [4] we have overcome this limitation
using local photometrically invariant oriented edge features as a substitute for the original
gray levels. The approach outlined here would extend easily to this alternative data model
where instead of a template image we estimate template probability maps for each feature.
Clearly some modifications would be required in the definition of the priors.

The deformation model employed here does not necessarily produce diffeomorphisms.
This can create some difficulties such as behavior near the boundaries of the domain, and
the need for a template defined on the entire plane. Using diffeomorphisms of the domain
onto itself, as proposed in [19], would eliminate these problems perhaps yielding a more
stable algorithm.
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Another issue is the crude approximation to EM through the local modes of the pos-
terior. As illustrated in the synthetic 1d example in section 4.2 this approximation can
yield erroneous estimates. We are currently exploring the possibility of approximating the
integrals with respect to the posterior on the deformations through various monte-carlo
methods.

Appendix A. Proof of the consistency theorem for bounded prototypes

The proof of the theorem relies on several lemmas which control the expectation of the
supremum over the parameter space of the positive part of the log-likelihood (Lemma 3),
and the behavior of the likelihood at the boundary points of the parameter space (Lemma
4). We prove the theorem for the case with one deformable model. We emphasize that
we are ignoring issues of identifiability by proving the convergence of the sequence of
maximum-posterior estimates to the set ΘR

∗ . (Refer to equation (7) for notation.)

Lemma 1. Let p < q be two integers and F : R
p → R

q be a C1 mapping. Then for any
compact subset C of R

p, if M = F (C) then
∫

log+(1/d(y,M))dy < ∞.

Proof. For any ρ > 0, denote Mρ = { y ∈ R
q | d(y,M) ≤ ρ }. For any ρ > 0, there exists

a finite set Λρ ⊂ C such that |Λρ| ≤ Kρ−p and C ⊂ ∪x∈Λρ
B(x, ρ), with K fixed. Denoting

τ = supC ‖dF‖, we get

M ⊂ ∪x∈Λρ
B(F (x), τρ) and Mρ ⊂ ∪x∈Λρ

B(F (x), (τ + 2)ρ).

Thus there exists a constant K ′ independent of ρ such that we have for V (Mρ) =
∫

Mρ
dy:

V (Mρ) ≤ K ′ρq−p .

Let 0 < s < 1 and ρn = sn for any n ≥ 0. Then
∫

log+(
1

d(y,M)
)dy ≤

∞
∑

n=0

log(
1

ρn+1

)(V (Mρn
) − V (Mρn+1

)) ≤ log(
1

ρ1

)
∞
∑

n=0

V (Mρn
) < ∞

where the second inequality comes from the Abel transformation. ¤

Lemma 2. Let p, q, F be as above and assume that (i) sup
Rp ‖dF‖ < ∞. (ii) there exist

constants a > 0, b such that |F (x)| ≥ a|x| + b,∀x ∈ R
p. Let ν be a density on R

q with
exponentially decaying tails (i.e. sup|y|≥λ ν(y) ≤ a1 exp(−a2λ) for any λ ≥ 0 and some
a1, a2 > 0) and let M = F (Rp). Then

∫

log+ 1

d(y,M)
ν(y)dy < ∞.
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Proof. Let T be the integer lattice in R
p, and let Bt = {x ∈ R

p; |x− t|∞ ≤ 1/2}. Applying
the previous Lemma and using (i) we have that

∫

log+ 1

d(y, F (Bt))
dy < C1,

for all t ∈ T . Let F (Bt) = {y : d(y, F (Bt)) ≤ 1}. It is clear that
∫

log+ 1

d(y, F (Bt))
ν(y)dy < C1 max

y∈F (Bt)
ν(y).

Let ντ = max|y|∞≥τ ν(y), then due to (ii) maxF (Bt)
ν(y) ≤ νa|t|∞+b′ , for some constant b′.

For any integer T , let DT = ∪|t|≤T Bt. We have

1/d(y, F (DT )) = sup
x∈DT

1/d(y, F (x)) ≤
∑

|t|≤T

sup
x∈Bt

1/d(y, F (x)) =
∑

|t|≤T

1/d(y, F (Bt)).

Consequently
∫

log+ 1

d(y, F (DT ))
ν(y)dy ≤

T
∑

j=1

∑

|t|∞=j

∫

log+ 1

d(y, F (Bt))
ν(y)dy

≤ C1

T
∑

j=1

jpνaj+b′ .

Due to the assumptions on ν this sum converges as T → ∞. ¤

Lemma 3. Assume that dimβ < dimy and let l be any integer sufficiently large for which
p

.
= ldimβ + dimα < q

.
= ldimy. Assume that |Ib(x)| ≥ a|x| + b for some positive constant

a. Let yl
1 = (y1, · · · , yl) be i.i.d. under P . Assume P (dy1) has bounded density ν with

exponentially decaying tails. Then for any R > 0

EP (dyl
1
)



 sup
θ∈ΘR

(

l
∑

i=1

log q(yi|θ)
)+


 < +∞

Proof. Let F : R
p → R

q be defined by F (α, βl
1) = (z1Iα, · · · , zlIα) where Iα = Kpα + Ib

and zi = Kgβi. Since Kg and Kp are smooth we deduce that F is smooth. Define
I l

R = {F (α, βl
1) | |α| ≤ R, βi ∈ R

2kg , ∀1 ≤ i ≤ l}. We have

(22)
l
∑

i=1

log q(yi|θ) ≤ − l|Λ|
2

log(2πσ2) − 1

2σ2
d(yl

1, I l
R)2.

where d denotes here the Euclidean distance on (R|Λ|)l. However, the right hand side is
maximized for σ2 = d(yl

1, I l
R)2/(l|Λ|) so that there exists K > 0 such that

(23) sup
θ∈ΘR

(

l
∑

i=1

log q(yi|θ)
)+

≤ K + l|Λ| log+ 1

d(yl
1, I l

R)
.
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Now, since Kg is injective we have |z| > λ|β| for some positive constant λ. It follows from
the linear growth assumption on Ib(x) that F satisfies condition (ii) of Lemma 2. Since
the kernels Kg are bounded and have uniformly bounded derivatives it follows that dF is
uniformly bounded over R

p. We thus obtain the result from Lemma 2. ¤

Lemma 4. Under the hypothesis of the previous lemma, we have

(1) P (dyl
1) almost surely,

lim
m→∞

l
∑

i=1

log q(yi|θm) = −∞

for any sequence θm = (αm, σ2
m, Γm), m ∈ N, such that θm ∈ ΘR, ‖Γm‖ → ∞ or

σ2
m → 0 or σ2

m → +∞.
(2) For any sequence θm = (αm, σ2

m, Γm), m ∈ N, such that θm ∈ ΘR, ‖Γm‖ → ∞ or
σ2

m → 0 or σ2
m → ∞ we have

lim
m→∞

EP (dy)(log q(y|θm)) = −∞

(3) The mapping θ → EP (dy) log(q(y|θ)) is continuous on ΘR and ΘR
∗ 6= ∅.

Proof. We prove the three points in order.

(1) Let My = maxi |yi|.
Case 1: ‖Γm‖ → ∞. Due to the assumption on the growth of Ib(x) and the fact
that Kg is injective, there exist constants A > 0, B such that |(Kgβ)Iα| ≥ A|β|+B.
Given w ≥ 1, we bound the marginal density on yi given θm as follows:

q(yi|θm) =

∫

q(yi|β, θm)q(β|θm)dβ

≤ 1

(2πσ2
m)|Λ|/2

∫

|β|>(w·My−B)/A

exp
(

−((w − 1)My)
2/(2σ2

m)
)

q(β|θm)dβ

+ max
|β|≤(w·My−B)/A

q(β|θm).

As ‖Γm‖ → ∞ the second integral goes to zero. As for the first integral, the
integrand is maximized at σ2 = ((w − 1)My)

2, and hence it is bounded by C ·
(wMy)

−Λ. Thus

lim sup
m

l
∑

i=1

log q(yi|θm) ≤ l(C − Λ log w), i = 1, . . . , n.

Since w can be arbitrarily large we obtain the result for the case ‖Γm‖ → ∞.
Case 2: σm → 0 or σm → ∞. Fix an integer M > 0. There exists CM such that
for |β| > CM , |F (α, βl

1)| > 2M for any |α| ≤ R with F as defined in Lemma 3. This
implies that if supi |yi| < M , the distance of yl

1 to I l
R is achieved at some |β| < CM ,

i.e. d(yl
1, I l

R) = d(yl
1, F (B)), for some compact subset B ⊂ R

p. Since P (dyl
1) has a

continuous density and since F (B) is compact and of dimension p < q,

P (|yl
1|∞ ≤ M and d(yl

1, I l
R) > 0) = 1.
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This is true for any integer M implying that d(yl
1, I l

R) > 0, a.s. Finally using the
bound in equation (22), we get the required result whether σm → 0 or σm → ∞.

(2) Consider fm(yl
1) = infn≥m

(

∑l
i=1 log q(yi|θn)

)−

. We deduce from (1) that a.s.

fm(yl
1) is a non decreasing and non negative sequence converging to +∞. From

the monotone convergence theorem we then have

EP (dyl
1
)(fm(yl

1)) → ∞ and EP (dyl
1
)

(

l
∑

i=1

log q(yi|θm)

)−

→ ∞,

since fm(yl
1) ≤

(

∑l
i=1 log q(yi|θm)

)−

. Concerning the positive part, if we de-

note gm(yl
1) =

(

∑l
i=1 log q(yi|θm)

)+

, using the dominated convergence theorem,

Lemma 3, and part 1), we get EP (dyl
1
)gm(yl

1) → 0. Finally, we have proved that

EP (dyl
1
)

∑l
i=1 log q(yi|θm) → −∞ and point 2) follows immediately.

(3) The continuity statement is straightforward. If ΘR
∗ is empty, any minimizing se-

quence θm satisfies (up to the extraction of a subsequence) θm ∈ ΘR, ‖Γm‖ → ∞
or σ2

m → 0 or σ2
m → +∞ which is in contradiction with (2).

¤

Proof of the consistency theorem for bounded prototypes. We follow the usual route of Wald’s
consistency proof, involving an adequate compactification of the parameter space ΘR.

Let Σ+
2kg

(R) = Σ+
2kg

(R) ∪ {∞} be the one point Alexandrov compactification of Σ+
2kg

(R),

R+ = R+ ∪ {+∞} and consider the compactification of ΘR

Θ
R

= B
R

kp (0, R) × R+ × Σ+
2kg

(R)

where B
R

kp (0, R) is the closed ball in R
kp of radius R. Let l be as in Lemma 3. It is

sufficient to check that for any point θ∞ ∈ Θ
R

for which δ(θ∞, ΘR
∗ ) ≥ ε, there exists an

open set U such that

(24)
1

l
EP (dyl

1
)( sup

θ∈U∩ΘR

l
∑

i=1

log q(yi|θ)) < v(R) .

Let (Uh)h≥0 be a non increasing sequence of open sets for which ∩h≥0Uh = {θ∞}, and

define fh(y
l
1) = 1

l
supθ∈Uh

∑l
i=1 log q(yi|θ), which is a non increasing sequence. If θ∞ ∈ ΘR,

then from the continuity of θ →∑l
i=1 log(q(y|θ)) for every θ ∈ ΘR and from Lemma 3, we

deduce (using the monotone convergence theorem) that since θ∞ ∈ ΘR \ ΘR
∗ ,

EP (dyl
1
)(fh(y

l
1)) →

1

l
EP (dyl

1
)(

l
∑

i=1

log q(y|θ∞)) < v(R).

If θ∞ ∈ Θ
R \ΘR, we can prove that P a.s. fh(y

l
1) → −∞. Indeed, assume that there exists

an event A such that P (yl
1 ∈ A) > 0 and inf fh > −∞ on A. Then, for any yn

1 ∈ A, there
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exists a sequence (θm)m∈N in ΘR such that θm → θ∞ and lim infm∈N

∑l
i=1 log(q(yi|θm)) >

−∞. However, since θ∞ ∈ Θ
R \ ΘR, θ∞ = (α, σ2, Γ) with σ2 ∈ {0, +∞} or Γ = ∞

in contradiction to Lemma 4 (1). Finally, using the monotone convergence theorem and
Lemma 3, we get that

EP (dyl
1
)(fh(y

l
1)) → −∞ < v(R),

and we have proved (24). Since C = { θ ∈ ΘR | δ(θ, ΘR
∗ ) ≥ ε} is compact, there exists

a covering of C by a finite family of open sets (U j)1≤j≤r satisfying (24). Thus, denoting
kn = bn/lc − 1 and ln = n − knl, we get

sup
C∩ΘR

n
∑

i=1

log q(yi|θ) ≤ sup
1≤j≤r

(

kn−1
∑

k=0

sup
θ∈Uj∩ΘR

l
∑

i=1

log q(ykl+i|θ) + sup
θ∈Uj∩ΘR

l+ln
∑

i=1

log qθ(yknl+i)

)

,

so that we deduce from the strong law of large numbers and from (24) that

(25) lim sup
n→∞

1

n
sup

C∩ΘR

n
∑

i=1

log q(yi|θ) < v(R) .

Note that all earlier results hold for l sufficiently large. Using l + ln in the second sum
guarantees the applicability of these results.

Given any element θ∗ ∈ ΘR
∗ , we have 1

n

∑n
i=1 log q(yi|θ∗) → v(R) a.s. and 1

n

∑n
i=1 log qθ̂R

n
(yi) ≥

1
n

∑n
i=1 log q(yi|θ∗)+ 1

n
(log q(θ∗)− log q(θ̂R

n )) where q(θ) denote the density of the prior dis-
tribution on the parameters. Since this q(θ) is upper bounded on Θ, we deduce that

lim inf 1
n
(log q(θ∗) − log q(θ̂R

n )) ≥ 0 and

(26) lim inf
n→∞

1

n

n
∑

i=1

log qθ̂R
n
(yi) ≥ v(R) .

The results follows from (25) and (26). ¤

Appendix B. Log likelihood approximations

Given the estimated parameters θ ∈ Θ, the computation of the log-likelihood of an image
y requires integrating out the hidden variable β. This integration could be done using
some form of Monte Carlo but for the sake of efficiency we employ a simple approximation
detailed below:

Let y ∈ R
|Λ| and θ = (α, σ2, Γ) be fixed, and denote h(β)

.
= −1

2
|y−zβIα|2− |Λ|

2
log(2πσ2).

We have

q(y|θ) =

∫

eh(β)− 1

2
βtRβdβ

(2π)kg |Γ|1/2
,

where R = Γ−1. Write U(β) = −h(β) + 1
2
βtRβ. Expanding U around any β ′ we have

U(β)−U(β ′)− 〈∇U(β ′), β − β ′〉 = h(β)− h(β ′)− 〈∇h(β ′), β − β ′〉 − 1

2
(β − β ′)tR(β − β ′).
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Thus for β∗ achieving the minimum of U , the third term on the left is zero and we have

U(β) − U(β∗) = U(β) − U(β∗) − 〈∇U(β∗), β − β∗〉 = ε∗(β) − 1

2
(β − β∗)tR(β − β∗) ,

where ε∗(β) = h(β) − h(β∗) − 〈∇h(β∗), β − β∗〉. Hence

log q(y|θ)) = U(β∗) + log

∫

eε∗(β)N (β∗, Γ)dβ .

The simplest approximation is to assume the integrand is 1 yielding log q(y|θ) ∼ E(β∗).
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