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Abstract

Our long-range goal is detectinginstancesfrom a large
numberof objectclassesn a computationallyefficientman-
ner. Detectos involvinga hierarchy of testshasedon edges
havebeenusedelsavhee and shownto be quite fast on-
line. However, significantfurther gainsin efficiency- in
representation.error ratesand computation- can be re-
alizedif the family of detectos is constructedfrom com-
monparts. Our partsare flexible, extendededge configuia-
tions;they arelearned,not pre-designedin training, object
classesare presentedsequentially;the objectiveis thento
accommodateew classedy maximallyreusingparts. Ide-
ally, the numberof distinctpartsin the systemwould grow
mud more slowlythanlinearly with the numberof classes.
Initial experimentson learning to detectseveral hundred
IATleXsymbolsare encoulging.

1. Introduction

Oneof the grandbut largely unrealizedobjectivesof com-
puter vision is semanticscenelabeling - identify all in-

stanceof ordinary objectsin naturalimagesor video se-
guences,including object posesand occlusion patterns.
Oneobstaclés certainlythe sheemumberof differentob-

ject catgyoriesthat might appeaiin typical indoorandout-

doorscenesWhereasn ary givenapplicationthis number
might be severelylimited by specificgoals,it is notunreal-
istic to imaginehundredsr eventhousandsf cateyoriesof

interest.Add anotherorderof magnituddf thechallengds

to emulatehumancapabilities.

Naturally, computationthenbecomeshe paramounis-
sue, both for constructingthe detectors(whether from
models or samples)and for implementingthem online.
Throughouthis papera “detector”is a binary classifierfor
someinstanceof object/backgroundeparationFastdetec-
torshave recentlybeenbuilt basedon sometype of coarse-
to-fine search. The particularoneswe train are a variant
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of these: Thereis a hierarchyof individual Booleande-
tectorsdedicatedo varioussubsetf presentationsgach
of which is basedon checkingfor a minimum numberof
“parts” which are chosenduring training from a virtually
infinite candidatepool. Our aim is to designthe underly-
ing objectrepresentation® shareasmary partsaspossi-
ble. This opensthe way to still fasteronline executionas
well asmoreefficientrepresentationlt canalsoreducethe
errorratesif thepartsareextendedstructuresvhich aresig-
nificantly rarerin the “background”thanon the objectsof
interest.

Findinga universal“alphabet”of featureshasof course
intriguedresearcherfor alongtime, bothin computational
and biological vision. The adwantagesare numerous,in-
cluding simplifying object recognitionand sceneparsing
by basingthe searchon the parts,someof which could be
precomputed.ldeally, not too mary total partswould be
neededn orderto representachobjectin termsof arela-
tively smallnumberof themtogethemwith roughgeometric
constraintamongthem([2],[5]. In addition,methodsased
on stochasticand structuralgrammarsare by naturehier-
archical;indeed,the conceptof “parts” lies at the heartof
“compositionalvision” [4]. From the point of view of bi-
ologicalvision, this providesa modelfor the responsesf
neuronsat higher level retinotopiclayerssuchas V4 and
somepart of IT [11]. Previous attemptshave focusedon
pre-designegarts(seee.g. [5] and[8]). In contrast,our
approachs statistical Jearning-basedndrecursve.

Our partsare medium-scalepinary featureswhich are
definedin terms of flexible and extendedconfigurations
of edges. The learningscenariois sequential:nen object
classesare continually being addedto an existing library.
In fact,weimaginebeginningwith a singleobjectclassand
successiely addingone new classat eachiteration. The
objective is thento modify the existing systemin orderto
accommodatéenew category. We simply build adetector
for thenew classandaddit to theexisting collection.When
the detectorfor the k + 1'st classis constructedthe parts



which constitutethe previous k detectorsareexaminedfirst
andfavoredin the constructiorof the new one. Only if the
guotaof necessaryartsis not reachedn this way arenew
partslearnedrom data.Initially, mostpartsarelearnedand
unique;eventually mary arereusedn new classifiers.de-
ally, the total numberof distinct partsin the systemafter &
constructionsvill grow slowly, for instancdogarithmically
with &, whichdirectly reducestorageandopensheway to
onlineefficiency by basingscenegparsingonthepartsrather
thantheindividual detectors.

We describesome stepsalong this path. The parts
are describedin §2 and the methodfor integrating them
into a detectoris outlinedin Section3. Obvious tradeofs
emege amongmeasure®f reusability discriminationand
part compleity. The sequentialearningalgorithmis ex-
plainedin Section4 andexperimentsn characterecogni-
tion, specificallydetectinglf&TeX symbols,are presentedn
Section5. Finally, in Section6, we mentionsomeopen
issuesfor instancethe scalingbehaior andexploiting re-
dundang to minimize online computation.

2 TheEnsembleof Parts

As indicatedabove, the partswe explore aredifferentfrom

thosein the cited references,being inherently discrete,
learnedrom dataratherthandesignedor specifiedanalyti-
cally) andchoserbasedpurelyonstatisticakriteria. Specif-
ically, we seek:

e Arich pool of potentialparts- geometricallyand sta-
tistically diverse

e A modestly-sizedubsewhich providesa balancebe-
tweencommonalityand discrimination (object speci-
ficity);

e Adgyreeof geometricand photometridnvariance

Globalfeaturesarethereforenot appropriatesincethey are
unlikely to generalizeand too sensitve to occlusionand
clutter; they are alsounsuitablefor the particulartypesof

coarse-to-finaletectorawve designsince,even for a single
object category, we requirefeatureswhich are simultane-
ously likely over a wide rangeof poses. Local features
are not sufficiently discriminating,at leastif we desireto

constructour detectorsfrom a relatively small numberof

parts. Consequentlywith all theseconstraintdn mind, we

use“mid-scale”featuresonstructedhemselesfrom semi-
invariantlocal features.

The only local featureswe use are edges,but others
might sene equallywell aslong aslocal topographidnfor-
mationis expressedn mannerargely invariantto photom-
etry andsmallgeometricperturbationsWe have usedboth
a“home-gravn” edgefilter andcorverteda state-of-the-art

edge-detectof6] into a binary featureafter quantizingthe
gradientto 4 canonicallirections.Fig 1 illustratestheedges
found on anarc. For our purposesthe differencesamong
edgeoperatorsgs unimportantthekey operationis “spread-
ing”, which generatea cascad®f localfeatureovermary
“scales; andhencemary levelsof invarianceandstatistical

power.
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Figurel: Theedgesdetectedn a pieceof arc.

Thereis one“spreadedge”¢ for eachiocationz € L (the
pixel lattice),direction(four values) polarity (light-to-dark
or vice-versaj)and“spread™, € {1, 2, ...}:

¢ = 1 if there is an edge of the givendirectionand

polarity anywhee along a line of pixels of lengthn

centeed at z, and orthogonal to the edge direction;

otherwiset = 0.
We will referto the line of pixels asthe “support” of the

spreacedge(althoughthe setof all pixelswhich participate
in thedefinitionof thecomponenedgesds of coursdarger).
Thecasen = 1 correspondso ordinaryedges.We write £

for this collection of binary features. Spreadedgeshave
arisenin avariety of formsin recentstudieg[1], [9], moti-

vatedby achiezing a desiredlevel of geometricinvariance
(sees3).

A partis asubsetd = {&,...,éu} C £ of M spread
edgeswhosepositionsareconfinedto a (referenceX x K
window (centeredattheorigin) andwhosespreadsreiden-
tical, sayn(A). Givenalocationz € L, thecorresponding
binaryfeatureis

L it eeamé>m
Xalz) = { 0 otherwise @)

where 7,£ denotesthe shifting of the spreadedge¢ by

the vectorz. To avoid redundantepresentationsf object
boundariesve requirethat the supportsof ary two spread
edgesof the samedirectionbe disjoint. The degreeof in-

varianceis controlledby 7. For instancejf the subimagen

Figurel undegoesa smalltranslationyotationandscaling,
thesetof edgedoundis roughlythe sameasbeforefor suf-

ficiently large n, and hencethe responsef X 4 is exactly
thesame.

We take M = K for corvenience. As for reusability
supposehe thresholdl < m < M is chosenso that A
is ratherlikely to appearmeaningthe event X 4 = 1 has
high probability) on instance®f someobjectcategory over
arangeof posesClearlythepotentialfor X 4 to capturege-
ometricpropertiesof otherobjectcateyories,andhencebe



reuseddependsritically on M andy: As M increasesind
1 decreaseghe part becomesnore andmore specialized.
In all our experimentsve choosen = 5andM = K =10

relative to objectswhosescaleis order40. In orderto pro-

mote reusability we alsolimit A to at mosttwo typesof

edgeqin termsof directionandpolarity).

Fig 2 shavs samplepartschoserduringtraining(sees4),
all heavily reused;the boundingboxesare10 x 10. The
graphsin Fig 3 indicatethe level of discriminationof one
of the (coarse)partsin Fig 2 by shaving objectandback-
groundprobabilitiesfor differentthresholdsn. For exam-
ple, if the thresholdin (1) is m = 5, thelikelihoodof the
event{X 4 = 1} is nearly0.7 on objectsandlessthan0.1
onbackground.
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Figure2: A sampleof partsfoundduringtraining. Toprow:
Parts frequentlyused by pose-ivariant detectos. Bot-
tomrow : Parts frequentlyusedby pose-specifidetectos.
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Figure3: Probabilitieson objectand badkgroundof oneof
the sampleparts in Fig 2. The horizontal axis represents
thenumberm of spreadedgesin the part; the vertical axis
is the estimatedprobability of finding the part for different
thresholdsn in (1), bothfor objectand non-objecimages.

3 Object Detectors

The detectorswe train are closely relatedto recentwork
(3], [13]) in which Booleanfeaturesat differentlevels of
invariancearecombinedn ahierarchyin orderto accelerate
sceneparsing. The detectorsaare definedasobjectvs. non-
object classifiersfor a referencewindow, which are then
appliedat a sparsesublatticeof imagelocations. The cas-
cadenatureof theclassifiedeadsto quick rejectionof most
imageregions,allowing the computatiorto concentraten
object-like structures.

The modularor “compositional’ natureof thesehierar
chicaldetectorsnakesthemidealfor incorporatingheflex-
ible partswe have describedIn the citedwork, eachdetec-
torin thehierarchyis basedn checkingfor the existenceof
certainnumberof Booleanfeatureg(exactly asin our def-
inition of a part). In effect, we are simply groupingthese
primitive Booleanfeatures(our spreadedges)into clusters
(our parts)in orderto make the detectorsnorediscriminat-
ing.

Given a referencegrid G on which the detectoris de-
fined, insteadof checkingwhetherzgeBg > [ for some
“large” family B of edgeqasdonebefore),we evaluate

1 ify Xa(z) >n
— (A,z)eD
f { 0 otherwise @

whereD is afamily of part/locationpairs (A4, z) with z €

G. Heren is ontheorderof half |D|. In the currentimple-

mentationthelocationsareall atleastK pixelsapart.Thus
thereis no overlapamongthe supportsof the (translated)
parts.

In this way we retainthe basicadvantage®f the above-
mentionedmethods suchasvery rapid processingf most
portions of the scene(due to early exit from the search)
while atthesametime improving discriminationandallow-
ing for efficient sequentialearning(seeg4).

In orderto malke this papenfargely self-containedandto
formulatethelearningproblemin abstracterms,we briefly
describehestructureof thedetectohierarchyandtheman-
nerin which the sceneis parsedto find instancedrom an
objectcategory. All possibleposesin the sceneare parti-
tionedinto (disjoint) subsetsfor example,the objectposi-
tion is dividedinto non-overlappingblocks. (The scalecan
also be restrictedto an interval commencingat the mini-
mumdetectablescaleandthealgorithmrerunon downsam-
pledimagesto find largerobjects.)The globalprocedurds
thento visit a subimage correspondingn sizeto theref-
erencegrid G - surroundingeachblock and checkfor the
presence®f objectswith aposein thespecifiedsubset.This
is doneusinga hierarchyof detectorof theform (2). In the
experimentdelow, theblocksareof size8 x 8 andtheinitial
scalegunfrom the minimumsizeto twice theminimum.

More specifically assumethat both an object classor



category c is fixed and a subsef posesdenotedd. The
goalis to build a detector(binary classifier)F;, which re-
spondspositively whenthereis aninstanceof classc with

posein ©. The set® is recursvely partitionedinto sub-
setsorganizedin a tree hierarchy{Q;;,j = 1,...,n;,l =

1,...,L}, where(y; is the j’th memberof the I’th layer

The children of €;; resultfrom subdviding ©;; basedon
oneof the poseparametersThedetailsof therecursve par

titioning areirrelevantfor our purposes.In this schemea
detectorf;; € {0,1} of the form (2) is learnedfor each
;. TheclassifierF, is definedin termsof {f;;}: If the
root detectorf;; = 0, the searchis terminated;if it re-
spondgpositively, thedetectordor I = 2 areevaluatedand
soforth. In general f;; is evaluatedf andonly if all its an-
cestorsareevaluatedandreturnpositive answersandhence
the objectis declaredto be present(F, = 1) if andonly if

a chainof positive responsess found all the way down to

thefinal layer. (In thatcaseanestimateof the poseis easily
provided.)

The motivationfor this searchdesignis thateachdetec-
tor fi; is designedio have a null false negative error (no
misseddetections)n the sensdhatif thereis indeedanin-
stanceof objectclassc with posein €;;, then f;; = 1 with
probability (closeto) 1. This canalwaysbe (roughly) sat-
isfied at the expenseof falsepositive error and allows the
searchto be very quickly terminatedin general. (For “in-
variants”of a very differentsort see,for example,the dif-
ferentialonesin [7].)

4 Learning

The abstractproblemis to inducea detectorf, with good
errorstatistic§rom atrainingset. (of images) In ourwork
this meanghatthe falsepositive rate(or typell error)is as
smallaspossiblesubjectto the falsenegative (typel) gen-
eralizationerror beingcloseto zero: f.(I) = 0 with very
low probabilityfor new sampled from whatever“class” £
represents.This particularerror tradeof underliesthe ra-
tionalefor the classifiersdescribedn §3. Needlesgo say
observingno misseddetection®n £ is notsuficient;in the
applicationghethresholdn, which controlsthetradeof, is
chosersmallerthannecessaryo achieve no misseddetec-
tionson £, but symbolsarestill occasionallymissed.

The processf learningnew partsis simple but compu-
tationallyintensive. Given £, the first stepis to identify a
candidatesubfamily & C £ of spreadedges.Thecriterion
is that¢ is found on at leastone-halftheimagesin £, but
the sameedgewith ary smaller spreadis not. In other
words, among “common” spreadedges, take the most
preciseonespossible.Now passa K x K window overthe
imagelattice andcheckfor the existenceof a part,i.e., the
existenceof M elementsn £° meetingthe constraintsor
a partasdefinedin §2 aswell asa “frequeng/” condition

thatthe partappeaion one-halfthetraining set.

Sequential Learning: Now considera large library C
of object categories, which are incrementally presented
to the learning systemin someorder {c;, c2,...}. More
precisely at iteration k we obtain a learning set £, of
samplesfrom category ¢;, at posesin ©. Our goal is
to build detectorsdedicatedto various subsets? C ©
(the subsets(?;; definedin §3). Thesedetectorswill be
combined(asdescribedn §3) into a BooleanclassifierF,
dedicatedo finding instancef classc;. We canassume
from hereon thatc, andQ arefixed, andwe arebuilding
f = fe,,- ThenumberN = |D| of partsin f depend®n
therangeof scalesin Q; in practice,N rangesfrom about
10 to 25.

At thefirst step(k = 0) wefill ourquotaN entirelywith
newly learnedparts. Evenin this stepwe try to translatea
part X 4 attachedo locationz to new locationsandcheck
if the frequeng conditionis satisfied.At stagek, we wish

to maximizethe useof existing partsasfollows.
Let P, be the family of parts which appearin
F.,,...,F,_, andsetD = (. Thedetectorf = f., o,

equialentlyD, is learnedn four steps:

1. Evaluate X 4(z) for eadh locationz € L and eadh
A € P,. Retainonly thosepart/location pairs for
which the fraction of positiveresponsegxceedsone-
half. Call this setof part/locationpairs W.

2. Choosea randomelement(4,z,) € W. Of all el-
ementsin W with location z; find the one (A4, z1)
with lowestspreadn(A4;). Addit to D. Thesubse-
guentseach is restrictedto the subsetV,, C W of
partswith spreadn.

3. Add to D a randomelement(A4;, z;) in %}, chosen
from amongthosefor which z; is at least K pixels
apartfromzy,...,x;—1. If noneexistgoto 4. Oth-
erwise: = ¢ + 1 andrepeat3.

4. If |D| < N,addN — |D| new partsandmale f.

The motivationfor usingthe minimal possiblespreads
discrimination:Givenapart,thefalsepositive rateis mono-
tonically increasingwith n. Of courseif Q is “large} so
that f mustbe highly invariant,theremay be no available
partswith smallspreadsAs n increaseshowever, moreand
morepartsarefoundwhich arecommonon £L. (In practice,
only partsfound at invariancelevels comparabldo 2 are
likely to beused.)In Fig 4 we shav 23 partsappearingn
the detectorfor presentationsf the symbolc = © within a
relatively large subsef.
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Figure4: Parts appearingin the detectorfor the symbol®
over arange of poses.

5. Experiments

We have testedthe systemon a rich family of two-
dimensionakhapesnamelythe IATEXsymbols. Nothingin
the learning algorithmis adaptedto this particular shape
class;ithe processvould beexactly thesamefor, say fish or
leavesor mixturesthereof,or for shapesvith internalstruc-
ture,suchasfacesorlogos.However, for highly deformable
objectsor 3D objectsit would clearlybenecessaryo revisit
the basicclassifieran orderto accommodatenoredegrees
of freedomin thepresentations.

EachlATpXsymbolisfirst renderedn highresolutionand
thennormalizedin sizesothatthelargerof the dimensions
of aboundingboxis 64 pixels. Trainingdatafor eachsym-
bol is syntheticallygeneratedor a given set of poses(2
by randomlytranslating scalingandrotatingthetemplates.
The orderingof the symbolsis alsorandom. Samplesof
partswere shovn in Fig 2 andFig 4; the spreadingof the
edgesis not depicted,but can easily be imagined,so the
partsareactuallyquite flexible features.The someavhatir-
regulargeometryis dueto the purely statisticalcriteria for
selection no “regularity” is assumeabtherthanrestricting
theedgedo at mosttwo orientations.

Thedegreeof reuseis smallatthe beginning but rapidly
accelerateslndeed,even at the scaleof the partsthe com-
plexity of this world of shapeds limited: All the symbols
are finally composedof a limited numberof sub-objects
arrangedn a variety of spatialconfigurations. The curve
k — |P|i, depictedin Fig 5. The approximatingunction

isk — 197 + 841n k (least-squareft). Theinitial slope
is large,but morethanhalf of thetotal numberof partsused
for k = 170 classesarebuilt in thefirst 6 iterations.
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Figure5: Growthrate of the numberof distinctpartsin the
systenmasa functionof thenumberk of classedearned,for
k =1,...,170. Thesuperimposedurveis logarithmic.

The degree of usagevaries considerablyamongparts.
Shawn in Fig 6 is the usagedistribution: The fraction of
total partswhich areusedat least; times.Recallthatapart
maybeusedin mary differentdetectorgor the sameobject
class.
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Figure6: Distribution of the usage of individual parts. For
ead j > 1, thegraphdisplaysthe fraction of partsin the
systemwhich at usedat least; times.

Whenartificial “LATeXscenes’are parsedtherearedefi-
nitely falsepositives,particularlyfor categorieslearnedate
in the processsincethe correspondingletectorgendto be
lessdiscriminatingthanthosebasedentirely on newly-built
parts.A sample‘scene”togethemwith the detectionof the



® symbolareshown in Fig 7. This symbolhappendo be
thefirst onelearnedandhencethefalsepositiverateis quite
low. Otherresultsareshavn in Fig 8 andFig 9.
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Figure 7: Resultsof detectinginstancesof ® on a AIEX-
scene

6 Discussion and Conclusions

Othersequentialearningscenariogouldbeimagined.For
instance at eachiterationonly a singlenew instancegim-
age) might be presentedpr a setsof imagesrepresenting
multiple objectcateyories,somenew andsomepreviously
seen.Indeed,the single examplecasehasbeenconsidered
in themachindearningliterature;seee.g.the“Incremental
Treelnducer”algorithm[12].

The learning algorithm has not beenoptimized; mary
ameliorationsare possible both for acceleratinghe learn-
ing andfor reducingthe falsepositive rate. In particular
the part selectionprocesss far from optimal: Basicallya
greedyrecursve searchstartingfrom a givenpartandran-
domly addingary onewhich is disjoint from the previous
ones.A moreprincipledapproachmight beto find the best
detectoiin termsof someobjective functionwhichaccounts
simultaneouslhyfor reusabilityandan estimatedralseposi-
tiverate.

Finally, andmostimportantly theredundang amongthe
detectorshasnot yet beenexploited to reduceonline com-
putation.Whenmultiple classegredetectedve simplyim-
plementthe separateletectoroneby one. Althoughdetec-
tion is quiterapiddueto frequentearlyexit from the hierar

chy, steepfurther gainsshouldbe possible.An interesting
guestionbothin practiceandtheory is how to exploit the

overlapto maximallyreducegheamountof onlinecomputa-
tion. Clearly, ratherthanloop overdetectorsit makessense
to basethe searchon the partsthemseles,for examplese-
guentiallyevaluatingthemin atree-structuredecisionpro-

tocol, therebytaking advantageof both the hierarchyand

thecommonality
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Figure8: Examplesof detectionresultsfor other symbols,
displayedto left of the correspondingmage. Theoval re-

flectsthe detectecposein position,scaleandtilt.
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Figure9: Additionalresults.



