
Geodesic Shooting and Diffeomorphic Matching
Via Textured Meshes
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Abstract. We propose a new approach in the context of diffeomorphic
image matching with free boundaries. A region of interest is triangu-
lated over a template, which is considered as a grey level textured mesh.
A diffeomorphic transformation is then approximated by the piecewise
affine deformation driven by the displacements of the vertices of the trian-
gles. This provides a finite dimensional, landmark-type, reduction for this
dense image comparison problem. Based on an optimal control model, we
analyze and compare two optimization methods formulated in terms of
the initial momentum: direct optimization by gradient descent, or root-
finding for the transversality equation, enhanced by a preconditioning
of the Jacobian. We finally provide a series of numerical experiments on
digit and face matching.

1 Introduction

The theory of deformable templates [10, 4, 3] provides a large range of appli-
cations to pattern and shape analysis and matching, with specific important
achievements in object recognition and medical imaging. The large deformation
diffeomorphic approach, initiated in [18, 6], has proved particularly accurate and
robust in this framework. Several algorithms have been developped, ranging
from landmark matching [13, 5, 1, 9, 7, 14] to images [16, 2], shape matching via
measures [8] or currents [20]. These algorithms come with a strong theoretical
support, regarding their well-posedness [6, 18, 19], and their properties, in terms
of metric distances [23, 16], and in relation to infinite dimensional mechanics,
yielding the notion of conservation of momentum and its normality [15, 21, 11].
As noticed in [21], this can also be embedded in a Hamiltonian, or optimal
control, framework. We shall adopt this last point of view in the present paper.

Assume that a template and a target images are given. Assume also that
a region of interest is extracted from the template, on which a triangulation
is overlayed, resulting in a textured mesh. We shall develop a dense matching
algorithm which computes a piecewise affine deformation between the images.
This deformation is controlled by a dynamical evolution of the vertices of the
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triangulation (through an ordinary differential equation), which will end-up in a
formulation closely related to diffeomorphic landmark matching [13, 5, 21]. Be-
cause of this, we will henceforth refer to the vertices of the triangulation as
landmarks, although they do not need to correspond to any point of interest
within the images.

From the evolution of the landmark, we will deduce an evolution of the
triangulation, and build from it a piecewise affine deformation. The quality of the
matching is measured by a data term based on the mean squared error between
the deformed template and the target within the region of interest covered by
the triangulation. The whole procedure is therefore governed by the ordinary
differential equation (ODE) satisfied by the landmarks, which will be specified
in term of a non-autonomous (time-dependent) vector field on the image plane.
This vector field can be seen as a control for the final matching, and its cost will
be defined as an integrated measure of smoothness of the vector field along time.

The problem can be handled by an optimal control (or Hamiltonian) ap-
proach, which, thanks to the maximum principle, can be parametrized by what is
called the initial momentum, which evolves through a conservation equation and
allows to recover the ODE and the deformation. In our context, this point of view
has been introduced in [15] and used in [21] for landmark matching, using gra-
dient descent algorithms. We will here adapt the gradient descent algorithms to
our image matching framework, and analyze an alternative optimization method,
also applicable to standard landmark matching, called shooting in the optimal
control literature. This is a root-finding method (using Newton’s algorithm),
designed to solve the transversality equation associated to the problem.

The paper is organized as follows. We start with describing a generic land-
mark based matching problem in terms of optimal control, first as an infinite
dimensional problem, and then reduce it to finite dimensions, using usual argu-
ments of the theory of smoothing splines. We then describe our approaches for
solving this problem: direct minimization by gradient descent and root-finding
by Newton’s method. This last method will be briefly illustrated by landmark
matching examples. We will then focus on our image matching problem, intro-
ducing notation and computing the elements needed for the two algorithms. The
paper will end with a presentation of some experiments with 2D images.

We first fix notation. Images are assumed to be defined on Ω, an open
bounded set of R

n with regular boundary (piecewise C1). We assume that a
template image (denoted I0) has been selected, and that a triangulation has
been overlayed on the template, and denote (x1, ..., xN ) the vertices of the trian-
gulation. Typically, (x1, ..., xN ) are chosen first, as landmarks, and the triangu-
lation is deduced, using in our case Delaunay’s triangulation. We denote by xd

i

the dth coordinate of the vector xi. The landmarks will serve as control points
to estimate a diffeomorphism φ which will provide a dense matching between I0
and a target image I1.

For vectors x, y, the notation 〈x, y〉 will be used for the standard dot product
xT y. For dot products on a Hilbert space V , the notation 〈x, y〉V will be used.
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2 Optimal Control Problem

2.1 Context

We provide a Hamiltonian formulation of the landmark matching large deforma-
tion setting, originally introduced in [13]. The interpretation already appeared
in [15], [21], and can be summarized as follows. The evolution of the landmarks
is driven by a single non-autonomous ODE dy/dt = vt(y). This defines N land-
mark trajectories, denoted t �→ qi(t), i = 1, . . . , N , each satisfying the system

⎧
⎪⎨

⎪⎩

dqi(t)
dt

= vt(qi(t))

qi(0) = xi .

(1)

Here, (t, y) �→ vt(y) is a time dependent velocity vector field, which serves as a
control variable for our system of N landmarks.

As done in the optimal control theory for image matching, developped among
others by Dupuis et al. ([6]), we introduce an energy which has to be minimized
under constraints. This energy stems from a tradeoff between a deformation con-
straint and a data attachment term. The deformation term is equal to the inte-
gration over time (between 0 and 1) of the kinetic energy of the transformation.

The instantaneous kinetic energy is defined as the norm ‖vt‖2
V /2 of the ve-

locity field introduced in (1). The total energy is Ek(v) = 1
2

∫ 1
0 ||vt||2V dt. This

norm is a Hilbert norm (defined on a Hilbert space V ); it is designed to ensure
that vt is sufficiently smooth. For this purpose, V is assumed to be continuously
embedded in C1

0 (Ω), the set of continuously differentiable functions which vanish
on the boundary of Ω. Because of this, V is a so-called self-reproducing kernel
Hilbert space, which implies that there exists a kernel kV , defined on Ω × Ω,
taking values in the set of symmetric (n, n) matrices, such that: (i) for all x ∈ Ω,
and for all α ∈ R

n, the vector field kV (x)α : y �→ kV (x, y)α belongs to V and
(ii) 〈kV (x)α, w〉V = 〈w(x), α〉Rn , for all w ∈ V .

If a set of landmarks: q = (q1, . . . , qN ) is given, we denote by K(q) the nN ×
nN matrix consisting on the n×n blocks kV (qi, qj): K(q) = (kV (qi, qj)1≤i,j≤N ).

We assume that the data attachment term only depends on the final configu-
ration of the landmarks: q(1), and of other constants of the problem (in our case:
the template and target images I0 and I1). We will denote it by gI0,I1(q(1)), or
simply g(q(1)) if there is no ambiguity on the compared images. This will be
detailed in section 3 for our image comparison algorithm. However, since most
of the developments can be done by only assuming that q �→ g(q) is twice differ-
entiable, we carry on this discussion assuming a generic data attachment term
satisfying this property.

With this notation, introducing a positive weigth λ, the complete energy is

E(v, q(1)) =
1
2

∫ 1

0
||vt||2V dt + λg(q(1)) . (2)
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Remark 1. The dynamical aspect of the formulation can be compared to linear
smoothing spline approaches, which will essentially remove the time variable,
using a single v ∈ V , and replace (1) by qi(1) = qi(0)+v(qi(0)), with the integral
in the energy term replaced by ‖v‖2

V . As already demonstrated in [13, 5], our
formulation ensures non-ambiguous and smoother deformation when interpolated
to Ω, and is consistent with the constraint of building diffeomorphisms, which is
not the case with linear splines.

The smoothness assumptions on (vt, t ∈ [0, 1]) ensures existence and uniqueness
of the solutions of the ODE, so that the landmarks q(.) are defined at all times.

2.2 Reduction of Dimension

Standard arguments, similar to those used in the theory of smoothing splines,
and relying on the kernel kV of the Hilbert space V , allow to characterize the
velocity field vt by a finite dimensional time dependent system [22], [13]. In our
case, this has an interesting Hamiltonian interpretation [21], which can also be
derived from Pontryagin’s maximum principle in optimal control [12]. The result
is the existence at all times t of N vectors pi(t) ∈ R

n, such that:

vt =
N∑

i=1

kV (qi(t))pi(t) . (Interpolation Formula) (3)

The vector pi(t) is called the momentum of the ith landmark at time t. The joint
evolution of the landmarks and the momentum can be written in a standard
Hamiltonian form for H(q, p) = 1

2 〈p, K(q)p〉 (see Appendix)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dq

dt
=

∂H

∂p
(q, p) = K(q(t))p(t)

dp

dt
= −∂H

∂q
(q, p) = −1

2
∇q(t)K(p(t), p(t))

(4)

where ∇qK(p, p) is defined as follows. Let dqK be the differential of q �→ K(q):
since K is a matrix, the linear map h �→ dqK.h is matrix valued. We define
∇qK(p, p) to be the vector w such that, for all h ∈ R

n, 〈(dqK.h)p, p〉 = 〈w, h〉.
From the definition of K, we have H(q(t), p(t)) = ||vt||2V /2 and the Hamiltonian
remains constant along the trajectories of (4), yielding

Ek(v) =
1
2

∫ 1

0
||vt||2V dt =

1
2
〈K(q(0))p(0), p(0)〉 . (5)

Using system (4), the time evolution of the momentum and landmarks can be
computed from the initial momentum and landmarks. In particular, since the
initial position of the landmarks is fixed, their final position, q(1), can be seen
as a function of the initial momentum, p(0), alone. According to this, our en-
ergy function can be seen as only depending on this initial momentum, a finite
dimensional variable.
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E(p(0)) =
1
2
〈K(q(0))p(0), p(0)〉 + λg(q(1)) . (6)

Remark 2. Because of the formula (3) we can reconstruct a global deformation
by integrating the equation dy/dt = vt(y) with various initial conditions: this is
the flow associated to the ODE, and provides a diffeomorphism on Ω which only
depends on the initial momentum and initial landmarks, since this was the case
for vt. We will refer to it as the reconstructed diffeomorphism.

Returning to our optimal control problem, the optimal trajectory must satisfy
an additional transversality condition (see Appendix for a brief derivation
and [8] for a more general case). This is given by

p(1) + λ∇q(1)g = 0 . (7)

Since p(1) and q(1) can be considered as functions of p(0), this is a non-linear
equation in the initial momentum.

We now analyze and describe two methods for the solution of our variational
problem. The first one is to directly minimize the energy by gradient descent,
with respect to the initial momentum p(0). The second is to solve (7), again with
respect to p(0).

2.3 Algorithms

Gradient Descent. Several gradient descent algorithms which minimize the
landmark-based energies with respect to the landmark trajectories have been
developed in [13, 1, 5]. An algorithm working with the initial momentum has
been proposed in [21], yielding the following gradient descent algorithm:

Algorithm 1. Gradient Descent on p(0)
Choose an initial p(0), and δ ∈ R

∗
+, then iterate until convergence:

p(0)new = p(0)old − δ∇p(0)oldE

where ∇p(0)E = K(q(0))p(0) + λ
(

∂q(1)
∂p(0)

)T

∇q(1)g .

Solving the transversality Equation. To solve (7), we use a variant of New-
ton’s algorithm. The advantage of this algorithm is its convergence speed. Choos-
ing an initial point in a neighborhood of the solution provides a quadratic con-
vergence rate. This yields the following iterations : let G(p(0)) = p(1)+λ∇q(1)g.

Here we have, denoting d2
qg the Hessian matrix (second derivative) of g,

dp(0)G =
∂p(1)
∂p(0)

+ λd2
q(1)g

∂p(1)
∂p(0)

. (8)
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Algorithm 2. Newton’s Algorithm on transversality Condition
Choose an initial p(0), then iterate until convergence :

p(0)new = p(0)old − (dp(0)oldG)−1G(p(0)old)

However, Newton’s method must be used with care, since its convergence
is not guaranteed. It is sometimes a good idea to combine gradient descent
and Newton’s algorithm: use gradient descent as long as it is efficient (large
variations of the energy), and switch to the second algorithm when it slows down
(hopefully in a close neighborhood of a local minimum). Note however that such
an approach was unnecessary in our handwritten digit and face experiments for
which we could start directly with the root-finding algorithm and always achieve
convergence.

There is an other issue in Newton’s algorithm : to compute each iteration, we
have to invert a matrix. Depending on its conditioning, the inversion could make
the algorithm diverge. To avoid this issue, before the inversion, we pre-condition
the matrix. The choice we made is to project the matrix on its main singular
directions.The resulting vector pr is an approximation of the real solution of (7)
which converge when r increases. So that the resulting algorithm is :

Algorithm 3. Newton’s Algorithm on Transversality Condition, Pre-
conditioning
Choose an initial value of p(0), then iterate until convergence

pk+1
0 = pk

0 − V T DrU
T G(pk

0) where [U S V ] = svd

(
∂p(1)
∂p(0)

+ d2
q(1)g

∂q(1)
∂p(0)

)

and Dr = diag(1/λ1, · · · , 1/λr, 0, · · · , 0) where the λi’s are the singular values of S
sorted in decreasing order.

Variation of the Hamiltonian System. Both algorithms require the com-
putation of the differential of the end-points of system (4) with respect to the
initial momentum p(0). This is obtained by differentiating the system, yielding
a new evolution providing the required differentials.
⎧
⎪⎪⎨

⎪⎪⎩

d
dt

(
∂q(t)
∂p(0)

)
= ∂K(q(t))

∂q(t)
∂q(t)
∂p(0) + K(q(t)) ∂p(t)

∂p(0)

d
dt

(
∂p(t)
∂p(0)

)
= −∂p(t)

∂p(0)
∂K(q(t))

∂q(t) p(t)−p(t) ∂
∂p(0)

(
∂K(q(t))

∂q(t)

)
p(t)−p(t)∂K(q(t))

∂q(t)
∂p(t)
∂p(0) .

(9)

Remark 3. This additionnal transversality equation enables the use of New-
ton’s algorithm which wouldn’t have been so easy working only on the energy:
running this algorithm to solve ∇p(0)E = 0 requires to compute d2q(1)

dp(0)2 and so to
differentiate twice then solve the Hamiltonian system (4).
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2.4 A First Application : Landmark Matching

As a first application of this framework, we discuss landmark matching: in this
special case, the data attachment term is equal to the sum of squared distances
between the final landmarks and the target landmarks y = (yi)1≤i≤N : g(q(1)) =
N∑

i=1
||qi(1) − yi||2Rn . In this case, the first and second derivatives of the data

attachment term are easy to compute : ∇q(1)g = 2
N∑

i=1
qi(1)−yi and d2

q(1),q(1)g =

2IdnN , IdnN being the identity matrix in MnN (R). This yields the two following
algorithms :

Gradient descent: Choose an initial p(0), and a constant δ, then iterate

until convergence: p(0)new = p(0)old − δ(K(q(0))p(0) + 2λ
(

∂q(1)
∂p(0)

)T

(q(1) − y))
Newton’s method: Choose an initial value of p(0), then iterate until

convergence : p(0)new = p(0)old − (dp(1)
dp(0) + 2λIdnN )−1(p(1) + λ(q(1) − y))

Figure 1 shows the results of Newton’s Method for 2 sets of landmarks.
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Fig. 1. Landmark matching : left : template (+), targets (◦), final landmarks (�) and
deformation of the inherent space ; right : landmarks trajectories

3 Image Matching on Piecewise Affine Triangulations

We now focus on our primary application: image matching, which goes as fol-
lows. We start with a template image which has previously been annotated with
landmarks. This will define a region of interest in the template which will then be
warped to the target image so that it delimitates a region with similar content.

The region of interest is provided by a triangulation associated to the land-
marks, for example, Delaunay’s triangulation whose advantage is among others
that no triangle is included in an other. For this particular case, this yields a con-
vex region which is partitioned into triangles (or simplices in higher dimension),
as illustrated in figures 2. We now define the data attachment term gI0,I1(q(1)).
Denote by T1, . . . , Tr the family of triangles forming the partition of the region
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Fig. 2. Triangulation (2D), tessellation (3D), and examples of template triangulations

of interest in the template. Each triangle Tk have vertices from the initial land-
marks, say Tk = (xik1 , xik2 , xik3). The landmark evolution (4) displaces Tk into
the triangle T ′

k = (qik1(1), qik2(1), qik3 (1)) in the target. There exists a unique
affine transformation φk which transforms Tk onto T ′

k, and, assuming that the
orientation of T ′

k is consistent with the one of Tk, we define the piecewise affine
homeomorphism

φ : R :=
r⋃

k=1

Tk �→ R′ :=
r⋃

k=1

T ′
k (10)

by φ|Tk
= φk. (Although this does not appear in the notation, φ depends on the

landmark trajectories.) To keep the consistency of the triangle orientations, a
sufficient condition is to choose the kernel variance according to the constant λ.
(cf : Annexes) The data attachment term g is then defined by

g(q(1)) =
∫

R′
(I0 ◦ φ−1 − I1)2dy . (11)

3.1 Reformulation of the Data Attachment Term

We now express g into a form which will simplify the computation of its deriva-
tives (recall that we need the first derivative for gradient descent, and the second
for Newton’s method). First, introducing the triangulation, we have, with the
notation above,

g(q(1)) =
r∑

k=1

∫

T ′
k

|I1(y) − I0 ◦ φ−1
k (y)|2dy . (12)

In order to lighten the notation, we only focus, from now, on the 2D case. Higher
dimension is adressed with an identical argument (simply replacing triangles by
simplices).

We can remove the dependence of the integration domain on φ by a change
of variables yielding

g(q(1)) =
r∑

k=1

∫

Tk

|I1(φk(x)) − I0(x)|2|dxφk|dx . (13)

Note that, because φk is affine, the jacobian is equal to the ratio between the
surfaces of the target and template triangles, and will be easily handled in the
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computation of derivatives. We now make the computation explicit by introduc-
ing a local parametrization of the interior of each triangle.

Using our notation, each point in the interior of Tk is uniquely described by
2 coordinates (α, β), with 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 − α, by x = ψ0k(α, β) with
ψ0k(α, β) = α(xik2 − xik1) + β(xik3 − xik1) + xik1 .

Since the deformation is affine on the triangle, we have φk(x) = ψ1k(α, β)
with ψ1k(α, β) = α(qik2 (1) − qik1 (1)) + β(qik3(1) − qik1(1)) + qik1(1).

�
�
�
��

xik1�
�� xik2

�
�

�
xik3

�
�
�

φk(xik1) φk(xik2)�
�

�

φk(xik3)×ψ0k(α, β) = x

× φk(x) = ψ1k(α, β)

φk

Fig. 3. Image of a point x in the template triangle Tk through the affine function φk

Using the coordinates (α, β) is in fact equivalent to making a new change of
variable from the triangle Tk to the standard simplex T0 = {α+β < 1, α, β > 0}
so that, denoting A(T ) for the area of a triangle T , and s = (α, β):
∫

Tk

|I1(φk(x))− I0(x)|2|dxφk|dx =
∫

T0

|I1(ψ1k(s))− I0(ψ0k(s))|2A(T ′
k)ds . (14)

This yields the final expression of the energy : E(p(0)) =

1
2
〈K(q(0))p(0), p(0)〉 + λ

r∑

k=1

∫

T0

|I1(ψ1,k(s)) − I0(ψ0,k(s))|2A(T ′
k)ds . (15)

4 Computation of the Derivatives

4.1 Gradient

We compute the first derivative of g, which is needed for the gradient descent
algorithm and the computation of the transversality equation. To compute this
gradient we use formula (15) which can be differentiated without requiring
Green’s formula which would involve an integration over the edges of the tri-
angles. We expect in particular more numerical accuracy from surface intergrals
than from interpolated line integrals.

Proposition 1. Denote zk = (q1
k1(1), q1

k2(1), q1
k3(1), q2

k1(1), q2
k2(1), q2

k3(1)) ∈ R
6,

considered as a column vector and with a slight abuse of notation, denote A(zk) =
A(T ′

k). Let z = (z1, ..., zN)T be the vector containing all the vertices of the tri-
angles. We can notice that in z, some of the landmarks are repeated, but this
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does not affect the computation, since we treat each triangle separately. Let
Ĩi,k = Ii ◦ψi,k for i = 0, 1. The gradient of the data attachment term is equal to:

∇g(z) =
r∑

k=1

∫

T0

(
2(Ĩ1,k(s) − Ĩ0,k(s))A(zk) (∂zk

ψ1,k(s))T ∇I1(ψ1,k(s))

+ |Ĩ1,k(s) − Ĩ0,k(s)|2 ∇A(zk))ds
)

(16)

where : ∇A(zk) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 −1 1
0 0 0 1 0 −1
0 0 0 −1 1 0
0 1 −1 0 0 0
−1 0 1 0 0 0
1 −1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

zk and ∂zk
ψ1,k =

(
1 − α − β α β 0 0 0

0 0 0 1 − α − β α β

)

.

4.2 Second Differential of g

We now compute the Hessian matrix of g which is needed for the implementation
of Newtons’s method.

Proposition 2. Using the same notation as before, the second derivative of the
data attachment term with respect to the final landmarks equals :

d2
zg(δz, δz) =

r∑

k=1

∫

T0

(δzk)T
(
2A(zk) (∂zk

ψ1,k)T ∇I1(ψ1,k)∇I1(ψ1,k)T ∂zk
ψ1,k

+ A(zk)(Ĩ1,k − Ĩ0,k) (∂zk
ψk)T HessI1(ψ1,k) ∂zk

ψ1,k

+ 2(Ĩ1,k − Ĩ0,k)(∂zk
ψ1,k)T ∇I1(ψ1,k)(∇A(zk))T

+ (Ĩ1,k − Ĩ0,k)2HessA(zk) ds
)

δzk (17)

where HessA(zk) ≡

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 −1 1
0 0 0 1 0 −1
0 0 0 −1 1 0
0 1 −1 0 0 0
−1 0 1 0 0 0
1 −1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and Hessf denotes for the hessian matrix of f .

Proof: We use the same notation as in the computation of the first derivative.
We can notice that ∂zk

ψ1,k is independent of zk and ∇A(zk) is linear on zk, so
that the second derivative of ψ1,k with respect to zk is null and we easily get the
expression of HessA(zk) as the matrix involved in its gradient. This yields :

d2
zg(δz, δz) =

r∑

k=1

∫

T0

(
2〈∇I1(ψ1,k), ∂zk

ψ1,k(δzk)〉〈∇I1(ψ1,k), ∂zk
ψ1,k(δzk)〉A(zk)

+ 2d2
ψ1,k

I1(∂zk
ψ1,k(δzk), ∂zk

ψ1,k(δzk))(I1(ψ1,k) − I0(ψ0,k))A(zk)

+ 2(I1(ψ1,k) − I0(ψ0,k))〈∇I1(ψ1,k), ∂zk
ψ1,k(δzk)〉〈∇A(zk), δzk〉

+ 2(I1(ψ1,k) − I0(ψ0,k))2 d2
zk

A(δzk, δzk)
)
ds . (18)

Equation (17) is the matrix form of (18).
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5 Experiments and Discussion

In the experiments showed in figure 4, the first line corresponds to the final
results of the gradient descent in the initial momentum space. The second line
corresponds to the results of Newton’s method. The deformation φ (fourth col-
umn) and the transformation of the template (third column) are computed using
the interpolation formula ; it is the reconstructed diffeomorphism and no more
its approximation by a piecewise affine function.

The mesh can be either adaptated to the template or be shared by every
images. The choice depends on the goal we pursue. Using a common mesh enables
a comparison of the resulting energies on the same area of the images (see table
1 and 2). In case of image detection or classification, we try to explain an image
made of two different parts: a specific zone where the information is located and
the background. If we want to give a probalistic model to each part, localizing
the information, that is to say using an adaptative mesh, will probably enable
to reach better results. The risk with object adapted triangulation is the data
attachment term can be small when the deformed template is included in the
target, but not perfectly aligned to it. This can happen in particular when the
grey-level information is weak within the shape, espescially with binary images.

In each case, more iterations are needed by the gradient descent, often with
less accurate results than with Newton’s method.

Template Target phi(I0) phi

Template Target phi(I0) phi

Fig. 4. Comparison between gradient descent (line 1 and 3) and root-finding (line 2
and 4) methods on an adaptative mesh for 2 different digits
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Template Target I0 o phi−1
phi

Fig. 5. Combination of gradient descent and root-finding methods for 2 regular mesh
(15 and 24 landmarks)

Template Target I0 o phi−1

Fig. 6. Newton’s method results on 2 synthetic face matchings (line 1 and 2), using 2
different meshes (line 2 and 3)
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The number of singular directions used for Newton’s method is computed
automatically: we start with 10% of singular directions and keep adding new
ones unless the norm of G(p0) = p1(p0) + λ∇g increases. The resulting energy
is smaller using Newton’s method as well as the averaged numerical value of
|G(p0)|. Typical initial values are larger than 300 for the energy and than 4 for
the average of |G(p0)|. Note that this value is not always 0 at the end of the
iteration, essentially due to interpolation errors.

In figure 5, we can see the final results of the combination of both gradient
and Newton’s methods for a common regular mesh with 15 or 24 landmarks. If
we increase the number of points, a good initialization of Newton’s method is
required. One solution is to combine the two methods as previously described.
Handwritten digit images are almost binary, small images; this creates a risk of
numerical unstability for the computation of their gradient and second deriva-
tive. For face images (100 times bigger), Newton’s algorithm is more stable and
uses almost every singular values in the last steps. The final result depends on
the two parameters λ and σV . Increasing λ allows larger deformations to better
fit the data, but the minimum is harder to achieve. The kernel parameter, σV ,
needs to be large enough to ensure triangle consistency, but small enough to
avoid too rigid deformations (like in figure 6, 3rd line). The tradeoff we made is
choose σV almost equal to the size of the triangles. The design of the triangu-
lation is important too. Indeed, since the deformation is affine on each triangle,
all elements in one triangle will have a homogeneous displacement. Thus, it is
reasonable to ensure that every triangle holds only one structure of the image,
for example the mouth or the cheeks but not both.

6 Conclusion

We have presented here a new method for image matching using a triangulation
of a restricted part of the image domain, and a piecewise affine transformation
on this triangulation. We also introduced a new way for finding the transforma-
tion by directy solving the transversality equation. The motivation was to take
advantage of the dimensionality reduction that is provided by the landmark de-
pendence of the deformation and the linearity of the affine function that enables
an explicit computation of the derivatives of the data attachement term. Solv-
ing the transversality equation by Newton’s algorithm also provided significant
acceleration of the convergence of our matching algorithm. A 3D generalization
of the computations is also almost straightforward.
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19. A. Trouvé, L. Younes Local geometry of deformable template, SIAM Journal of
Numerical Analysis (2004-5)

20. M. Vaillant, J. Glaunes Surface Matching via Currents, Proceedings of Infor-
mation Processing in Medical Imaging (IPMI 2005), pp. 381-392, 2005.
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Appendix

* We provide here for completness, a sketch of the derivation of the Hamiltonian
formulation given in (4) and of the transversality condition (7).
Let (vt, q(t))t∈[0,1] be a minimizer of (2) with v ∈ L2([0, 1], V ). For any
perturbation vt → vt + εht with h ∈ L2([0, 1], V ), we get at ε = 0

∂εq̇(t) = dq(t)vt∂εq(t) + ht(q(t)) (19)

where ht(q(t))
.= (ht(qi(t)))1≤i≤N . Let (Ps,t) be the matrix semi-group sat-

isfying
Ps,s = IdnN and ∂tPs,t = dq(t)vtPs,t, ∀t ≥ s . (20)

From (19) and (20), we get at ε = 0, ∂εq(1) =
∫ 1
0 Ps,1hs(q(s))ds and

∂εE(v, q(1)) =
∫ 1

0
〈vs, hs〉V ds +

∫ 1

0
〈∇q(1)g, Ps,1hs(q(s))〉RnN ds = 0.

Since h is arbitrary, we get vs(q(s)) = q̇(s) = K(q(s))p(s) = ∂H
∂p (q(s), p(s))

where p(s) + P ∗
s,1∇q(1)g = 0 which gives the first equation of (4) and also

(7) for s = 1. From (20), we get ∂sPs,t = −Ps,tdq(s)vs so that eventually

ṗ(s) = ∂sP
∗
s,1p1 = −(dq(s)vs)∗p(s) = −∂H

∂q
(q(s), p(s)) . (21)

* We provide here a proposition concerning the triangle consistency.

Table 1. Comparison of the 2 metods for solving the Image matching problem for
handwritten digits (images normalized in [−1, 1])

Energy value Mean value |G(p(0))|
Fig Gradient desc. Newton’s method Gradient desc. Newton’s method

Fig 4 1st line 62.87 60.43 0.95 0.48
Fig 4 2nd line 166 156 1.30 0.62
Fig 5 15 pts 107 76.9 0.76 0.33
Fig 5 24 pts 71.1 65.5 0.58 0.40

Table 2. Newton’s method results on face images (images normalized in {0,. . . ,255})

Fig Energy value Mean value of the |G(p(0))| vector
Fig 6 1st line 3.39103 1.08
Fig 6 2nd line 1.98.103 0.40
Fig 6 3rd line 1.32.103 0.09
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Proposition 3. Let γ(t) = sin(θ(t)) where θ(t) is one of the triangle angles.
Let V be a self reproducing kernel Hilbert space, with a σ2 variance gaussian
kernel and φt be the diffeomorphism solution of dφ/dt = vt ◦φt for a velocity
vector field vt ∈ L1([0, 1], V ). Denoting ψ(x) = 2xe2x, a sufficient condition
to keep the triangle consistency is given by

ψ(

√
2λgI1,I0(q(0))

σ
) ≤ |γ(0)|

(1 + |γ(0)|) .

Proof: Let A, B, C be the 3 vertices of a triangle, a(t) = φt(B) − φt(A)
and b(t) = φt(C) − φt(A). We want to control the sign of the sine of the
B̂AC angle, θt. To avoid reversal of the triangle this quantity must not
change its sign. Let α(t) = |a(t) b(t)| = |a(t) ∧ b(t)|; we can notice that :
α(t) = |a(t)||b(t)| sin(θt). Then, using Cauchy-Schwarz inequality:

∂tα(t) = 〈∂ta(t) ∧ b(t) + a(t) ∧ ∂tb(t),
a(t) ∧ b(t)
|a(t) ∧ b(t)| 〉

≤ (|∂ta(t)||b(t)| + |∂tb(t)||a(t)|) .

But, ∂ta(t) = ∂t(φt(B) − φt(A)) = vt(φt(B)) − vt(φt(A)). So that:

∂tα(t) ≤ 2‖dvt‖∞|a(t)||b(t)| . (22)

Let γ(t) = sin θt = α(t)
|a(t)||b(t)| ; we try to quantify the difference between

sin(θt) and sin(θ0) to find a suffitient condition.

∂tγ(t)

=
∂tα(t)

|a(t)||b(t)| − α(t)
|a(t)|2|b(t)|2 (|b(t)|〈∂ta(t),

a(t)
|a(t)| 〉 + |a(t)|〈∂tb(t),

b(t)
|b(t)| 〉)

≤ 1
|a(t)||b(t)|

(

|∂tα(t)| + |α(t)|
(∣

∣
∣
∣〈

∂ta(t)
|a(t)| ,

a(t)
|a(t)| 〉

∣
∣
∣
∣ +

∣
∣
∣
∣〈

∂tb(t)
|b(t)| ,

b(t)
|b(t)| 〉

∣
∣
∣
∣

))

.

Using (22), ∂tγ(t) ≤ 2‖dvt‖∞ + |γ(t)|
(∣
∣
∣
∂ta(t)
a(t)

∣
∣
∣ +

∣
∣
∣
∂tb(t)
b(t)

∣
∣
∣

)
≤ 2‖dvt‖∞(1 +

|γ(t)|) . And |γ(0) − γ(t)| ≤
∫ t

0 |∂tγ(t)|dt ≤
∫ t

0 2‖dvt‖∞(1 + |γ(0)|)dt +
∫ t

0 2‖dvt‖∞|γ(0)−γ(t)|dt . Applying Gronwall’s lemma to this last inequality,
we finally get:

|γ(0) − γ(t)| ≤ 2(1 + |γ(0)|)
(∫ 1

0
‖dvt‖∞dt

)

exp
(

2
∫ 1

0
‖dvt‖∞dt

)

.

As we are using a self reproducing gaussian kernel Hilbert space: ∀x ∈ R
d

|v(x)| = sup
|a|≤1

〈v(x), a〉Rd = sup
|a|≤1

〈Kxa, v〉V , so: ‖v‖∞ ≤ ‖|Kx,x|‖‖v‖V =

‖v‖V , where ‖|Kx,x|‖ is the matrix norm subordinate to the Euclidian norm
in R

d, and, using a Taylor development of the kernel, ‖dvt‖∞ ≤ 1
σ‖vt‖V . So
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we get:
∫ 1
0 ‖dvt‖∞dt ≤ 1

σ

√
2Ek(v) ≤

√
λ

σ G̃ where G̃
.=

√
2gI1,I0(q(0)). And

finally: ∀v ∈ L1([0, 1], V ),

|γ(0) − γ(t)| ≤ (1 + |γ(0)|)ψ(

√
λ

σ
G̃) where ψ(x) = 2xe2x, ∀x ≥ 0 . (23)

To avoid the reversal of a triangle, it suffices that |γ(0) − γ(t)| ≤ |γ(0)| for
any t ∈ [0, 1]. A sufficient condition is ψ(

√
λ

σ G̃) ≤
(

|γ(0)|
(1+|γ(0)|)

)
, which gives

the result.
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