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Abstract

Our long-range goal is detectinginstancesfrom a large
numberof objectclassesin a computationallyefficientman-
ner. Detectors involvinga hierarchyof testsbasedonedges
havebeenusedelsewhere and shownto be quite fast on-
line. However, significant further gains in efficiency- in
representation,error ratesand computation- can be re-
alized if the family of detectors is constructedfrom com-
monparts.Our partsareflexible, extendededgeconfigura-
tions; theyarelearned,notpre-designed.In training, object
classesare presentedsequentially;the objectiveis thento
accommodatenew classesbymaximallyreusingparts. Ide-
ally, thenumberof distinctparts in thesystemwouldgrow
much moreslowlythanlinearly with thenumberof classes.
Initial experimentson learning to detectseveral hundred
LATEXsymbolsare encouraging.

1. Introduction
Oneof thegrandbut largely unrealizedobjectivesof com-
puter vision is semanticscenelabeling - identify all in-
stancesof ordinaryobjectsin naturalimagesor video se-
quences,including object posesand occlusion patterns.
Oneobstacleis certainlythesheernumberof differentob-
ject categoriesthatmight appearin typical indoorandout-
doorscenes.Whereasin any givenapplicationthis number
might beseverelylimited by specificgoals,it is not unreal-
istic to imaginehundredsor eventhousandsof categoriesof
interest.Add anotherorderof magnitudeif thechallengeis
to emulatehumancapabilities.

Naturally, computationthenbecomesthe paramountis-
sue, both for constructingthe detectors(whether from
models or samples)and for implementingthem online.
Throughoutthis papera “detector” is a binaryclassifierfor
someinstanceof object/backgroundseparation.Fastdetec-
torshave recentlybeenbuilt basedon sometypeof coarse-
to-fine search. The particularoneswe train are a variant

of these: There is a hierarchyof individual Booleande-
tectorsdedicatedto varioussubsetsof presentations,each
of which is basedon checkingfor a minimum numberof
“parts” which are chosenduring training from a virtually
infinite candidatepool. Our aim is to designthe underly-
ing objectrepresentationsto shareasmany partsaspossi-
ble. This opensthe way to still fasteronline executionas
well asmoreefficient representation.It canalsoreducethe
errorratesif thepartsareextendedstructureswhicharesig-
nificantly rarerin the “background”thanon the objectsof
interest.

Findinga universal“alphabet”of featureshasof course
intriguedresearchersfor a longtime,bothin computational
and biological vision. The advantagesare numerous,in-
cluding simplifying object recognitionand sceneparsing
by basingthe searchon the parts,someof which couldbe
precomputed.Ideally, not too many total partswould be
neededin orderto representeachobjectin termsof a rela-
tively smallnumberof themtogetherwith roughgeometric
constraintsamongthem[2],[5]. In addition,methodsbased
on stochasticandstructuralgrammarsare by naturehier-
archical;indeed,the conceptof “parts” lies at the heartof
“compositionalvision” [4]. From the point of view of bi-
ological vision, this providesa modelfor the responsesof
neuronsat higher level retinotopiclayerssuchas V4 and
somepart of IT [11]. Previous attemptshave focusedon
pre-designedparts(seee.g. [5] and [8]). In contrast,our
approachis statistical,learning-basedandrecursive.

Our partsaremedium-scale,binary featureswhich are
definedin terms of flexible and extendedconfigurations
of edges.The learningscenariois sequential:new object
classesarecontinually beingaddedto an existing library.
In fact,we imaginebeginningwith asingleobjectclassand
successively addingone new classat eachiteration. The
objective is thento modify the existing systemin orderto
accommodatethenew category. We simplybuild adetector
for thenew classandaddit to theexistingcollection.When
the detectorfor the

�����
’st classis constructed,the parts

1



whichconstitutetheprevious
�

detectorsareexaminedfirst
andfavoredin theconstructionof thenew one.Only if the
quotaof necessarypartsis not reachedin this way arenew
partslearnedfrom data.Initially, mostpartsarelearnedand
unique;eventually, many arereusedin new classifiers.Ide-
ally, thetotal numberof distinctpartsin thesystemafter

�
constructionswill grow slowly, for instancelogarithmically,
with
�
, whichdirectly reducesstorageandopenstheway to

onlineefficiency by basingsceneparsingonthepartsrather
thantheindividualdetectors.

We describesome stepsalong this path. The parts
are describedin � 2 and the methodfor integrating them
into a detectoris outlinedin Section3. Obvious tradeoffs
emergeamongmeasuresof reusability, discriminationand
part complexity. The sequentiallearningalgorithmis ex-
plainedin Section4 andexperimentsin characterrecogni-
tion, specificallydetectingLATEX symbols,arepresentedin
Section5. Finally, in Section6, we mentionsomeopen
issues,for instancethe scalingbehavior andexploiting re-
dundancy to minimizeonlinecomputation.

2 The Ensemble of Parts

As indicatedabove, thepartswe explorearedifferentfrom
those in the cited references,being inherently discrete,
learnedfrom dataratherthandesigned(or specifiedanalyti-
cally)andchosenbasedpurelyonstatisticalcriteria.Specif-
ically, we seek:� A rich pool of potentialparts - geometricallyandsta-

tistically diverse;� A modestly-sizedsubsetwhich providesa balancebe-
tweencommonalityand discrimination(objectspeci-
ficity);� A degreeof geometricandphotometricinvariance.

Globalfeaturesarethereforenot appropriatesincethey are
unlikely to generalizeand too sensitive to occlusionand
clutter; they arealsounsuitablefor the particulartypesof
coarse-to-finedetectorswe designsince,even for a single
object category, we requirefeatureswhich are simultane-
ously likely over a wide rangeof poses. Local features
arenot sufficiently discriminating,at leastif we desireto
constructour detectorsfrom a relatively small numberof
parts.Consequently, with all theseconstraintsin mind, we
use“mid-scale”featuresconstructedthemselvesfrom semi-
invariantlocal features.

The only local featureswe use are edges,but others
mightserveequallywell aslongaslocal topographicinfor-
mationis expressedin mannerlargely invariantto photom-
etry andsmallgeometricperturbations.We have usedboth
a “home-grown” edgefilter andconverteda state-of-the-art

edge-detector[6] into a binary featureafter quantizingthe
gradientto � canonicaldirections.Fig 1 illustratestheedges
found on an arc. For our purposes,the differencesamong
edgeoperatorsis unimportant;thekey operationis “spread-
ing”, whichgeneratesacascadeof local featuresovermany
“scales,” andhencemany levelsof invarianceandstatistical
power.

�

Figure1: Theedgesdetectedon a pieceof arc.

Thereis one“spreadedge”	 for eachlocation
���
 (the
pixel lattice),direction(four values),polarity (light-to-dark
or vice-versa)and“spread” ����� ��������������� :	�� � if there is an edge of the givendirectionand

polarity anywhere along a line of pixels of length �
centered at 
 , and orthogonal to the edge direction;
otherwise	�� � .

We will refer to the line of pixels as the “support” of the
spreadedge(althoughthesetof all pixelswhichparticipate
in thedefinitionof thecomponentedgesis of courselarger).
Thecase�!� � correspondsto ordinaryedges.We write "
for this collection of binary features. Spreadedgeshave
arisenin a varietyof formsin recentstudies[1], [9], moti-
vatedby achieving a desiredlevel of geometricinvariance
(see� 3).

A part is a subset#$�%�&	&' ��������� 	�( �*) " of + spread
edges,whosepositionsareconfinedto a(reference),.-/,
window (centeredattheorigin) andwhosespreadsareiden-
tical, say �102#43 . Givena location 
5��
 , thecorresponding
binaryfeatureis

6�7 08
93:� ; � if <>=@? 7�A@B 	DC�E� otherwise
(1)

where A@B 	 denotesthe shifting of the spreadedge 	 by
the vector 
 . To avoid redundantrepresentationsof object
boundarieswe requirethat the supportsof any two spread
edgesof the samedirectionbe disjoint. The degreeof in-
varianceis controlledby � . For instance,if thesubimagein
Figure1 undergoesasmalltranslation,rotationandscaling,
thesetof edgesfoundis roughlythesameasbeforefor suf-
ficiently large � , andhencethe responseof

6 7
is exactly

thesame.
We take + �F, for convenience.As for reusability,

supposethe threshold
��G E G + is chosenso that #

is ratherlikely to appear(meaningthe event
6H7 � � has

highprobability)on instancesof someobjectcategoryover
arangeof poses.Clearlythepotentialfor

6 7
to capturege-

ometricpropertiesof otherobjectcategories,andhencebe
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reused,dependscritically on + and � : As + increasesand� decreases,the part becomesmoreandmorespecialized.
In all ourexperimentswechooseEI�KJ and +L�M,F� � �
relative to objectswhosescaleis order ��� . In orderto pro-
mote reusability, we also limit # to at most two typesof
edges(in termsof directionandpolarity).

Fig 2 showssamplepartschosenduringtraining(see� 4),
all heavily reused;the boundingboxesare

� ��- � � . The
graphsin Fig 3 indicatethe level of discriminationof one
of the (coarse)partsin Fig 2 by showing objectandback-
groundprobabilitiesfor differentthresholdsE . For exam-
ple, if the thresholdin (1) is EN�.J , the likelihoodof the
event � 6 7 � �O� is nearly � �QP on objectsandlessthan � ���
onbackground.

Figure2: A sampleof partsfoundduringtraining. Toprow:
Parts frequentlyused by pose-invariant detectors. Bot-
tomrow : Parts frequentlyusedbypose-specificdetectors.
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Figure3: Probabilitieson objectandbackgroundof oneof
the sampleparts in Fig 2. Thehorizontalaxis represents
thenumberR of spreadedgesin thepart; thevertical axis
is theestimatedprobability of finding thepart for different
thresholdsR in (1), bothfor objectandnon-objectimages.

3 Object Detectors

The detectorswe train are closely relatedto recentwork
([3], [13]) in which Booleanfeaturesat different levels of
invariancearecombinedin ahierarchyin orderto accelerate
sceneparsing.Thedetectorsaredefinedasobjectvs. non-
object classifiersfor a referencewindow, which are then
appliedat a sparsesublatticeof imagelocations.The cas-
cadenatureof theclassifierleadsto quick rejectionof most
imageregions,allowing thecomputationto concentrateon
object-likestructures.

The modularor “compositional”natureof thesehierar-
chicaldetectorsmakesthemidealfor incorporatingtheflex-
ible partswe havedescribed.In thecitedwork, eachdetec-
tor in thehierarchyis basedoncheckingfor theexistenceof
certainnumberof Booleanfeatures(exactly asin our def-
inition of a part). In effect, we aresimply groupingthese
primitive Booleanfeatures(our spreadedges)into clusters
(ourparts)in orderto make thedetectorsmorediscriminat-
ing.

Given a referencegrid S on which the detectoris de-
fined, insteadof checkingwhether TVU@WOXHY[Z.\ for some
“large” family ] of edges(asdonebefore),weevaluate

^`_ba%c if Ted�fhg i&jkWmlHn fpo8q9r Z�st
otherwise

(2)

where u is a family of part/locationpairs o2vxwyq9r with q�zS . Here s is on theorderof half { u|{ . In thecurrentimple-
mentation,thelocationsareall at least} pixelsapart.Thus
thereis no overlapamongthe supportsof the (translated)
parts.

In this way we retainthebasicadvantagesof theabove-
mentionedmethods,suchasvery rapidprocessingof most
portionsof the scene(due to early exit from the search)
while at thesametime improving discriminationandallow-
ing for efficient sequentiallearning(see~ 4).

In orderto makethispaperlargelyself-contained,andto
formulatethelearningproblemin abstractterms,webriefly
describethestructureof thedetectorhierarchyandtheman-
ner in which the sceneis parsedto find instancesfrom an
objectcategory. All possibleposesin the sceneareparti-
tionedinto (disjoint) subsets;for example,theobjectposi-
tion is dividedinto non-overlappingblocks. (Thescalecan
also be restrictedto an interval commencingat the mini-
mumdetectablescaleandthealgorithmrerunondownsam-
pledimagesto find largerobjects.)Theglobalprocedureis
thento visit a subimage- correspondingin sizeto the ref-
erencegrid S - surroundingeachblock andcheckfor the
presenceof objectswith aposein thespecifiedsubset.This
is doneusingahierarchyof detectorsof theform (2). In the
experimentsbelow, theblocksareof size�h��� andtheinitial
scalesrun from theminimumsizeto twice theminimum.

More specifically, assumethat both an object classor
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category � is fixed anda subsetof poses,denoted� . The
goal is to build a detector(binary classifier) ��� which re-
spondspositively whenthereis an instanceof class� with
posein � . The set � is recursively partitionedinto sub-
setsorganizedin a treehierarchy ����� � �k� � �O����������� � ��� ��O�@������� 
 � , where ��� � is the

�
’ th memberof the

�
’ th layer.

The childrenof ��� � result from subdividing ��� � basedon
oneof theposeparameters.Thedetailsof therecursivepar-
titioning areirrelevant for our purposes.In this scheme,a
detector � ��� �.�&� �@�m� of the form (2) is learnedfor each� � � . The classifier �h� is definedin termsof ��� � � � : If the
root detector �O'�'[��� , the searchis terminated;if it re-
spondspositively, thedetectorsfor

� � � areevaluated;and
soforth. In general,� ��� is evaluatedif andonly if all its an-
cestorsareevaluatedandreturnpositiveanswers,andhence
theobjectis declaredto bepresent( � � � � ) if andonly if
a chainof positive responsesis found all the way down to
thefinal layer. (In thatcaseanestimateof theposeis easily
provided.)

Themotivationfor this searchdesignis thateachdetec-
tor ����� is designedto have a null falsenegative error (no
misseddetections)in thesensethatif thereis indeedanin-
stanceof objectclass� with posein � ��� , then � � � � � with
probability (closeto)

�
. This canalwaysbe (roughly) sat-

isfied at the expenseof falsepositive error andallows the
searchto be very quickly terminatedin general. (For “in-
variants”of a very differentsort see,for example,the dif-
ferentialonesin [7].)

4 Learning

Theabstractproblemis to inducea detector��� with good
errorstatisticsfrom atrainingset� (of images).In ourwork
this meansthat thefalsepositive rate(or typeII error) is as
smallaspossiblesubjectto thefalsenegative (typeI) gen-
eralizationerror beingcloseto zero: � � 0���3���� with very
low probabilityfor new samples� from whatever“class” �
represents.This particularerror tradeoff underliesthe ra-
tionalefor the classifiersdescribedin � 3. Needlessto say,
observingnomisseddetectionson � is notsufficient; in the
applicationsthethreshold

�
, which controlsthetradeoff, is

chosensmallerthannecessaryto achieve no misseddetec-
tionson � , but symbolsarestill occasionallymissed.

Theprocessof learningnew partsis simplebut compu-
tationally intensive. Given � , the first stepis to identify a
candidatesubfamily "�� ) " of spreadedges.Thecriterion
is that 	 is found on at leastone-halfthe imagesin � , but
the sameedgewith any smaller spreadis not. In other
words, among “common” spreadedges, take the most
preciseonespossible.Now passa ,F-�, window over the
imagelatticeandcheckfor theexistenceof a part, i.e., the
existenceof + elementsin " � meetingthe constraintsfor
a part asdefinedin � 2 aswell asa “frequency” condition

thatthepartappearon one-halfthetrainingset.

Sequential Learning: Now considera large library �
of object categories, which are incrementallypresented
to the learningsystemin someorder ��� ' � ��� ��������� . More
precisely, at iteration

�
we obtain a learning set �p  of

samplesfrom category �@  at posesin � . Our goal is
to build detectorsdedicatedto various subsets� ) �
(the subsets� ��� definedin � 3). Thesedetectorswill be
combined(asdescribedin � 3) into a Booleanclassifier�h�¢¡
dedicatedto finding instancesof class �   . We canassume
from hereon that �   and � arefixed, andwe arebuilding�£���m�¢¡�¤ ¥ . Thenumber¦§�$¨ ©`¨ of partsin � dependson
therangeof scalesin � ; in practice,¦ rangesfrom about� � to

� J .
At thefirst step(

� �>� ) wefill ourquota¦ entirelywith
newly learnedparts.Even in this stepwe try to translatea
part
6 7

attachedto location 
 to new locationsandcheck
if the frequency conditionis satisfied.At stage

�
, we wish

to maximizetheuseof existingpartsasfollows.

Let ª   be the family of parts which appear in�h�¬« �@������� ���¢¡®­ « and set ©L��¯ . The detector �����m�¢¡�¤ ¥ ,
equivalently © , is learnedin four steps:

1. Evaluate
6 7 08
93 for each location 
°�±
 and each#²�.ª³  . Retainonly thosepart/location pairs for

which the fraction of positiveresponsesexceedsone-
half. Call this setof part/locationpairs ´ .

2. Choosea randomelement 02# � 
9'�3��b´ . Of all el-
ementsin ´ with location 
9' find the one 0�#µ' � 
1'�3
with lowestspread �102# ' 3 . Add it to © . The subse-
quentsearch is restrictedto the subset́[¶ ) ´ of
partswith spread � .

3. Add to © a randomelement 02#4· � 
¸·k3 in ´ ¶ chosen
from amongthosefor which 
¸· is at least , pixels
apart from 
 ' �@���@�@� 
 ·2¹1' . If noneexist go to 4. Oth-
erwiseº»�>º �>� andrepeat3.

4. If ¨ ©|¨�¼½¦ , add ¦I¾>¨ ©`¨ new partsandmake � .
Themotivationfor usingtheminimal possiblespreadis

discrimination:Givenapart,thefalsepositiverateis mono-
tonically increasingwith � . Of courseif � is “large,” so
that � mustbe highly invariant,theremay be no available
partswith smallspreads.As � increases,however, moreand
morepartsarefoundwhicharecommonon � . (In practice,
only partsfound at invariancelevels comparableto � are
likely to beused.)In Fig 4 we show

�O¿
partsappearingin

thedetectorfor presentationsof thesymbol �À�K� within a
relatively largesubset� .
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Figure4: Parts appearingin thedetectorfor thesymbol�
overa rangeof poses.

5. Experiments
We have tested the system on a rich family of two-
dimensionalshapes,namelytheLATEXsymbols.Nothing in
the learningalgorithm is adaptedto this particularshape
class;theprocesswouldbeexactly thesamefor, say, fishor
leavesor mixturesthereof,or for shapeswith internalstruc-
ture,suchasfacesor logos.However, for highlydeformable
objectsor 3D objectsit wouldclearlybenecessaryto revisit
thebasicclassifiersin orderto accommodatemoredegrees
of freedomin thepresentations.

EachLATEXsymbolis first renderedin highresolutionand
thennormalizedin sizesothat thelargerof thedimensions
of a boundingbox is Á � pixels.Trainingdatafor eachsym-
bol is syntheticallygeneratedfor a given set of poses�
by randomlytranslating,scalingandrotatingthetemplates.
The orderingof the symbolsis also random. Samplesof
partswereshown in Fig 2 andFig 4; the spreadingof the
edgesis not depicted,but can easily be imagined,so the
partsareactuallyquiteflexible features.Thesomewhat ir-
regulargeometryis dueto thepurelystatisticalcriteria for
selection- no “regularity” is assumedotherthanrestricting
theedgesto at mosttwo orientations.

Thedegreeof reuseis smallat thebeginningbut rapidly
accelerates.Indeed,evenat thescaleof thepartsthecom-
plexity of this world of shapesis limited: All the symbols
are finally composedof a limited numberof sub-objects
arrangedin a variety of spatialconfigurations.The curve� ¾ÃÂÄ¨ ª!¨   , depictedin Fig 5. Theapproximatingfunction

is
� ¾ÃÂ ��Å�PÀ�½Æ �ÈÇ�É � (least-squaresfit). Theinitial slope

is large,but morethanhalf of thetotalnumberof partsused
for
� � ��P � classesarebuilt in thefirst Á iterations.

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

700

◊
◊
◊

◊

◊

◊◊◊◊◊◊
◊◊◊◊◊

◊◊◊◊◊◊
◊◊◊◊◊◊◊

◊◊◊◊◊◊
◊◊◊◊◊◊

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊

◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊

◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

Figure5: Growthrateof thenumberof distinctpartsin the
systemasa functionof thenumberÊ of classeslearned,forÊ _ c w�Ë�Ë�Ë�w c�Ì t . Thesuperimposedcurveis logarithmic.

The degreeof usagevariesconsiderablyamongparts.
Shown in Fig 6 is the usagedistribution: The fraction of
totalpartswhichareusedat leastÍ times.Recallthatapart
maybeusedin many differentdetectorsfor thesameobject
class.
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Figure6: Distribution of theusage of individual parts. For
each Í Z c , thegraphdisplaysthe fractionof parts in the
systemwhich at usedat least Í times.

Whenartificial “LATEXscenes”areparsed,therearedefi-
nitely falsepositives,particularlyfor categorieslearnedlate
in theprocesssincethecorrespondingdetectorstendto be
lessdiscriminatingthanthosebasedentirelyonnewly-built
parts.A sample“scene”togetherwith thedetectionsof the
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Î
symbolareshown in Fig 7. This symbolhappensto be

thefirst onelearnedandhencethefalsepositiverateis quite
low. Otherresultsareshown in Fig 8 andFig 9.

Figure 7: Resultsof detectinginstancesof
Î

on a LATEX-
scene.

6 Discussion and Conclusions

Othersequentiallearningscenarioscouldbeimagined.For
instance,at eachiterationonly a singlenew instances(im-
age)might be presented,or a setsof imagesrepresenting
multiple objectcategories,somenew andsomepreviously
seen.Indeed,thesingleexamplecasehasbeenconsidered
in themachinelearningliterature;seee.g.the“Incremental
TreeInducer”algorithm[12].

The learningalgorithm hasnot beenoptimized; many
ameliorationsarepossible,both for acceleratingthe learn-
ing and for reducingthe falsepositive rate. In particular,
the part selectionprocessis far from optimal: Basicallya
greedy, recursivesearch,startingfrom agivenpartandran-
domly addingany onewhich is disjoint from the previous
ones.A moreprincipledapproachmight beto find thebest
detectorin termsof someobjectivefunctionwhichaccounts
simultaneouslyfor reusabilityandan estimatedfalseposi-
tiverate.

Finally, andmostimportantly, theredundancy amongthe
detectorshasnot yet beenexploited to reduceonlinecom-
putation.Whenmultipleclassesaredetectedwesimply im-
plementtheseparatedetectorsoneby one.Althoughdetec-
tion is quiterapiddueto frequentearlyexit from thehierar-

chy, steepfurthergainsshouldbe possible.An interesting
question,both in practiceandtheory, is how to exploit the
overlapto maximallyreducetheamountof onlinecomputa-
tion. Clearly, ratherthanloopoverdetectors,it makessense
to basethesearchon thepartsthemselves,for examplese-
quentiallyevaluatingthemin atree-structureddecisionpro-
tocol, therebytaking advantageof both the hierarchyand
thecommonality.
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Figure8: Examplesof detectionresultsfor other symbols,
displayedto left of the correspondingimage. Theoval re-
flectsthedetectedposein position,scaleandtilt.
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Ñ

Figure9: Additionalresults.
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